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Abstract: Mediation analysis aims at disentangling the effects of a treatment on an outcome through alter-
native causal mechanisms and has become a popular practice in biomedical and social science applications.
The causal framework based on counterfactuals is currently the standard approach to mediation, with
important methodological advances introduced in the literature in the last decade, especially for simple
mediation, that is with onemediator at the time. Among a variety of alternative approaches, Imai et al. showed
theoretical results and developed an R package to deal with simple mediation as well as with multiple
mediation involving multiple mediators conditionally independent given the treatment and baseline cova-
riates. This approach does not allow to consider the often encountered situation in which an unobserved
common cause induces a spurious correlation between the mediators. In this context, which we refer to as
mediation with uncausally related mediators, we show that, under appropriate hypothesis, the natural direct
and joint indirect effects are non-parametrically identifiable.Moreover, we adopt the quasi-Bayesian algorithm
developed by Imai et al. and propose a procedure based on the simulation of counterfactual distributions to
estimate not only the direct and joint indirect effects but also the indirect effects through individualmediators.
We study the properties of the proposed estimators through simulations. As an illustration, we apply our
method on a real data set from a large cohort to assess the effect of hormone replacement treatment on breast
cancer risk through threemediators, namely densemammographic area, nondense area and bodymass index.

Keywords: correlated mediators; direct and indirect effects; independent mediators; multiple mediators;
simulation of counterfactuals.

1 Introduction

Causal mediation analysis comprises statistical methods to study the mechanisms underlying the relation-
ships between a cause, an outcome and a set of intermediate variables. This approach has become increasingly
popular in various domains such as biostatistics, epidemiology and social sciences.Mediation analysis applies
to the situation depicted by the causal directed acyclic graph of Figure 1, where an exposure (or treatment) T
affects an outcome Y either directly or through one ormore intermediate variables referred to asmediators. The
aim of the analysis is to assess the total causal effect of T on Y by decomposing it into a direct effect and an
indirect effect through the mediator(s).

Mediation analysis originally developed within the setting of linear structural equation modelling (LSEM)
[1–3]. Following the seminal works by Robins and Greenland [4] and Pearl [5], a formal framework based on
counterfactual variables established itself as the standard approach to mediation analysis, with a growing
methodological literature, see for instance [6–9] and the comprehensive book [10].
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In this work, we adopt the point of view and formalism of [11] and [12], who put forward a general approach
based on counterfactuals to define, identify and estimate causal mediation effects without assuming any
specific statistical model in the particular case of a single mediator. The theoretical results in these articles are
based on a strong set of assumptions known as Sequential Ignorability. These conditions are interpreted as the
requirement that theremust be no confounding of theT–Y,T–M andM–Y relationships after adjustment for the
measured pretreatment covariates (i.e., confounders that are not affected by T) and T, andmoreover that there
must not be posttreatment confounding (i.e., confounders that are affected by T) betweenM and Ywhatsoever,
measured or unmeasured. In particular, [11, 12] proved that under Sequential Ignorability, the average indirect
effect is nonparametrically identified, see Theorem 2.1 in the next section, and proposed a sensitivity analysis
to assess the robustness of estimates to violations of Sequential Ignorability. Moreover they introduced esti-
mation algorithms for the effects of interest that are implemented in the widely usedmediation R package [13].

Whenmultiplemediators are involved in themediationmodel, three casesmay arise, as shown in Figure 2:
in Figure 2(a) mediators are conditionally independent given the treatment and measured covariates (not
depicted here), in Figure 2(b) mediators are causally ordered, that is one affects the other; in Figure 2(c)
mediators are conditionally dependent given the treatment and measured covariates without being causally
ordered. In the latter situation,wewill talk about uncausally correlatedmediators as opposed to the situation of
Figure 2(b) where mediators are causally correlated. We will also refer to the cases depicted in Figure 2(a) and
(c) as mediation with multiple causally unrelated mediators.

Models in Figure 2(a) and (b) have been treated in the last few years [14–16] andwill be commented further
in the discussion section.

Figure 2(c) corresponds to an Acyclic Directed Mixed Graph (ADMG) as introduced by [17] and [18].
Bidirected dotted edges indicate a non-causal correlation, due for instance to a latent common cause, as in
Figure 3. Shpitser and coauthors define districts as the connected components of the graph restricted to the
bidirected edges and describe a necessary and sufficient condition for the effects to be identified, that is
expressed in terms of observational data. In the case of multiple mediation, this condition says that the effect
mediated by a setS ofmediators canbewritten as a function of the observations if andonly ifS is the union of
some districts. In the case of Figure 2(c), thismeans that the direct effect (mediated by neitherM norW) and the
joint effect (mediated by both M and W) can be written in terms of observations, but that the effect mediated
only by M cannot.

The estimation of such individual indirect effects, each specific to a givenmediator, is however of practical
importance. To do so, [19] extend their above mentioned approach to multiple mediators. When mediators are

Figure 1: Simple mediation model with one mediator M and no confounding covariates.

Figure 2: Three situations with multiple mediators M and W.
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causally unrelated, and Sequential Ignorability holds, they suggested to process several single mediator
analyses in parallel, onemediator at the time. Obviously, this approach leads to a biased estimate of the direct
effect, because it forces the indirect effects via all othermediators to contribute to the direct effect. More subtly,
this approach is not appropriate when mediators are uncausally correlated due to an unmeasured covariate U
causally affecting both mediators M and W as in Figure 3. As a matter of fact, in this situation, U is an
unobserved confounder of the relationship betweenM and Y and Sequential Ignorability does not hold. This
key fact was remarked by [19] and [14], but no explicit solution to the problem was proposed other than
conducting the above mentioned sensitivity analysis. In this article, we suggest that a possible solution to this
problem goes through the estimation of the multivariate law of the mediators conditionally on the treatment.
This allows taking into account the spurious correlation amongmediators induced by the unobserved variable
U. A recent paper by Kim et al. [20] describes an alternative approach in which the dependence between
mediators is characterised by a Gaussian copula together with marginal linear models; direct effect and
indirect effects through each mediator are estimated imputing unobserved counterfactuals using a fully
Bayesian approach. However, this approach has been specifically developed for continuous outcomes, while
our method does not assume any particular form for the outcome as long as each marginal model is well
specified.

In this article, we focus on the scenario of multiple causally unrelated mediators (i.e., either independent,
Figure 2(a), or uncausally correlated, Figure 2(c), mediators). In Section 2, we start by reviewing definitions and
results for simple mediation following [12]. Then, in Section 3, we extend these definitions and theoretical
results to the scenario of multiple causally unrelated mediators. To do so, we introduce new identification
hypotheses called SIMMA and compare them to Sequential Ignorability in the multiple cases as discussed by
[19].We show that under SIMMA the direct effect and the joint indirect effect through the vector of allmediators
can be expressed by a formula involving observed variables only, while the indirect effect through each
individual mediator is given by a formula involving both observed and counterfactual variables. The former
formulae lead to an unbiased estimation of the direct and joint indirect effects, in compliance with [18].
Moreover, under an additional assumption, we propose a procedure based on the simulation of counterfactual
distributions to estimate the indirect effects through individual mediators. In Section 4, we conduct an
empirical study to show that the method results in unbiased estimates of the direct and indirect effects. The R
implementation of our method is available on GitHub, https://github.com/AllanJe/multimediate. Finally, in
Section 5,we apply ourmethod to a real dataset froma large cohort to assess the effect of hormone replacement
treatment on breast cancer risk through three uncausally correlated mediators, namely dense mammographic
area, non-dense area and body mass index.

