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Limit theorems for iid products of positive matrices

Introduction

Let d ≥ 2 be an integer. Let G be the semi-group of d-dimensional positive allowable matrices: by positive, we mean that all entries are greater than or equal to 0, by allowable, we mean that any row and any column admits a strictly positive element. We endow R d with the ℓ 1 norm and G with the corresponding operator norm. We denote both norms by ∥ • ∥. Recall that ∥g∥ = sup ∥x∥=1 ∥gx∥. Define also S + := {x = (x 1 , . . . , x d ) ∈ R d : ∥x∥ = 1 and x i ≥ 0, ∀i ∈ {1, . . . , d} } .

(1.1)

Let µ be a probability on the Borel sets of G. Let (Y n ) n∈N be independent and identically distributed (iid) random variables with law µ living on a probability space (Ω, F, P). For every n ∈ N, set

A n := Y n • • • Y 1 .
We wish to study the asymptotic behaviour of the sequences (log ∥A n ∥) n∈N and (log ∥A n x∥) n∈N , x ∈ S + . Other sequences of interest are (log⟨A n x, y⟩) n∈N for x, y ∈ S + , where ⟨•, •⟩ stands for the standard inner product on R d ; (log κ(A n )) n∈N , with κ the spectral radius or (log(inf x∈S + ∥A n x∥)) n∈N .

In a series of paper [START_REF] Cuny | Limit theorems for the left random walk on GL d (R)[END_REF], [START_REF] Cuny | Large and moderate deviations for the left random walk on GL d (R). ALEA Lat[END_REF], [START_REF] Cuny | On the Komlós, Major and Tusnády strong approximation for some classes of random iterates[END_REF], [START_REF] Cuny | Berry-Esseen type bounds for the Left Random Walk on GL d (R) under polynomial moment conditions[END_REF] and [START_REF] Cuny | Berry-Esseen type bounds for the matrix coefficients and the spectral radius of the left random walk on GL d (R)[END_REF] we studied the stochastic properties of the norm cocycle (i.e. (log ∥A n x∥) n∈N ) associated with the left random walk on GL d (R) under optimal or close to optimal moment conditions. The moment conditions required in these works are in particular optimal in case of the almost sure invariance principle (ASIP) with rate, and close to optimal in the case of the Berry-Esseen theorem. We also obtained results for the matrix norm, the matrix coefficients and the spectral radius. A key ingredient to get these result is to obtain a suitable control of some coupling coefficients introduced in [START_REF] Cuny | Limit theorems for the left random walk on GL d (R)[END_REF], under appropriate moment conditions for µ. In the context of positive matrices these coefficients are defined in Section 3 and can be written as follows: for p ≥ 1, δp,∞ (n) := E sup x,y∈S + log ∥A n x∥ -log ∥A n y∥ p .

As we shall see, in the context of positive matrices, these couplings coefficients decrease exponentially fast even if µ has only polynomial moments, in contrast with the case of invertible matrices where the decay is only arithmetical. More precisely we shall prove in Proposition 3.2 below that, when µ is strictly contracting and almost admits a moment of order p ≥ 1 (see Section 2 for a definition of these notions), there exists a ∈]0, 1[ such that δp,∞ (n) = O(a n ) .

As we already mentioned, a suitable control of this kind of coefficients (together with the Markovian structure of the random walk) is one of the main arguments used in [START_REF] Cuny | On the Komlós, Major and Tusnády strong approximation for some classes of random iterates[END_REF] and [START_REF] Cuny | Berry-Esseen type bounds for the Left Random Walk on GL d (R) under polynomial moment conditions[END_REF] for obtaining rates in the ASIP, as well as Berry-Esseen type bounds in the case of the left random walk on GL d (R)). We follow this strategy in Section 6, where we obtain rates of order o(n 1/p ) in the ASIP when µ has a moment of order p > 2, and in Section 7 where we obtain rates of order O(n 1-p/2 ) for Berry-Esseen type bounds (for the quantities log ∥A n ∥ and log ∥A n x∥) when µ has a moment of order p ∈]2, 3].

Let us mention that the study of iid products of positive matrices benefited from a lot of works. Let us cite, among others, Hennion [START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF], Hennion and Hervé [START_REF] Hennion | Central limit theorems for iterated random Lipschitz mappings[END_REF], Buraczewski et al. [START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF], Buraczewski and Mentemeier [START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF] or Xiao, Grama and Liu [START_REF] Xiao | Precise large deviation asymptotics for products of random matrices[END_REF], [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF], [START_REF] Xiao | Berry-Esseen bounds and moderate deviations for the norm, entries and spectral radius of products of positive random matrices[END_REF] and [START_REF] Xiao | Edgeworth expansion and large deviations for the coefficients of products of positive random matrices[END_REF].

Notice that for g ∈ G, we actually have ∥g∥ = sup x∈S + ∥gx∥ and that, if g = (g ij ) 1≤i, j≤d , ∥g∥ = max 1≤j≤d d i=1 g ij .

(2.1)

For every g ∈ G, set v(g) = inf x∈S + ∥gx∥. If g = (g ij ) 1≤i, j≤d , we have

v(g) = min 1≤j≤d d i=1 g ij . (2.2) 
By definition of G, v(g) > 0 for every g ∈ G.

We then define N (g) := max(∥g∥, 1/v(g)) and L(g) = ∥g∥ v(g) . Notice that N (g) 2 ≥ L(g) ≥ 1 for every g ∈ G.

We endow S + with the following metric (see Proposition 10.1 for a proof that it is indeed a metric). For every x, y ∈ S + , d(x, y) = φ(m(x, y)m(y, x)) ,

where φ(s) = 1 -s 1 + s ∀s ∈ [0, 1] , (2.3) 
and m(u, v) = inf u i v i : i ∈ {1, . . . , d}, v i > 0 .

Notice that the diameter of S + is 1 and that d(x, y) = 1 if and only if there exists i 0 ∈ {1, . . . , d} such that x i 0 = 0 and y i 0 > 0 or x i 0 > 0 and y i 0 = 0.

Using that for u, v ∈ S + , max 1≤i≤d u i ≤ 1 and max 1≤i≤d v i ≥ 1/d, we see that m(u, v) ≤ d.

The semi-group G is acting on S + as follows.

g • x = gx ∥gx∥ ∀(g, x) ∈ G × S + .
We then define a cocyle by setting σ(g, x) = log(∥gx∥) for every (g, x) ∈ G × S + . The cocycle property reads σ(gg ′ , x) = σ(g, g ′ • x) + σ(g ′ , x) .

(2.4)

Following Hennion [START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF]Lemma 10.6], for every g ∈ G we define c(g) := sup x,y∈S + d(gx, gy).

Let us recall some properties that one may find in Hennion [START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF], see his Lemmas 5.2, 5.3 and 10.6 and his Proposition 3.1.

Proposition 2.1. For every (g, g ′ , x, y) ∈ G 2 × (S + ) 2 we have (i) |σ(g, x)| ≤ log N (g);

(ii) ∥x -y∥ ≤ 2d(x, y);

(iii) |σ(g, x) -σ(g, y)| ≤ 2L(g)d(x, y);

(iv) |σ(g, x) -σ(g, y)| ≤ 2 ln 1/(1 -d(x, y)) ;

(v) c(gg ′ ) ≤ c(g)c(g ′ );

(vi) c(g) ≤ 1 and c(g) < 1 iff g ∈ G + ;

(vii) d(g • x, g • y) ≤ c(g)d(x, y).
Let us also mention a closed-form expression for c(g) obtained in Lemma 10.7 of [START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF] (see also Proposition 10.3 below). For every g = (g ij ) 1≤i, j≤d we have

c(g) = max 1≤i, j, k, ℓ≤d |g ij g kℓ -g iℓ g kj | g ij g kℓ + g iℓ g kj . (2.5)
Notice that (g, x) → gx is continuous on G × S + (for the distance on G induced by the operator norm and the distance on S + induced by ∥ • ∥) and does not vanish. Hence, it follows from item (ii) that (g, x) → g • x is continuous on G × S + (for the distance on G induced by the operator norm and the distance d on S + ).

Let us give some more properties that will be useful in the sequel. Set e = {1/d, . . . , 1/d} ∈ S + . For g ∈ G, we denote by g t the adjoint matrix of g. Lemma 2.2. For every (g, x, y)

∈ G × (S + ) 2 , (i) |σ(g, x) -σ(g, y)| ≤ log L(g); (ii) ∥ge∥ ≤ ∥g∥ ≤ d∥ge∥; (iii) ∥g∥ ≤ d∥g t ∥; (iv) |σ(g, x) -σ(g, y)| ≤ 2(2 + log L(g))d(x, y).
Remark. The inequality in item (iv) of Lemma 2.2 is much better that the one in item (iii) of Proposition 2.1.

Proof. Items (i) and (ii) are obvious. Item (iii) is an easy consequence of (2.1). Let us prove item (iv). Let x, y ∈ S + . Assume that d(x, y) ≤ 1/2. Notice that for every t ∈ [0, 1/2], ln(1/(1 -t)) ≤ 2t. Hence, using item (iv) of Proposition 2.1, we see that |σ(g, x) -σ(g, y)| ≤ 4d(x, y). If 2d(x, y) ≥ 1, then the desired conclusion follows from item (i) of Lemma 2.2. □ Proposition 2.3. (S + , d) is complete and S ++ is closed where

S ++ := {x = (x 1 , . . . , x d ) ∈ R d : ∥x∥ = 1 and x i > 0, ∀i ∈ {1, . . . , d} } . (2.6)
Remark. This proposition is probably well known. We did not find a reference for it. However, a hint of proof of completeness is given after Theorem 4.1 of Bushell [START_REF] Bushell | Hilbert's metric and positive contraction mappings in a Banach space[END_REF], for Hilbert's metric given by d H (x, y) = -ln(m(x, y)m(y, x)). See Proposition 10.1 for a proof in a more general situation.

Let us state some of the assumptions used throughout the paper.

Definition 2.1. Let µ be a Borel probability on G and p ≥ 1. We say that µ admits a moment of order p if

G (log(N (g))) p dµ(g) < ∞ .
We say that µ almost admits a moment of order p if

G (log(L(g))) p dµ(g) < ∞ .
Remark. Clearly, since L(g) ≤ N (g) 2 , if µ admits a moment of order p ≥ 1, it almost admits a moment of order p ≥ 1, but the converse is not true in general, see the example in Section 6. Assume now that µ almost admits a moment of order p ≥ 1. Then, µ admits a moment of order

p iff G | log ∥g∥| p dµ(g) < ∞ iff G | log v(g)| p dµ(g) < ∞.
Similarly, we say that µ admits or almost admits an exponential moment of order γ > 0, if there exists δ > 0 such that, respectively,

G e δ log N (g) γ dµ(g) < ∞ , or G e δ log L(g) γ dµ(g) < ∞ .
Definition 2.2. We say that µ is strictly contracting if there exists r ∈ N, such that µ * r (G + ) > 0.

Equivalently, the closed semi-group Γ µ generated by the support of µ has non empty intersection with G + .

Invariant measure and coupling coefficients

Recall that a Borel (with respect to the distance d(•, •)) probability ν on S + is said to be µ-invariant if for every Borel non negative function φ on S + , G×S + φ(g • x)dµ(g)dν(x) = S + φ(x)dν(x). It is well known and easy to prove (recall that (g, x)

→ g • x is continu- ous on G × S + ) that the support of a µ-invariant measure ν is Γ µ -invariant, i.e. satisfies Γ µ • supp ν ⊂ supp ν .
As recalled below, when µ is strictly contracting, it admits a unique µ-invariant probability on S + . We need some further notations to describe its support.

