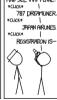
# Sentinel-2 data at 2m every 2 days: Assessment of spatio-temporal fusion algorithms between the Sentinel-HR and Sentinel-2 (NG) missions


Julien MICHEL. Olivier HAGOLLE, Jordi INGLADA, Juan VINASCO Living Planet Symposium - 2022.05.22

CESBIO. Université de Toulouse. CNES/CNRS/INRAe/IRD/UPS. Toulouse. FRANCE











https://xkcd.com/1719

# What is Sentinel-HR? A phase-0 mission study

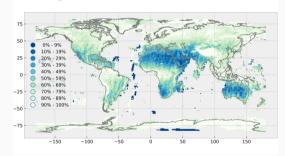
 $Sentinel-HR\ would\ be\ a\ VHR\ and\ 3D\ Sentinel\ mission\ complementary\ to\ Sentinel-2\ (NG)$ 

| Coverage                 | All land and coats (similar to S2)                         |
|--------------------------|------------------------------------------------------------|
| Ground Sampling Distance | $\leq$ 2.5 meters                                          |
| Revisit time             | 20 days                                                    |
| Spectral bands           | Blue, Green, Red, Near Infra Red (similar to S2 10m bands) |
| Viewing angles           | Constant Nadir (at center of swath)                        |
| Stereoscopic capability  | Systematic with height accuracy better than 4m CE90        |
| Orbit                    | Sun-synchronous                                            |
| Tasking                  | no tasking, instrument always on over lands                |
| Mission lifetime         | 7 years or more                                            |
| Proposed launch date     | 2028                                                       |
| Products                 | Analysis Ready, free and open data                         |

Aim : gather multi-temporal, high resolution observations for land surface change detection



## Hybridation: Problem statement


#### Problem

- Some use-cases require both 2m resolution and revisit better than 20 days
- Cloud cover will impair the 20 days revisit in most locations

#### Idea

- Combine Sentinel-HR images (2m, 20 days) with :
  - Sentinel-2 (10m, 5 days)
  - Sentinel-2 NG (5m, 2 days)
- To make 2 meters prediction with revisit < 20 days

### Percentage of S2 cloud contaminated scenes in 2017

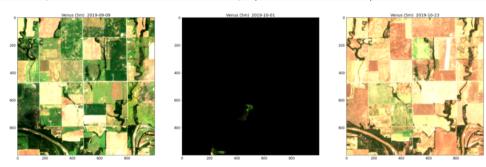


### Phase 0 Objective

Demonstrate feasibility of hybrid products and assess expected performances



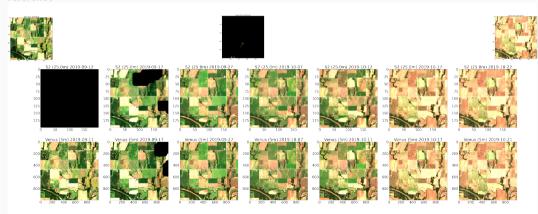
## **Hybridation**: Dataset


- Use Venus and Sentinel-2 L2A products from Theia archives
- Search for Venus 5m "guide" series with  $\approx$  20 days revisit (will act as Sentinel-HR)
- Cross-search " target" series of Sentinel-2 and Venµs less than 1 day apart (will act as S2 with its high resolution reference)
- Downsample Sentinel-2 to 25m (ratio of 5 SHR+S2) or 12.5m (ratio of 2.5 for SHR+S2NG)
- Spatial registration and radiometric harmonization by linear regression

| Site Name | Location   | Landscape           | Guide | Target | Time range        |
|-----------|------------|---------------------|-------|--------|-------------------|
| SUDOE-4   | France     | Montains            | 10    | 14     | 2019.07 - 2020.01 |
| MAD-AMBO  | Madagascar | Desert              | 17    | 39     | 2018.11 - 2020.01 |
| FR-LQ1    | France     | Mixed               | 9     | 27     | 2020.04 - 2020.10 |
| FR-BIL    | France     | Agricultural, urban | 12    | 16     | 2020.03 - 2020.11 |
| ARM       | USA        | Agricult ural       | 16    | 23     | 2019.03 - 2020.01 |
| ESGISB-2  | France     | Agricultural, urban | 10    | 14     | 2018.11 - 2019.05 |



# Hybridation: Dataset


### Guides : Venus 5m time series with revisit $\approx$ 20 days (our Sentinel-HR series)

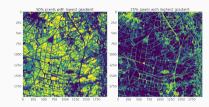




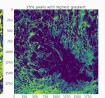
# Hybridation: Dataset

Targets : in-between Sentinel-2 25m time series (our Sentinel-2 series) + corresponding Ven $\mu$ s 5m reference






### Hybridation: Benchmark


### Principle

- Predict all target dates at 5m using 5m guide dates and 25m or 12.5m target dates
- Derive different metrics (RMSE, MAE, PSNR, UIQI, CE90, CE99, SAM, Structural, ERGAS...)
- Computed on bands + NDVI, for whole image, 50% of lowest gradient pixels, 25% of highest gradient pixels