For the sake of clarity, we list here the notations used in this article:
– T ∈ {0, 1}: treatment
– Z ∈ RK : vector of all mediators
– Mk ∈ R: kth mediator; when this is clear from the context, we will use the notation M = Mk

Figure 3: Correlation between mediators due to U.
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– Wk ∈ RK−1: complement of Mk in Z; when this is clear from the context, we will use the notation W = Wk

– X ∈ RP: vector of pretreatment confounders
– Y ∈ R or {0,1}: outcome
– δk(t): indirect effect of T mediated by Mk

– δ(t): indirect effect of T mediated by M
– ζ(t): direct effect of T
– δ,ζ: averages (δ(0) + δ(1))/2 and (ζ(0) + ζ(1))/2
– τ: total effect
– PMk(t) = δk(t)/τ: proportion mediated by Mk

– Φ: the cumulative distribution function of the standard normal distribution N (0, 1)
– AΓ: the transpose of a matrix or vector A
– AΓj: the transpose of the jth row of matrix A.

2 Brief review of simple mediation

We begin by recalling the main results by [12] in the case of a simple mediator and a binary treatment; we will
adopt the same notations. Let Y be the variable denoting the observed outcome, T the treatment or exposure
(coded as 1 for treated or exposed and 0 for non-treated or non-exposed) andM a single intermediate variable
on the causal path from the T to Y. Finally let X represent a vector of pretreatment confounders. The causal
diagram in Figure 4 depicts the causal relation between the four variables.

The causal approach to mediation analysis requires two types of counterfactual variables. On one hand,
we consider the potential mediator when the treatment is set to t, denotedM(t). On the other hand, we consider
the potential outcome under the treatment status t and with the value of the mediator set to the potential value

it would have under t′, denoted Y(t,M(t′)). We recall the definition of counterfactuals in the supplementary
materials.

The three quantities of interest in simple mediation analysis are the average causal indirect effect denoted
δ(t), the average direct effect ζ(t), for t ∈ {0, 1}, and the average total effect τ:

δ(t) = E[Y(t,M(1))] − E[Y(t,M(0))]
ζ(t) = E[Y(1,M(t))] − E[Y(0,M(t))]

τ = E[Y(1,M(1))] − E[Y(0,M(0))].
Imai and collaborators showed that these effects can be identified regardless of amodel assumption under two
crucial hypotheses that go under the name of Sequential Ignorability Assumption (SIA):{Y(t′,m),M(t)} ╨ T|X = x  ∀  t, t′,m (2.1)

Y(t′,m)╨M(t)|T = t,X = x  ∀  t, t′,m. (2.2)

Theorem 2.1. [12]. Under SIA, the average indirect effect and the direct effect are identified non-parametrically
and are given by

Figure 4: Simple mediation causal diagram.
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δ(t) = ∫
​
∫
​
E[Y |M = m,T = t,X = x]dFM|T=1,X=x (m) − ∫

​
E[Y |M = m,T = t,X = x]dFM|T=0,X=x(m)dFX(x)

ζ(t) = ∫
​
∫
​
E[Y |M = m,T = 1,X = x]dFM|T=t,X=x (m) − ∫

​
E[Y |M = m,T = 0,X = x]dFM|T=t,X=x(m)dFX(x),

for t ∈ {0, 1}.
In the setting of linearmodels, the two corollaries below follow, the first for a continuous outcome and the

second for a binary outcome.

Corollary 2.2. [12]. Under SIA and assuming the following linear structural equation model (LSEM)

M = α2 + β2T + ξ Γ2X + ε2

Y = α3 + β3T + γM + ξ Γ3X + ε3,

where εi ∼ N (0, σ2
i ) for i ∈ {2, 3}, the average indirect and direct effects are identified by δ(0) = δ(1) = β2γ and

ζ(0) = ζ(1) = β3.
In the situation of a binary outcome, two main alternatives exist to model its conditional distribution. On the
one hand, we can consider the probit regression

P(Y = 1|T ,M,X) = ΦN (0,σ23)(α3 + β3T + γM + ξ Γ3X),
where ΦN (0,σ23) is the cumulative distribution function of the normal distribution N (0, σ2

3).
On the other hand, we can assume the logistic regression

logit (P(Y = 1|T ,M,X)) = α3 + β3T + γM + ξ Γ3X.

Corollary 2.3. [12]. Let Y be binary and assume the model

M = α2 + β2T + ξ Γ2X + ε2

Y = 1{Y∗>0},   with    Y∗ = α3 + β3T + γM + ξ Γ3X + ε3

where ε2 ∼ N (0, σ2
2) and ε3 ∼ N (0, σ2

3) (probit regression) or ε3 ∼ L (0, 1) (logit regression), where L (0, 1)
denotes the standard logistic distribution.

Under SIA, the average indirect and direct effects are identified by

δ(t) = E[Fu(ht, 1) − Fu(ht,0)]
ζ(t) = E[Fu(h1, t) − Fu(h0, t)]

where

ht, t′ = α3 + β3t + γ(α2 + β2 × t ′ +ξ Γ2X) + ξ Γ3X

and for a probit regression the function Fu is

Fu(z) = Φ⎛⎜⎜⎜⎝ z̅̅̅̅̅̅̅
γ2σ2

2 + 1
√ ⎞⎟⎟⎟⎠

while for a logit regression we have
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Fu(z) = ∫
∞

−∞
Φ(z − y

γσ2
) ey

(1 + ey)2  dy.

3 Extension to multiple causally unrelated mediators

In this subsection, we consider that K mediators intervene in the causal relationship between T and Y as in
Figure 5. In particular, the following definitions and results apply when mediators are independent
(Figure 2(a)) or uncausally correlated (Figure 2(c)).

3.1 Effect definitions

Let Z be the vector of allK ≥ 2mediators andMk themediator of interest.We denote byWk the complement ofMk

in Z, that is all mediators that are not of direct interest, and X the vector of pretreatment confounders.
The average indirect effect mediated by Mk was defined by [19] as

δk(t) = E[Y(t,Mk(1),Wk(t))] − E[Y(t,Mk(0),Wk(t))].
As a measure of the average joint indirect effect, that is the indirect effect mediated by all the mediators, we
take

δZ(t) = E[Y(t, Z(1))] − E[Y(t, Z(0))].

Remark. Note that the joint indirect effect can be decomposed as

δZ(t) =
∑K
k=1

(δk(t) + ηk(t))
K

where

Figure 5: Multiple mediation causal diagramwith possibly correlatedmediators. The vector of pretreatment confounders X is not
shown. Dashed lines represent possible non-causal correlations and solid lines causal relationships. Uncausal correlation is
possible between each pair of mediators but this is not shown for improved readability of the figure.
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ηk(t) = E[Y(t,Mk(1 − t),Wk(1))] − E[Y(t,Mk(1 − t),Wk(0))].
A proof of this result can be found in Appendix A.
Each of the 2K direct effects is defined as

ζ(t1,…, tK) = E[Y(1,M1(t1),…,MK(tK))]
−E[Y(0,M1(t1),…,MK(tK))]

where tk   ∈  {0, 1} for all k ∈ {1, … , K}.
For the sake of simplicity, among all these direct effects, we will consider only ζ(0,… , 0) and ζ(1,… , 1),

denoted ζ(t), t ∈ {0, 1}.
The total effect τ is

τ = E[Y(1, Z(1))] − E[Y(0, Z(0))].
Note that τ is the sum of the joint indirect effect of treatment t and of the direct effect of treatment 1 − t:

τ = δZ(t) + ζ(1 − t).

3.2 Assumptions

Throughout the paper, we adopt the Stable Unit Treatment Value Assumption (SUTVA, [21] which implies that
1) there is no interference in the sense that potentialmediator and outcome values of individual ido not depend

on treatments of other individuals (i.e.,Mk
i (T) = Mk

i (Ti) and Yi(T ,Mk ,Wk) = Yi(Ti,Mk
i ,W

k
i ) and 2) there are no

multiple versions of treatments (i.e., Ti = T ′
i implies Mk

i (Ti) = Mk
i (T ′

i) and Yi(Ti,Mk
i (Ti),Wk

i (Ti)) =
Yi(T ′

i,M
k
i (T ′

i),Wk
i (T ′

i))). We augment the standard SUTVA to also assume that there are nomultiple versions of

mediators, that is if Mk
i = Mk′

i , then Yi(Ti,Mk
i ,W

k
i ) = Yi(Ti,Mk′

i ,W
k
i ) [22].