Let g ∈ G + . By the Perron-Frobenius theorem (see Theorem 1.1.1 of [START_REF] Lemmens | Nonlinear Perron-Frobenius theory[END_REF]), there exists a unique x ∈ S ++ such that gx = κ(g)x, where κ(g) is the spectral radius of g. We denote that vector by u g . Notice the following bound that will useful in the sequel,

κ(g) ≥ v(g) ∀g ∈ G . (3.1)
Following [START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF] (see (2.4) there) we define

Λ µ = {u g : g ∈ Γ µ ∩ G + } ,
where the closure is taken with respect to d.

By Proposition 2.3, Λ µ ⊂ S ++ . It follows from Lemma 4.2 of [4] that Λ µ is Γ µ -invariant (i.e. Γ µ • Λ µ ⊂ Λ µ ).
We recall the following result of Hennion and Hervé [START_REF] Hennion | Stable laws and products of positive random matrices[END_REF].

Proposition 3.1. Assume that µ is strictly contracting. Then, there exists a unique µ-invariant probability ν on S + . Moreover supp ν = Λ µ .

The existence and uniqueness of an invariant probability for strictly contracting µ is proved in Theorem 2.1 of [START_REF] Hennion | Stable laws and products of positive random matrices[END_REF] and the characterization of the support of the invariant measure follows from Lemma 4.3 of [START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF]. Since there is no explicit proof of the latter fact in [START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF], let us give an argument.

For every n ∈ N, set

B n := Y 1 • • • Y n (with (Y n ) n∈N iid with law µ).
It follows from the proof of Theorem 2.1 of [START_REF] Hennion | Stable laws and products of positive random matrices[END_REF] that, P-almost surely, for every x ∈ S + , (B n • x) n∈N converges to some random variable Z whose law ν is µ-invariant.

Then supp ν is Γ µ -invariant and Λ µ ⊂ supp ν by Lemma 4.2 of [4]. Now, since Γ µ • Λ µ ⊂ Λ µ , for every x ∈ Λ µ , B n • x ∈ Λ µ P-almost surely, for every n ∈ N. Hence Z ∈ Λ µ P-almost surely (recall that Λ µ is closed for d), which implies that ν(Λ µ ) = 1, hence that supp ν ⊂ Λ µ .
Recall that (Y n ) n∈N is a sequence of iid random variables taking values in G, with law µ and living on a probability space (Ω, F, P), and that

A n := Y n • • • Y 1 .
For every p ≥ 1 and every n ∈ N define

δ p,∞ (n) := sup x,y∈S + E |σ(Y n , A n-1 • x) -σ(Y n , A n-1 • y)| p .
Those coefficients have been introduced in [START_REF] Cuny | Limit theorems for the left random walk on GL d (R)[END_REF], in the setting of products of iid matrices in GL d (R), and proved to be very useful in [START_REF] Cuny | On the Komlós, Major and Tusnády strong approximation for some classes of random iterates[END_REF] and [START_REF] Cuny | Berry-Esseen type bounds for the Left Random Walk on GL d (R) under polynomial moment conditions[END_REF], see also [START_REF] Cuny | Large and moderate deviations for the left random walk on GL d (R). ALEA Lat[END_REF].

We shall see that those coefficients decrease exponentially fast to 0, as soon as µ (almost) admits a moment of order 1, while we obtained only a polynomial speed of convergence in the case of GL d (R).

Actually, we will prove the result for the stronger coefficients δp,∞ (n

) := E sup x,y∈S + |σ(Y n , A n-1 • x) -σ(Y n , A n-1 • y)| p .
Proposition 3.2. Assume that µ is strictly contracting and almost admits a moment of order p ≥ 1. Then, there exists 0 < a < 1 such that

δ p,∞ (n) ≤ δp,∞ (n) = O(a n ) , (3.2) 
and sup

x,y∈S

+ sup n∈N |σ(A n , x) -σ(A n , y)| ∈ L p . (3.3)
In particular,

sup n∈N | log ∥A n ∥ -log v(A n )| ∈ L p . (3.4) 
Proof. Let n ∈ N. By item (iv) of Lemma 2.2 and item (vii) of Proposition 2.1, for every x, y ∈ S + , we have

|σ(Y n , A n-1 •x)-σ(Y n , A n-1 •y)| ≤ (4+2 log L(Y n ))d(A n-1 •x, A n-1 •y) ≤ (4+2 log L(Y n ))c(A n-1 ) .
Let r ∈ N be as in Definition 2.2. Then, by item (vi) of Proposition 2.1, there exists ε > 0 such that µ * r (c(g

) ≤ 1 -ε) =: γ > 0 . (3.5) Hence, if m = [(n -1)/r], E c(A n-1 ) p ≤ m k=1 E c(Y kr • • • Y (k-1)r+1 ) p ≤ γ(1 -ε) p + 1 -γ m .
This proves the desired exponential convergence of ( δp,∞ (n)) n∈N .

Using the cocycle property, we see that for every n ∈ N and every x, y ∈ S + ,

|σ(A n , x) -σ(A n , y)| ≤ n k=1 |σ(Y k , A k-1 • x) -σ(Y k , A k-1 • y)| ≤ ∞ k=1 |σ(Y k , A k-1 • x) -σ(Y k , A k-1 • y)| .
Using the triangle inequality in L p , we infer that 

E sup x,y∈S + sup n∈N |σ(A n , x) -σ(A n , y)| p ≤ ∞ k=1 δp,∞ (k) 1/p p ≤ r p E 2(2 + log L(Y 1 )) p m≥0 γ(1 -ε) p + 1 -γ m/p p ≤ 2 p r p E 2 + log L(Y 1 ) p 1 -γ(1 -ε) p + 1 -γ 1/p p , proving (3.3) 

The strong law of large numbers

Except the L 1 -convergences, the results of that section are essentially contained in Hennion's paper [START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF] (where a more general situation is considered), see his Theorem 2 and its proof. Notice that Hennion assumed a moment of order 1 for μ (the pushforward measure of µ by the application g → g t ) while we also consider the case where µ itself admits a moment of order 1.

We first recall the version of Kingman's subadditive ergodic theorem relevant to our setting (see [START_REF] Kingman | Subadditive ergodic theory[END_REF]Theorems 1 and 2]). The fact that λ µ in the next proposition is constant follows from Kolmogorov's 0 -1 law. Proposition 4.1 (Kingman). Assume that G log ∥g∥ dµ(g) < ∞. Then, ( 1 n log ∥A n ∥) n≥1 converges P-a.s. and in L 1 to some constant λ µ ∈ R.

Remark. Using that ∥g∥ ≥ v(g) for every g ∈ G + , we see that log -∥g∥ ≤ log -v(g), where log -(x) = max(-log x, 0) for every x > 0. In particular, if µ or μ admits a moment of order 1, then, G log ∥g∥ dµ(g) < ∞.

The proposition implies in particular that λ µ = lim n→+∞ E(log ∥A n ∥)/n.

Notice that G log ∥g∥ dµ(g) < ∞ if and only if G log ∥g∥ dμ(g) < ∞. Hence, applying the proposition to μ, using item (iii) of Lemma 2.2 and the fact that

Y t 1 • • • Y t n has same law as Y t n • • • Y t 1 ,
we infer that λ µ = λ μ. We then provide the strong law of large numbers for various quantities related to (A n ) n∈N and identify the limit under a stronger assumption. In the sequel ∥ • ∥ 1 stands for the L 1 -norm on our underlying probability space (Ω, F, P). Theorem 4.2. Assume that µ is strictly contracting and that µ admits a moment of order 1. Then, for every x ∈ S + ,

lim n→+∞ σ(A n , x) n = lim n→+∞ log v(A n ) n = lim n→+∞ log κ(A n ) n = λ µ P-a.s. , (4.1) 
where λ µ = G×S + σ(g, x)dµ(g)dν(x). Moreover, the convergences also hold in L 1 and, we even have

sup x∈S + σ(A n , x) n -λ µ 1 -→ n→+∞ 0 and sup x∈S + σ(A n , x) n -λ µ -→ n→+∞ 0 P-a.s.
Remark. The P-a.s. and L 1 convergence of ( 1 n log v(A n )) n∈N when G | log v(g)|dµ(g) < ∞ (which holds if µ admits a moment of order 1) follow from Kingman's subadditive ergodic Theorem applied to (-log v(A n )) n∈N . The formula for λ µ may be derived from the formula in the middle of page 1568 of [START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF].

Proof. By Proposition 4.1 and the remark after it, we have the P-a.s. and L 1 convergence of ((log ∥A n ∥)/n) n∈N to λ µ . By (3.4), we infer the L 1 convergence for ((log v(A n ))/n) n∈N . To prove the almost sure convergence, define first

Z := sup n∈N | log ∥A n ∥ -log v(A n )|. By (3.4), Z ∈ L 1 and, for every ε > 0, by Fubini's theorem, n∈N P(| log ∥A n ∥ -log v(A n )| ≥ εn) ≤ E(Z) ε < ∞ .
The P-a.s. convergence for ((log v(A n ))/n) n∈N then follows from the one for ((log ∥A n ∥))/n) n∈N and the Borel-Cantelli lemma.

The convergences for ((log

κ(A n ))/n) n∈N follow from the bounds v(A n ) ≤ κ(A n ) ≤ ∥A n ∥ (see (3.

1) for the first bound).

Finally, notice that for every n ∈ N,

sup x∈S + |σ(A n , x) -nλ µ | ≤ max(| log ∥A n ∥ -nλ µ |, | log v(A n ) -nλ µ |) ,
which proves the remaining convergences.

Hence, it remains to identify λ µ . From the above, using the µ-invariance of ν, we infer that

G×S + σ(g, x)dµ(g)dν(x) = 1 n S + E n k=1 σ(Y k , A k-1 • x) dν(x) = 1 n S + E(σ(A n , x))dν(x) -→ n→+∞ λ µ .

□

We shall now consider the case of matrix coefficients. The proof will rely on Lemma 4.3 below, which is essentially contained in Lemma 2.1 of [START_REF] Hennion | Stable laws and products of positive random matrices[END_REF] (see also Lemma 6.3 of [START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF] for (4.4)). We need also some further notations. As in [START_REF] Hennion | Stable laws and products of positive random matrices[END_REF], set

T := inf{n ∈ N : Y n • • • Y 1 ∈ G + } . (4.2) 
From item (i) of [17, Lemma 2.1], note that µ is strictly contracting if and only if P(T < ∞) = 1.

Lemma 4.3. Assume that µ is strictly contracting. With the above notations,

inf n≥T inf x, y∈S + ⟨y, A n x⟩ ∥Y t 1 • • • Y t n y∥ > 0 P-a.s. (4.3) 
and inf

n∈N inf x∈S + ∥A n x∥ ∥A n ∥ = inf n∈N v(A n ) ∥A n ∥ > 0 P-a.s. (4.4) 
Inequality (4.3) is just a reformulation of item (iii) of Lemma 2.1 from [START_REF] Hennion | Stable laws and products of positive random matrices[END_REF], and (4.4) follows from (4.3) and the fact that for every n ∈ N and every x ∈ S + , using items (ii) and (iii) of Lemma 2.2, we get

∥A n x∥ ∥A n ∥ ≥ ⟨e, A n x⟩ d 2 ∥A t n e∥ .
Recall that μ stands for the pushforward measure of µ by the map g → g t .

