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Introduction

Broadly speaking, monomial ideals play an essential role in studying the connection between combinatorics and commutative algebra. In fact, the relation between these two fields enables us to employ techniques and methods in commutative algebra to probe combinatorial problems, and vice versa. Hence, commutative algebraists have initiated exploring the properties of finite simple graphs through monomial ideals. One of the innovators in this area is Villarreal [START_REF] Villarreal | Cohen-Macaulay graphs[END_REF] who introduced the concept of edge ideals. Indeed, let G = (V (G), E(G)) be a finite simple graph on the vertex set V (G) = {1, . . . , n}, that is, G has no loops and no multiple edges. In addition, let R = K[x 1 , . . . , x n ] be a polynomial ring over a field K in n variables. Then the edge ideal I(G) ⊂ K[x 1 , . . . , x n ] is generated by all monomials x i x j such that {i, j} ∈ E(G). Furthermore, the cover ideal of G, denoted by J(G), is generated by monomials that correspond to vertex covers of G, where a vertex cover is a set of vertices that contains at least one vertex from each edge. It is well-known that J(G) is the Alexander dual of I(G), that is, J(G) = I(G) ∨ .

In this direction, Sharifan and Moradi, in [START_REF] Sharifan | Closed neighborhood ideal of a graph[END_REF], introduced the notion of closed neighborhood ideals and dominating ideals of graphs. The authors calculated some algebraic invariants of these ideals such as regularity and projective dimension in terms of the information from the underlying graph. Next, Honeycutt and Sather-Wagstaff, in [START_REF] Honeycutt | Closed neighborhood ideals of finite simple graphs[END_REF], investigated the Cohen-Macaulay, unmixed, and complete intersection properties of closed neighborhood ideals.

In this paper, we concentrate on the normality, strong persistence property, persistence property, and symbolic strong persistence property of closed neighborhood ideals and dominating ideals of some classes of graphs. It has already been proven in [START_REF] Simis | On the ideal theory of graphs[END_REF] that the edge ideals of bipartite graphs are normal and also the cover ideals of perfect graphs are normal [START_REF] Villarreal | Monomial Algebras. 2nd. Edition[END_REF]Corollary 14.6.25]. Recall that a graph is perfect if and only if it contains no odd cycle of length at least five, or its complement, as an induced subgraph [START_REF] Bondy | Graph theory[END_REF]Theorem 14.18]. Now, suppose that I is a monomial ideal in a polynomial ring R. Generally, identifying classes of monomial ideals which have the (strong) persistence property is hard. Based on [START_REF] Villarreal | Monomial Algebras. 2nd. Edition[END_REF]Example 7.7.18], there exist square-free monomial ideals which do not satisfy the persistence property. Also, it follows from [START_REF] Villarreal | Monomial Algebras. 2nd. Edition[END_REF]Theorem 7.7.14] that all edge ideals of finite simple graphs have the strong persistence property; also, this result is true for every finite graph with loops [START_REF] Reyes | On the strong persistence property for monomial ideals[END_REF]. In addition, according to [START_REF] Francisco | Colorings of hypergraphs, perfect graphs and associated primes of powers of monomial ideals[END_REF], the cover ideals of perfect graphs satisfy the persistence property. One of our main aims in this paper is to introduce some classes of graphs such that their closed neighborhood ideals or dominating ideals are normal and satisfy the (symbolic) (strong) persistence property.

This paper is organized as follows. In Section 2, we give all required definitions, notions, and properties which we need throughout this paper. In section 3, we supply several criteria which help us to detect the normality of monomial ideals. The results of this section will be used in studying closed neighborhood ideals and dominating ideals of some classes of graphs.

Section 4 is concerned with closed neighborhood ideals and dominating ideals of complete bipartite graphs. We show that closed neighborhood ideals of complete bipartite graphs are normal and have the (strong) persistence property (Theorem 4.1). In addition, we explore when the irrelevant ideal appears in the set of associated primes of powers of closed neighborhood ideals of complete bipartite graphs (Proposition 4.2). We also demonstrate that dominating ideals of complete bipartite graphs are nearly normally torsion-free (Theorem 4.4).

Section 5 is devoted to studying dominating ideals of h-wheel graphs. In fact, Theorem 5.8 states that dominating ideals of h-wheel graphs that, under certain condition, are normal. In addition, we prove that dominating ideals of cycle graphs are normal, see Corollary 5.5.

Throughout this paper, we denote the unique minimal set of monomial generators of a monomial ideal I by G(I). Also, R = K[x 1 , . . . , x n ] is a polynomial ring over a field K and x 1 , . . . , x n are indeterminates. A simple graph G means that G has no loop and no multiple edge. All graphs in this paper are undirected. Moreover, if G is a finite simple graph, then N I(G) (respectively, DI(G)) stands for the closed neighborhood ideal (respectively, dominating ideal) of G.

Preliminaries

In this section we review the definitions and notions which we need in the rest of this paper. We begin with the definition of nomality.

Let S be a ring and I be an ideal in S. An element f ∈ S is integral over I, if there exists an equation

f k + c 1 f k-1 + • • • + c k-1 f + c k = 0 with c i ∈ I i .
The set of elements I in S which are integral over I is the integral closure of I. The ideal I is called integrally closed, if I = I, and I is said to be normal if all powers of I are integrally closed. If I is a monomial ideal in a polynomial ring R, then I is the monomial ideal generated by all monomials u ∈ R for which there exists an integer k such that u k ∈ I k , refer to [START_REF] Herzog | Monomial Ideals[END_REF]Theorem 1.4.2].