Our results are based on the following hypotheses that we called Sequential Ignorability for Multiple
Mediators Assumption (SIMMA):

{Y(t,m,w),M(t′),W(t′ ′)} ╨ T|X = x, (B.1)

Y(t′,m,w) ╨ (M(t),W(t))|T = t,X = x (B.4)

Y(t,m,w) ╨ (M(t′),W(t))|T = t,X = x (B.5)

for all possible values of t, t′, t″, m, w. A detailed explanation of SIMMA can be found in Appendix B.
Here, we recall thatX is the vector of all the observed pretreatment covariates (by definition these variables

are unaffected by the treatment). The first hypothesis implies that there must be no unobserved pretreatment
confounders between the treatment and the outcome and between the treatment and the individual mediators
after conditioning on all observed covariates. The second and third hypotheses exclude the existence of two
distinct types of confounders between the mediators taken jointly and the outcome: the confounding by an
unobserved pretreatment variable and the confounding by an observed or unobserved posttreatment variable.

Crucially, these hypotheses replace the second and third hypothesis that [19] make in the situation of
multiple causally independent mediators, where a similar requirement applies to each counterfactual medi-
ator separately and is interpreted as the randomisation of each mediator with respect to the outcome condi-
tionally on the treatment arm (cf Appendix B). However, it is important to stress that assumption (B.4) is not
more restrictive than Imai’s hypotheses in the sense that it does not imply them, as we show in Appendix B.
This hypothesis is the same as assumption 2) for multiple mediators in [14]. Our third assumption (B.5) is not
included in [11] nor in [14] and is necessary to estimate the individual indirect effect of each mediator.
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The reason for replacing Imai’s hypotheses with (B.4) and (B.5) is that we are interested in the situation
whereM andW are uncausally correlated, typically because of a pretreatment variable U affecting both as in
Figure 6(a). Note that ifU is unobserved (i.e., it is not part of the variables inX) conditions (B.4) and (B.5) are not
violated because the joint distribution of the mediators incorporates the influence of U on the individual
mediators. On the contrary, such aUwould violate the corresponding hypothesis in [19] because it constitutes
an unobserved confounder of the relations between W and Y and M and Y.

3.3 Identifiability

In the following, the mediator of interest M can be any of the K mediators, so that the results below can be
applied to eachmediator. In particular, this will allow to express the indirect effect mediated by eachmediator
taken individually.

Our first result extends Theorem 2.1 to multiple mediators, not only when mediators are causally inde-
pendent as done by [19], but also when they are uncausally correlated.

Theorem 3.1. Consider K mediators that can be either independent or uncausally correlated. Under SIMMA the
following results hold.

The average indirect effect of the mediator of interest is given by:

δ(t) = ∫
​
∫
R
K

E[Y |M = m,W = w,T = t,X = x] {dF(M(1),W(t))|X=x(m,w) − dF(M(0),W(t))|X=x(m,w)}dFX(x). (3.1)

Moreover the joint indirect effect, the direct effect and the total effect are identified non-parametrically
respectively by:

δZ(t) = ∫
​
∫
R
KE[Y |Z = z,T = t,X = x]dFZ|T=1,X=x (z) − ∫

R
KE[Y |Z = z,T = t,X = x]dFZ|T=0,X=x(z)dFX(x),

ζ(t) = ∫
​
∫
R
KE(Y |Z = z,T = 1,X = x) − E(Y |Z = z, T = 0,X = x)dFZ|T=t,X=x(z)dFX(x),

τ = ∫
​(∫

R
KE(Y |Z = z,T = 1,X = x)dFZ|T=1,X=x (z) − ∫

R
KE(Y |Z = z,T = 0,X = x)dFZ|T=0,X=x(z)).

Inmultiplemediation, Theorem3.1 has the same role as Theorem 2.1 in simplemediation, because it shows that
under proper assumptions, the (joint) indirect and direct effects are non-parametrically identified. In partic-
ular, from the equations above one can derive estimators for the joint indirect effect and for the direct effect, as
already shown by [17]. In general, however, Eq. (3.1) does not allow to derive an estimator of the individual
indirect effect of the mediator of interest, because the conditional distribution of (M(t′),W(t)) is not
observable. Note that in the particular case where M is independent of W, Eq. (3.1) becomes

Figure 6: Multiple and simple mediation analyses, U observed. Data are simulated according to the model in (a).
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δ(t) = ∫
​
∫
​
E[Y |M = m,T = t,X = x]dFM|T=1,X=x (m) − ∫

​
E[Y |M = m,T = t,X = x]dFM|T=0,X=x(m)dFX(x),

which is the equation for δ(t) given by Theorem 2.1, thus allowing to identify the average indirect effect non-
parametrically. This result was reported by [19]. A proof of Theorem 3.1 can be found in Appendix C.

The following two corollaries show identification formulae for the indirect and direct effects in the setting
of the LSEM or when the mediating variables are Gaussian and Y is binary. Crucially, in the following corol-
laries, we assume that the correlations between the potential mediators are the same whatever the treatment
governing the mediators:

cor(Mi(t),Mj(t′)|T,X) = ρij,  ∀  t, t ′ ∈ {0, 1},  ∀  i, j ∈ {1,…,K}. (3.2)

This hypothesis is indeed sufficient to identify the individual indirect effects throughM fromEq. (3.1) inmodels
where the joint distribution of themediators is completely described by the expectation and covariancematrix,
such as the multivariate Gaussian. In this particular situation, for all combinations of t ≠ t′, the expectation of
(M(t),W(t′))|X = x is given by the vector (E[M|T = t,X = x|], E(W|T = t′,X = x|)) and the covariance matrix is
identified by the covariance matrix of (M|T = t,X = x) and (W |T = t′,X = x) i.e., of (M|T = t,X = x) and
(W |T = t,X = x).

3.4 Continuous outcome

Corollary 3.2. With K mediators and P covariates, we assume the following linear model

Z = α2 + βΓ2T + ξ Γ2X + ϒ2 (3.3)

Y = α3 + β3T + γΓZ + ξ Γ3X + ε3, (3.4)

where α2 = (αk
2)1≤k≤K , β2 = (βk2)1≤k≤K , γ = (γk)1≤k≤K, ξ 2 = (ξ kp2 )1≤k≤K, 1≤p≤P, ξ 3 = (ξ p3)1≤p≤P, and ϒ2 = (εk2 )1≤k≤K ∼ N (0, Σ2)

is the vector of residuals with covariance matrix ∑2 ∈R
K × R

K and ε3 ∼ N (0, σ2
3), with σ3 ∈ R.

We assume that the K mediators are either independent or non-causally correlated. In the latter case, we
assume that pairwise correlations between potential mediators do not depend on the treatments governing
them, i.e., we assume condition (3.2). Under SIMMA, the indirect effect of the kth mediator is identified and
given by:

δk(0) = δk(1) = γkβ
k
2 .

Moreover, the joint indirect effect is the sum of the average indirect effects by each mediator:

δZ(t) = ∑K
k=1

δk(t).

The direct effect is also identified and given by

ζ (0) = ζ(1) = β3.

Aproof of Corollary 3.2 can be found in the Supplementarymaterial. Note that an equivalent result for the joint
indirect effect is shown in [14]. Also note that the additivity of the individual indirect effects into the joint direct

effect (i.e., δZ(t) = ∑kδ
k(t)) holds only in the context of Corollary 3.2, otherwise it does not.

We have already observed that if the Kmediators are independent, the equation for the marginal indirect
effect given by Theorem 3.1 (multiple analysis) reduces to the equation given by Theorem 2.1 (simple analysis).
In this situation, Corollary 3.2 implies that in the LSEM setting, the indirect effects given by simple analyses can
be summed up to obtain the joint indirect effect. Obviously, simple analyses do not allow to assess a
comprehensive direct effect, because depending on themediator of interest, each simple analysis will lead to a
different direct effect. All these aspects will be illustrated through simulations in Section 4.