Theorem 4.4. Assume that µ is strictly contracting and that μ admits a moment of order 1. Then,

sup x, y∈S + log⟨y, A n x⟩ n -λ µ n∈N -→ n→+∞ 0 P-a.s,
where λ µ = G×S + σ(g, x)dμ(g)dν(x) (ν being the only μ-invariant probability on S + ). In particular,

inf x, y∈S + log⟨y, A n x⟩ n -λ µ n∈N -→ n→+∞ 0 P-a.s.
Moreover, ((log

∥A n ∥ -nλ µ )/n) n∈N and ((log κ(A n ) -nλ µ )/n) n∈N converge P-a.s. and in L 1 to 0; and ((log v(A n ) -nλ µ )/n) n∈N converges P-a.s. to 0.
Proof. First notice that Proposition 4.1 applies, which yields the P-a.s. and L 1 convergence for ((log ∥A n ∥)/n) n∈N and for ((log ∥A t n ∥)/n) n∈N by item (iii) of Lemma 2.2. By Lemma 4.3, there exists a random variable W > 0 such that, for every x, y ∈ S + and every n ∈ N, on the set {T ≤ n} (recall that T is defined in (4.2)),

0 ≤ log ∥A n ∥ -log⟨y, A n x⟩ ≤ log W + log ∥A n ∥ -log ∥Y t 1 • • • Y t n y∥ . (4.5) 
Let ε > 0. Using that (Y 1 , . . . , Y n ) and (Y n , . . . , Y 1 ) have the same law, we get n≥1 P( sup

y∈S + log ∥Y t 1 • • • Y t n y∥ -log ∥Y t 1 • • • Y t n e∥ ≥ εn) ≤ n≥1 P( sup y∈S + sup m∈N log ∥Y t m • • • Y t 1 y∥ -log ∥Y t m • • • Y t 1 e∥ ≥ εn) < ∞ ,
where we used Proposition 3.2 for μ. By the Borel-Cantelli lemma, using item (ii) of Lemma 2.2, we infer that

sup y∈S + log ∥Y t 1 • • • Y t n y∥ -log ∥A t n ∥ n -→ n→+∞ 0 P-a.s. (4.6) 
Combining this with (4.5) (recall that P(T < ∞) = 1 and that ∥g∥ ≤ d∥g t ∥ for every g ∈ G) we obtain that sup

x, y∈S + log ∥A n ∥ -log⟨y, A n x⟩ n -→ n→+∞ 0 P-a.s.
This gives the desired convergence for the coefficients. The P-a.s. convergences for (log

κ(A n )/n) n∈N and (log v(A n )/n) n∈N follow from the inequalities inf x, y∈S + log⟨y, A n x⟩ n ≤ log v(A n ) n ≤ log κ(A n ) n ≤ log ∥A n ∥ n .
The L 1 convergence for (log κ(A n )/n) n∈N , follows from Theorem 4.2 applied to μ, using item (iii) of Lemma 2.2 and noticing that (Y 1 , . . . , Y n ) has the same law as (Y n , . . . , Y 1 ). □

Under our assumptions, one cannot expect the L 1 convergence in Theorem 4.4 for v(A n ).

For instance take µ such that for every

k ∈ N, µ({g k }) = 1 3k(k+1) and µ({h}) = µ({Id}) = 1/3, with g k = 2 -k 1/2 0 1/2 and h = 1/2 1/2 1/2 1/2
. Then, for every g ∈ supp µ, ∥g∥ ≤ 1, which implies that for every g ∈ Γ µ (the closed semi-group generated by the support of µ), v(g

) ≤ ∥g∥ ≤ 1. Moreover, using (2.2), v(g k ) = 2 -k and v(g t k ) = 1/2.
In particular, μ admits a moment of order 1 while µ does not, since

E(log v(Y 1 )) ≤ k∈N -k log 2 3k(k+1) = -∞. For every integer n ≥ 2, set Λ n := {Y 2 = . . . = Y n = Id}. Then, E(log v(A n )) ≤ E(log v(Y 1 )1 Λn ) = 3 -(n-1) E(log v(Y 1 )) = -∞.
Similarly, even if µ and μ are strictly contracting and admit a moment of order 1, we may not have L 1 convergence for the coefficients. For instance, let µ be such that µ({Id}

) = µ({h}) = 1/2. Then, µ * n ({Id}) ≥ 2 -n and, with {e 1 , e 2 } the canonical basis of R 2 , µ * n ({g ∈ G : ⟨e 1 , ge 2 ⟩ = 0}) > 0, so that E(log⟨e 1 , A n e 2 ⟩) = -∞.

The CLT and the asymptotic variance

In this section, we state and prove various CLTs. Those CLTs are proved in Hennion [START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF] by a slightly different approach (also based on a martingale-coboundary decomposition). Again, Hennion only proved result under moment conditions on μ but, since the CLT is a result about convergence in law, it is easy to derive results under µ from the ones under μ and vice versa, using for instance item (iii) of Lemma 2.2 and the fact that

Y n • • • Y n has same law as Y 1 • • • Y n .
Our proof allows us to identify the asymptotic variance s 2 in several ways and to characterize the fact that s 2 > 0. The obtained characterization is the same as in [START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF] and [START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF] but its proof does not require exponential moments as in those works.

We start by proving a martingale-coboundary decomposition. In the case of invertible matrices, such a decomposition was only available for p ≥ 2 while here it holds as soon as p ≥ 1.

Proposition 5.1. Assume that µ is strictly contracting and admits a moment of order p ≥ 1. There exists a continuous and bounded function

ψ on X such that σ(Y n , A n-1 •x)-λ µ +ψ(A n •x)- ψ(A n-1 •x) n∈N is a sequence of martingale differences in L p . If moreover W 0 is a random variable with law ν, independent of (Y n ) n∈N , then σ(Y n , A n-1 • W 0 ) -λ µ + ψ(A n • W 0 ) -ψ(A n-1 • W 0 ) n∈N
is a stationary and ergodic sequence of martingale differences in L p .

Remark. The function ψ in the theorem is given by

ψ(x) := n≥1 G×G σ(g, g ′ • x)dµ(g)dµ * (n-1) (g ′ ) -λ µ . (5.1)
Proof. Let ψ be given by (5.1). The fact that ψ is well-defined and continuous follows from Proposition 3.2.

Then, notice that

σ(g, x) -λ µ = σ(g, x) - G σ(g ′ , x)dµ(g ′ ) + G σ(g ′ , x)dµ(g ′ ) -λ µ
and, using the definition of ψ,

G σ(g, x)dµ(g) -λ µ + G ψ(g • x)dµ(g) = ψ(x) . Now, σ(Y n , A n-1 • x) -G σ(g, A n-1 • x)dµ(g) n∈N is a sequence of martingale differences in L p (notice that x → G σ(g, x)dµ(g) is bounded). Moreover, G σ(g, A n-1 • x)dµ(g) -λ µ + ψ(A n • x) -ψ(A n-1 • x) = ψ(A n • x) - G ψ(gA n-1 • x) dµ(g),
and the right-hand side defines a sequence of bounded martingale differences.

The final statement follows from the fact that ((Y n , A n-1 • W 0 )) n∈N is a stationary and (uniquely) ergodic Markov chain. □ Definition 5.1. We say that a probability µ on G is aperiodic if the group generated by {log κ(g) : g ∈ Γ µ } is dense in R.

Proposition 5.2. Assume that µ is strictly contracting and that µ admits a moment of order 2. Then, there exists s 2 ≥ 0 such that, with W 0 as in Proposition 5.1,

1 n E[(σ(A n , W 0 ) -nλ µ ) 2 ] -→ n→+∞ s 2 (5.2)
and 1 √ n (σ(A n , W 0 )-nλ µ ) ⇒ N (0, s 2 ).
In addition, if there do not exist m ∈ N and ψ m continuous on S + such that

σ(g, x) -mλ µ = ψ m (x) -ψ m (g • x) for µ ⊗m ⊗ ν-almost every (g, x) ∈ G × S + , (5.3) 
then s 2 > 0. In particular, if µ is aperiodic, then s 2 > 0.

Remark. Under the assumptions of the proposition we actually have the functional central limit theorem. Moreover, it is well known that the variance is given by

s 2 = E(σ(A 1 , W 0 ) 2 ) + 2 n≥2 E(σ(A 1 , W 0 )σ(A n , W 0 )) = G×S + σ 2 (g, x)dµ(g)dν(x) + 2 n≥2 G 2 ×S + σ(g, x)σ(g ′ g, x)dµ * (n-1) (g ′ )dµ(g)dν(x) .
Proof. For every n ∈ N, set

D n := σ(Y n , A n-1 • W 0 ) -λ µ + ψ(A n • W 0 ) -ψ(A n-1 • W 0 )
. By Proposition 5.1, (D n ) n∈N is a stationary and ergodic sequence of martingale differences in L 2 .

In particular, (D 1 + . . .

+ D n )/ √ n ⇒ N (0, s 2 ), with s 2 = E(D 2 1 ) = E((D 1 + . . . + D n ) 2 )/n.
Hence, the CLT with the description of the variance follows from the following reformulation of Proposition 5.1:

σ(A n , W 0 ) -nλ µ = (D 1 + . . . + D n ) + ψ(W 0 ) -ψ(A n • W 0 ) .
(5.4)

Assume now that s 2 = 0. Then G (σ(g, x) -λ µ -ψ(x) + ψ(g • x)) 2 dµ(g)dν(x) = 0 .
Hence, (5.3) holds with m = 1 and ψ 1 = ψ. Let m > 1. Notice that µ * m is strictly contracting and admits a moment of order p and that the unique µ * m -invariant measure is the unique µinvariant measure. Notice also that λ µ * m = mλ µ . Applying the above argument to µ * m , we infer that there exists a continuous ψ m satisfying (5.3).

Using that ψ m is continuous, we see that (5.3) holds for every g ∈ supp µ * m and every x ∈ supp ν. Let g ∈ supp µ * m ⊂ Γ µ . Then, u g ∈ Λ µ ⊂ supp ν (recall that u g has been defined before (3.1)). Since g • u g = u g and σ(g, u g ) = log κ(g), we infer that ψ m (g • u g ) = ψ m (u g ) and that log κ(g) = mλ µ . Hence, log κ(Γ µ ) ⊂ λ µ N and µ cannot be aperiodic. □

Let us now give the CLT for σ(A n , x), log ∥A n ∥, log v(A n ) and log κ(A n ). Below and in the rest of the section, we shall use the notation: ϕ s (t) = P(sZ ≤ t) with Z a standard normal variable.

Proposition 5.3. Assume that µ is strictly contracting and admits a moment of order 2. Then, the following limit exists

s 2 := lim n→+∞ 1 n E((log ∥A n ∥ -nλ µ ) 2 ) , (5.5) 
and we even have

s 2 = lim n→+∞ E[(σ(A n , W 0 ) -nλ µ ) 2 ] = lim n→+∞ 1 n sup x∈S + E((σ(A n , x) -nλ µ ) 2 ) = lim n→+∞ 1 n E((log v(A n ) -nλ µ ) 2 ) ,
and

s 2 = lim n→+∞ 1 n E((log κ(A n ) -nλ µ ) 2 ) . (5.6)
Moreover the CLT in Proposition 5.2 also holds if we replace σ(A n , W 0 ) with σ(A n , x), log ∥A n ∥, log v(A n ) or log κ(A n ) and we also have

sup x∈S + sup t∈R P(σ(A n , x) -nλ µ ≤ t √ n) -ϕ s (t)) -→ n→+∞ 0 .
If we assume that μ is strictly contracting and admits a moment of order 2 then the CLTs for (log ∥A n ∥) n∈N and (log κ(A n )) n∈N still hold with s 2 given by (5.5) (or equivalently by (5.6)).

Remark. When it is assumed that μ admits a moment of order 2, we do not know whether s 2 is also equal to any the above limits other than (5.5) or (5.6) (we even do not know whether the limits themselves exist) but we will see that the CLTs still hold.