Here, we turn our attention to notions which are related to the associated primes of powers of ideals. Suppose that R is a commutative Noetherian ring and I an ideal of R. A prime ideal p ⊂ R is an associated prime of I if there exists an element v in R such that p = (I : R v), where (I : R v) = {r ∈ R : rv ∈ I}. The set of associated primes of I, denoted by Ass R (R/I), is the set of all prime ideals associated to I. In [START_REF] Brodmann | Asymptotic stability of Ass(M/I n M )[END_REF], Brodmann proved that the sequence {Ass R (R/I k )} k≥1 of associated prime ideals is stationary for large k, that is to say, there exists a positive integer k 0 such that Ass R (R/I k ) = Ass R (R/I k0 ) for all integers k ≥ k 0 . The minimal such k 0 is called the index of stability of I and Ass R (R/I k0 ) is called the stable set of associated prime ideals of I, which is denoted by Ass ∞ (I). An ideal I of R satisfies the persistence property if Ass R (R/I k ) ⊆ Ass R (R/I k+1 ) for all positive integers k. Furthermore, an ideal I of R has the strong persistence property if (I k+1 : R I) = I k for all k ≥ 1, see [START_REF] Nasernejad | Persistence property for some classes of monomial ideals of a polynomial ring[END_REF] for more details. Moreover, we say that I has the symbolic strong persistence property if (I (k+1) : I (1) ) = I (k) for all k, where I (k) denotes the k-th symbolic power of I, see [START_REF] Khashyarmanesh | Symbolic strong persistence property under monomial operations and strong persistence property of cover ideals[END_REF][START_REF] Nasernejad | The strong persistence property and symbolic strong persistence property[END_REF] for more information. Finally, a monomial ideal I in a polynomial ring R is called nearly normally torsion-free if there exist a positive integer k and a monomial prime ideal p such that Ass R (R/I m ) = Min(I) for all 1 ≤ m ≤ k, and Ass R (R/I m ) ⊆ Min(I) ∪ {p} for all m ≥ k + 1, where Min(I) denotes the set of minimal prime ideals of I, see [START_REF] Andrei-Ciobanu | Nearly normally torsionfree ideals[END_REF]Definition 2.1]. It should be noted that, according to [START_REF] Rajaee | Superficial ideals for monomial ideals[END_REF]Theorem 6.2], every normal monomial ideal has the strong persistence property. Also, it follows from [17, Proposition 2.1] that the strong persistence property implies the persistence property. Hence, we deduce that normal ⇒ strong persistence property ⇒ persistence property. In addition, one can derive from [START_REF] Reyes | On the strong persistence property for monomial ideals[END_REF]Theorem 11] that the strong persistence property yields the symbolic strong persistence property.

Suppose that G is a finite simple graph with the vertex set V (G) = {1, . . . , n} and the edge set

E(G). The closed neighborhood of a vertex v ∈ V (G) is N G [v] = {v} ∪ {u : {u, v} ∈ E(G)}.
The following definitions and results come from [START_REF] Sharifan | Closed neighborhood ideal of a graph[END_REF]. The closed neighborhood ideal of G, denoted by N I(G), has been defined as

N I(G) = ( ∏ j∈N G [i] x j : i ∈ V (G)) ⊂ R = K[x 1 , . . . , x n ]. A subset S ⊆ V (G) is called a dominating set of G if S∩N G [v] ̸ = ∅ for any v ∈ V (G).
Furthermore, S is called a minimal dominating set of G if it is a dominating set of G and no proper subset of S is a dominating set of G. The dominating ideal of G has been defined as

DI(G) = ( ∏ i∈S x i : S is a minimal dominating set of G) ⊂ R = K[x 1 , . . . , x n ]. If u = x a1 1 • • • x an
n is a monomial in a polynomial ring R, then the support of u is given by supp(u) := {x i | a i > 0}. In addition, for a monomial ideal I, we set supp(I) := ∪ u∈G(I) supp(u). We recall that for any square-free monomial ideal I ⊂ R, the Alexander dual of I, denoted by I ∨ , is given by

I ∨ = ∩ u∈G(I) (x i : x i ∈ supp(u)). By virtue of [21, Lemma 2.2], we have DI(G) is the Alexander dual of N I(G), that is, DI(G) = N I(G) ∨ .

Some criteria for normality of monomial ideals

This section is devoted to present some criteria which help us to detect the normality of monomial ideals. The results of this section will be used in studying closed neighborhood ideals and dominating ideals of some classes of graphs.

The following theorem is essential for us to verify Theorem 3.5 and Proposition 3.8. It should be noted that Theorem 3.1 is an updated version of [START_REF] Nasernejad | Dominating ideals and closed neighborhood ideals of graphs[END_REF]Theorem 3.1]. In fact, in Theorem 3.1, we focus on the monomial ideals, while in [17, Theorem 3.1], the authors argued on square-free monomial ideals. Theorem 3.1. Let I and H be two normal monomial ideals in a polynomial ring 

R = K[x 1 , . . . , x n ] such that I + H is normal. Let x d ∈ {x 1 , . . . , x n } be a variable with gcd(v, x d ) = 1 for all v ∈ G(I) ∪ G(H),
(i) Assume that G(I) = {u 1 , . . . , u s } and G(H) = {h 1 , . . . , h r }. In the light of gcd(v, x d ) = 1 for all v ∈ G(I) ∪ G(H), without loss of generality, one can assume that x d = x 1 ∈ K[x 1 ] and G(I) ∪ G(H) = {u 1 , . . . , u s , h 1 , . . . , h r } ⊆ K[x 2 , . . . , x n ].
To establish the normality of L, one has to prove that L t = L t for all integers t ≥ 1. Obviously, L t ⊆ L t , so it is enough to show that L t ⊆ L t . For this it suffices to show that an arbitrary monomial α