A. Jérolon et al.: Multiple mediation analysis 199



3.5 Binary outcome

Wenowaddress the case of a binary outcome. As for simplemediation,we consider either the probit regression

P(Y = 1|T , Z,X) = ΦN (0,σ23)(α3 + β3T + γΓZ + ξ Γ3X),
or the logistic regression

logit (P(Y = 1|T , Z,X)) = α3 + β3T + γΓZ + ξ Γ3X.

Corollary 3.3. Assume the following model with a binary outcome:

Z = α2 + βΓ2T + ξ Γ2X + ϒ2, (3.5)

Y* = α3 + β3T + γΓZ + ξ Γ3X + ε3, (3.6)

Y = 1{Y*>0} (3.7)

where ϒ2 ∼ N (0, Σ2) and where ε3 ∼ N (0, σ2
3) or L (0, 1). We assume that the K mediators are either inde-

pendent or non-causally correlated. In the latter case, we assume that pairwise correlations between potential
mediators do not depend on the treatments governing them as in condition (3.2). Under SIMMA, the effects of
interest are given by:

δk(t) = ∫
​
FU

⎛⎝⎛⎝α3 + ∑K
j=1

γjα
j
2
⎞⎠ + ⎛⎝β3 + ∑K

j=1,j≠k
γjβ

j
2
⎞⎠t + γkβ

k
2 × 1 + ⎛⎝ξ 3 + ∑K

j=1
γjξ

Γj
2

⎞⎠x⎞⎠
−FU⎛⎝⎛⎝α3 + ∑K

j=1
γjα

j
2
⎞⎠ + ⎛⎝β3 + ∑K

j=1,j≠k
γjβ

j
2
⎞⎠t + γkβ

k
2 × 0 + ⎛⎝ξ 3 + ∑K

j=1
γjξ

Γj
2

⎞⎠x⎞⎠dFX(x),

δZ(t) = ∫
​
FU⎛⎝⎛⎝α3 + ∑K

k=1
γkα

k
2
⎞⎠ + β3 × t + ∑K

k=1
γkβ

k
2 × 1 + ⎛⎝ξ 3 + ∑K

k=1
γkξ

Γk
2

⎞⎠x⎞⎠
−FU

⎛⎝⎛⎝α3 + ∑K
k=1

γkα
k
2
⎞⎠ + β3 × t + ∑K

k=1
γkβ

k
2 × 0 + ⎛⎝ξ 3 + ∑K

k=1
γkξ

Γk
2

⎞⎠x⎞⎠dFX(x),

ζ(t) = ∫
​
FU

⎛⎝⎛⎝α3 + ∑K
k=1

γkα
k
2
⎞⎠ + β3 × 1 + ⎛⎝ ∑K

k=1
γkβ

k
2
⎞⎠ × t + ⎛⎝ξ 3 + ∑K

k=1
γkξ

Γk
2

⎞⎠x⎞⎠
−FU⎛⎝⎛⎝α3 + ∑K

k=1
γkα

k
2
⎞⎠ + β3 × 0 + ⎛⎝ ∑K

k=1
γkβ

k
2
⎞⎠ × t + ⎛⎝ξ 3 + ∑K

k=1
γkξ

Γk
2

⎞⎠x⎞⎠dFX(x),

where for a probit regression we have

FU(z) = Φ
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ z̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2
3 + ∑K

k=1
∑K
j=1
γkγjcov(εk2 , εj2)√ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

and for a logit regression we have
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FU(z) = ∫
R
Φ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ z − e3̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑K
k=1

∑K
j=1
γkγjcov(εk2 , εj2)√ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ee3

(1 + ee3 )2  de3.

When the mediators are independent, we have for a probit regression

FU(z) = Φ
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ z̅̅̅̅̅̅̅̅̅̅

σ2
3 + ∑K

k=1
γ2kσ2

2

√ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

and for a logistic regression

FU(z) = ∫
R
Φ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ z − e3̅̅̅̅̅̅∑K
k=1

γ2kσ2
2

√ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ee3

(1 + ee3 )2  de3.

A proof of Corollary 3.3 can be found in the supplementary materials.

3.6 Estimation algorithm

The proof of Theorem 3.1 can be generalised to prove that, under SIMMA, the densities of the counterfactual
outcomes can be expressed as follows:

f (Y(t,M(t′),W(t′))|X = x) = ∫
R
K f(Y |T = t,M = m,W = w,X = x)dF(M,W)|T=t′,X=x(m,w) (3.8)

f (Y(t,M(t′),W(t))|X = x) = ∫
R
K f(Y |T = t,M = m,W = w,X = x)dF(M(t′),W(t))|X=x(m,w). (3.9)

Equation (3.8) justifies the Monte-Carlo estimation of the expectation E[Y(t, Z(t′))] = E[Y(t,M(t′),W(t′))],
and therefore of the direct, joint indirect and total effects. Moreover, under the additional condition (3.2) (and
assuming that the joint distribution of mediators is completely determined by its expectation and covariance
matrix), Eq. (3.9) makes it possible to sample Y(t,M(t′),W(t)) as well and therefore to estimate its expectation
and the indirect effect throughM. In particular, SIMMA and (3.2) allow to estimate the conditional covariance
matrix of the counterfactualmediators for each possible combination of interventions as the covariancematrix
of the mediators given the treatment and the pretreatment covariates.

Accordingly we adapt the quasi-Bayesian algorithm presented by [11], to the situation of multiple medi-
ators uncausally related, i.e., for independent and uncausally correlated mediators.

Algorithm. In order to estimate the effects of interest:
(1) Fit parametric models for the observed outcome (given all the mediators, treatment and covariates), and

mediators (given all the treatment and covariates), denoted respectively as Θ̂
Y
and Θ̂

Z = (Θ̂1
,…, Θ̂

K). Obtain
the estimate ∑̂2 of the covariance matrix between mediators given the treatment and the covariates.

(2) For each model, sample J values for each of its parameters according to their multivariate sampling distri-

bution, denoted as Θ̂
Y
(j), j = 1,… , J and Θ̂

Z
(j) = (Θ̂1

(j),…, Θ̂
K
(j)). As in [11], we use the approximation based on the

multivariate normal distribution centered at the estimates of the parameters and with the estimated
asymptotic covariance matrix between the estimators.

(3) For each j = 1, … , J, repeat the followings steps:
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– Simulate the potential values of each mediator. In particular, for each of the K mediators, each pair
(t, t′) ∈ {0, 1}2, and each individual i∈{1,… , n}, simulate R values of Z(kr)

(ji) (t, t′) = (M(kr)
(ji) (t),W(kr)

(ji) (t′)).
When all mediators have the same treatment value, the vector of all mediators will be denoted as
Z(r)
(ji)(t) = Z(kr)

(ji) (t, t). Note that it is at this step that we take into account the correlation between
mediators Σ̂2.

– Simulate the potential outcomes given the simulated values of the potential mediators, denoted as
Y(r)
(ji)(t, Z(kr)

(ji) (t′, t″)) for each i, k and t, t′, t ″ ∈{0, 1}.
– Estimate the causal mediation effects:

δ̂
k

(j)(t) =
1
nR

∑n
i=1

∑R
r=1

{Y(r)
(ji)(t, Z(kr)

(ji) (1, t)) − Y(r)
(ji)(t, Z(kr)

(ji) (0, t))}
δ̂
Z

(j)(t) =
1
nR

∑n
i=1

∑R
r=1

{Y(r)
(ji)(t, Z(r)

(ji)(1)) − Y(r)
(ji)(t, Z(r)

(ji)(0))}
ζ̂ (j)(t) =

1
nR

∑n
i=1

∑R
r=1

{Y(r)
(ji)(1, Z(r)

(ji)(t)) − Y(r)
(ji)(0, Z(r)

(ji)(t))}
τ̂(j)(t) = 1

nR
∑n
i=1

∑R
r=1

{Y(r)
(ji)(1, Z(r)

(ji)(1)) − Y(r)
(ji)(0, Z(r)

(ji)(0))}.
(4) From the empirical distribution of each effect above, obtain point estimates together with p-values and

confidence intervals.

Note that this algorithm does not implement the formulae given for the specific models of Corollaries 3.2
and 3.3.