Proof. We start with the case where µ is strictly contracting and admits a moment of order 2. The different expressions of s 2 follow from (5.2), Proposition 3.2 and the fact that for every real random variables

U, V , |E(U 2 ) -E(V 2 )| ≤ ∥U -V ∥ 2 (∥U ∥ 2 + ∥V ∥ 2 ).
Next, note that we can deduce the CLT for (σ(A n , x)) n∈N by using (3.3). To get the CLT for (log ∥A n ∥) n∈N , it suffices to notice that, for any

x ∈ S + , log ∥A n ∥ -log v(A n ) ≥ log ∥A n ∥ -σ(A n , x) ≥ 0 , (5.7) 
and to use the fact that by (3.4), sup n∈N (log

∥A n ∥-log v(A n )) is in L 2 .
The CLT for (log v(A n )) n∈N follows from the CLT for (log ∥A n ∥) n∈N and (3.4). Finally, the CLT for (log 

κ(A n )) n∈N follows from the fact that v(A n ) ≤ κ(A n ) ≤ ∥A n ∥
sup t∈R |P(U ≤ t) -ψ(t)| ≤ sup t∈R |P(V ≤ t) -ψ(t)| + P(R > ε) + sup t∈R |ψ(t -ε) -ψ(t + ε)| . (5.8)
Assume now that μ is strictly contracting and admits a moment of order 2. Applying the first part of Proposition 5.3 to μ, we obtain a CLT for (∥Y

t n • • • Y t 1 ∥) n∈N which, by item (iii) of Lemma 2.2, implies a CLT for (∥Y 1 • • • Y n ∥) n∈N .
Similarly, since for any matrix κ(g t ) = κ(g), we infer the convergence in law for (log κ(A n )) n∈N . The fact that s 2 is still given by (5.5) or (5.6) also follows from the above arguments. □

We also have a (functional) CLT for the coefficients. As noticed in the previous section, one cannot expect in general to identify s 2 thanks to the matrix coefficients as in Proposition 5.3. Proposition 5.4. Assume that µ or μ is strictly contracting and admits a moment of order 2. Then, with s 2 be given either by (5.5) or (5.6), sup

x, y∈S + sup t∈R P(log⟨x, A n y⟩ -nλ µ ≤ t √ n) -ϕ s (t) -→ n→+∞ 0 , sup t∈R P( inf x, y∈S + log⟨x, A n y⟩ -nλ µ ≤ t √ n) -ϕ s (t) -→ n→+∞ 0 .
(5.9)

In particular, we also have a CLT for (σ

(A n , W 0 )) n∈N , (log v(A n )) n∈N or (σ(A n , x)) n∈N .
Proof. We prove (5.9), the other convergences follow from the fact that for every u, v ∈ S + and any n ∈ N,

inf x, y∈S + log⟨x, A n y⟩ ≤ log⟨u, A n v⟩ ≤ σ(A n , v) ≤ log ∥A n ∥ , (5.10) inf x, y∈S + log⟨x, A n y⟩ ≤ log v(A n ) ≤ log ∥A n ∥ .
(5.11)

We start with the case where μ is strictly contracting and admits a moment of order 2. We proceed as for the proof of Theorem 4.4. By Proposition 3.2 applied to μ, n∈N P( sup

y∈S + log ∥Y t 1 • • • Y t n ∥ -log ∥Y t 1 • • • Y t n y∥ ≥ ε √ n) ≤ n∈N P( sup y∈S + sup m∈N log ∥Y t m • • • Y t 1 ∥ -log ∥Y t m • • • Y t 1 y∥ ≥ ε √ n) < ∞ .
In particular, since for any g ∈ G, ∥g∥ ≤ d∥g t ∥,

P( sup y∈S + log ∥A n ∥ -log ∥Y t 1 • • • Y t n y∥ ≥ ε √ n) -→ n→+∞ 0 .
(5.12)

To conclude it remains to use Inequality (5.8) below with

U := (inf x, y∈S + log⟨x, A n y⟩)-nλ µ )/ √ n, V := (log ∥A n ∥ -nλ µ )/ √ n and 
R := (|U | + |V |)1 {T >n} + | log W | + log d + sup y∈S + log ∥A n ∥ -log ∥Y t 1 • • • Y t n y∥ ,
where T is defined by (4.2) and W is the positive random variable defined in (4.5). By (4.5) again, |U -V | ≤ R and (5.9) follows from Inequality (5.8), using Proposition 5.2 and the fact that P(T < ∞) = 1.

Assume now that µ is strictly contracting and admits a moment of order 2. Notice that, for every n ∈ N, inf

x,y∈S + log⟨x, Y n • • • Y 1 y⟩ = inf x,y∈S + log⟨Y t 1 • • • Y t n
x, y⟩ and that the latter as same law as inf x,y∈S + log⟨x, Y t n • • • Y t 1 y⟩. Hence, it suffices to apply the already proven part of the proposition to μ, using (5.10) and (5.11). □

6 The almost sure invariance principle Theorem 6.1. Let p ≥ 2. Assume that µ is strictly contracting and admits a moment of order p. Let s 2 be as in Proposition 5.2. Then, one can redefine the process (σ(A n , W 0 )) n∈N on another probability space on which there exist iid variables (N n ) n∈N with law N (0, s 2 ), such that

|σ(A n , W 0 ) -nλ µ -(N 1 + . . . + N n )| = o( n log log n) P-a.s. if p = 2 and |σ(A n , W 0 ) -nλ µ -(N 1 + . . . + N n )| = o(n 1/p ) P-a.s. if p > 2
Remark. It is not necessary here that s 2 > 0.

Proof. When p > 2, the result follows from Theorem 1 of [START_REF] Cuny | On the Komlós, Major and Tusnády strong approximation for some classes of random iterates[END_REF] by taking into account (3.2).

The case p = 2 follows from (5.4) and the ASIP for martingales with stationary and ergodic increments in L 2 , see [START_REF] Strassen | An invariance principle for the law of the iterated logarithm[END_REF]. □

Proceeding as in the proof of Theorem 4.2 (using in particular the argument yielding (6.1) below) and using Lemma 4.1 of [2], Proposition 3.2 and (5.7), one can prove that the above theorem holds if we replace (σ(A n , W 0 )) n∈N with any of the following sequences: (σ(A n , x)) n∈N (for a given x ∈ S + ), (log

∥A n ∥) n∈N , (log κ(A n )) n∈N or (log v(A n )) n∈N .
Let us give the ASIP for the matrix coefficients. Theorem 6.2. Let p ≥ 2. Assume that µ is strictly contracting and that µ and μ admit a moment of order p. Then, for every x, y ∈ S + , one can redefine the process (log⟨y, A n x⟩) n∈N on another probability space on which there exist iid variables (N n ) n∈N with law N (0, s 2 ), such that

| log⟨y, A n x⟩ -nλ µ -(N 1 + . . . + N n )| = o( n log log n) P-a.s. if p = 2 and | log⟨y, A n x⟩ -nλ µ -(N 1 + . . . + N n )| = o(n 1/p ) P-a.s. if p > 2.
Proof. We proceed as for the proof of Theorem 4.4. Since μ almost admits a moment of order p ≥ 1, using (3.3), for every ε > 0, we have

n≥1 P sup y∈S + log ∥Y t 1 • • • Y t n ∥ -log ∥Y t 1 • • • Y t n y∥ ≥ εn 1/p < ∞ .
By the Borel-Cantelli lemma, we then infer that

sup y∈S + log ∥Y t 1 • • • Y t n ∥ -log ∥Y t 1 • • • Y t n y∥ n 1/p -→ n→+∞ 0 P-a.s. (6.1)
We finish the proof by using similar arguments as those developed in the proof of Theorem 4.4 replacing (4.6) by (6.1). □ Remark. In the proof we used that μ almost admits a moment of order p, hence it may seem that one can weaken the conditions of Theorem 6.2. It turns out that if µ admits a moment of order p and if μ almost admit a moment of order p, then μ admits a moment of order p. This follows from the fact that for every g ∈ G, v(g t )| ≤ ∥g t ∥ ≤ d∥g∥ and 1 v(g t ) ≤ ∥g∥ v(g t ) 1 v(g) . In the case of exponential moments, combining ideas from [START_REF] Cuny | On the Komlós, Major and Tusnády strong approximation for some classes of random iterates[END_REF] and [START_REF] Cuny | Rates in almost sure invariance principle for quickly mixing dynamical systems[END_REF], it is possible to obtain logarithmic rates in the ASIP. This is done in the preprint [START_REF] Cuny | Strong approximations for a class of dependent random variables with semi exponential tails[END_REF] where it is proved that if µ is strictly contracting and has a subexponential moment of order γ ∈ (0, 1] then the conclusion of Theorem 6.1 holds with rate O((log n) 2+1/γ ).

The Berry-Esseen theorem

In this section, we obtain the Berry-Esseen theorem for the norm cocycle and the matrix norm, when µ admits a moment of order p ∈]2, 3]. We get the rate of convergence n 1-p/2 which corresponds to the rate in the setting of sums of iid random variables.

As far as we know the only rate of that type under polynomial moment condition has been obtained by Hennion and Hervé [START_REF] Hennion | Central limit theorems for iterated random Lipschitz mappings[END_REF]. More precisely, they required a moment of order p > 4 for µ to get the rate n -1/2 . We also obtain Berry-Esseen type results (with possibly suboptimal rates) for the spectral radius and the quantity log v(A n ) under stronger moment assumptions. In addition, we get Berry-Esseen type results for the matrix coefficients under exponential moment conditions. Finally, assuming that µ has a moment moment of order 3 and satisfies an extra (quite restrictive) condition, we prove that the spectral radius and the matrix coefficients satisfy Berry-Esseen type estimates with rate of order n -1/2 . The latter result has been obtained independently by Xiao et al. [START_REF] Xiao | Edgeworth expansion and large deviations for the coefficients of products of positive random matrices[END_REF] by a completely different manner. Note that the method of Xiao et al. [START_REF] Xiao | Edgeworth expansion and large deviations for the coefficients of products of positive random matrices[END_REF] allows them to obtain more precise results such as Edgeworth expansions.

In this section, we use the notation ϕ s (t) = P(sZ ≤ t) with Z a standard normal variable. 

P σ(A n , W 0 ) -nλ µ ≤ t √ n -ϕ s (t) = O(v n ) , (7.1) 
sup x∈S + sup t∈R P σ(A n , x) -nλ µ ≤ t √ n -ϕ s (t) = O(v n ) , (7.2) 
sup t∈R P log ∥A n ∥ -nλ µ ≤ t √ n -ϕ s (t) = O(v n ) . (7.3) 
Hennion and Hervé [START_REF] Hennion | Central limit theorems for iterated random Lipschitz mappings[END_REF] obtained the rate (7.1) with v n = 1/ √ n when p > 4, see their Theorem 3.3.