∈ L t is in L t . Write α = x b 1 δ with x 1 ∤ δ and δ ∈ R. In view of [9, Theorem 1.4.2], one has α k ∈ L tk for some integer k ≥ 1. Hence, one can conclude that α k ∈ I p (x c
1 H) q for some p and q with p + q = tk. If p = 0 (respectively, q = 0), then

x bk 1 δ k ∈ (x c 1 H) tk (respectively, x bk 1 δ k ∈ I tk ), and so x b 1 δ ∈ (x c 1 H) t (respectively, x b 1 δ ∈ I t ). Because I and H are normal, this implies that x b 1 δ ∈ (x c 1 H) t (respectively, x b 1 δ ∈ I t )
, and the proof is complete. Accordingly, one can assume that p > 0 and q > 0. Then, we can write (1)

α k = x bk 1 δ k = s ∏ i=1 u pi i x cq+ε 1 r ∏ j=1 h qj j β, with ∑ s i=1 p i = p,
∑ r j=1 q j = q, p + q = tk, ε ≥ 0, and β is some monomial in R such that x 1 ∤ β. As x 1 ∤ β, x 1 ∤ δ, and gcd(v, x 1 ) = 1 for all v ∈ G(I) ∪ G(H), we obtain bk = cq + ε, in particular, bk ≥ cq. In addition, suppose that p is minimal according to the membership δ k ∈ I p H q . Now, one can deduce from (1) that ( 2)

δ k = s ∏ i=1 u pi i r ∏ j=1 h qj j β ∈ (I + H) tk .
It follows from ( 2) that δ ∈ (I + H) t . Thanks to I +H is normal, one has (I + H) t = (I +H) t , and so δ ∈ (I +H) t . Thus, we get δ ∈ I l H z for some l and z with l +z = t, in particular, δ k ∈ I lk H zk . One can derive from the minimality of p that p ≤ lk.

On account of δ ∈ I l H z , we can write

(3) δ = s ∏ i=1 u li i r ∏ j=1 h zj j γ, with ∑ s i=1 l i = l, ∑ r j=1 z j = z, l + z = t, and γ is some monomial in R. Observe that x 1 ∤ γ due to x 1 ∤ δ.
We have shown above that p + q = tk, lk + zk = tk, and p ≤ lk. It follows from this that q ≥ zk. We have also shown above that bk ≥ cq. Thus, bk ≥ czk, and since

k ≥ 1, we have b ≥ cz. Multiplying (3) by x b 1 yields x b 1 δ = ∏ s i=1 u li i x b 1 ∏ r j=1 h zj j γ. The latter can be rewritten as ∏ s i=1 u li i ∏ r j=1 (x c 1 h j ) zj (x b-cz 1 γ) ∈ I l (x c 1 H) z ⊆ L t . Therefore, α = x b 1 δ ∈ L t , which makes L normal, completing the proof. (ii)-(iv) are trivial. □
To formulate Theorem 3.5, one requires some auxiliary results. We first recall the following definition and result from [START_REF] Herzog | Persistence and stability properties of powers of ideals[END_REF]. 

E(Γ I ) = {{x i , x j } : there exist u k ,u l ∈ G(I) such that x i u k = x j u l },
and the vertex set

V (Γ I ) = ∪ {xi,xj }∈E(Γ) {i, j}. Theorem 3.3. [10, Theorem 3.3] Let I ⊂ R = K[x 1 , . . . ,
x n ] be a monomial ideal generated in a single degree whose linear relation graph has r vertices and s connected components. Then

depth(R/I t ) ≤ n -t -1 for t = 1, . . . , r -s.
As an immediate consequence of Theorem 3.3, we get the following corollary. In particular, m = (x 1 , . . . ,

x n ) ∈ Ass(R/L k ) for all k ≥ n -1. Proof. (i) Let h = x c1 1 • • • x cm m .
We use induction on m. It follows from Theorem 3.1 that the claim is true for the case in which m = 1. Suppose now that m > 1 and also the assertion is true for m -1, that is, 

I + x c1 1 • • • x cm-1 m-1 H is normal. Since I, I + x c1 1 • • • x cm-1 m-1 H, and I + (I + x c1 1 • • • x cm-1 m-1 H) are normal, one can rapidly conclude from Theorem 3.1 that I + x cm m (I + x c1 1 • • • x cm-1 m-1 H) is normal as well. Due to I + x cm m (I + x c1 1 • • • x cm-1 m-1 H) = I + x c1 1 • • • x cm m H,
R = K[x 1 , . . . , x n ]. Let J be a monomial ideal of R such that gcd(u, v) = 1 for all v, u ∈ G(J) with u ̸ = v. Also, let gcd(u, v) = 1 for all u ∈ G(I) ∪ G(H) and v ∈ G(J).
Then the following statements hold:

(i) L := I + JH is normal.
(ii) L := I + JH has the strong persistence property.

(iii) L := I + JH has the persistence property.

Proof. (i) Let G(J) = {u 1 , . . . , u s }. We proceed by induction on s. The case in which s = 1 is true according to Theorem 3.5(i). Now, assume that the claim holds for s -1. Set F := I + (u 1 , . . . , u s-1 )H. This implies that L = F + u s H. Based on the inductive hypothesis, we obtain that F is normal. In addition, by virtue of 

F + H = I + H = H is normal and also gcd(v, u s ) = 1 for all v ∈ G(F ) ∪ G(H),
Let I ⊂ R = K[x 1 , . . . , x n ] be a normal square-free monomial ideal with G(I) ⊂ R. Then L := IS ∩ (x n , x ℓ n+1 ) ⊂ S = R[x n+1 ] with ℓ ≥ 1, is normal.
Proof. It is routine to check that

L = I ∩ (x n ) + I ∩ (x ℓ n+1 ) = x n (I : S x n ) + x ℓ n+1 I.
Since I is normal, [26, Proposition 12.2.3] implies that (I : S x n ) is normal, and hence x n (I : S x n ) is normal as well. In addition, x n (I : S x n ) + I = I is normal. Now, one can rapidly deduce from Theorem 3.1 that L is normal, as claimed. □

To see an application of Proposition 3.8, we give the subsequent corollary.

