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Abstract

Polyester resins are important raw materials for a myriad of applications especially in the ield of coatings and radical curing 
polymers, such as wood and powder coatings, molding compounds, and UV-curing applications. In addition, polyols derived 
from polyester resins are precursors for the synthesis of polyurethanes and polycarbonates. Besides dicarboxylic acid, diols 
are used as monomers in these polyesters. To date most of the diols utilized are derived from petrochemical feedstock. To 
increase the bio-based content of polyester resins, novel diols derived from renewable resources are of special interest. In this 
respect, 1,3-propanediol has drawn considerable attention over the last years. It is accessible via microbial fermentation of 
glucose from starch at a competitive price in suicient amounts. Therefore, 1,3-propanediol could be a valuable alternative 
to petrochemical diols, such as 1,6-hexanediol and neopentylglycol, which are currently used as diols in most resin appli-
cations. This article gives a brief overview over the utilization of 1,3-propanediol in high molecular weight polyesters for 
plastic application followed by a more detailed discussion of the most relevant work in the ield of polyester resins derived 
from 1,3-propanediol.

Keywords 1, 3-Propanediol · Polyester resins · Coatings · Unsaturated polyesters

1 Introduction

The last decade has seen a growing interest in bio-based 
materials. Especially in the polymer field, the demand 
for alternatives from renewable resources is continuously 
increasing. This trend is driven by the inite nature of fos-
sils fuels, but also a rising consumer awareness and lately 
the problem of rising accumulation of (micro) plastic in 
the environment, in particular in the oceans. The latter 
results in an increasing attention towards the transition to 
a circular economy and the development of bio-degradable 
plastics [1]. Against this background, bio-based polyes-
ters are of special signiicance [2]. They are derived from 
renewable resources and exhibit in many cases a higher 

bio-degradability in comparison to other bio-based plastics, 
such as bio-polyethylene. The most prominent examples in 
the ield of bio-based polyesters are polylactic acid (PLA) 
[3–5] and polyhydroxyalkanoates (PHA) [4, 6–9], which are 
both commercially available. Especially PLA is employed 
in a variety of applications, such as packaging, composite 
materials and biomedical applications [5, 10–14].

In addition, other bio-based polyesters have been in the 
focus of both academic as well as industrial research and 
are in diferent stages of commercial availability. A range 
of bio-sourced monomers, such as furandicarboxylic acid 
(FDCA), succinic acid, isosorbide, etc. have been used and 
there are a range of extensive book chapters and review 
articles that cover this topic of polymer and material science 
[15–22]. Among these building blocks, 1,3-propanediol 
(PDO) has been successfully applied in a several bio-based 
polyesters.

Even though this diol is accessible by synthetic pathways, 
for example from acrolein [23] or ethylene oxide [24] these 
methods sufer from high production costs and undesired 
and irritant impurities. This led to low interest in this mono-
mer from an industrial viewpoint and therefore very limited 
applications. However, the situation changed when PDO was 
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made accessible through microbial fermentation of glucose 
[25, 26]. This biotechnological pathway led to an increased 
availability of PDO at a competitive price and in turn to 
more applications of this bio-based building block in poly-
mer materials.

As most promising examples, PDO was used as monomer 
for the bio-based PET alternatives PTT (poly(trimethylene 
terephthalate)) [27–29] and PTF (poly(trimethylenefuroate)) 
[30–32] (Fig. 1a). In comparison to PET, PTT shows high 
resilience and has the ability to rapidly crystallize, which 
makes it a promising candidate for iber applications [33]. 
PTF on the other hand shows superior gas barrier proper-
ties than the (partially) petrochemical polymers PET and 
PTT [34]. As another example in the ield of bio-based poly-
esters with aromatic building blocks, PDO was utilized as 
diol component with the difuranic monomer 5,5′-(propane-
2,2-diyl)-bis(furan-2-carboxylate) [35].

In addition, a lot of work was dedicated towards aliphatic 
polyesters derived from PDO (Fig. 1b) [36–39]. These poly-
esters are especially interesting due to their high suscepti-
bility towards enzymatic degradation [37, 40]. This makes 
these polymers promising candidates for degradable plastics, 
as well as pharmaceutical applications.

Both the aromatic, as well as aliphatic polyesters derived 
from PDO have been studied extensively and are the sub-
ject of several comprehensive review articles [22, 41–45]. 
PDO has also been used as monomer for polyester resins in 
the coatings ield. To the best of our knowledge, no review 
for this type of polyesters derived from PDO for binder 
resins has been made. Herein, we try to give an overview 
of the most important work undertaken in this area in the 
last years.