Proof. The proof of (7.1) and of (7.2) follow the one of Theorem 2.1 of [START_REF] Cuny | Berry-Esseen type bounds for the Left Random Walk on GL d (R) under polynomial moment conditions[END_REF] with T = n p/2-1 , using the estimate (3.2) instead of their estimate [12, (3.12)]. Indeed, using (3.2), one can prove that for R 1 and U 2 -U * 2 defined in [12, (3.4), (3.5) and (4.15)] we have, for any p ≥ 2,

∥R 1 ∥ p = O(1) and ∥U 2 -U * 2 ∥ p = O(1)
provided that µ has a moment of order p, whereas in the case of GL d (R), under the same moment condition on µ, the above quantities were of order m 1/p in [START_REF] Cuny | Berry-Esseen type bounds for the Left Random Walk on GL d (R) under polynomial moment conditions[END_REF] (see their Lemmas 4.3 and 4.6). Consequently for positive matrices, analyzing the proofs of Lemmas 4.10 and 4.11 of [START_REF] Cuny | Berry-Esseen type bounds for the Left Random Walk on GL d (R) under polynomial moment conditions[END_REF], we infer that when µ has a moment of order q = r, the inequalities stated in [12, Lemmas 4.10 and 4.11] hold by replacing their right hand sides by |t| r /m (p-2)/2 + |t|/m 1/2+η (with η > 0). Following the proof of [12, Theorem 2.1] by taking into account the previous upper bounds and selecting T = n p/2-1 , the result follows.

The proof of (7.3) 7.3) for p = 3 under their condition A2, see their Theorem 1.2 (see also Theorem 2.1 of [START_REF] Xiao | Berry-Esseen bounds and moderate deviations for the norm, entries and spectral radius of products of positive random matrices[END_REF] by the same authors, when µ has a subexponential moment). It easily follows from Lemma 2.1 of [START_REF] Xiao | Edgeworth expansion and large deviations for the coefficients of products of positive random matrices[END_REF] that their condition A2 is equivalent to the condition used in Theorem 7.8 below (with r = 1). However, it should be emphasized that [START_REF] Xiao | Edgeworth expansion and large deviations for the coefficients of products of positive random matrices[END_REF] and [START_REF] Xiao | Berry-Esseen bounds and moderate deviations for the norm, entries and spectral radius of products of positive random matrices[END_REF] provide Berry-Esseen type results including "target functions" or Edgeworth expansions, see their papers for further details. Our approach does not seem to allow to obtain such results.

7.2 Berry-Esseen for the spectral radius and the matrix coefficients Proposition 7.2. Let p ∈ [START_REF] Berkes | Komlós-Major-Tusnády approximation under dependence[END_REF][START_REF] Boyd | Convex optimization[END_REF]. Assume that µ is strictly contracting, admits a moment of order p and almost admits a moment of order q ∈ [p, max(p, (p -2)/(3 -p))]. Assume that

s 2 > 0 with s 2 as in Proposition 5.2. Set v n = 1 n p/2-1 if p ∈ (2, 1 + √ 3] and v n = 1 n q/2(q+1) if p ∈ (1 + √ 3, 3]. Then, sup t∈R P log v(A n ) -nλ µ ≤ t √ n -ϕ s (t) = O(v n ) (7.5)
and

sup t∈R P log κ(A n ) -nλ µ ≤ t √ n -ϕ s (t) = O(v n ) . (7.6) 
Remark. When p ≤ 1 + √ 3 the condition on q reads q = p hence is satisfied. When p = 3 the condition on q reads q ≥ p. (7.6) also hold if μ satisfies the assumptions of the proposition, by the arguments developed in the proof of Proposition 5.3.

Proof. Since µ admits a moment of order p, by Proposition 3.2 and Markov's inequality, there exists C > 0 such that for every x > 0 and every n ∈ N, P(| log ∥A n ∥ -log v(A n )| ≥ x) ≤ C/x q . Hence, (7.5) follows from Theorem 7.1 and Lemma 7.3 below (which is [START_REF] Cuny | Berry-Esseen type bounds for the matrix coefficients and the spectral radius of the left random walk on GL d (R)[END_REF]Lemma 2]) with

U n = log v(A n ) -nλ µ , V n = log ∥A n ∥ -nλ µ , R n = log v(A n ) -log ∥A n ∥,
and (up to some multiplicative constants) a n = n (p-2)/2 , b n = n q/2(q+1) and c n = ( √ n/b n ) q ). Finally, (7.6) follows from the fact that v(A n ) ≤ κ(A n ) ≤ ∥A n ∥ and the same arguments as above.

Lemma 7.3. Let (U n ) n∈N , (V n ) n∈N and (R n ) n∈N be three sequences of random variables. Assume that |U n -V n | ≤ |R n | P-a.
s. and that there exist three sequences of positive numbers (a n ) n∈N , (b n ) n∈N and (c n ) n∈N going to infinity as n → ∞, and a positive constant s such that, for any integer n,

sup t∈R P(V n ≤ t √ n) -ϕ(t/s) ≤ 1 a n , and 
P(|R n | ≥ √ 2πns/b n ) ≤ 1 c n .
Then, for any integer n,

sup t∈R P(U n ≤ t √ n) -ϕ(t/s) ≤ 1 a n + 1 b n + 1 c n .
□ We shall now improve the rates under a strengthening of our integrability condition. The proof will rely on the following large deviation result. Lemma 7.4. Assume that µ is strictly contracting and almost admits some exponential moment of order γ ∈ (0, 1]. Then, there exist η, δ > 0 such that

P( max 1≤k≤n log v(A k ) -log ∥A k ∥ ≥ ηn) ≤ e -δn γ .
Proof. For every n ∈ N, using that ∥ • ∥ is submultiplicative and that v is supermultiplicative, we see that, setting τ := E(log

∥Y 1 ∥/v(Y 1 )), max 1≤k≤n (log(∥A k ∥) -log(v(A k )) ≤ max 1≤k≤n k i=1 log ∥Y i ∥/v(Y i ) -τ + nτ .
Then the desired result follows from Theorem 2.1 of [START_REF] Fan | Deviation inequalities for martingales with applications[END_REF], see their estimate (2.7) applied in the independent case (in particular the quntities in (2.3) and (2.4) of [START_REF] Fan | Deviation inequalities for martingales with applications[END_REF] are identical). □ Proposition 7.5. Assume that µ is strictly contracting, admits a moment of order p ∈ (2, 3] and almost admits an exponential moment of order γ ∈ (0, 1]. Assume that s 2 > 0 with s 2 as in Proposition 5.2. Set v n = (log n) 1/γ n (p-2)/2 . Then,

sup t∈R P log v(A n ) -nλ µ ≤ t √ n -ϕ s (t) = O(v n )
and

sup t∈R P log κ(A n ) -nλ µ ≤ t √ n -ϕ s (t) = O(v n ) . (7.7)
Remark. (7.7) also holds if μ satisfies the assumptions of the proposition.

Proof. Let ε ∈ (0, 1) be such that (3.5) holds. Let x, y

∈ S + . Let n ∈ N. Let ω ∈ Ω. Let 1 ≤ m < [n/r] be such that c(Y mr • • • Y (m-1)r+1 )(ω) ≤ 1 -ε.
Using the cocycle property and several items of Proposition 2.1 (in particular item (iv)), we see that

|σ(A n , x) -σ(A n , y)| ≤ |σ(Y n • • • Y mr+1 , A mr • x) -σ(Y n • • • Y mr+1 , A mr • y)| + |σ(A mr , x) -σ(A mr , y)| ≤ 2 ln 1/(1 -d(A mr • x, A mr • y)) + log ∥A mr ∥ -log v(A mr ) ≤ 2 ln(1/ε) + log ∥A mr ∥ -log v(A mr ) . Define Γ m := {∃k ∈ 1, . . . , m : c(Y kr • • • Y (k-1)r+1 ) ≤ 1 -ε} . (7.8) 
Taking the supremum over x and the infimum over y, we infer that on Γ m ,

log ∥A n ∥ -log v(A n ) ≤ 2 ln(1/ε) + max 1≤k≤m log ∥A kr ∥ -log v(A kr ) .
Hence, for ηm ≥ 4 ln(1/ε), using Lemma 7.4, we have

P(log ∥A n ∥ -log v(A n ) ≥ ηm) ≤ P(Γ c m ) + P max 1≤k≤m (log ∥A kr ∥ -log v(A kr )) ≥ ηm/2 ≤ α m + C η e -δηm γ ,
where α := P(Γ c 1 ). Taking m = [C(log n) 1/γ ] + 1, with C large enough, we infer that the right-hand side is bounded by D/ √ n, and we conclude using Theorem 7.1 and Lemma 7.3 applied with

U n = log ∥A n ∥, V n = log v(A n ), R n = log ∥A n ∥ -log v(A n ) and (up to some multiplicative constants) a n = n (p-2)/2 , b n = √ n/(log n) 1/γ and c n = √ n. □ Proposition 7.6. Let p ∈ (2, 3]
. Assume that µ is strictly contracting and admits a moment of order p. Assume that s 2 > 0 with s 2 as in Proposition 5.2. Assume moreover that μ almost admits a moment of order q ∈ [p, max(p, (p -2)/(3 -p))] (resp. an exponential moment of order γ ∈ (0, 1]). Then, for every x ∈ S + , the conclusion of Proposition 7.2 (resp. Proposition 7.5) holds with inf y∈S + ⟨y, A n x⟩ in place of κ(A n ).

Proof. For every 0 < δ ≤ 1, define

G δ := {g ∈ G : ⟨y, g • x⟩ ≥ δ ∀x, y ∈ S + } . (7.9) 
Notice that ∪ δ∈(0,1] G δ = G + , so that when µ is strictly contracting, there exist r ≥ 1 and δ ∈ (0, 1] for which µ * r (G δ ) > 0.

Let p 0 = P ⟨y, A r • x⟩ < 1/n 0 : x, y ∈ S + . Note that p 0 ∈ [0, 1) for n 0 large enough.

For n > r, let 1 ≤ m ≤ [n/r] be a positive integer.

Next note that, for any g ∈ G δ and any g ′ ∈ G and any x, y ∈ S + , setting

x ′ = g ′ x/∥g ′ x∥, ⟨y, gg ′ • x⟩ = y, gg ′ x ∥gg ′ x∥ = ⟨y, g • x ′ ⟩ ≥ δ . (7.10) This implies that if, for some integer k ∈ [m, [n/r]] Y kr . . . Y (k-1)r+1 ∈ G 1/n 0 , for x, y ∈ S + , we have ⟨y, A n x⟩ ≥ ⟨Y t kr+1 • • • Y t n y, A kr x ∥A kr x∥ ⟩∥A kr x∥ ≥ (1/n 0 )∥Y t kr+1 • • • Y t n y∥ ∥A n x∥ ∥Y n • • • Y kr+1 ∥ . (7.11) 
Therefore, if we define

∆ n,m := {ω ∈ Ω | ∃k ∈ [m, [n/r] -1] : (Y kr • • • Y (k-1)r+1 )(ω) ∈ G 1/n 0 } , (7.12) 
we get that, on the set ∆ n,m and using ∥g∥ ≤ d∥g t ∥,

inf x, y∈S + log⟨y, A n x⟩ -log ∥A n x∥ ≥ -log(n 0 ) -log d + min mr≤ℓ≤n-1 log v(Y t ℓ+1 • • • Y t n ) -log ∥Y t ℓ+1 • • • Y t n ∥ . (7.13)
Notice that all the above quantities are non positive and that min

mr≤ℓ≤n log v(Y t ℓ+1 • • • Y t n ) - log ∥Y t ℓ+1 • • • Y t n ∥ has the same law as min 1≤ℓ≤n-mr log v(Y t ℓ • • • Y t 1 ) -log ∥Y t ℓ • • • Y t 1 ∥ . Note that P(∆ c n,m ) = p [n/r-m] 0 . (7.14) 
Next, assume that μ almost admits a moment of order q, with q as in the proposition and take m = 1. Combining the above computations, for every a > log n 0 + log d and every x ∈ S + , we have

P inf y∈S + log⟨y, A n x⟩ -log ∥A n x∥ ≥ 2a ≤ P(∆ c n,m ) + E sup n∈N log(v(Y t n • • • Y t 1 ) -log ∥Y t n • • • Y t 1 ∥ q a q .
Hence, using Proposition 3.2, one may finish the proof as the proof of Proposition 7.2.