Corollary 3.9. Let I be a normal square-free monomial ideal in R = K[x 1 , . . . , x n ] with G(I) ⊂ R. Then the square-free monomial ideal

L := IS ∩ (x n , x n+1 , . . . , x n+m ) ⊂ S = R[x n+1 , . . . , x n+m ],
is normal.

Proof. We demonstrate the claim by using induction on m. In view of Proposition 3.8, we deduce that the claim is true for the case in which m = 1. Suppose that the claim holds for m -1. Put J := I ∩ (x n , x n+1 , . . . , x n+m-1 ). We thus have L = J + x n+m I. The inductive hypothesis implies that J is normal. In the light of Theorem 3.5, one can conclude that L is normal. This completes the inductive step, and so the claim has been shown by induction. □

The next theorem will be used to establish Lemma 5.4.

Theorem 3.10. 

Let I ⊂ R = K[x 1 , . . . , x n , x n+1 ] be a normal square-free mono- mial ideal such that I ∩ (x n ) + (I : R x n+1 ) is normal. Then L := I ∩ (x n , x n+1 ) is normal. Proof. It is not hard to check that I ∩ (x n ) = x
f i = u i if x n ∤ u i , and 
f i = u i /x n if x n | u i .
(x n F + G) t = (x n F + G)
t for all t ≥ 1. One has to prove that L t = L t for all t ≥ 1. To accomplish this, it is enough to show that L t ⊆ L t for all t ≥ 1. To do this, pick an arbitrary monomial α in L t and write α = x b n+1 δ for some integer b and some monomial δ ∈ R with

x n+1 ∤ δ. Since α ∈ L t , [9, Theorem 1.4.2] gives that α k ∈ L tk = (x n F + x n+1 G)
tk for some positive integer k. This implies that α k ∈ (x n F ) p (x n+1 G) q for some integers p and q with p + q = tk. Assume that q is maximal according to this membership. This means that p is minimal according to this membership. Observe that if p = 0, then

α k ∈ (x n+1 G)
tk , and hence α ∈ (x n+1 G) t = (x n+1 G) t ⊂ L t . Henceforth, let p > 0. Thanks to x n F is normal, a similar argument shows that one may assume q > 0 too. Write (4)

α k = x bk n+1 δ k = s ∏ i=1 f pi i x p n s ∏ j=1 g qj j x q n+1 β, with ∑ s i=1 p i = p,
∑ s j=1 q j = q, and β some monomial in S. Let x n+1 | β. On account of either f j x n = u j or f j = u j , this contradicts the maximality of q. In addition, if there exists some f j with p j > 0 such that x n+1 | f j , then once again this leads to a contradiction to the maximality of q. Therefore, we can assume in (4) that x n+1 ∤ β, and also x n+1 ∤ f j with p j > 0. Consequently, one can derive that q = bk, in particular, δ k ∈ (x n F ) p G q . Now, we get the following equality

δ k = s ∏ i=1 f pi i x p n s ∏ j=1 g qj j β ∈ (x n F + G) tk .
Thus, δ ∈ (x n F + G) t , and so δ ∈ (x n F + G) t . Hence, one obtains δ ∈ (x n F ) l G h for some l and h with l + h = t, in particular, δ k ∈ (x n F ) lk G hk . It follows from the minimality of p that lk ≥ p. Because lk ≥ p and p + q = lk + hk = tk, we gain q ≥ hk. Since k ≥ 1, one can deduce from q = bk and q ≥ hk that b ≥ h.

It follows now from δ ∈ (x n F ) l G h and b ≥ h that α = x b n+1 δ ∈ (x n F + x n+1 G) t = L t
, and the argument is over. □

On the closed neighborhood ideals and dominating ideals of complete bipartite graphs

In this section, we provide some applications of the previous section. In fact, we study the closed neighborhood ideals and dominating ideals of complete bipartite graphs. We begin with the following theorem which says that closed neighborhood ideals of complete bipartite graphs are normal, and so satisfy the (strong) persistence property. Theorem 4.1. Let K r,s be a complete bipartite graph. Then the following statements hold:

(i) N I(K r,s ) is normal.

(ii) N I(K r,s ) has the strong persistence property.

(iii) N I(K r,s ) has the persistence property.

Proof. (i) For convenience of notation, put

L := N I(K r,s ). Let V (K r,s ) = V 1 ∪ V 2 , where V 1 = {x 1 , . . . , x r } and V 2 = {x r+1 , . . . , x r+s }. If r = 1, then L = (x 1 s+1 ∏ i=2 x i , x 1 x 2 , . . . , x 1 x s+1 ) = x 1 (x 2 , . . . , x s+1 ).
It is well-known that any prime monomial ideal is normal, and by virtue of [2, Remark 1.2], one has L is normal. Similarly, if s = 1, then L is normal too. Accordingly, we assume that r, s > 1. Set g := ∏ r i=2 x i and f := ∏ r+s i=r+1 x i . It is easy to check that G(L) = {x 1 f, . . . , x r f, x 1 x r+1 g, . . . , x 1 x r+s g}. Hence, one can write L = I + x 1 H, where H := (f, x r+1 g, . . . , x r+s g) and I := (x 2 , . . . , x r )f . A similar argument shows that I is normal. Since H = g(x r+1 , . . . , x r+s ) + f R, where R = K[x 1 , . . . , x r , x r+1 , . . . , x r+s ], it follows from [START_REF] Al-Ayyoub | Normality of cover ideals of graphs and normality under some operations[END_REF]Theorem 1.4] that H is normal. It is not hard to check that I + H = H, and so I + H is normal as well. Note that gcd(x 1 , v) = 1 for all v ∈ G(I) ∪ G(H). Now, the claim can be deduced immediately from Theorem 3.5.