2  Polyester Resins from 1,3-Propandiol

2.1  Polyester Polyols for Polyurethanes 
and Polycarbonates

In 2001 Albertsson and co-workers reported the synthesis 
of diferent bio-based poly (1,3-propylene succinate) oli-
gomers, by varying the diol/diacid ratio from 1.05 to 1.25 
(Scheme 1a) [46]. This led to polyesters with diferent prop-
erties and low molecular weights up to 3400 g/mol. These 
oligomers were further reacted with methylenediphenyliso-
cyanate (MDI) to obtain polyester urethanes with molec-
ular weights up to 60.000 g/mol. The properties of these 
polymers were examined in the dependency of the weight 
percentage of the polyester polyol incorporated. The melt-
ing point varied in the range of 175–210 °C with properties 
comparable to commercial thermoplastic polyurethanes.

The polyester polyols also found application as building 
blocks for polycarbonates (Fig. 2b) [47]. After the polycon-
densation step, the polyesters were chain extended by a two-
step process using phosgene, a special amine and DMAP, 
which allows for an exact adjustment of the stoichiometry. 
The corresponding polycarbonate was obtained with a 
molecular weight of 48,000 g/mol. Surprisingly, the thermal 
properties are close to those of the lower molecular weight 
polyester precursors with only a slight increase of both glass 
transition and melting temperature. In addition, the authors 
state that the materials are potentially biodegradable as they 
are derived from renewable resources. However, no studies 
were conducted to conirm this statement. The same authors 
later tried to improve the properties by replacing some of 
the PDO with the cyclic building block 1,4-cyclohexan-
edimethanol [48]. However, the properties of the resulting 
polycarbonates could not be substantially improved.

A very interesting approach to fully bio-based polycar-
bonates was reported by Koning and co-workers [49]. They 
were synthesized by a phosgene-free reaction of limonene 
oxide and  CO2 with high molecular weights  (Mn > 10.000 g/
mol). To obtain material suitable for coating applications, 
the polycarbonates were subsequently submitted to an 
alcoholysis reaction using renewable diols, such as PDO 
and 1,10-decanediol (scheme 2). The resulting OH-termi-
nated polycarbonates with reduced molecular weight were 

O

O

O

O

O
O

O

O

O

O

O

O

O

O

O O

n

n n

PET

PTT PTF

O

O

O

O

O

m
n

(a)

(b)

Fig. 1  Chemical structure of a aromatic and b aliphatic polyesters 
with PDO

HO O

O

O OH

O n

partially biobased polyurethane

partially biobased polycarbonate

a

b
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preliminary examined on their potential as coating material. 
For this, they were mixed with a conventional isocyanate and 
applied on aluminum plates. The resulting coatings exhibited 
some interesting properties, such as good acetone resistance. 
In a subsequent paper, similar polycarbonates were further 
studied by post-polymerization modiication [50]. In addi-
tion, the coating properties were examined in more detail, 
showing a high hardness of the polycarbonate coatings.

In another study the inluence on the properties of PU-
dispersions were examined when PDO was used to replace 
1,6-hexanediol (HDO) in the polyester polyol (Fig. 2) [51]. 
In a irst step, the polyesters were synthetized by polycon-
densation of the two respective diols with adipic acid and 
phthalic anhydride. The hydrolysis resistance of the two dif-
ferent polyols was examined at a bufered pH value of 4 and 
80 °C. In both cases, the molecular weight of the polyesters 
decreased slowly, with no signiicant diference when PDO 
or HDO are used as building block. Both polyesters were 
then used as polyol compounds for PU-dispersions synthe-
sized by the acetone process. The solid content of the inal 
dispersions was adjusted to 40%. The PU-dispersions were 
then blended with a commercially available acrylic resin 
and the blend was coated on wood panels. Weathering test 
revealed a signiicant diference in the performance between 
the blends and the pure acrylic resin used as a reference, 
with the blend outperforming the acrylic resin.

In 2012 Schirp et al. [52] reported the use of PDO as 
diol component in PU-dispersions derived from fatty acid-
derived polyester polyols. The latter were synthesized by 
reacting either fatty acids or fatty acid methyl esters with the 
trimethylolpropane (TMP), isophthalic acid and PDO. The 

resulting dispersions exhibited a good particle size distribu-
tion and stability. In addition, the authors were able to show 
that the surface structure of the coated and dried dispersion 
strongly correlate to the amount of 2,2-bis(hydroxymethyl)
propionic acid (bis-MPA).