Assume now that μ almost admits some exponential moment of order γ ∈ (0, 1] and let x ∈ S + be fixed. We wish to apply Theorem 7.1 combined with Lemma 7.3 applied to U n = log ∥A n x∥, V n = inf y∈S + log⟨y, A n x⟩, R n = U n -V n and, up to some multiplicative constants, the sequences a n , b n and c n given at the end of the proof of Proposition 7.5.

To do so, it is enough to find K > 0 large enough (independent from n) and m, such that

P(∆ c n,m )+(P max 1≤ℓ≤n-mr | log ∥Y t ℓ • • • Y t 1 ∥-log v(Y t ℓ • • • Y t 1 )| ≥ η[K(log n) 1/γ ] = O(1/ √ n) , (7.15) 
where η is given in Lemma 7.4.

Taking m = [(n -K(log n) 1/γ )/r] -1 and using Lemma 7.4 we have

P max 1≤ℓ≤n-mr | log ∥Y t ℓ • • • Y t 1 ∥ -log v(Y t ℓ • • • Y t 1 )| ≥ η[K(log n) 1/γ ] ≤ e -δ[(K(log n) 1/γ )] γ .
To conclude one may take K = max((2δ) -1/γ , 2 -1 r(log(1/p 0 )) -1 ) that implies also that

P(∆ c n,m ) = O(1/ √ n). □
To get the results of Proposition 7.6 for the quantity inf x, y∈S + ⟨y, A n x⟩ instead of inf y∈S + ⟨y, A n x⟩, we make an additional assumption on µ. This proves the result for (v(A t n )) n∈N , by Theorem 7.1, since d∥A n ∥ ≥ v(A t n ). Then, the last case follows since

∥A n ∥ ≥ κ(A n ) = κ(A t n ) ≥ v(A t n ), for every n ∈ N. □
To get the conclusion of Theorem 7.8 for the quantities inf x, y∈S + ⟨y, A n x⟩ and log(v(A n )) instead of inf y∈S + ⟨y, A n x⟩ and log(v(A t n )), we impose the same strong condition on µ and μ.

Theorem 7.9. Let p ∈ [START_REF] Berkes | Komlós-Major-Tusnády approximation under dependence[END_REF][START_REF] Boyd | Convex optimization[END_REF]. Assume that µ is strictly contracting and admits a moment of order p. Assume that s 2 > 0 with s 2 as in Proposition 5.2. Assume that there exist 0 < δ ≤ 1 and r ∈ N such that µ * r (G δ ) = 1 and μ * r (G δ ) = 1. Then the conclusion of Theorem 7.1 holds with log inf x, y∈S + ⟨y,

A n x⟩), or log v(A n ) instead of log ∥A n ∥.
Remark. It follows from Lemma 2.1 of [START_REF] Xiao | Edgeworth expansion and large deviations for the coefficients of products of positive random matrices[END_REF] that if µ * r (G δ ) = 1 and μ * r (G δ ) = 1, all matrices of the support of µ * r satisfy Item (1.1) of their condition A1.

Proof. The proof for (v(A n )) n∈N may be done as the proof for (v(A t n )) n∈N in the previous theorem using that μr (G δ ) = 1. The case of (inf x, y∈S + ⟨y, A n x⟩) n∈N then follows since, by (7.16), ∥A n ∥ ≥ inf x, y∈S + ⟨y, A n x⟩ ≥ δv(A n ) for every n ∈ N.

□

We now give a condition that is equivalent to the condition µ * r (G δ ) = 1 (or µ * r (G δ ) > 0). An equivalent condition, specific to the case of positive matrices (hence not valid in the general situation considered in Section 10), has been obtained in [START_REF] Xiao | Edgeworth expansion and large deviations for the coefficients of products of positive random matrices[END_REF], see their Lemma 2.1.

For every C > 0 and 0 ≤ γ < 1, set G C,γ := {g ∈ G : c(g) ≤ γ and ∥g∥ ≤ Cv(g t )} .

(7.17)

Lemma 7.10. For every 0 < δ ≤ 1, there exist 0 ≤ γ < 1 and C > 0 such that G δ ⊂ G C,γ . Conversely, for every 0 ≤ γ ′ < 1 and every C ′ > 0 there exists 0

< δ ′ ≤ 1 such that G C ′ ,γ ′ ⊂ G δ ′ .
Hence, there exists 0 < δ ≤ 1 such that µ(G δ ) > 0 (resp. µ(G δ ) = 1) if and only if there exists 0 ≤ γ < 1 and C > 0 such that µ(G C,γ ) > 0 (resp. µ(G C,γ ) = 1).

Proof. The proof relies on the following observations: for every x ∈ S + , ⟨x, ge⟩ = ∥g t x∥ and ∥g t x∥/∥g∥ ≥ ⟨x, g • e⟩/d ≥ ∥g t x∥/(d∥g∥).

Let g ∈ G δ , with δ > 0. By the previous computations, ∥g∥ ≤ v(g t )/δ. Let x, y ∈ S + . Let us bound d(g • x, g • y). For every u ∈ S + , we have

δ⟨u, g • y⟩ ≤ δ ≤ ⟨u, g • x⟩ .
This implies that m(g•x, g•y) ≥ δ (notice that then we must have δ ≤ 1. Similarly, m(g•y, g•x) ≥ δ and d(g

• x, g • y) ≤ 1-δ 2 1+δ 2 =: γ < 1. So, G δ ⊂ G 1/δ,γ .
Theorem 8.2. Assume that μ is strictly contracting and almost admits an exponential moment of order γ ∈ (0, 1]. Then, there exists δ > 0 such that

S + sup y∈S +
e δ| log⟨y,x⟩| γ dν(x) < ∞ . (8.5)

Remark. Inequality (8.5) has been proved in Proposition 3.3 of [START_REF] Xiao | Berry-Esseen bounds and moderate deviations for the norm, entries and spectral radius of products of positive random matrices[END_REF] with the supremum outside the integral, under stronger conditions. On another hand, they also obtained (8.5) with respect to their measures ν s , see [START_REF] Xiao | Berry-Esseen bounds and moderate deviations for the norm, entries and spectral radius of products of positive random matrices[END_REF] for the definition.

Proof. Proceeding as above, the theorem will be proved if we can show that there exist δ, η > 0 such that n≥1 e δn γ P sup

x,y∈S + log⟨y,

A n • x⟩ ≥ ηn < ∞ . (8.6) 
We conclude thanks to (8.3) and Lemma 7.4. □

Deviation inequalities

We now provide deviation estimates, in the style of Baum-Katz. Concerning the matrix coefficients, the following result holds. Proposition 9.2. Assume that µ is strictly contracting and that µ and μ admit a moment of order p ≥ 1. Let α ∈ (1/2, 1] such that α ≥ 1/p. For any ε > 0, we have n≥1 n αp-2 P( sup

x, y∈S + | log⟨y, A n x⟩ -nλ µ | ≥ n α ε) < ∞ .
Remark. One cannot expect to have a maximum over 1 ≤ k ≤ n inside the probability, since one may have P(log⟨y, A 1 x⟩ = -∞) > 0, for some x, y ∈ S + .

Proof. On the set ∆ n,1 defined by (7.12), we get by using (7.13) 

with m = 1, sup x, y∈S + | log⟨y, A n x⟩ -nλ µ | ≤ sup x∈S + | log ∥A n x∥ -nλ µ | + max 1≤k≤n log v(Y t k • • • Y t n ) -log ∥Y t k • • • Y t n ∥ .
To conclude, we apply the remark after Proposition 9.1 and the fact that the random variables

max 1≤k≤n log v(Y t k • • • Y t n ) -log ∥Y t k • • • Y t n ∥ and max 1≤k≤n log v(Y t k • • • Y t 1 ) -log ∥Y t k • • • Y t 1 ∥
have the same law, combined with Proposition 3.2 applied to μ. □

Generalization to cones

In this section we show how to extend the previous results to general cones. In the previous sections we studied products of positive matrices, that is products of matrices leaving invariant the cone (R + ) d . In this section we consider more general cones. This type of generalization was also investigated in [START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF].

There are many examples of closed solid cones as the ones considered below. For instance, the Lorentz (or ice-cream) cone:

{(x 1 , . . . , x n , z) ∈ R n+1 : z ≥ 0, x 2 1 + . . . + x 2 n ≤ z 2 }.
The linear operators (of matrices) leaving invariant the Lorentz cone have been studied in details by Loewy and Schneider [START_REF] Loewy | Positive operators on the n-dimensional ice cream cone[END_REF].

Another example is the cone K S of positive semi-definite matrices of order n viewed as a cone of the vector space of symmetric matrices of order n. Examples of operators leaving invariant K S are given by M → A t M A where A is a matrix of size n or M → tr(M R 0 )S 0 , with R 0 , S 0 ∈ K S and convex combinations of those.

Let d ≥ 2. We endow V = R d with its usual inner product ⟨•, •⟩ and the associated norm ∥ • ∥ 2 .

Let K be a closed proper convex cone with non empty interior of R d . We recall that a cone of R d is a set of R d stable by multiplication by non-negative real numbers and that it is proper if K ∩ (-K) = {0}.

We shall call such cones closed solid cones, as in [START_REF] Lemmens | Nonlinear Perron-Frobenius theory[END_REF], page 3.

We associate with K its dual cone K * := {x * ∈ V * : ⟨x * , x⟩ ≥ 0 ∀x ∈ K}.

By Lemma 1.2.4 of [START_REF] Lemmens | Nonlinear Perron-Frobenius theory[END_REF], K * is also a closed solid cone. Moreover, for every x * ∈ int(K * ), (the interior of K * ) ⟨x * , x⟩ > 0 for every x ∈ K\{0} and Σ x * := {x ∈ K : ⟨x * , x⟩ = 1} is a compact convex set.

We define a partial order on V by setting for every x, y ∈ V , x ⪯ K y if y -x ∈ K.

In the sequel we will need to work with a monotone norm for K, that is a norm compatible with ⪯ K in the sense of (10.2) below.

Let us fix once and for all x * 0 ∈ int(K * ). Then, for every x ∈ V , set

∥x∥ x * 0 = sup x * ∈K * : x * ⪯ K * x * 0 |⟨x * , x⟩| . (10.1) 
By Lemma 11.4, ∥ • ∥ x * 0 is a norm on V and, using the definition of K * ,

∥x∥ x 0 * ≤ ∥y∥ x * 0 for x, y such that 0 ⪯ K x ⪯ K y . (10.2) 
Notice also that

∥x∥ x * 0 = ⟨x * 0 , x⟩ ∀x ∈ K . (10.3) 
Recall that (K * ) * = K. Hence fixing once and for all some x 0 ∈ int(K), with ⟨x * 0 , x 0 ⟩ = 1, one defines also a monotone norm on V * by setting

∥x * ∥ x 0 := sup x⪯ K x 0 |⟨x * , x⟩| ∀x * ∈ V * .
Then, for every

x * ∈ K * , ∥x * ∥ x 0 = ⟨x * , x 0 ⟩. Set S + := K ∩ {x ∈ V : ∥x∥ x * 0 = 1} = {x ∈ K : ⟨x * 0 , x⟩ = 1} and S ++ := int(K) ∩ {x ∈ V : ∥x∥ x * 0 = 1} = {x ∈ int(K) : ⟨x * 0 , x⟩ = 1} .
Notice that those definitions are consistent with (1.1) and (2.6), taking x * 0 = (1, . . . , 1). We shall now define an application d on (K\{0}) 2 that will make (S + , d) a metric space.