(ii) and (iii) are trivial. This finishes the proof. □

In the following proposition, we investigate when the unique homogeneous maximal ideal appears in the associated primes set of powers of closed neighborhood ideals of complete bipartite graphs. Proposition 4.2. Let K r,s with r, s > 1 be a complete bipartite graph, and m = (x 1 , . . . , x r , x r+1 , . . . , x r+s ) ⊂ R = K[x 1 , . . . , x r , x r+1 , . . . , x r+s ], be the unique homogeneous maximal ideal. Then, for all s ≥ 3,

m ∈ Ass(N I(K r,s ) s ) \ ( Ass(N I(K r,s )) ∪ Ass(N I(K r,s ) 2 )
) .

In particular, depth(R/N I(K r,s ) s ) = 0 for all s ≥ 3, and

lim k→∞ depth(R/N I(K r,s ) k ) = 0. Proof. Set L := N I(K r,s ). Let V (K r,s ) = V 1 ∪ V 2 , where V 1 = {x 1 , . . . , x r } and V 2 = {x r+1 , . . . , x r+s }. Put g := ∏ r i=1 x i and f := ∏ r+s i=r+1 x i . It is not hard to investigate that G(L) = {x 1 f, .
. . , x r f, x r+1 g, . . . , x r+s g}. Due to L is a square-free monomial ideal, this implies that Ass(L) = Min(L), and hence m / ∈ Ass(L). We show that m / ∈ Ass(L 2 ). Suppose, on the contrary, that m ∈ Ass(L 2 ). This gives that m = (L 2 : v) for some monomial v ∈ R. By virtue of [START_REF] Sayedsadeghi | On the embedded associated primes of monomial ideals[END_REF]Proposition 4.8], one has

deg xi (v) ≤ 1 for all i = 1, . . . , r + s. Let x d ∈ m for some 1 ≤ d ≤ r + s. Hence, x d v ∈ L 2 ,
and so there exists some monomial w ∈ G(L 2 ) such that w | x d v. In addition, it follows from G(L) = {x 1 f, . . . , x r f, x r+1 g, . . . , x r+s g} that there exist i and j with 1

≤ i ̸ = j ≤ r + s such that deg xi (w) = deg xj (w) = 2. Since deg xi (v) ≤ 1 and deg xj (v) ≤ 1, this leads to a contradiction. Consequently, m / ∈ Ass(L 2 ).
Based on Theorem 4.1(iii), the ideal L satisfies the persistence property. Hence, it is enough for us to show that m ∈ Ass(L 3 ). To accomplish this, set h := ∏ r+s i=1 x 2 i . We claim that h / ∈ L 3 and m ⊆ (L 3 : h). We show that 3 . Therefore, we deduce that m ⊆ (L 3 : h). On the contrary assume that h ∈ L 3 . Thus, there exist monomials u 1 , u 2 , u 3 ∈ G(L) such that u 1 u 2 u 3 | h. If u 1 , u 2 , u 3 ∈ {x 1 f, . . . , x r f } (respectively, u 1 , u 2 , u 3 ∈ {x r+1 g, . . . , x r+s g}), then f 3 | h (respectively, g 3 | h), which contradicts the fact that deg xi (h) = 2 for all i. Let u 1 , u 2 ∈ {x r+1 g, . . . , x r+s g}, and u 3 ∈ {x 1 f, . . . , x r f }, say u 3 = x 1 f . Then, we get x 3 1 | u 1 u 2 u 3 , and so x 3 1 | h, which is a contradiction. Finally, let u 1 , u 2 ∈ {x 1 f, . . . , x r f }, and u 3 ∈ {x r+1 g, . . . , x r+s g}, say u 3 = x r+1 g. This gives rise to x 3 r+1 | u 1 u 2 u 3 , and so x 3 r+1 | h, which is a contradiction. Accordingly, h / ∈ L 3 , and thus, m = (L 3 : h). This completes the proof. □

x k h ∈ L 3 for all 1 ≤ k ≤ r + s. Let 1 ≤ k ≤ r. Set α := (x r+1 g)(x r+2 g)(x k f ). Because α ∈ L 3 and α | x k h, one can derive that x k h ∈ L 3 . Now, let r + 1 ≤ k ≤ r + s. Put β := (x 1 f )(x 2 f )(x k g). Since β ∈ L 3 and β | x k h, this implies that x k h ∈ L
We are in a position to state another main result of this section in the subsequent theorem. To see this, we have to use the corollary below as our main tool. Proof. Let K r,s be a complete bipartite graph, R = K[x 1 , . . . , x r , x r+1 , . . . , x r+s ], and m = (x 1 , . . . , x r , x r+1 , . . . , x r+s ) be the unique homogeneous maximal ideal. 

Let V (K r,s ) = V 1 ∪ V 2 , where V 1 = {x 1 , . . . , x r } and V 2 = {x r+1 , . . . , x r+s }. Put L := DI(K r,s ), I := (x i : i = 1, . . . , r), J := (x i : i = r + 1, . . . , r + s), g := ∏ r i=1 x i ,
L = r ∩ i=1 (J + x i R) ∩ r+s ∩ i=r+1 (I + x i R) =(J + r ∩ i=1 x i R) ∩ (I + r+s ∩ i=r+1 x i R) =J ∩ I + r ∩ i=1 x i R + r+s ∩ i=r+1 x i R =JI + gR + f R.
In what follows, our aim is to use Corollary 4.3. To do this, without loss of generality, it is enough to show that L(m \ {x 1 }) is normally torsion-free. Since

I(m\{x 1 }) = R, J(m\{x 1 }) = J, f R(m\{x 1 }) = f R, and gR(m\{x 1 }) = ∏ r i=2 x i R, we obtain L(m \ {x 1 }) = J + r ∏ i=2 x i R + f R = J + r ∏ i=2 x i R.
It follows now from [START_REF] Sayedsadeghi | Normally torsion-freeness of monomial ideals under monomial operators[END_REF]Theorem 2.5] that L(m \ {x 1 }) is normally torsion-free. Therefore, the claim can be deduced from Corollary 4.3, and the proof is done. □

Dominating ideals of h-wheel graphs

The main aim of this section is to explore dominating ideals of a class of graphs which are called h-wheel graphs. For this purpose, we start by stating the definition of h-wheel graphs. Definition 5.1. [4, Definition 1.6] A graph G with the vertex set V (G) is called an h-wheel if V (G) can be written as the union of two disjoint sets, the set of rim vertices R G and the set of center vertices C G , such that the following conditions hold:

(1) The subgraph induced by C G is the complete graph on h vertices.