More recently, another example of fully bio-based poly-
ester polyols for polyurethanes coating was presented by 
García González and co-workers [53]. Based on a partially 
bio-based polyester binder that was reported by the same 
authors earlier [54], this new polyester was synthesized from 
glycerol, PDO, succinic acid, and FDCA (Fig. 3). The latter 
was used as a replacement for the previously used tereph-
thalic acid. The properties of three diferent polyesters (0, 
75, and 100% bio-derived) and the resulting polyurethane 
materials derived from these three polyesters by a reaction 
with a petrochemical derived diisocyanate were studied. It 
could be shown that the polyesters exhibited similar molecu-
lar weights from 1200 to 1800 g/mol, with the bio-based 
polyesters having a slightly lower Tg compared to the poly-
ester derived from fossil resources. This was also true for 
the PU materials (14 °C against 34 °C for the petrochemical-
derived PU). However, the PU derived from the 100% bio-
based polyester proved to have superior properties than its 
fossil counterpart, such as better adhesion, higher stifness 

Fig. 2  Polyester polyols derived 
from phthalic anhydride, adipic 
acid and a HDO or b PDO
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and improved surface tension. In addition to the synthesis 
and material properties, the production, synthesis and recy-
cling was evaluated by means of LCA. It was shown that 
the bio-based PU emits 5.5 times less greenhouse gases and 
exhibits a total non-renewable energy use that is 2.5 times 
lower compared to the fossil-based material.

2.2  Alkyd Resins

PDO has also been used as diol component in bio-based 
waterborne alkyd resins. Acar and co-workers prepared 
acryl modiied water reducible alkyd resins, where besides 
TMP, PDO was used as sole alcohol component [55]. The 
solid content of the acrylic modified alkyd resins was 
60 weight- %. The others blended the resin with difer-
ent rations of an acrylic co-polymer, which resulted in an 
improved performance of the inal coatings. The best proper-
ties were found, when 40% (in respect to the alkyd resin) of 
the acrylic co-polymer was used. In a consecutive study, the 
same authors investigated the dilution efect of this kind of 
acrylic modiied alkyd resin on the coating properties, such 
as ilm formation and thermal behavior [56].

2.3  Coil Coating

Polyester derived from FDCA, succinic acid, isosorbide and 
either PDO or 1,5-pentanediol (PeDO) have been examined 
in coil coatings applications by Lomelí-Rodríguez [57]. 
Increasing the ratio of FDCA led to an increase in vis-
cosity, molecular weight, but also in coloring. Polyesters 
synthesized from PDO instead of PeDO were less disperse 
(1.3–1.6 against 1.5–2.4 with PeDO). Increasing the amount 
of isosorbide lad to a decrease in  MW, therefore the amount 
of isosorbide must stay under 50 mol % of the diol compo-
nent. The incorporation of FDCA as well as isosorbide had a 
positive efect on the  Tg, as well as  Tm, with isosorbide hav-
ing a bigger inluence. The use of PDO also improved the  Tg 
and  Tm, due to the lower chain lexibility of the shorter PDO 
chain. In addition, the polyester derived from IS and PDO 
exhibited a higher decomposition temperature compared to 
the similar polyester synthesized from PeDO.

2.4  Powder Coatings

PDO was also examined as diol component in carboxyl func-
tional polyesters in the ield of powder coatings [58]. In this 
case, the powder coatings were formulated with triglycidyl 
isocyanurate (TGIC) as hardener. It was shown that the 
coatings based on polyester with PDO exhibited a superior 
impact resistance and lexibility in comparison with those 
without PDO. However, in this example PDO is the only 
bio-derived monomer used.

To increase the amount of bio-based monomers in powder 
coatings Koning and co-workers examined the use of PDO 
in combination with succinic acid and Isosorbide [59]. The 
latter was used as bio-based alternative to isophthalic and 
terephthalic acid to obtain polyester oligomers with high  Tg 
necessary for powder coatings applications (scheme 3). It 
was shown that PDO can be used to modify the  Tg. Due to 
the lexibility of this aliphatic monomer, the  Tg decreases 
with increasing amount of PDO. This shows that PDO could 
be an alternative to petrochemical aliphatic diols such as 
HDO.

2.5  Unsaturated Polyesters

Unsaturated polyesters derived from PDO and itaconic acid 
were used as shape memory polymers (SMP) [60]. In this 
example, the synthesized PDO were almost exclusively com-
posed of bio-based monomers, such as itaconic acid, sebacic 
acid and PDO. As only exception, diethylene glycol was 
incorporated to inluence the crystallinity of the polymers 
(scheme 4). These polyesters were then subjected to com-
pression molding with dicumyl peroxide as radical initiator 
resulting in a set of SMP with interesting properties and 
potential ields of application.

1,3-Propanediol was also used as the only diol building 
block for unsaturated polyester resins [61]. These resins 
were then used as precursor for thermally curing composites 
with nanoprecipitated calcium carbonate (NPCC). As other 
components fumaric acid, succinic acid, and lactic acid were 
used, resulting in a polyester with a high amount of bio-
based monomers. The resins were characterized my means 
of IR and NMR. In addition to these resins, the authors syn-
thesized a novel reactive diluent as partial replacement for 
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styrene. This reactive diluent was obtained by a reaction of 
lactic acid with 1,2-propandiol, followed by an end-capping 
reaction with itaconic anhydride. The resins were subse-
quently cured with diferent amounts of reactive diluents 
(styrene and the bio-based component) and NPCC. It could 
be shown that the bio-based reactive diluent had a major 
inluence on the properties of the composites.

As another example in the ield of unsaturated polyes-
ters, Farmer et al. [62] reported their study on the synthesis 
of itaconic- and fumaric acid-containing polyesters starting 
from the corresponding methylesters of itaconic and fumaric 
acid. Besides PDO, 1,4-butanediol (1,4-BDO) was used as 
diol component for these completely bio-based polyesters 
(Fig. 4).

The structure of the polyesters as well as side reac-
tions occurring during the polycondensation reaction were 
thoroughly studied by means of NMR spectroscopy. For 
example, the degree of mesomerization of the itaconic to 
the corresponding mesaconic acid species was analyzed. 
Furthermore NMR was used to elucidate the multiplet 

complexity of the protons in a-position to the C–O-bond of 
the ester linkage. In addition, the crosslinking mechanism 
of polyester itaconates was examined. According to their 
studies, the crosslinking proceeds through an oxo-Michael-
addition, the so called Ordelt reaction [63–65]. However, the 
abilities of these polyesters to undergo radical crosslinking 
or post-polymerization modiication was not further exam-
ined in the course of this study.

In a recent example, PDO was also used as building 
block for unsaturated polyesters with itaconic acid as dicar-
boxylic acid [66]. Polyesters of this kind have been used as 
binder resins for wood coatings [51, 67]. However, the use 
of PDO under acid-catalyzed azeotropic polycondensation 
conditions led to undesired cross-linking and gelation. An 
efect that is not observed, when other diols, such as HDO 
or neopentylglycol were used. By screening at set of difer-
ent Brønsted- and Lewis acids as condensation catalysts, 
it could be shown, that the use of Brønsted acids, such as 
methansulfonic acid leads to an enhanced rate of a compet-
ing etheriication reaction. This eventually leads in com-
bination with some crosslinking through radical or polar 
pathways to the gelation of the polyester. This etheriication 
is observed to a much smaller degree, when Lewis acids, 
such as Zn(OAc)2 or Ti(OBu)4 are used. By employing these 
catalysts, the gelation can be prevented and polyesters with 
100% 1,3-PDO can be synthesized, setting the stage for the 
replacement of petrochemical diols with the bio-based PDO. 
Polyesters of this type have been employed as binder resins 
in UV-curing ofset inks, resulting in binder resins with a 
renewable content from 47 to 100%, replacing commonly 
used diols in the preparation of polyester polyols [68].

3  Conclusion

The aim of this mini review was to highlight the poten-
tial of PDO in the ield of coating resins. Even though a 
lot of work has been dedicated to plastics derived from 
this interesting diol, such as PTT or PFT, examples in the 
coatings ield are still somewhat scarce, especially in the 
scientiic literature. The examples presented herein show 
that PDO can be used as building blocks in a broad ield 
of application, such as polyurethane, polycarbonate, alkyd, 
and unsaturated polyester resins. In addition, some appli-
cations in powder and coil coatings were given. It is worth 
mentioning that most of the studies focus on other aspects 
than the mere replacement of traditional diols with PDO. 
However, the wide range of applications show that PDO 
can be a bio-based alternative to diols usually used as 
monomers in the ield of polyester resins, such as HDO or 
neopentylglycol. Depending on the diol being substituted 
and the composition of the polyester, it can alter the  Tg and 
lexibility of the polymers, allowing for new properties of 
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the resulting materials. PDO can therefore be considered 
as an additional and valuable tool in the toolbox of poly-
meric chemistry, for plastics as well as coating materials.
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