We implemented this algorithm in the R package multimediate, currently available on GitHub. Our main
function is based on the mediate() function of the package mediation [13] and makes it possible to work not
only with continuous mediators but also binary and ordered categorical mediators using probit models.

4 Simulation studies

In this section, we validate our methodological results through empirical studies. In particular, we compare
our estimates of themediation causal effects to the true effects and to the estimates obtained by running simple
mediation analyses, one for each mediator.

4.1 Data simulation method

Except for the LSEM framework, it is in general not straightforward to obtain the true mediation effect values
froma causal generativemodel, that is from a set of causal structural equations. To overcome this difficulty, we
start by simulating a large database of values for the treatment T and for all the counterfactual mediators

Mk(t), and outcomesY(t,M1(t1),…,MK(tK)), see Table 1 for an example. Thenwe simply compute the indirect
effects δk(t) and δZ(t) and the direct effect ζ(t) as means, according to the definitions given in Section 3.1. The
large size of the dataset guarantees that these Monte-Carlo estimates can be taken as the true values. In this
study we generate a dataset of 106 observations, so that the estimate error is as small as 0.2% of the standard
deviation of the effect of interest.

In order to obtain a subset of observations to test the considered estimation methods, we sample N
individuals (i.e., rows) i = 1, … , N and for each of them we select only the values Y(Ti,Zi(Ti)) and Zi(Ti)
corresponding to the specific value of Ti. More precisely:
– if Ti = 0 we take Zi = (M1

i ,…,Mk
i ) = (M1

i (0),…,Mk
i (0)) = Zi(0) and Yi = Yi(0, Zi(0)),

– if Ti = 1 we take Zi = (M1
i ,…,Mk

i ) = (M1
i (1),…,Mk

i (1)) = Zi(1) and Yi = Yi(1, Zi(1)).
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Tables 1 and 2 illustrate the simulation procedure.
For several simulation models, we estimate the different effects of interest by means of the general

algorithm for multiple mediators described above in Section 3.6. We compare our estimates with both the true
values and the estimates of two simple analyses (one for eachmediator) obtained with themediation package.

Because in general δk(1) ≠ δk(0) and ζ(1) ≠ ζ(0), for the sake of simplicity we focus on average effects such as
δ = (δ(0) + δ(1))/2 and ζ = (ζ(1) + ζ(0))/2. Note that for continuous outcome and in absence of interaction

between treatment and mediators, Corollaries 2.2 and 3.2 imply that δk(1) = δk(0) and ζ(1) = ζ(0). For each
mediator, we also show the proportion mediated PMk = δk/τ.

For comparative purposes, we analyse the simulations with ourmultiple mediationmethod, and alsowith
the approach consisting in running simple analyses in parallel [19], and with the method described by [14]
which we refer to as V&V in the figures. In the latter case, we not only report the estimates of the joint indirect
and direct effects, but also the estimates of the mediator-specific indirect effects, even though the authors
clearly explain that correlation between mediators would lead to bias.

4.2 Limitations of repeated simple analyseswhen the common cause ofmediators is
not measured

In this section, data are generated under the model described in Figure 6(a), where the dependence between
the two mediators is induced by the pretreatment variable U. More specifically, variables are simulated
according to the following distributions (N = 1000):
– T follows a Bernoulli distribution B (0.3)
– U follows a normal distribution N (0, 1)
– the conditional distribution of the counterfactual mediators

Table : Simulated counterfactuals with two independent mediators.

T M(0) M(1) W(0) W(1) Y(1, M(1), W(1)) Y(1, M(1), W(0)) Y(1, M(0), W(1))

 . . . . . . .
 . . −. −. . . .
 . . . . . . .
 . . . . . . .

Y(0, M(1), W(1)) Y(1, M(0), W(0)) Y(0, M(1), W(0)) Y(0, M(0), W(1)) Y(0, M(0), W(0))

. . . . .
. . . . −.
. . . . .
. . . . .

Table : Simulated observed data with two independent mediators. Observations were extracted from Table .

T M W Y

 . . .
 . −. −.
 . . .
 . . .
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M1(t, u) ∼ N (1 + 4t + 2u, 1)
M2(t, u) ∼ N (2 + 6t + 3u, 1)

– the counterfactual outcomes follow the normal distributions

Y(t,M1(t′),M2(t″)) ∼ N (1 + 10t + 5M1(t′) + 4M2(t″), 1).
Note that the correlation between the twomediators conditionally on the treatment (and not onU, Figure 2(c)),
is equal to 0.7.

When we have two causally independent mediators and U is observed, the approach by [19] is to perform
two simple analyses as in Figure 6(b) and (c). However, whenU is unobserved, the situation is like in Figure 2(c)
with mediators showing residual correlation. In this case, conducting separate simple analyses is not
appropriate because Sequential Ignorability assumptions (B.2) and (B.3) are violated [19].

Here, we illustrate this problem through simulations. For comparison purposes, we also show the results
obtained with our method for multiple analysis and with the method by [14].

As expected, Tables 3 and 4 show that simple analyses adjusted for U give precise and accurate estimates
of the indirect effects (but obviously not of the direct effect), while they give biased estimates when U is not
taken into account. On the contrary, our method gives precise and accurate estimates of all effects with or
without taking into account U, showing that it is still possible to conduct a mediation analysis to estimate all
effects even when U is unobserved.

In the following subsection, we suppose thatU is unobserved, as it is often the case in practical situations.

4.3 Empirical study of the properties of the proposed estimators

The previous section illustrated our method on a single simulation run. In this section, we perform a
simulation-based study to assess the properties of the proposed estimation procedure. More specifically, we

Table : Not adjusting for U: data are generated as in Figure (a) but analysed as if U was unobserved.

Effects Value Simple analysis M1 Simple analysis M2 V&V Multiple analysis

δZ  NA NA . [.;.] . [.; .]
PMZ

. NA NA . . [.; .]
δ  . [.; .] NA . [.;.]  [.; .]
PM

. . [.; .] NA . . [.; .]
δ  NA . [; .] . [.;.] . [.; .]
PM

. NA . [.; .] . . [.; .]
ζ  . [.; .] . [.; .] . [.; .] . [.; .]
τ  . [.; ] . [.; .]  [.; .] . [.; .]

Table : Adjusting for U when all variables in Figure (a) are observed.

Effects Value Simple analysis M1 Simple analysis M2 V&V Multiple analysis

δZ  NA NA . [.; .] . [.; .]
PMZ

. NA NA . . [.; .]
δ  . [.; .] NA . [.; .] . [.; .]
PM

. . [.; .] NA . . [.; .]
δ  NA . [.; .] . [.; .] . [.; .]
PM

. NA . [.; .] . . [.; .]
ζ   [.; .] . [.; . . [. ;.] . [.; .]
τ  . [.; .] . [.; .] . [.; .] . [.; .]
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compute bias, confidence interval coverage probability, mean square error (MSE) and variance of our esti-
mators asmeans over 200 simulation runs for each considered parameter setting.We compare the estimates of
several simple analyses, one for eachmediator, to the estimates obtainedwith ourmultiplemediation analysis
for different correlation levels.We consider two causal simulationmodels accounting for two types of outcome
(continuous and logit binary), and two settings with two continuous causally unrelatedmediators. Uncausally
correlated mediators, Figure 2(c), are simulated from a multivariate normal distribution with fixed covariance
matrix. The details of the simulation models can be found in Appendix D.

Simulations according tomodel 1 (continuous outcome) are run for different values of correlation between
the mediators and increasing sample size (N = 50, 200, 500, 1000). Results for bias and coverage probability
can be seen in Figures 7–10. These figures clearly show that our approach allows an unbiased estimation,
contrary to the simple analyses, for both the direct and indirect effects.

The empirical 95% confidence interval given by our method contains the real value in approximatively
95%of the runs, for both the indirect and direct effects andwhatever the correlation between themediators. On
the contrary, simple analysis obtains fair coverages only when the correlation is almost null. As expected, the
estimators of the individual indirect effects obtainedwith themethod of [14] have the samebehaviour as simple
analysis estimates. Moreover, the estimators of the joint indirect and direct effects by themethod of [14] behave
similarly as ours, except that the coverage probability is constant for their method. Our estimators have low
variance and low MSE for sample sizes larger than 200.

Simulations were also run for model 2 (binary outcome) for different values of correlation between the
mediators with 1000 observational data. As illustrated by Figure 13 in the Appendix, the results for bias,
coverage probability, variance and MSE confirm that our estimators are unbiased and have low variance and
the expected coverage probability, thus outperforming simple analysis. It is worth noting that for positive
correlations, the coverage probability of the confidence intervals of the individual indirect effects is unsatis-
factory. This is likely due to the very low variance of the estimators.

5 Application

We applied our method to estimate the amount of causal effect of hormone replacement therapy (HRT) on
breast cancer (BC) risk that is mediated by mammographic density (MD) – specifically dense area (DA) and
non-dense area (NDA) – and body mass index (BMI) in postmenopausal women. The data come from the E3N
French cohort study [23]. Based on more than 5000 cases diagnosed between baseline and 2008 [24], a nested
case–control study was designed using incidence density sampling. For 640 invasive breast cancer cases with
known laterality and at least one mammogram taken between baseline and age at diagnosis, one control was
randomly selected from women who had not been diagnosed with breast cancer at the age when the matched
case was diagnosed (reference age). After excluding women with missing value, 489 cases and 489 controls
were available for the analysis. HRT, prescribed to relief menopausal symptoms, consists in providing women
with hormones whose production naturally decreases withmenopause [25]. One of the consequences of taking
HRT is that women do not experience the decrease of DA, the increase of NDA and the increase of BMI typically
occurring at menopause [26]. HRT use has been since long recognised to be a risk factor for BC [27]. Inde-
pendent BC risk factors are also high postmenopausal BMI and high per age and per BMIMD [28,29]. In order to
better understand the mutual relationship between HRT, MD and BMI in BC carcinogenesis, it is important to
determine whether and eventually to which extent the effect of HRT on BC risk is due to its action on MD and
BMI (mediated effect) and to which extent it is independent of MD and BMI (direct effect).

Based on evidence from association studies on breast cancer risk [30,31], we can reasonably assume that
BMI and mammography density are uncausally correlated, being their correlation likely due to common
genetic traits, as suggested by twin studies [30,32] and Mendelian randomization analysis [33]. We make the
implicit assumption that HRT precedes the mediators and that these precede BC; Figure 11 depicts the causal
assumptions made for the following mediation analysis.
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Figure 7: Model 1 (continuous outcome): bias, confidence interval coverage probability,mean square error (MSE), and variance of
the indirect effect estimators δ̂

1
calculated as means over 200 simulations when the correlation between mediators varies. The

bias formula used here is Bias = Θ − E[Θ̂].
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Figure 8: Model 1 (continuous outcome): bias, confidence interval coverage probability,mean square error (MSE), and variance of
the indirect effect estimators δ̂

2
calculated as means over 200 simulations when the correlation between mediators varies. The

bias formula used here is Bias = Θ − E[Θ̂].
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5.1 Regression models

The continuous variableswere normalised using the Box-Cox likelihood-like approach [34], t(M) = Mλ−1
λ , with λ

equal to 0.38, 0.34 and−1.19 for DA, NDAandBMI respectively, aswe can see in Figure 14. HRTwas treated as a
dichotomous variable whose levels were never versus ever users (past or current).

In preparation to ourmediation analysis, we regressed eachmediator onHRT andAGE (Table 5,models 1, 2
and 3 respectively) and BC on HRT and AGE with or without conditioning on the three mediators (respectively
models 4a, 4b). As expected, HRT ever users had significantly higher values of DA and significantly lower of
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Figure 9: Model 1 (continuous outcome): bias, confidence interval coverage probability,mean square error (MSE), and variance of
the direct effect estimator ζ̂ calculated as means over 200 simulation runs when the correlation between mediators varies. The
bias formula used here is Bias = Θ − E[Θ̂].
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Figure 10: Model 1 (continuous outcome):
bias, confidence interval coverage
probability, mean square error (MSE), and
variance of the joint direct effect estimator
δ̂
Z
calculated asmeans over 200 simulation

runs when the correlation between
mediators varies. The bias formula used
here is Bias = Θ − E[Θ̂].
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NDA and BMI (Table 5); DA and BMI were positively associated with BC risk, whereas NDA was negatively
associated with risk (Table 5). HRT was positively associated with BC risk and the association decreased of the
20% in the log-OR scalewhen accounting for DA,NDAandBMI into themodel (Table 5models 4a and 4b). Note
that after adjusting for HRT and Age the residuals correlation between DA and BMI, NDA and BMI and DA and
NDA are −0.04, −0.22 and 0.60 respectively.

5.2 Multiple mediation analysis

We applied ourmethodwithmodels 1 2, 3 and 4.b from Table 5 to estimate the causal mediated effect due to all
mediators and the causalmediated effect due to each of themwhen accounting for their mutual correlation. As
shown in Table 6 the causal mediated effects due to DA and NDA were positive, whereas the causal mediated
effect due to BMI was negative; this resulted in a proportion of the total mediated effect of 22% (95% CI: 1 to

Table : Multiple mediation analysis for T∈{,} (i.e., never versus former/current HRT users).

Estimate 95%IC

bδ
DA

.e- [.e-; .e-]
bδ
NDA

.e- [.e-; .e-]
bδ
BMI

−.e- [−.e-; −.e-]
bδ
Z

.e- [.e-; .e-]
P bM

Z
.e- [.e-; .e-]

bζ .e- [.e-; .e-]
bτ .e- [.e-; .e-]

Table : Estimation of the regression coefficients. For example, the model for the Box-Cox transformed DA is
t(DA) ∼ .HRT − .AGE. Note that we have a logistic regression for BC.

Model HRT AGE t(DA) t(NDA) t(BMI)

 t(DA) . (.e-) −.(.) – – –
 t(NDA) −.(.e-) .(.e-) – – –
 t(BMI) −.e-(.e-) .e-(.) – – –
.a BC .(.e-) .e-(.) – – –
.b BC .(e-) .(.) .(.e-) −.(.) .(.e-)

Figure 11: Causal diagram for the application.
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63%). Our finding that the effect of HRT is partially mediated by MD is consistent with previous reports in the
literature [35, 36]. So does the negative sign of the mediated effect by BMI [37, 38]. MacKinnon et al. [39]
described a situationwith opposite signsmediated effects as inconsistentmediationmodels, as the effectsmay
cancel out each other. In the present case, the negative mediated effect of BMI is not large enough to make the
relation between HRT and BC non-significant.

6 Discussion

This article addresses the problem of estimating direct and indirect effects, including indirect effects through
individual mediators, in the framework of multiple mediation with uncausally related mediators. Theoretical
work of Shpitser and coauthors proved that in presence of latent variables not all mediation quantities are
identified [17, 18]. In particular, in the presence of a latent common cause between the mediators, indirect
effects trough individual mediators cannot be expressed as functions of the observable data only. On the other
hand, a common practice in multiple mediation is to perform several simple mediation analyses, one for each
mediator, despite the introduction of a bias.

Most of the approaches to mediation analysis are based on strong assumptions such as Sequential
Ignorability [11,40], and several authors have tried to address the problem through different techniques. In the
framework of multiple mediation with uncausally related mediators, we define a set of hypotheses, called
SIMMA, under which we express the direct and the joint indirect effect as functions of observed variables and
the indirect effect through individual mediators in terms of both observed and counterfactual variables.
Coupled to a choice of model and the quasi-Bayesian algorithm developed by [11]; the latter formula gives an
estimation method for the individual indirect effects. Note that we restricted ourselves to models with the
additional hypothesis that the correlation between counterfactual mediators is the same whatever the treat-
ment governing them. The development of methods for addressing the situation in which this additional
hypothesis is violated is left to future work, together with the development of a sensitivity analysis for
assessing the robustness to departures from SIMMA.