(2) The subgraph induced by R G is an odd cycle.

(3) There exist x i1 , . . . ,

x i k ∈ R G with k ≥ 3 such that N R G (y) = {x i1 , . . . , x i k } for all y ∈ C G . ( 4 
) For every y ∈ C G , the vertex y belongs to at least two odd cycles in the subgraph induced by y and N R G (y).

The k is called the radial number for G. Also, for each j = 1, . . . , k -1, set ℓ i as the length of the path along the subgraph induced by R G from x ij to x ij+1 , and set ℓ k as the length from x i k to x i1 . The positive integers ℓ 1 , . . . , ℓ k are called the radial lengths.

It should be noted that, in [12, Page 265], the authors studied the 1-wheel, which we call a wheel for simplicity. In fact, given an h-wheel G and a vetex y ∈ C G , the subgraph induced by y and R G is a wheel. Example 5.2. We give a 4-wheel graph G in the following figure.

Note that C G = {y 1 , y 2 , y 3 , y 4 }, R G = {x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 }, and x 5

N R G (y 1 ) = N R G (y 2 ) = N R G (y 3 ) = N R G (y 4 ) = {x 1 , x 2 , x 5 }.
x 4

x 3

x 2

4-wheel graph

The following result is necessary for us to show Lemma 5.4. We state it here for ease of reference. 

Then the following statements hold:

(i) H is normal.

(ii) H has the strong persistence property.

(iii) H has the persistence property.

Proof. (i) Clearly n ≥ 3. Let {1, . . . , n} \ {ℓ 1 , . . . , ℓ k } = {i 1 , . . . , i n-k }. To simplify the notation, set

u j := (x ij -1 , x ij , x ij +1 ) ⊂ R for each j = 1, . . . , n -k, where R = K[x 1 , . . . , x n ].
We use induction on s := n -k. If s = 0, then there is nothing to prove. Let s = 1. Then H = u 1 = (x i1-1 , x i1 , x i1+1 ), which is certainly normal. Now, let s > 1, and the claim has been shown for all integers less than s. Put J := ∩ s-1 j=1 u j . Note that the inductive hypothesis implies J is normal. Moreover, H = J ∩ u s . Here, one may consider the following cases: 

(J) ∩ supp(u s ) = {x is-1 , x is }. This implies that H = J ∩ (x is-1 , x is ) + x is+1 J. It is routine to check that one can write J ∩ (x is-1 , x is ) = s-1 ∩ j=1, where xi s-1 xi s / ∈uj u j ∩ (x is-1 , x is ).
The inductive hypothesis yields that ∩ s-1 j=1, where xi s -1xis / ∈uj u j is normal. Notice that any two consecutive integers can be appeared at most in two u i 's. Also, recall that any integer can be appeared at most in three u i 's. It follows now from Corollary 3.9 that ∩ s-1 j=1, where xi s-1 xi s / ∈uj u j ∩ (x is-1 , x is ) is normal too. On account of Theorem 3.5(i), we deduce that H is normal.

Subcase

3.2. |a -b| = 2, that is, supp(J) ∩ supp(u s ) = {x is-1 , x is+1 }. We thus have H = J ∩ (x is-1 , x is+1 ) + x is J. Want to show that J ∩ (x is-1 , x is+1 ) is normal.
Our strategy is to use Theorem 3.10. For this purpose, it is sufficient to prove that J ∩ (x is-1 ) + (J :

x is+1 ) is normal. If (x is-3 , x is-2 , x is-1 ) or (x is+1 , x is+2 , x is+3
) or both of them do not appear in J, then Corollary 3.9 yields that J ∩ (x is-1 , x is+1 ) is normal. Hence, assume that (x is-3 , x is-2 , x is-1 ) and (x is+1 , x is+2 , x is+3 ) appear in J. This means that we can write

J = J 1 ∩ (x is-3 , x is-2 , x is-1 ) ∩ (x is+1 , x is+2 , x is+3 ).
Note that the inductive hypothesis gives that J 1 is normal. Now, we obtain

J ∩ (x is-1 ) + (J : x is+1 ) =J 1 ∩ (x is+1 , x is+2 , x is+3 ) ∩ (x is-1 ) + J 1 ∩ (x is-3 , x is-2 , x is-1 ) =J 1 ∩ (x is-3 , x is-2 , x is-1 ), where supp(J 1 ) ∩ {x is-1 , x is+1 } = ∅. Since x is-1 / ∈ J 1 , this implies that the normality of J 1 ∩ (x is-3 , x is-2 , x is-1
) can be concluded from Case 1 or Case 2 or Subcase 3.1. Therefore, J ∩ (x is-1 ) + (J : x is+1 ) is normal. It follows from Theorem 3.10 that J ∩ (x is-1 , x is+1 ) is normal. On account of Theorem 3.5(i), we deduce that H is normal.

Case 4. supp(J) ∩ supp(u s ) = {x is-1 , x is , x is+1 }. In this case, we can consider the following subcases: Subcase 4.1. There exists exactly one integer α ∈ {1, . . . , s

-1} such that |supp(u α ) ∩ supp(u s )| = 2, say supp(u α ) ∩ supp(u s ) = {x is-1 , x is }. Also, there exists unique β ∈ {1, . . . , s -1} \ {α} such that x is+1 ∈ u β . Assume that u β = (x is+1 , x r , x t ). Set A := ∩ j∈{1,...,s-1}\{β} u j . We thus get H =A ∩ ((x is+1 ) + (x is-1 , x is ) ∩ (x r , x t )) =A ∩ (x is-1 , x is ) ∩ (x r , x t ) + x is+1 A.
It follows from the inductive hypothesis that A is normal. Furthermore, by mimicking the argument in Case 3, one can derive that A ∩ (x is-1 , x is ) ∩ (x r , x t ) is normal. We therefore conclude from Theorem 3.5(i) that H is normal.