Low / High gradient magnitude stratas

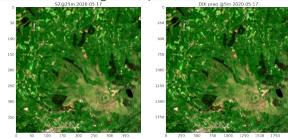




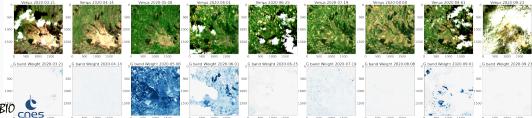


#### Methods overview

| Method                           | Use HR images | Use LR images |
|----------------------------------|---------------|---------------|
| Temporal interpolation           | yes           | no            |
| Spatial interpolation            | no            | yes           |
| SISR (CARN) [AKS18]              | t raining     | inference     |
| Data Driven Interpolation (ours) | inference     | training*     |
| STARFM / ESTARFM [GMSH06]        | yes           | yes           |




## **Data Driven Interpolation**

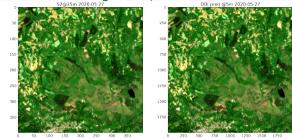

#### Main ideas

- Each target pixel is a linear combination of the same pixel at guide dates
- Weights are estimated per pixel by a Multi-Layer Perceptron
- Learning is done at low resolution, and then model is applied at high resolution with residual correction
- New training for each date to predict

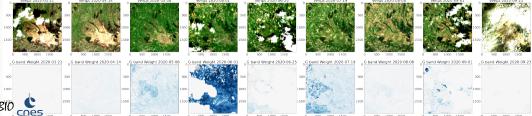
Left: 25m S2 date, right: 5m prediction



### Weight of each 5m guide date in prediction (for Green band)




## **Data Driven Interpolation**

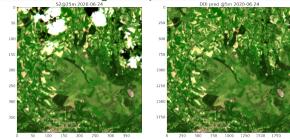

#### Main ideas

- Each target pixel is a linear combination of the same pixel at guide dates
- Weights are estimated per pixel by a Multi-Layer Perceptron
- Learning is done at low resolution, and then model is applied at high resolution with residual correction
- New training for each date to predict

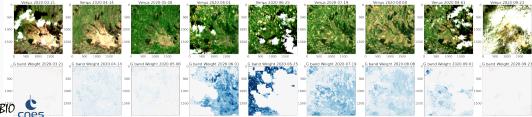
Left: 25m S2 date, right: 5m prediction



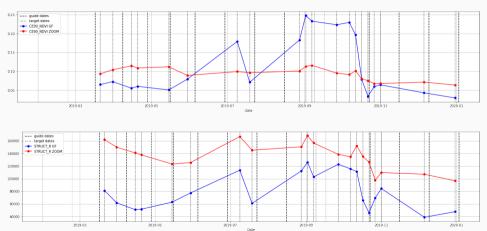
### Weight of each 5m guide date in prediction (for Green band)




## **Data Driven Interpolation**

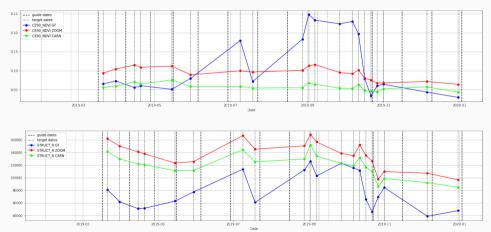

#### Main ideas

- Each target pixel is a linear combination of the same pixel at guide dates
- Weights are estimated per pixel by a Multi-Layer Perceptron
- Learning is done at low resolution, and then model is applied at high resolution with residual correction
- New training for each date to predict


Left: 25m S2 date, right: 5m prediction

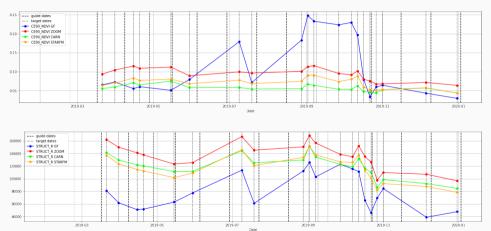


### Weight of each 5m guide date in prediction (for Green band)



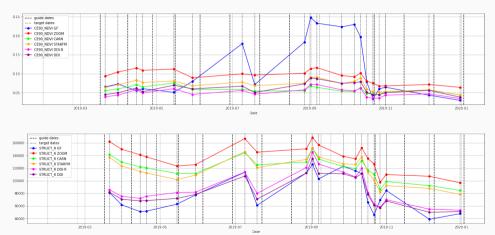

Trivial methods: SHR dates temporal interpolation, S2 dates spatial interpolation





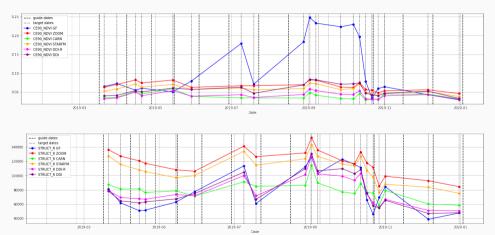

### Adding CARN (Deep Learning based Single Image Super-Resolution)





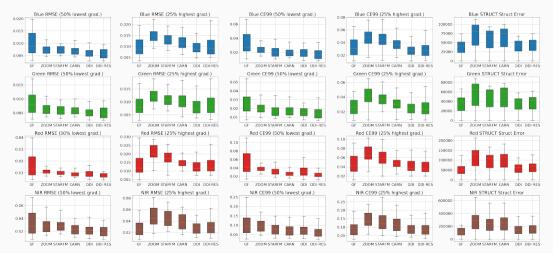

### Adding STARFM (Seminal Spatio-Temporal Fusion Method)





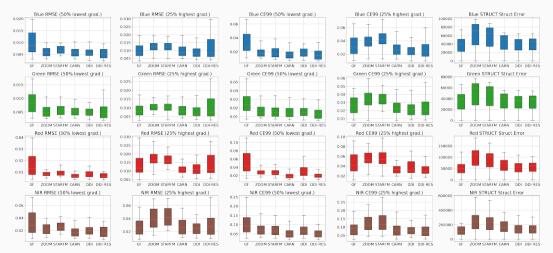

### Adding Data Driven Interpolation (ours)





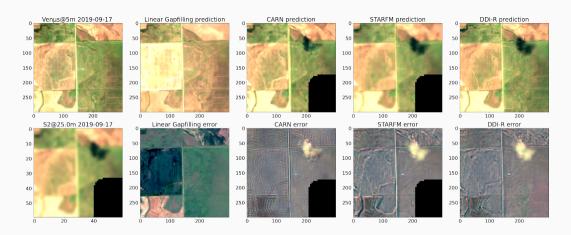

Same graphs but with resolution  $\times 2.5:12.5$  meters  $\Rightarrow 5$  meters





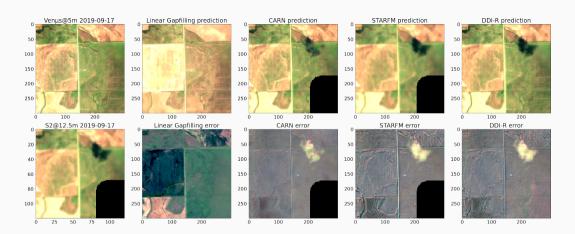

# Res $\times 5.0$ , metrics on all sites, reference and prediction on same day (54 images)






# Res $\times 2.5$ , metrics on all sites, reference and prediction on same day (54 images)






## Predictions for ARM site, resolution $\times 5$





## Predictions for ARM site, resolution $\times 2.5$





### Conclusion

#### Main outcomes from the benchmark

- ullet 99% of pixels have abs. error < 0.01 TOC (RGB) and < 0.15 TOC (NIR) for more than 75% of scenes
- Super Resolution seems competitive for a ratio of 2.5 (provided that training data are available). Also very simple to use after offline training (only requires the low resolution S2 date)
- DDI more interesting for higher ratios, and provides gap-filling as well, but requires (fast) training for each
  date and SHR dates buffering
- Clear interest on mixing SHR with S2(NG) with any method (instead of temporal interpolation)
- Intra and inter series spatial registration is mandatory, as well as spectral bands consistency

#### Limitations

- Generalisation to 2m target resolution? (non linear effects of landscape scales)
- Quantitative spec. on spatial registration not investigated
- Other revisit have not been explored 20 days is an educated guess of the best revisit trade-off
- Increase ground segment complexity (buffering dates, GPUs for computation)



# Going further

### Full report of Sentinel-HR phase-0 available on HAL



• Covers hybridation study but also user requirements and mission design

Julien Michel, Olivier Hagolle, Anne Puissant, Pierre-Alexis Herrault, Thomas Corpetti, et al.. Sentinel-HR Phase 0 Report. [Research Report] CNES - Centre national d'études spatiales; CESBIO. 2022. (hal-03643411)

### SEN2VENµS, a dataset for the training of Sentinel-2 super-resolution algorithms



- Open Dataset on Zenodo: https://zenodo.org/record/6514159
- 132 955 patches, 29 locations, 8 Sentinel-2 bands, from 10m/20m to 5m (VENμS resolution)

Michel, J.; Vinasco-Salinas, J.; Inglada, J.; Hagolle, O. SEN2VENµS, a Dataset for the Training of Sentinel-2 Super-Resolution Algorithms. Preprints 2022, 2022050230 (doi: 10.20944/preprints202205.0230.v1). Submitted to MDPI Data.



## Bibliography



Namhyuk Ahn, Byungkon Kang, and Kyung-Ah Sohn.

Fast, accurate, and lightweight super-resolution with cascading residual network.

In Proceedings of the European Conference on Computer Vision (ECCV), pages 252-268, 2018.



Feng Gao, Jeff Masek, Matt Schwaller, and Forrest Hall.

On the blending of the landsat and modis surface reflectance : Predicting daily landsat surface reflectance.

IEEE Transactions on Geoscience and Remote sensing, 44(8):2207-2218, 2006.