Themethod is implemented in R. Currently our programmakes it possible to work with parametric models
with continuous or ordered categorical mediators and continuous or binary outcomes. A package has been
published on Github.

We applied our R program to validate the proposed method empirically. This simulation study
shows that our method provides an unbiased estimate of the direct effect, while, as expected, esti-
mates obtained by running simple mediation analyses one mediator at the time are biased, even in
the case of independent mediators. Moreover, when mediators share an unobserved common cause,
we show that our multiple analysis provide estimates of the direct effects through individual medi-
ators that are less biased than the ones obtained from simple analyses one mediator at the time. The
reason behind this improvement, is that our method, by considering the joint law of the mediators
conditionally on the treatment and the law of the outcome conditionally on all the mediators,
automatically takes into account the influence that the unobserved common cause U has on the
mediators and the outcome. On the contrary, doing a simple analysis one mediator at the time is not
appropriate in this setting because U confounds the relationship between each mediator and the
outcome. Moreover, we show empirically that, contrary to repeated simple analyses, the proposed
quasi-Bayesian algorithm provides confidence intervals with the expected coverage property.

Repeated individual mediator analyses are still a popular approach despite a growing literature
warning about its limitations. Indeed, the presence of an unobserved common cause for the mediators
is not the only situation in which such an approach is problematic. VanderWeele and Vansteelandt
[14] observed that, even when mediators are uncausally related, it is not possible to decompose the
joint indirect effect in the sum of individual indirect effects when their effect on the outcome is
characterised by an interaction in the additive scale, a situation we excluded in our theoretical
results. In this situation, [41] provided a three way decomposition of the joint indirect effect into
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individual natural indirect effects and an interactive effect. Interestingly, the assumptions required to
show the identifiability of all the terms in this decomposition are similar to ours, with the only
important difference that potential mediators are assumed to be conditionally independent given all
observed covariates. More recently, [42] provided a decomposition of the total effect in the more
general situation with both mediator-mediator and mediators-outcome interactions.

Another important settingwhere repeating simple analyses is thewrong approach tomultiplemediation is
whenmediators are causally ordered as in Figure 2(b). In this situation, considering the vector of intermediate
variables as onemediator and conducting a simple analysis will correctly estimate the joint indirect effect and
the direct effect. However the former joint indirect effect is not equal to the sum of the individual indirect
effects, each estimated with a simple analysis, because some paths are counted twice and the effect mediated
byW is biased byMwhich acts as a posttreatment confounder of theW–Y relationship. More generally, unless
strong conditions hold, it is not possible to identify all specific paths [43]. VanderWeele and Vansteelandt [14]
introduced a sequential approach to identify the joint indirect effect, the direct effect, the effect mediated
by M and the effect mediated by W but not M. The different steps in this strategy can be implemented using
medflex, a recently introduced R package based on the natural effect model and imputation or weighting
methods [44]. An alternative approach based on linear structural equations with varying coefficients was
discussed by [19] and implemented in the mediation package. Nguyen et al. [45] presented a method based on
the Inverse Odds Ratio Weighting (IOWR) approach introduced by [46]. This method is very flexible as it
accommodates generalized linear models, quantile regression and survival models for the outcome and
multiple continuous or categoricalmediators; however, it does not allow to estimate the indirect effect through
individual mediators, but only the joint indirect effect.

We conclude this brief overview of the literature around multiple mediation by underlining that our
framework deals with natural direct and indirect effects. Vansteelandt and Daniel [47] recently introduced so-
called interventional direct and path specific indirect effects that do add up to the total effect and are identi-
fiable even when the mediators share unmeasured common causes or the causal dependence between me-
diators is unknown.

As an illustration of our method, we conducted a multiple mediation analysis on a real dataset from a large
cohort to assess the effect of hormone replacement treatment on breast cancer risk through three non-sequential
mediators, namely dense mammographic area, non-dense area and bodymass index. The causal effects that we
have estimated and reported can be interpreted as risk differences, that is differences in percentage points. For a
binary outcome, it is however often preferred to measure risk changes in terms of odds ratios (OR). In a parallel
work in progress aimed at the epidemiological community, we expand on the application of Section 5 and work
out a method to compute the causal effects of interest in the OR scale following the definition by [8].
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Appendices

A Link between δZ and ∑
k
δk

Even though intuitively it would sound reasonable to think that the indirect effect via the kthmediator δk is the
difference between the joint effect δZ and the indirect effect by all other mediators ηk, we show that this is not
true in general.

We want to express δZ according to ∑K
k=1

δk. To do so, we start from δk:
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δk(t) = E[Y(t,Mk(1),Wk(t)) − Y(t,Mk(0),Wk(t))]
= ⎧⎨⎩ E[Y(1, Z(1)) − Y(1,Mk(0),Wk(1))] if  t = 1

E[Y(0,Mk(1),Wk(0)) − Y(0, Z(0))] if  t = 0

= ⎧⎨⎩ E[τ + Y(0, Z(0)) − Y(1,Mk(0),Wk(1))] if  t = 1

E[Y(0,Mk(1),Wk(0)) + τ − Y(1, Z(1))] if t = 0

= ⎧⎨⎩ E[τ + Y(1, Z(0)) − ζ(0) − Y(1,Mk(0),Wk(1))] if  t = 1

E[Y(0,Mk(1),Wk(0)) + τ − ζ(1) − Y(0, Z(1))] if  t = 0

= ⎧⎨⎩ E[δZ(1) − Y(1,Mk(0),Wk(1)) + Y(1, Z(0))] if  t = 1

E[δZ(0) − Y(0, Z(1)) + Y(0,Mk(1),Wk(0))] if  t = 0

= δZ(t) − ηk(t).

(1)

ηkmay be interpreted as the indirect effect by all mediators except the kth, when the treatment is fixed at t and
the kthmediator is set to the value it would have under treatment 1− t. Summing over theKmediators, we have:

∑K
k=1

δk(t) = ∑K
k=1

(δZ(t) − ηk(t))
    = KδZ(t) − ∑K

k=1
ηk(t)

Thus the joint indirect effect can be rewritten as:

δZ(t) =
∑K
k=1

(δk(t) + ηk(t))
K

.

B Assumptions

According to [19], the Sequential Ignorability Assumption in the situation of multiple mediators that are
causally unrelated is:

{Y(t,m,w),M(t′),W(t″)}╨T
⃒⃒⃒⃒⃒
X = x, (B.1)

Y(t′,m,W(t′))╨ M(t)⃒⃒⃒⃒⃒T = t,X = x, (B.2)

Y(t′,M(t′),w)╨W(t)
⃒⃒⃒⃒⃒
T = t,X = x, (B.3)

where P(T = t|X = x) > 0 et P(M = m,W = w|T = t,X = x) > 0 for all x, t, t′, m, w.
We replace assumptions (B.2) and (B.3) with the hypotheses

Y(t′,m,w)╨(M(t),W(t))|T = t,X = x (B.4)

Y(t,m,w)╨(M(t′),W(t))|T = t,X = x (B.5)

to obtain the Sequential Ignorability for Multiple Mediators Assumption (SIMMA):

(Y(t,m,w),M(t′),W(t″))╨T|X = x, (B.1)

Y(t′,m,w) ╨ (M(t),W(t))|T = t,X = x (B.4)

Y(t,m,w) ╨ (M(t′),W(t))|T = t,X = x (B.5)

1 In fact τ = δZ(t) + ζ(1 − t).
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It is important to stress that (B.4) does not imply (B.2) and (B.3): a consequence of (B.4) is that
Y(t′,m,w)╨M(t)|T = t,X = x for all values of t′, m, w and x but this does not imply that
Y(t′,m,W(t′))╨M(t)|T = t,X = x because Y(t′,m,w) depends only on the residual causes of Y after setting
T = t′,M = m and W = w while Y(t′, m, W(t′)) depends also on the residual causes of W after setting T to t′.