We first define an equivalence relation ∼ K on K, by setting for every x, y, x ∼ K y if there exists 0 < α ≤ β such that αx ⪯ K y ⪯ βx. The equivalence classes for ∼ K are called parts of K. By Lemma 11.2, int(K) is a part of K.

Given x, y ∈ K\{0}, set m(x, y) = sup{λ ≥ 0 : λy ⪯ K x} .
This definition is consistent with the definition of the function m defined in Section 1 when

K = (R + ) d . Notice that if some λ > 0 is such that λy ⪯ K x then x -λy ∈ K, hence x/λ -y ∈ K. So m(x, y) < +∞ since K is closed and K ∩ (-K) = {0}.
In particular, using again that K is closed, m(y, x)m(x, y)y ⪯ K m(y, x)x ⪯ K y so that m(y, x)m(x, y) ≤ 1.

Then, we define for every x, y ∈ K\{0}, d(x, y) = φ(m(x, y)m(y, x)) , where φ is given by (2.3).

It follows from the definition of ∼ K that x ∼ K y if and only if m(x, y)m(y, x) > 0 if and only if d(x, y) < 1.

Note that d(x, y) = tanh (1/2)d H (x, y) where d H is introduced page 26 of [START_REF] Lemmens | Nonlinear Perron-Frobenius theory[END_REF]. Actually, d H is defined when x ∼ K y and when one does not have x ∼ K y then one sets d H (x, y) = +∞. Proposition 10.1. (S + , d) is a complete metric space and S ++ is closed. Moreover, there exists

C x 0 > 0 such that ∥x -y∥ x * 0 ≤ C x * 0 d(x, y) 1 -d(x, y) ∀(x, y) ∈ S + . (10.4) 
Remark. When x ∼ K y the right-hand side of (10.4) is finite. Otherwise, d(x, y) = 1 and the right-hand side of (10.4) has to be interpreted as +∞.

Proof. We first prove that (S + , d) is a metric space. Let x, y, z ∈ S + be such that x ∼ K y and y ∼ K z. By Proposition 2.1.1 of [START_REF] Lemmens | Nonlinear Perron-Frobenius theory[END_REF], d H (x, z) ≤ d H (x, y) + d H (y, z). Using that u → tanh(u/2) is subadditive, the inequality remains true with d in place of d H . If we do not have x ∼ K y and y ∼ K z, then m(x, y)m(y, x) = 0 or m(y, z)m(z, y) = 0, hence d(x, y) = 1 or d(y, z) = 1 so that the triangle inequality is still satisfied. The fact that d is a distance on S + then follows from (other statements of) Proposition 2.1.1 of [START_REF] Lemmens | Nonlinear Perron-Frobenius theory[END_REF]. The fact that (S + , d) is complete follows from Lemma 2.5.4 of [START_REF] Lemmens | Nonlinear Perron-Frobenius theory[END_REF]. Indeed, if (x n ) n∈N ⊂ S + is a Cauchy sequence for d, then d(x p , x q ) < 1, say for q, p ≥ N , so that (x n ) n≥N is included in a part P of K. But, by Lemma 2.5.4 of [START_REF] Lemmens | Nonlinear Perron-Frobenius theory[END_REF], S + ∩ P is complete for d.

Let us explain why S ++ is closed. Using similar arguments as above we see that it is enough to prove that int(K) is a part of K, but this follows from Lemma 11.2. Inequality (10.4) follows from (2.21) page 47 of [START_REF] Lemmens | Nonlinear Perron-Frobenius theory[END_REF], using the relation between d H and d. □

We shall now define the analogue of the positive matrices. In particular, g ∈ G is allowable in the sense of [START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF] (see a) page 1527). Hence, the allowability condition in [START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF] is redundant.

We endow M d (R) with the norm: ∥g∥ x * 0 := sup x∈K, ∥x∥ x * 0 =1 ∥gx∥ x * 0 . The fact that this is indeed a norm follows from the fact that K has non empty interior (i.e. K -K = V ). Notice that for g ∈ G, ∥g∥ The semi-group G is acting on S + as follows. We then define a cocyle by setting σ(g, x) = log(∥gx∥ x * 0 ) for every (g, x) ∈ G × S + .

For every g ∈ G set c(g) := sup

x, y∈K\{0} d(gx, gy) .

Proposition 10.2. For every (g, g ′ , x, y) ∈ G 2 × (S + ) 2 we have (iv) c(gg ′ ) ≤ c(g)c(g ′ );

(v) c(g) ≤ 1 and c(g) < 1 iff g ∈ G + ;

(vi) d(g • x, g • y) ≤ c(g)d(x, y).

Remark. The constant C > 0 appearing in item (ii) is the same as in (10.4).

Proof. Item (i) is obvious. Item (ii) may be proved exactly as item (i) of Lemma 5.3 of [START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF], using (10.4).

Let us prove Item (iii). Let x, y ∈ S + . Assume that x ∼ K y, since otherwise the righthand side in item (iii) equals +∞ and the inequality is clear. We have m(x, y)y ⪯ K x and m(y, x)x ⪯ K y. Since g ∈ G, m(x, y)gy ⪯ K gx and m(y, x)gx ⪯ K gy. Using that ∥ • ∥ x * 0 is monotone we infer that m(x, y)∥gy∥ Then, the proof may be finished as the proof of item (ii) of Lemma 5.3 of [START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF]. The proof of Item (iv) may be done exactly as in [START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF]. Item (v) follows from Proposition 10.3 below and Item (vi) may be proved as in [START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF]. □

We may define as above a distance d * on K * to which we associate a function c * on the set

G * := {g ∈ M d (R) : g(K * \{0} ⊂ K * \{0}, g(int(K) ⊂ int(K)} .
Notice that by Lemma 11.3, G * = {g t : g ∈ G}.

Set S * + := {x * ∈ K * : ⟨x * , x 0 ⟩ = 1} and denote by E(S * + ) the extreme points of S * + . Denote also E(S + ) the extreme points of S + . Proposition 10.3. For every g ∈ G, we have c(g) = sup

x,y∈S The suprema in (10.5) and (10.6) are taken other the (x, y, x * , y * ) such that ⟨x * , gx⟩⟨y * , gy⟩ > 0.

In particular c(g) ≤ 1 and c(g) < 1 if and only if g ∈ G + .

Remarks. When K = (R + ) d (10.6) is just (2.5). For g ∈ G, (10.8) implies that c * (g t ) = c(g).

Proof. As in (2.7) page 35 of [START_REF] Lemmens | Nonlinear Perron-Frobenius theory[END_REF], noticing that they denote by m(x/y) the quantity m(x, y), we have m(x, y) = inf

x * ∈S * + ⟨x * , x⟩ ⟨x * , y⟩ = inf

x * ∈E(S * + ) ⟨x * , x⟩ ⟨x * , y⟩ .

Here and in the sequel, it is implicit that we take the infimum other the x * such that ⟨x * , y⟩ > 0.

Hence, we have m(x, y)m(y, x) = inf 

  and (3.4). To get the last convergence, we use previous arguments and Inequality (5.8) below which is stated in [20, equation (1)]: Let U, V and R be random variables with |U -V | ≤ R P-a.s. For any ψ : R → R and any ε > 0, we have

Proposition 9 . 1 . 1

 911 Assume that µ is strictly contracting and admits a moment of order p ≥ 1. Let α ∈ (1/2, 1] such that α ≥ 1/p. For any ε > 0, we haven≥1 n αp-2 sup x∈S + P( max 1≤k≤n |σ(A k , x) -kλ µ | ≥ n α ε) < ∞ . (9.1)Remark. Using Proposition 3.2, Inequality (5.7) and the fact that for Z ∈ L p , p ≥ 1, n≥1 n pα-1 P(Z ≥ n α ε) < ∞, for any ε > 0 and any α > 0, one can prove similar results for log∥A n ∥ -nλ µ , log κ(A n ) -nλ µ , log v(A n ) -nλ µ or sup x∈S + | log ∥A n x∥ -nλ µ |.In addition to its own interest, let us recall that Proposition 9.1 applied with α = 1/p (hence 1 ≤ p < 2) implies the Marcinkiewicz-Zygmund strong law of large numbers: for every x ∈ S + , σ(A n , x) -nλ µ n (9.1) with α = 1/p, n≥0 P(max 1≤k≤2 n |σ(A k , x)-kλ µ | ≥ 2 n/p ) < ∞ and (9.2) follows by the Borel-Cantelli lemma. Proposition 9.1 is the version for positive matrices of Theorem 4.1 of[START_REF] Cuny | Large and moderate deviations for the left random walk on GL d (R). ALEA Lat[END_REF], stated for invertible matrices. The proof is exactly the same. Let us mention the key ingredients: The result concerns a cocycle for which, when p ≥ 2, the function ψ in (5.1) is well defined and bounded and sup k≥1 sup x∈S + ∥E((σ(Y k , A k-1 • x)) 2 |F k-1 )∥ ∞ < ∞; and, when 1 ≤ p < 2, one can control the coefficients δ 1,∞ (n).

  Let G := {g ∈ M d (R) : g(K\{0}) ⊂ K\{0}, g(int(K)) ⊂ int(K)} .It follows from Lemma 11.3 below thatG := {g ∈ M d (R) : g t (K * \{0}) ⊂ K * \{0}, g t (int(K * )) ⊂ int(K * )} .

0 =1 ∥gx∥ x * 0 ,

 00 Define alsoG + := {g ∈ G : g(K\{0}) ⊂ int(K)} .By Lemma 10.1,G + := {g ∈ G : g t (K * \{0}) ⊂ int(K * )} . Define for every g ∈ G v x * 0 (g) = inf x∈K, ∥x∥ x * Notice that for g ∈ G, v(g) = inf x∈K, ⟨x * 0 ,x⟩=1 ⟨x * 0 , gx⟩.We then define N x * 0 (g) := max(∥g∥ x * 0 , 1/v x * 0 (g)) and L x * 0

  x) ∈ G × S + .

  (i) |σ(g, x)| ≤ log N (g); (ii) |σ(g, x) -σ(g, y)| ≤ 2C x * 0 L(g)d(x, y) if d(x, y) ≤ 1/2;(iii) |σ(g, x) -σ(g, y)| ≤ 2 ln 1/(1 -d(x, y)) ;

* 0 ∥y∥ x * 0 ≤ 1

 01 x * 0 ≤ ∥gx∥ x * 0 and m(y, x)∥gx∥ x * 0 ≤ ∥y∥ gx * 0 . Hence m(x, y) ≤ ∥gx∥ x /m(y, x) .

  7.1 Berry-Esseen for the norm cocycle and the matrix norm Theorem 7.1. Let p ∈[START_REF] Berkes | Komlós-Major-Tusnády approximation under dependence[END_REF][START_REF] Boyd | Convex optimization[END_REF]. Assume that µ is strictly contracting and admits a moment of order p. Assume that s 2 > 0 with s 2 as in Proposition 5.2. Then, setting v n = 1 n

	p/2-1
	, we
	have
	sup
	t∈R

  requires some extra arguments. Notice that for every x ∈ S + and every n ∈ N, ∥A n x∥ = ⟨e, A n x⟩ = ⟨A t n e, x⟩ and that, by items (ii) and (iii) of Lemma 2.2, ∥A t n e∥/d ≤ ∥A n ∥ ≤ d 2 ∥A t n e∥. Hence,

	| log⟨y, x⟩|dν(x) < ∞ .	(7.4)
	y∈S +	
	Hence, we are in position to redo the proof of the bound [12, (2.4)] (see their Section 3.1.2) since
	(7.4) is the precise analogue of [12, (3.30)].	□
	Remarks. By some arguments already mentionned, (7.3) also holds if μ is strictly contracting
	and admits a moment of order p ∈ (2, 3]. Let us notice that (7.1) follows also from Theorem 2.3
	of [18], since the Assumptions 2.1 there are satisfied due to the exponential convergence of the
	coefficients δ ∞,p in Proposition 3.2.	

S + log ∥A n ∥ -log ∥A n x∥ dν(x) ≤ 2 log d + sup Finally, let us mention that Xiao et al. [27] obtained (7.2) and (

  + ,x * ,y * ∈S * + ⟨x * , gx⟩⟨y * , gy⟩ -⟨x * , gy⟩⟨y * , gx⟩ ⟨x * , gx⟩⟨y * , gy⟩ + ⟨x * , gy⟩⟨y * , gx⟩ (10.5) = sup x,y∈E(S + ),x * ,y * ∈E(S * + ) ⟨x * , gx⟩⟨y * , gy⟩ -⟨x * , gy⟩⟨y * , gx⟩ ⟨x * , gx⟩⟨y * , gy⟩ + ⟨x * , gy⟩⟨y * , gx⟩ . (10.6)

  * ,y * ∈E(S * + ),x,y∈E(S + ) φ ⟨x * , gx⟩⟨y * , gy⟩ ⟨x * , gy⟩⟨y * , gx⟩ ,where we used (10.7) for d * to obtain the last equality. Then, (10.5) and (10.6) follow by noticing that for every s, t, u, v ≥ 0, with uv > 0

		, gx⟩	(10.9)
	=	sup
	x	

x * ,y * ∈S * + ⟨x * , x⟩⟨y * , y⟩ ⟨x * , y⟩⟨y * , x⟩ = inf x * ,y * ∈E(S * + ) ⟨x * , x⟩⟨y * , y⟩ ⟨x * , y⟩⟨y * , x⟩ . Extending naturally φ to a non decreasing function on [0, +∞[, we infer that d(x, y) = sup x * ,y * ∈S * + φ ⟨x * , x⟩⟨y * , y⟩ ⟨x * , y⟩⟨y * , x⟩ = sup x * ,y * ∈E(S * + ) φ ⟨x * , x⟩⟨y * , y⟩ ⟨x * , y⟩⟨y * , x⟩ . (10.7) For every g ∈ G, we have sup x,y∈S + d(gx, gy) = sup x,y∈S + ,x * ,y * ∈S * + φ ⟨x * , gx⟩⟨y * , gy⟩ ⟨x * , gy⟩⟨y * , gx⟩ (10.8) = sup x,y∈S + ,x * ,y * ∈E(S * + ) φ ⟨x * , gx⟩⟨y * , gy⟩ ⟨x * , gy⟩⟨y * * ,y * ∈E(S * + ) d * (g t x * , g t y * ) = sup x φ(st/uv) = uv -st st + uv .

Proposition 7.7. Let p ∈ [START_REF] Berkes | Komlós-Major-Tusnády approximation under dependence[END_REF][START_REF] Boyd | Convex optimization[END_REF]. Assume that µ is strictly contracting and admits a moment of order p. Assume that s 2 > 0 with s 2 as in Proposition 5.2. Assume moreover that µ and μ almost admit a moment of order q ∈ [p, max(p, (p -2)/(3 -p))] (resp. an exponential moment of order γ ∈ (0, 1]). Then the conclusion of Proposition 7.2 (resp. Proposition 7.5) holds with inf x, y∈S + ⟨y, A n x⟩ in place of κ(A n ).

Proof. The proof is very close the proof of Proposition 7.6, hence we only give the main step. We keep the same notations. Starting from (7.11), we get that, on the set where Y mr • • • Y (m-1)r+1 ∈ G 1/n 0 (recall that G 1/n 0 is defined in (7.9)),

Hence, the only difference with the proof of Proposition 7.6 is that we need to handle the term log v(A n ) -log ∥A n ∥ but this may be done, as in the proof of Proposition 7.6, using Lemma 3.2 when µ almost admits a moment of order q and Lemma 7.4 when µ almost admits some exponential moment of order γ ∈ (0, 1]. □

We shall now obtain the rate O(1/ √ n) for the spectral radius and the coefficients under a much stronger condition on µ, also considered in [START_REF] Xiao | Edgeworth expansion and large deviations for the coefficients of products of positive random matrices[END_REF]. Actually, in Theorem 1.2 of [START_REF] Xiao | Edgeworth expansion and large deviations for the coefficients of products of positive random matrices[END_REF] the authors obtain the results of Theorem 7.8 for p = 3. Recall that the set G δ has been defined in (7.9). Theorem 7.8. Let p ∈ [START_REF] Berkes | Komlós-Major-Tusnády approximation under dependence[END_REF][START_REF] Boyd | Convex optimization[END_REF]. Assume that µ is strictly contracting and admits a moment of order p. Assume that s 2 > 0 with s 2 as in Proposition 5.2. Assume that there exist 0 < δ ≤ 1 and r ∈ N such that µ * r (G δ ) = 1. Then the conclusion of Theorem 7.1 holds with log(inf y∈S + ⟨y, A n x⟩) (for every x ∈ S + ), log v(A t n ), or log κ(A n ) instead of log ∥A n ∥.

Proof. By assumption, for every n ≥ r and x ∈ S + , using that

Then, the result for (inf y∈S + ⟨y, A n x⟩) n∈N follows from Theorem 7.1 and the fact that

To prove the remaining cases, first observe that G δ is a right ideal, i.e. G δ G ⊂ G δ , which was already observed in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF] (see also (7.10) for a short proof). Hence, by Lemma 7.10 below, there exist C > 0 and 0 ≤ γ < 1, such that for every n ≥ r, µ * n (G C,γ ) = 1, with G C,γ defined by (7.17). In particular, for every

1+m(y,x) and m(y, x) ≥ 1-γ 1+γ . We infer that g • y -1-γ 1+γ g • x has non negative coordinates. Taking, x = e, we see that for every u ∈ S + ,

.

□ 8 Regularity of the invariant measure

We prove here regularity properties of the invariant measure under various moment conditions.

Theorem 8.1. Assume that μ is strictly contracting and almost admits a moment of order p ≥ 1. Then

Remark. In the case of invertible matrices, Benoist and Quint [START_REF] Benoist | Central limit theorem for linear groups[END_REF] proved that if µ has a moment of order p > 1, then sup y∈X X | log⟨y, x⟩| p-1 dν(x) < ∞ .

Proof. By Fubini's theorem, it is enough to prove that n≥1 n p-1 ν x ∈ S + : sup

for some c > 0. Using that ν is µ-invariant, it suffices to prove that

Now, on ∆ n,1 (recall its definition (7.12)), by (7.13), we have log⟨y, ), it is clear that (8.2) will hold if we can find some c > 0 such that

By Proposition 3.2, since μ almost admits a moment of order p, (8.4). □

The fact that c(g) ≤ 1 is obvious.

Let g ∈ G + . Then, ⟨x * , gx⟩ > 0 for every x ∈ K\{0} and x * ∈ K * \{0}. Hence, the continuous function (for either d or ∥ • ∥) (x, y, x * , y * ) → ⟨x * ,gx⟩⟨y * ,gy⟩-⟨x * ,gy⟩⟨y * ,gx⟩ ⟨x * ,gx⟩⟨y * ,gy⟩+⟨x * ,gy⟩⟨y * ,gx⟩ defined on the compact (S + ) 2 × (S * + ) 2 takes values in [-1, 1[. So, c(g) < 1.

Assume now that g ∈ G\G + . By assumption, there exists x ∈ S + such that gx ∈ K\int(K). By Lemma 11.1, there exists y * ∈ S * + such that ⟨y * , gx⟩ = 0. Since gx ̸ = 0 and g t y * ̸ = 0, there exist x * ∈ S * + and y ∈ S + such that ⟨y * , gy⟩ > 0 and ⟨x * , gx⟩ > 0. Hence, c(g) = 1. □

We shall now consider the analogous statements as those given in Lemma 2.2. Only item (ii) requires a proof.

Lemma 10.4. There exists C > 0 such that for every g ∈ G,

Using Lemma 11.2 with the cone K * there exists ε > 0 such that g t x * 0 ⪯ K * ∥g t x * 0 ∥x 0 ε

x * 0 . Hence, using that gx ∈ K and Lemma 11.1,

□ All the results of the previous sections hold true for a cocycle satisfying all the properties listed in Proposition 2.1 and Lemma 2.2, replacing the quantities N (g) and L(g) in the moment conditions by the quantities N x * 0 (g) and L x * 0 (g).

Technical results

The next lemma is just Lemma 1.2.4 of [START_REF] Lemmens | Nonlinear Perron-Frobenius theory[END_REF].

Lemma 11.1. Let K be a closed solid cone. Then

The next lemma follows from the proof Lemma 1.2.4 of [START_REF] Lemmens | Nonlinear Perron-Frobenius theory[END_REF]. We recall the arguments.

Lemma 11.2. Let ∥ • ∥ be a norm on V = R d . Let K be a closed solid cone. Then, for every x ∈ int(K), there exists ε > 0, such that for every y ∈ K ∩ B∥•∥ (0, 1), where B∥•∥ (0, 1) is the closure of the unit ball B ∥•∥ (0, 1), we have y ⪯ 1 ε x. Then ∥y∥ ≤ 1 ε . In particular, int(K) is a part of K.

Proof. Let x ∈ int(K). There exists ε > 0 such that B∥•∥ (x, ε) ⊂ int(K). Let y ∈ B∥•∥ (0, 1). Then, x -εy ∈ K, which means precisely that y ⪯ 1 ε x. In particular, if x, y ∈ int(K), x ∼ K y. It remains to prove that for every (x, y) ∈ int(K) × K, x ∼ K y ⇒ y ∈ int(K).

Hence, let x ∈ int(K). There exists ε > 0 such that B ∥•∥ (x, ε) ⊂ K.

Let y ∈ K be such that y ∼ x. There exists α > 0 such that x ⪯ K αy. So αy -x ∈ K and

which is an open subset of K. □ Lemma 11.3. Let g ∈ M d (R) and let K be a closed solid cone of E.

Proof. Assume that g(K\{0}) ⊂ K\{0}. Let x * ∈ int(K * ) and x ∈ K\{0}. We have ⟨g t x * , x⟩ = ⟨x * , gx⟩ > 0 , by Lemma 11.1. Using Lemma 11.1 again, we see that g t x * ∈ int(K * ).

Assume that g t (int(K * )) ⊂ int(K * ). Let x ∈ K\{0} and x * ∈ int(K * ). We have ⟨x * , gx⟩ = ⟨g t x * , x⟩ > 0 .

Hence gx ∈ K * * = K (see Exercise 2.31 of [START_REF] Boyd | Convex optimization[END_REF]) and gx ̸ = 0, which proves item (i).

Item (ii) is just item (i) for K * using that K * * = K. □ Lemma 11.4. ∥ • ∥ x * 0 defined by (10.1) is a norm for every x * 0 ∈ int(K * ).

Proof. By Lemma 1.2.5 of [START_REF] Lemmens | Nonlinear Perron-Frobenius theory[END_REF], the set {x * ∈ K : x * ⪯ K * x * 0 } is bounded, hence ∥ • ∥ x * 0 is finite on V . The fact that ∥ • ∥ x * 0 satisfies the triangular inequality and is positively homogeneous are obvious.

Assume that x ∈ E, is such that ∥x∥ x * 0 = 0. By Lemma 11.2 applied to K * (with x = x * 0 ), for every x * ∈ K * , ⟨x * , x⟩ = 0. Since K * has non empty interior, K * -K * = V * and x = 0. □