Subcase 4.2. There exist exactly two distinct integers α, β ∈ {1, . . . , s-1} such that |supp(u α )∩supp(u s )∩supp(u

β )| = 1, say supp(u α )∩supp(u s )∩supp(u β ) = x is . Let u α = (x is , x θ1 , x θ2 ) and u β = (x is , x λ1 , x λ2 ). Put B := ∩ j∈{1,...,s-1}\{α,β} u j .
This yields that

H =B ∩ ((x is ) + (x is-1 , x is+1 ) ∩ (x θ1 , x θ2 ) ∩ (x λ1 , x λ2 )) =B ∩ (x is-1 , x is+1 ) ∩ (x θ1 , x θ2 ) ∩ (x λ1 , x λ2 ) + x is B.
One can deduce from the inductive hypothesis that B is normal. By repeating the argument in Case 3, we can deduce that B ∩ (x is-1 , x is+1 ) ∩ (x θ1 , x θ2 ) ∩ (x λ1 , x λ2 ) is normal as well. Thanks to Theorem 3.5(i), we obtain H is normal.

This completes the inductive step, and hence the claim has been proven by induction.

(ii) and (iii) are trivial. □

It has already been established in [START_REF] Nasernejad | Associated primes of powers of cover ideals under graph operations[END_REF]Theorem 3.3] and [2, Theorem 1.10] that the cover ideals of odd cycle graphs are normal and have the (strong) persistence property. On the other hand, since any even cycle is a bipartite graph, its cover ideal is normally torsion-free, and so is normal and also has the (strong) persistence property. The next corollary which is an immediate consequence of Lemma 5.4, says that the dominating ideals of cycle graphs are normal and also satisfy the (strong) persistence property. Moreover, this corollary will be used in proving Theorem 5.8. When t = 1, above construction is simply the cover ideal of a finite simple graph G. It has already been shown in [START_REF] Bhat | Generalized cover ideals and the persistence property[END_REF]Theorem 1.2] that if T is a tree, then, for any t ≥ 1, J t (T ) satisfies the persistence property. The next corollary states that the partial 2-cover ideal of any cycle graph satisfies the persistence property as well.

Corollary 5.7. Let C n be a cycle graph and J 2 (C n ) be its partial 2-cover ideal. Then the following statements hold:

(i) J 2 (C n ) is normal.
(ii) J 2 (C n ) has the strong persistence property. (iii) J 2 (C n ) has the persistence property.

We are ready to express the main result of this section in the following theorem. Theorem 5.8. Let G be an h-wheel graph with rim R G and center C G such that V (C G ) = {y 1 , . . . , y h } and V (R G ) = {x 1 , . . . , x 2m+1 }, where m ≥ 2. Also, let x ℓ1 , . . . , x ℓ k be the radial vertices such that there exist at least three consecutive numbers among them. Let DI(G) denote the dominating ideal of G. Then the following statements hold: Set I := DI(R G ) and H := ∩ j∈{1,...,2m+1}\{ℓ1,...,ℓ k } (x j-1 , x j , x j+1 ). Hence, one has DI(G) = I + JH. By virtue of Lemma 5.4, we obtain H is normal. Moreover, Corollary 5.5 yields that I is normal. Because I ⊆ H, gcd(u, v) = 1 for all v, u ∈ G(J) with u ̸ = v, and also gcd(u, v) = 1 for all u ∈ G(I) ∪ G(H) and v ∈ G(J), one can conclude immediately from Proposition 3.6(i) that DI(G) is normal, as desired.

(ii) and (iii) are trivial. □

  and c be a positive integer number. Then the following statements hold: (i) L := I + x c d H is normal. (ii) L := I + x c d H has the strong persistence property. (iii) L := I + x c d H has the persistence property. (iv) L := I + x c d H has the symbolic persistence property. Proof.

Definition 3 . 2 .

 32 Let I ⊂ R = K[x 1 , . . . , x n ] be a monomial ideal with G(I) = {u 1 , . . . , u m }. The linear relation graph Γ I of I is the graph with the edge set

Corollary 3 . 4 .Theorem 3 . 5 .

 3435 Let I ⊂ R = K[x 1 , . . . , x n ] be a monomial ideal generated in a single degree whose linear relation graph has n vertices and one connected component.Then (i) depth(R/I n-1 ) = 0. In particular, m = (x 1 , . . . , x n ) ∈ Ass(R/I n-1 ). (ii) If I satisfies the persistence property, then lim k→∞ depthR/I k = 0. In particular, m ∈ Ass(R/I k ) for all k ≥ n -1.The following theorem is crucial for us to prove Theorem 4.1 and Lemma 5.4. Let I and H be two normal monomial ideals in a polynomial ringR = K[x 1 , . . . , x n ] such that I + H is normal. Let h be a monomial in R with gcd(v, h) = 1for all v ∈ G(I) ∪ G(H). Then the following statements hold:(i) L := I + hH is normal. (ii) L := I + hH has the strong persistence property. (iii) L := I + hH has the persistence property. (iv) L := I + hH has the symbolic persistence property. (v) If L := I + hH is generated in a single degree whose linear relation graph has n vertices and one connected component, then lim k→∞ depthR/L k = 0.

Proposition 3 . 6 .