C Proof of Theorem 3.1

C.1 Joint indirect effect, direct effect and total effect

In order to demonstrate Theorem 3.1 for the joint indirect effect δZ, the direct effect ζ and the total effect τ, we
start by rewriting the definitions in terms of counterfactuals:

δZ(t) = E[Y(t, Z(1))] − E[Y(t, Z(0))]   = ∫E[Y(t, Z(1))|X = x] − E[Y(t, Z(0))|X = x]dFX(x)  

= ∫E[Y(t,M(1),W(1))|X = x] − E[Y(t,M(0),W(0))|X = x]dFX(x)

ζ(t,…, t) = E[Y(1, Z(t))] − E[Y(0, Z(t))]    = ∫E[Y(1, Z(t))|X = x] − E[Y(0, Z(t))|X = x]dFX(x).   

= ∫E[Y(1,M(t),W(t))|X = x] − E[Y(0,M(t),W(t))|X = x]dFX(x)

τ = E[Y(1, Z(1))] − E[Y(0, Z(0))]  = ∫E[Y(1, Z(1))|X = x] − E[Y(0, Z(0))|X = x]dFX(x) 
= ∫E[Y(1,M(1),W(1))|X = x] − E[Y(0,M(0),W(0))|X = x]dFX(x)

It is then sufficient to demonstrate that:

E[Y(t,M(t′),W(t′))|X = x] = ∫
R
K

E[Y |T = t,M = m,W = w,X = x]dF(M,W)|T=t′,X=x(m,w).

It will then follow that:

E[Y(t, Z(t′))|X = x] = ∫
R
K

E[Y |T = t, Z = z,X = x]dFZ|T=t′,X=x(z)

We have:

E[Y(t,M(t′),W(t′))|X = x] = ∫
R
K

E[Y(t,M(t′),W(t′))⃒⃒⃒⃒M(t′) = m,W(t′) = w,X = x]dF(M(t′),W(t′))|X=x(m,w)

= ∫
R
K

E[Y(t,m,w)⃒⃒⃒⃒M(t′) = m,W(t′) = w,X = x]dF(M(t′),W(t′))|X=x(m,w)

= ∫
R
K

E[Y(t,m,w)⃒⃒⃒⃒T = t′,M(t′) = m,W(t′) = w,X = x]dF(M(t′),W(t′))|X=x(m,w) (2)

= ∫
R
K

E[Y(t,m,w)⃒⃒⃒⃒T = t′,X = x]dF(M(t′),W(t′))|X=x(m,w) (3)

= ∫
R
K

E[Y(t,m,w)|T = t,X = x]dF(M(t′),W(t′))|T=t′ ,X=x(m,w) (4)

= ∫
R
K

E[Y(t,m,w)⃒⃒⃒⃒T = t,M(t) = m,W(t) = w,X = x]dF(M,W)|T=t′ ,X=x(m,w) (5)

= ∫
R
K

E[Y |T = t,M = m,W = w,X = x]dF(M,W)|T=t′ ,X=x(m,w).

2 By (B.1) and the weak union property: Y(t,m,w) ⫫ T
⃒⃒⃒⃒
M(t′),W(t),X = x

3 By (B.4).
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Note that in this proof we have only used assumptions (B.1) and (B.4).

C.2 Indirect effect via the mediator of interest

It follows from the definition that:

δ(t) = E[Y(t,M(1),W(t))] − E[Y(t,M(0),W(t))]
= ∫E[Y(t,M(1),W(t))|X = x] − E[Y(t,M(0),W(t))|X = x]dFX(x).

It is then sufficient to demonstrate that:

E[Y(t,M(t′),W(t))|X = x] = ∫
R
K

E[Y |T = t,M = m,W = w,X = x]dF(M(t′),W(t))|X=x(m,w).

We have:

E[Y(t,M(t′),W(t))|X = x] = ∫
R
K

E[Y(t,M(t′),W(t))⃒⃒⃒⃒M(t′) = m,W(t) = w,X = x]dF(M(t′),W(t))|X=x(m,w)

= ∫
R
K

E[Y(t,m,w)⃒⃒⃒⃒T = t,M(t′) = m,W(t) = w,X = x]dF(M(t′),W(t))|X=x(m,w) (6)

= ∫
R
K

E[Y(t,m,w)|T = t,X = x]dF(M(t′),W(t))|,X=x(m,w) (7)

= ∫
R
K

E[Y(t,m,w)|T = t,M(t) = m,W(t) = w,X = x]dF(M(t′),W(t))|X=x(m,w) (8)

= ∫
R
K

E[Y |T = t,M = m,W = w,X = x]dF(M(t′),W(t))|X=x(m,w).

Note that in this proofwehaveused all SIMMAassumptions. In the case,whereM andW are independent,wehave:

dF(M(t′),W(t))|X=x (m,w) = f (M(t′),W(t))|X=x(m,w)dmdw = f M(t′)|X=x(m)dmfW(t)|X=x(w)dw
= f M|T=t′,X=x(m)dmfW|T=t,X=x(w)dw

and therefore:

δ(t) = ∫∫
R
K

E[Y |T = t,M = m,W = w,X = x]
{f M|T=1,X=x(m)dmfW |T=t,X=x(w)dw − f M|T=0,X=x(m)dmfW |T=t,X=x(w)dw}dFX(x)

= ∫ ∫ ∫
R
K−1
E[Y |T = t,M = m,W = w,X = x]fW |T=t,X=x(w)dw{f M|T=1,X=x(m) − f M|T=0,X=x(m)}dmdFX(x)

= ∫ ∫ E[Y |T = t,M = m,X = x]{f M|T=1,X=x(m) − f M|T=0,X=x(m)}dmdFX(x)
= ∫ ∫ E[Y |T = t,M = m,X = x]{dFM|T=1,X=x(m) − dFM|T=0,X=x(m)}dFX(x).

D Models

We give here the models used for the simulation study in Section 4.3.
Model 1: Continuous outcome and continuous mediators

4 By (B.1).
5 By (B.4) with t′ = t.
6 By (B.1) and the weak union property.
7 By (B.5).
8 By (B.4) with t = t′.
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– T follows a Bernoulli distribution B (0.3)

– the joint distribution of the counterfactual mediators is

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ M1(1)
M1(0)
M2(1)
M2(0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∼ N
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝μ = ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 1 + 4 × 1

1 + 4 × 0
2 + 6 × 1
2 + 6 × 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, Σ = ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 1 1 ρ ρ
1 1 ρ ρ
ρ ρ 1 1
ρ ρ 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
– the counterfactual outcomes follow the normal distributions:

Y(t,M1(t′),M2(t ′ ′)) ∼ N (1 + 10t + 5M1(t′) + 4M2(t″), 1).
In Table 7, we show the real causal effect values entailed by model 1.

Model 2: Binary outcome (logit) with continuous mediators

– T follows a Bernoulli distribution B (0.3)

– the joint distribution of the counterfactual mediators is:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ M1(1)
M1(0)
M2(1)
M2(0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∼ N
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝μ = ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 0.1 + 0.6 × 1

0.1 + 0.6 × 0
0.2 + 0.8 × 1
0.2 + 0.8 × 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, Σ = ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 1 1 ρ ρ
1 1 ρ ρ
ρ ρ 1 1
ρ ρ 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
– the counterfactual outcomes follow the logistic distributions:

Y(t,M1(t′),M2(t″)) ∼ B( 1

1 + exp( − 2 + 0.4t + 0.6M1(t′) + 0.8M2(t″))).
With this choice of parameters, 30%of the sampled observations are cases. Aswe can see in Corollary 3.3, with
binary outcome, causal effects are related to the covariance of mediators. Figure 12 shows how the true causal
values change when correlation changes.

Table : Real values of the causal effects entailed by model .

δZ δ1 δ2 ζ τ

    
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Figure 12: Binary outcome (model 2): variation in causal effects due to correlation.
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Figure 13: Model 2 (binary outcome): bias, coverage probability, variance, and MSE of mediation effect estimators when the
correlation between mediators varies. These results have been obtained with 200 simulations. Each simulation consists in a
dataset of size 1000.
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E Normalization of mediators using Box-Cox likelihood-like approach
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