 36 this completes the inductive step, and hence the claim has been shown by induction. Therefore, L = I + hH is normal, as claimed. (ii)-(iv) are trivial. (v) Corollary 3.4 together with (iii) yield the assertion. □ To show Theorem 5.8, we need to use the next proposition. Let I ⊆ H be two normal monomial ideals in a polynomial ring

Question 3 . 7 . [ 1 ,

 371 it follows readily from Theorem 3.5(i) that L is normal. This completes the inductive step, and so the claim has been shown by induction.(ii) and (iii) are trivial. □It has already been remained the following open question: Question 2.11] Let I be a normal square-free monomial ideal in R = K[x 1 , . . . , x n ] with G(I) ⊂ R. Then, in general, can one conclude L := IS ∩ (x n , x ℓ n+1 ) ⊂ S = R[x n+1 ] with ℓ > 1,is normal? As an application of Theorem 3.1, we provide an affirmative answer to above open question in the following proposition: Proposition 3.8.

  n (I : R x n ) and I ∩ (x n+1 ) = x n+1 (I : R x n+1 ). Hence, in view of [26, Exercise 6.1.23], we get L = x n (I : R x n ) + x n+1 (I : R x n+1 ). To simplify notation, put F := (I : R x n ) and G := (I : R x n+1 ). Thus, L = x n F + x n+1 G. Let G(I) = {u 1 , . . . , u s }, and define

Corollary 4 . 3 .Theorem 4 . 4 .

 4344 [START_REF] Nasernejad | Classes of normally and nearly normally torsion-free monomial ideals[END_REF] Corollary 3.3] Let I be a square-free monomial ideal in a polynomial ring R = K[x 1 , . . . , x n ] over a field K. Let I(m \ {x i }) be normally torsion-free for all i = 1, . . . , n. Then I is nearly normally torsion-free. The dominating ideals of complete bipartite graphs are nearly normally torsion-free.

Lemma 5 . 3 .Lemma 5 . 4 .

 5354 [START_REF] Al-Ayyoub | Results on the normality of square-free monomial ideals and cover ideals under some graph operations[END_REF] Lemma 2.5] Suppose that I and J are two normal monomial deals in R = K[x 1 , . . . , x n ] such that gcd(u, v) = 1 for all u ∈ G(I) and v ∈ G(J). Then I ∩ J = IJ is normal. Let C n be a cycle graph with the vertex set V (C n ) = {1, . . . , n} and the edge set E(C n ) = {{x i , x i+1 } : i = 1, . . . , n}, where x 0 (respectively, x n+1 ) represents x n (respectively, x 1 ). Let H := ∩ j∈{1,...,n}\{ℓ1,...,ℓ k } (x j-1 , x j , x j+1 ).

Case 1 .

 1 supp(J) ∩ supp(u s ) = ∅. Then Lemma 5.3 yields that H is normal. Case 2. |supp(J) ∩ supp(u s )| = 1. According to Corollary 3.9, one can derive that H is normal. Case 3. |supp(J) ∩ supp(u s )| = 2, say supp(J) ∩ supp(u s ) = {x a , x b }. In this case, one may consider the following subcases: Subcase 3.1. |a -b| = 1, say supp

Corollary 5 . 5 .Definition 5 . 6 .

 5556 Let C n be a cycle graph with the vertex set V (C n ) = {1, . . . , n} and the edge set E(C n ) = {{x i , x i+1 } : i = 1, . . . , n}, where x n+1 represents x 1 , and DI(C n ) be its dominating ideal. Then the following statements hold:(i) DI(C n ) is normal. (ii) DI(C n ) has the strong persistence property. (iii) DI(C n ) has the persistence property.It has already been introduced, in[START_REF] Bhat | Generalized cover ideals and the persistence property[END_REF], the notion of partial t-cover ideals of finite simple graphs. We first recall the definition of partial t-cover ideals in the following definition. [3, Definition 1.1] Suppose that G is a finite simple graph on the vertex set V (G) = {x 1 , x 2 , . . . , x n } with the edge set E(G). Also, for any x ∈ V (G), let N (x) = {y : {x, y} ∈ E(G)} denote the set of neighbors of x. Fix an integer t ≥ 1. The partial t-cover ideal of G is the monomial idealJ t (G) = ∩ x∈V (G)   ∩ {xi 1 ,...,xi t }⊆N (x) (x, x i1 , . . . , x it )   .

  (i) DI(G) is normal. (ii) DI(G) has the strong persistence property. (iii) DI(G) has the persistence property.Proof. (i) To simplify the notation, put F := (x ℓ1 , . . . , x ℓ k )S and J := (y 1 , . . . , y h )S, where S = K[x 1 , . . . , x 2m+1 , y 1 , . . . , y h ]. Since there exist at least three consecutive numbers among ℓ 1 , . . . , ℓ k , this gives rise to ∩ k i=1 (x ℓi-1 , x ℓi , x ℓi+1 ) ⊆ F . Hence, by remembering this fact that x 0 (respectively, x 2m+2 ) represents x 2m+1 (respectively, x 1 ), one can deduce the following equalitiesDI(G) =(F + J) ∩ k ∩ i=1 ((x ℓi-1 , x ℓi , x ℓi+1 ) + J) ∩ ∩ j∈{1,...,2m+1}\{ℓ1,...,ℓ k } (x j-1 , x j , x j+1 ) = ( k ∩ i=1 (x ℓi-1 , x ℓi , x ℓi+1 ) + J ) ∩ ∩ j∈{1,...,2m+1}\{ℓ1,...,ℓ k } (x j-1 , x j , x j+1 ) = 2m+1 ∩ j=1 (x j-1 , x j , x j+1 ) + J ∩ j∈{1,...,2m+1}\{ℓ1,...,ℓ k } (x j-1 , x j , x j+1 )=DI(R G ) + J ∩ j∈{1,...,2m+1}\{ℓ1,...,ℓ k } (x j-1 , x j , x j+1 ).

  and f := ∏ r+s i=r+1 x i . According to [21, Lemma 2.2], and [26, Exercise 6.1.23], we get the following equalities: