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Abstract

We study stochastic properties of the norm cocycle associated with iid products of

positive matrices. We obtain the almost sure invariance principle (ASIP) with rate o(n1/p)

under the optimal condition of a moment of order p > 2 and the Berry-Esseen theorem

with rate O(1/
√
n) under the optimal condition of a moment of order 3. The results are

also valid for the matrix norm. For the matrix coefficients, we also have the ASIP but we

obtain only partial results for the Berry-Esseen theorem. The proofs make use of coupling

coefficients that surprisingly decay exponentially fast to 0 while there is only a polynomial

decay in the case of invertible matrices. All the results are actually valid in the context of

iid products of matrices leaving invariant a suitable cone.
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1 Introduction

Let d ≥ 2 be an integer. Let G be the semi-group of d-dimensional positive allowable matrices:

by positive, we mean that all entries are greater than or equal to 0, by allowable, we mean that

any row and any column admits a strictly positive element. We endow Rd with the ℓ1 norm
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and G with the corresponding operator norm. We denote both norms by ∥ · ∥. Recall that

∥g∥ = sup∥x∥=1 ∥gx∥. Define also

S+ := {x = (x1, . . . , xd) ∈ Rd : ∥x∥ = 1and xi ≥ 0, ∀i ∈ {1, . . . , d} } . (1.1)

Let µ be a probability on the Borel sets of G. Let (Yn)n∈N be independent and identically

distributed (iid) random variables with law µ living on a probability space (Ω,F ,P). For every
n ∈ N, set An := Yn · · ·Y1. We wish to study the asymptotic behaviour of the sequences

(log ∥An∥)n∈N and (log ∥Anx∥)n∈N, x ∈ S+. Other sequences of interest are (log⟨Anx, y⟩)n∈N for

x, y ∈ S+, where ⟨·, ·⟩ stands for the standard inner product on Rd; (log κ(An))n∈N, with κ the

spectral radius or (log(infx∈S+ ∥Anx∥))n∈N.
In a series of paper [7], [9], [10], [12] and [13] we studied the stochastic properties of the norm

cocycle (i.e. (log ∥Anx∥)n∈N) associated with the left random walk on GLd(R) under optimal

or close to optimal moment conditions. The moment conditions required in these works are in

particular optimal in case of the almost sure invariance principle (ASIP) with rate, and close

to optimal in the case of the Berry-Esseen theorem. We also obtained results for the matrix

norm, the matrix coefficients and the spectral radius. A key ingredient to get these result is

to obtain a suitable control of some coupling coefficients introduced in [7], under appropriate

moment conditions for µ. In the context of positive matrices these coefficients are defined in

Section 3 and can be written as follows: for p ≥ 1,

δ̃p,∞(n) := E
(

sup
x,y∈S+

∣∣ log ∥Anx∥ − log ∥Any∥
∣∣p) .

As we shall see, in the context of positive matrices, these couplings coefficients decrease expo-

nentially fast even if µ has only polynomial moments, in contrast with the case of invertible

matrices where the decay is only arithmetical. More precisely we shall prove in Proposition 3.2

below that, when µ is strictly contracting and almost admits a moment of order p ≥ 1 (see

Section 2 for a definition of these notions), there exists a ∈]0, 1[ such that δ̃p,∞(n) = O(an) .

As we already mentioned, a suitable control of this kind of coefficients (together with the

Markovian structure of the random walk) is one of the main arguments used in [10] and [12] for

obtaining rates in the ASIP, as well as Berry-Esseen type bounds in the case of the left random

walk on GLd(R)). We follow this strategy in Section 6, where we obtain rates of order o(n1/p)

in the ASIP when µ has a moment of order p > 2, and in Section 7 where we obtain rates of

order O(n1−p/2) for Berry-Esseen type bounds (for the quantities log ∥An∥ and log ∥Anx∥) when
µ has a moment of order p ∈]2, 3].

Let us mention that the study of iid products of positive matrices benefited from a lot of

works. Let us cite, among others, Hennion [15], Hennion and Hervé [16], Buraczewski et al. [4],

Buraczewski and Mentemeier [5] or Xiao, Grama and Liu [24], [25], [26] and [27].
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Hennion [15] obtained the strong law of large numbers and the central limit theorem (CLT)

under optimal moment conditions in the more general situation of products of dependent positive

random matrices satisfying some mixing conditions. All the other above mentioned papers,

except [16] and [27], assume exponential moment for µ which allows to use in a natural way the

Guivarc’h-Nagaev method based on perturbation of operators.

In fact, in the context of products of positive random matrices, Hennion and Hervé [16] and

Xiao, Grama and Liu [27] recently observed that the Guivarc’h-Nagaev method applies under

polynomial moment conditions. In particular, Hennion and Hervé obtained the Berry-Esseen

theorem with rate O(1/
√
n), under a moment of order p > 4 while Xiao, Grama and Liu obtained

the same rate (as well as a first order Edgeworth expansion) under a moment of order 3, but

assuming an additional technical condition (see their condition A2, that we shall discuss at the

end of Section 7.2).

The paper is organised as follows. In Section 2, we introduce some notations and definitions

and we also recall several key properties in the study of positive matrices. In Section 3, we

establish the existence of a unique invariant probability and we estimate our coupling coefficients

(see Proposition 3.2). In Section 4, we recall the strong law of large numbers of Hennion [15]

and provide some complementary results that can be obtained via Proposition 3.2. In Section 5,

we recall the CLT and provide several identifications of the asymptotic variance s2. Moreover,

we show that the known aperiodicity condition (see Definition 5.1) is sufficient for s2 > 0, under

a moment of order 2. In Section 6, we obtain the ASIP for the norm cocycle, the matrix norm,

the spectral radius and the matrix coefficients under optimal polynomial moment conditions.

In Section 7, we obtain the Berry-Esseen theorem for all the above mentioned quantities. The

obtained rates are optimal (in terms of moment conditions) in the case of the norm cocyle and

the matrix norm, but we have a loss in the case of the spectral radius and the matrix coefficients.

In Section 8 we study the regularity of the invariant measure and in Section 9, we provide some

deviation inequalities for the norm cocycle and the matrix coefficients. In Section 10, we explain

how to generalise our results to matrices leaving invariant a suitable cone (notice that the positive

matrices of size d may be seen as the matrices leaving invariant the cone (R+)d). Finally, in

Section 11, we provide technical results related to the previous section.

In all the paper we denote N := {1, 2, . . .}.

2 Norm cocycle and matrix norm

We put on G the topology inherited from (the distance associated with) the norm. Then, G

becomes a locally compact space. Let G+ be the sub-semi-group of G whose entries are all

strictly positive. Actually, G+ is the interior of G.
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Notice that for g ∈ G, we actually have ∥g∥ = supx∈S+ ∥gx∥ and that, if g = (gij)1≤i, j≤d,

∥g∥ = max
1≤j≤d

d∑
i=1

gij . (2.1)

For every g ∈ G, set v(g) = infx∈S+ ∥gx∥. If g = (gij)1≤i, j≤d, we have

v(g) = min
1≤j≤d

d∑
i=1

gij . (2.2)

By definition of G, v(g) > 0 for every g ∈ G.

We then define N(g) := max(∥g∥, 1/v(g)) and L(g) = ∥g∥
v(g)

. Notice that N(g)2 ≥ L(g) ≥ 1

for every g ∈ G.

We endow S+ with the following metric (see Proposition 10.1 for a proof that it is indeed a

metric). For every x, y ∈ S+,

d(x, y) = φ(m(x, y)m(y, x)) ,

where

φ(s) =
1− s

1 + s
∀s ∈ [0, 1] , (2.3)

and

m(u, v) = inf

{
ui
vi

: i ∈ {1, . . . , d}, vi > 0

}
.

Notice that the diameter of S+ is 1 and that d(x, y) = 1 if and only if there exists i0 ∈
{1, . . . , d} such that xi0 = 0 and yi0 > 0 or xi0 > 0 and yi0 = 0.

Using that for u, v ∈ S+, max1≤i≤d ui ≤ 1 and max1≤i≤d vi ≥ 1/d, we see that m(u, v) ≤ d.

The semi-group G is acting on S+ as follows.

g · x =
gx

∥gx∥
∀(g, x) ∈ G× S+ .

We then define a cocyle by setting σ(g, x) = log(∥gx∥) for every (g, x) ∈ G×S+. The cocycle

property reads

σ(gg′, x) = σ(g, g′ · x) + σ(g′, x) . (2.4)

Following Hennion [15, Lemma 10.6], for every g ∈ G we define c(g) := supx,y∈S+ d(gx, gy).

Let us recall some properties that one may find in Hennion [15], see his Lemmas 5.2, 5.3 and

10.6 and his Proposition 3.1.

Proposition 2.1. For every (g, g′, x, y) ∈ G2 × (S+)2 we have
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(i) |σ(g, x)| ≤ logN(g);

(ii) ∥x− y∥ ≤ 2d(x, y);

(iii) |σ(g, x)− σ(g, y)| ≤ 2L(g)d(x, y);

(iv) |σ(g, x)− σ(g, y)| ≤ 2 ln
(
1/(1− d(x, y))

)
;

(v) c(gg′) ≤ c(g)c(g′);

(vi) c(g) ≤ 1 and c(g) < 1 iff g ∈ G+;

(vii) d(g · x, g · y) ≤ c(g)d(x, y).

Let us also mention a closed-form expression for c(g) obtained in Lemma 10.7 of [15] (see

also Proposition 10.3 below). For every g = (gij)1≤i, j≤d we have

c(g) = max
1≤i, j, k, ℓ≤d

|gijgkℓ − giℓgkj|
gijgkℓ + giℓgkj

. (2.5)

Notice that (g, x) → gx is continuous on G × S+ (for the distance on G induced by the

operator norm and the distance on S+ induced by ∥ · ∥) and does not vanish. Hence, it follows

from item (ii) that (g, x) → g · x is continuous on G×S+ (for the distance on G induced by the

operator norm and the distance d on S+).

Let us give some more properties that will be useful in the sequel. Set e = {1/d, . . . , 1/d} ∈
S+. For g ∈ G, we denote by gt the adjoint matrix of g.

Lemma 2.2. For every (g, x, y) ∈ G× (S+)2,

(i) |σ(g, x)− σ(g, y)| ≤ logL(g);

(ii) ∥ge∥ ≤ ∥g∥ ≤ d∥ge∥;

(iii) ∥g∥ ≤ d∥gt∥;

(iv) |σ(g, x)− σ(g, y)| ≤ 2(2 + logL(g))d(x, y).

Remark. The inequality in item (iv) of Lemma 2.2 is much better that the one in item (iii) of

Proposition 2.1.

Proof. Items (i) and (ii) are obvious. Item (iii) is an easy consequence of (2.1). Let us prove

item (iv). Let x, y ∈ S+. Assume that d(x, y) ≤ 1/2. Notice that for every t ∈ [0, 1/2],

ln(1/(1 − t)) ≤ 2t. Hence, using item (iv) of Proposition 2.1, we see that |σ(g, x) − σ(g, y)| ≤
4d(x, y). If 2d(x, y) ≥ 1, then the desired conclusion follows from item (i) of Lemma 2.2. □
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Proposition 2.3. (S+, d) is complete and S++ is closed where

S++ := {x = (x1, . . . , xd) ∈ Rd : ∥x∥ = 1 and xi > 0, ∀i ∈ {1, . . . , d} } . (2.6)

Remark. This proposition is probably well known. We did not find a reference for it. However,

a hint of proof of completeness is given after Theorem 4.1 of Bushell [6], for Hilbert’s metric

given by dH(x, y) = − ln(m(x, y)m(y, x)). See Proposition 10.1 for a proof in a more general

situation.

Let us state some of the assumptions used throughout the paper.

Definition 2.1. Let µ be a Borel probability on G and p ≥ 1. We say that µ admits a moment

of order p if ∫
G

(log(N(g)))pdµ(g) <∞ .

We say that µ almost admits a moment of order p if∫
G

(log(L(g)))pdµ(g) <∞ .

Remark. Clearly, since L(g) ≤ N(g)2, if µ admits a moment of order p ≥ 1, it almost admits

a moment of order p ≥ 1, but the converse is not true in general, see the example in Section 6.

Assume now that µ almost admits a moment of order p ≥ 1. Then, µ admits a moment of order

p iff
∫
G
| log ∥g∥|pdµ(g) <∞ iff

∫
G
| log v(g)|pdµ(g) <∞.

Similarly, we say that µ admits or almost admits an exponential moment of order γ > 0, if

there exists δ > 0 such that, respectively,∫
G

eδ
(
logN(g)

)γ
dµ(g) <∞ ,

or ∫
G

eδ
(
logL(g)

)γ
dµ(g) <∞ .

Definition 2.2. We say that µ is strictly contracting if there exists r ∈ N, such that µ∗r(G+) > 0.

Equivalently, the closed semi-group Γµ generated by the support of µ has non empty inter-

section with G+.
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3 Invariant measure and coupling coefficients

Recall that a Borel (with respect to the distance d(·, ·)) probability ν on S+ is said to be

µ-invariant if for every Borel non negative function φ on S+,
∫
G×S+ φ(g · x)dµ(g)dν(x) =∫

S+ φ(x)dν(x). It is well known and easy to prove (recall that (g, x) → g · x is continu-

ous on G × S+) that the support of a µ-invariant measure ν is Γµ-invariant, i.e. satisfies

Γµ · supp ν ⊂ supp ν .

As recalled below, when µ is strictly contracting, it admits a unique µ-invariant probability

on S+. We need some further notations to describe its support.

Let g ∈ G+. By the Perron-Frobenius theorem (see Theorem 1.1.1 of [21]), there exists a

unique x ∈ S++ such that gx = κ(g)x, where κ(g) is the spectral radius of g. We denote that

vector by ug. Notice the following bound that will useful in the sequel,

κ(g) ≥ v(g) ∀g ∈ G . (3.1)

Following [4] (see (2.4) there) we define

Λµ = {ug : g ∈ Γµ ∩G+} ,

where the closure is taken with respect to d. By Proposition 2.3, Λµ ⊂ S++.

It follows from Lemma 4.2 of [4] that Λµ is Γµ-invariant (i.e. Γµ · Λµ ⊂ Λµ).

We recall the following result of Hennion and Hervé [17].

Proposition 3.1. Assume that µ is strictly contracting. Then, there exists a unique µ-invariant

probability ν on S+. Moreover supp ν = Λµ.

The existence and uniqueness of an invariant probability for strictly contracting µ is proved

in Theorem 2.1 of [17] and the characterization of the support of the invariant measure follows

from Lemma 4.3 of [4]. Since there is no explicit proof of the latter fact in [4], let us give an

argument.

For every n ∈ N, set Bn := Y1 · · ·Yn (with (Yn)n∈N iid with law µ). It follows from the proof

of Theorem 2.1 of [17] that, P-almost surely, for every x ∈ S+, (Bn · x)n∈N converges to some

random variable Z whose law ν is µ-invariant. Then supp ν is Γµ-invariant and Λµ ⊂ supp ν by

Lemma 4.2 of [4]. Now, since Γµ · Λµ ⊂ Λµ, for every x ∈ Λµ, Bn · x ∈ Λµ P-almost surely, for

every n ∈ N. Hence Z ∈ Λµ P-almost surely (recall that Λµ is closed for d), which implies that

ν(Λµ) = 1, hence that supp ν ⊂ Λµ.
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Recall that (Yn)n∈N is a sequence of iid random variables taking values in G, with law µ and

living on a probability space (Ω,F ,P), and that An := Yn · · ·Y1.

For every p ≥ 1 and every n ∈ N define

δp,∞(n) := sup
x,y∈S+

E
(
|σ(Yn, An−1 · x)− σ(Yn, An−1 · y)|p

)
.

Those coefficients have been introduced in [7], in the setting of products of iid matrices in

GLd(R), and proved to be very useful in [10] and [12], see also [9].

We shall see that those coefficients decrease exponentially fast to 0, as soon as µ (almost)

admits a moment of order 1, while we obtained only a polynomial speed of convergence in the

case of GLd(R).
Actually, we will prove the result for the stronger coefficients

δ̃p,∞(n) := E
(

sup
x,y∈S+

|σ(Yn, An−1 · x)− σ(Yn, An−1 · y)|p
)
.

Proposition 3.2. Assume that µ is strictly contracting and almost admits a moment of order

p ≥ 1. Then, there exists 0 < a < 1 such that

δp,∞(n) ≤ δ̃p,∞(n) = O(an) , (3.2)

and

sup
x,y∈S+

sup
n∈N

|σ(An, x)− σ(An, y)| ∈ Lp . (3.3)

In particular,

sup
n∈N

| log ∥An∥ − log v(An)| ∈ Lp . (3.4)

Proof. Let n ∈ N. By item (iv) of Lemma 2.2 and item (vii) of Proposition 2.1, for every

x, y ∈ S+, we have

|σ(Yn, An−1 ·x)−σ(Yn, An−1 ·y)| ≤ (4+2 logL(Yn))d(An−1 ·x,An−1 ·y) ≤ (4+2 logL(Yn))c(An−1) .

Let r ∈ N be as in Definition 2.2. Then, by item (vi) of Proposition 2.1, there exists ε > 0 such

that

µ∗r(c(g) ≤ 1− ε) =: γ > 0 . (3.5)

Hence, if m = [(n− 1)/r],

E
[(
c(An−1)

)p] ≤ m∏
k=1

E
[(
c(Ykr · · ·Y(k−1)r+1)

)p] ≤ (γ(1− ε)p + 1− γ
)m

.
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This proves the desired exponential convergence of (δ̃p,∞(n))n∈N.

Using the cocycle property, we see that for every n ∈ N and every x, y ∈ S+,

|σ(An, x)− σ(An, y)| ≤
n∑

k=1

|σ(Yk, Ak−1 · x)− σ(Yk, Ak−1 · y)|

≤
∞∑
k=1

|σ(Yk, Ak−1 · x)− σ(Yk, Ak−1 · y)| .

Using the triangle inequality in Lp, we infer that

E
[

sup
x,y∈S+

sup
n∈N

|σ(An, x)− σ(An, y)|p
]
≤
( ∞∑

k=1

(
δ̃p,∞(k)

)1/p)p
≤ rpE

[(
2(2 + logL(Y1))

)p](∑
m≥0

(
γ(1− ε)p + 1− γ

)m/p)p
≤

2prpE
[(
2 + logL(Y1)

)p](
1−

(
γ(1− ε)p + 1− γ

)1/p)p ,
proving (3.3). To prove (3.4), note first that for every g ∈ G,

| log ∥g∥ − log v(g)| = sup
x∈S+

log ∥gx∥ − inf
y∈S+

log ∥gy∥ = sup
x∈S+

log ∥gx∥+ sup
y∈S+

(− log ∥gy∥)

= sup
x,y∈S+

(log ∥gx∥ − log ∥gy∥) ≤ sup
x,y∈S+

|σ(g, x)− σ(g, y)| .

Therefore (3.4) follows from (3.3). □

4 The strong law of large numbers

Except the L1-convergences, the results of that section are essentially contained in Hennion’s

paper [15] (where a more general situation is considered), see his Theorem 2 and its proof.

Notice that Hennion assumed a moment of order 1 for µ̃ (the pushforward measure of µ by the

application g 7→ gt) while we also consider the case where µ itself admits a moment of order 1.

We first recall the version of Kingman’s subadditive ergodic theorem relevant to our setting

(see [19, Theorems 1 and 2]). The fact that λµ in the next proposition is constant follows from

Kolmogorov’s 0− 1 law.

Proposition 4.1 (Kingman). Assume that
∫
G

∣∣ log ∥g∥ ∣∣dµ(g) < ∞. Then, ( 1
n
log ∥An∥)n≥1

converges P-a.s. and in L1 to some constant λµ ∈ R.
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Remark. Using that ∥g∥ ≥ v(g) for every g ∈ G+, we see that log− ∥g∥ ≤ log− v(g), where

log−(x) = max(− log x, 0) for every x > 0. In particular, if µ or µ̃ admits a moment of order 1,

then,
∫
G

∣∣ log ∥g∥ ∣∣dµ(g) <∞.

The proposition implies in particular that λµ = limn→+∞ E(log ∥An∥)/n.

Notice that
∫
G

∣∣ log ∥g∥ ∣∣dµ(g) < ∞ if and only if
∫
G

∣∣ log ∥g∥ ∣∣dµ̃(g) < ∞. Hence, applying

the proposition to µ̃, using item (iii) of Lemma 2.2 and the fact that Y t
1 · · ·Y t

n has same law as

Y t
n · · ·Y t

1 , we infer that λµ = λµ̃.

We then provide the strong law of large numbers for various quantities related to (An)n∈N

and identify the limit under a stronger assumption. In the sequel ∥ · ∥1 stands for the L1-norm

on our underlying probability space (Ω,F ,P).

Theorem 4.2. Assume that µ is strictly contracting and that µ admits a moment of order 1.

Then, for every x ∈ S+,

lim
n→+∞

σ(An, x)

n
= lim

n→+∞

log v(An)

n
= lim

n→+∞

log κ(An)

n
= λµ P-a.s. , (4.1)

where λµ =
∫
G×S+ σ(g, x)dµ(g)dν(x). Moreover, the convergences also hold in L1 and, we even

have ∥∥ sup
x∈S+

∣∣σ(An, x)

n
− λµ

∣∣ ∥∥
1

−→
n→+∞

0 and sup
x∈S+

∣∣σ(An, x)

n
− λµ

∣∣ −→
n→+∞

0 P-a.s.

Remark. The P-a.s. and L1 convergence of ( 1
n
log v(An))n∈N when

∫
G
| log v(g)|dµ(g) < ∞

(which holds if µ admits a moment of order 1) follow from Kingman’s subadditive ergodic

Theorem applied to (− log v(An))n∈N. The formula for λµ may be derived from the formula in

the middle of page 1568 of [15].

Proof. By Proposition 4.1 and the remark after it, we have the P-a.s. and L1 convergence of

((log ∥An∥)/n)n∈N to λµ.

By (3.4), we infer the L1 convergence for ((log v(An))/n)n∈N. To prove the almost sure

convergence, define first Z := supn∈N | log ∥An∥ − log v(An)|. By (3.4), Z ∈ L1 and, for every

ε > 0, by Fubini’s theorem,∑
n∈N

P(| log ∥An∥ − log v(An)| ≥ εn) ≤ E(Z)
ε

<∞ .

The P-a.s. convergence for ((log v(An))/n)n∈N then follows from the one for ((log ∥An∥))/n)n∈N
and the Borel-Cantelli lemma.
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The convergences for ((log κ(An))/n)n∈N follow from the bounds v(An) ≤ κ(An) ≤ ∥An∥ (see

(3.1) for the first bound).

Finally, notice that for every n ∈ N,

sup
x∈S+

|σ(An, x)− nλµ| ≤ max(| log ∥An∥ − nλµ|, | log v(An)− nλµ|) ,

which proves the remaining convergences.

Hence, it remains to identify λµ. From the above, using the µ-invariance of ν, we infer that∫
G×S+

σ(g, x)dµ(g)dν(x) =
1

n

∫
S+

E
( n∑

k=1

σ(Yk, Ak−1 · x)
)
dν(x)

=
1

n

∫
S+

E(σ(An, x))dν(x) −→
n→+∞

λµ .

□

We shall now consider the case of matrix coefficients. The proof will rely on Lemma 4.3

below, which is essentially contained in Lemma 2.1 of [17] (see also Lemma 6.3 of [4] for (4.4)).

We need also some further notations. As in [17], set

T := inf{n ∈ N : Yn · · ·Y1 ∈ G+} . (4.2)

From item (i) of [17, Lemma 2.1], note that µ is strictly contracting if and only if P(T <∞) = 1.

Lemma 4.3. Assume that µ is strictly contracting. With the above notations,

inf
n≥T

inf
x, y∈S+

⟨y, Anx⟩
∥Y t

1 · · ·Y t
n y∥

> 0 P-a.s. (4.3)

and

inf
n∈N

inf
x∈S+

∥Anx∥
∥An∥

= inf
n∈N

v(An)

∥An∥
> 0 P-a.s. (4.4)

Inequality (4.3) is just a reformulation of item (iii) of Lemma 2.1 from [17], and (4.4) follows

from (4.3) and the fact that for every n ∈ N and every x ∈ S+, using items (ii) and (iii) of

Lemma 2.2, we get
∥Anx∥
∥An∥

≥ ⟨e, Anx⟩
d2∥At

ne∥
.

Recall that µ̃ stands for the pushforward measure of µ by the map g → gt.

11



Theorem 4.4. Assume that µ is strictly contracting and that µ̃ admits a moment of order 1.

Then, (
sup

x, y∈S+

∣∣∣∣ log⟨y, Anx⟩
n

− λµ

∣∣∣∣
)

n∈N

−→
n→+∞

0 P-a.s,

where λµ =
∫
G×S+ σ(g, x)dµ̃(g)dν̃(x) (ν̃ being the only µ̃-invariant probability on S+). In par-

ticular, (∣∣∣∣ infx, y∈S+ log⟨y, Anx⟩
n

− λµ

∣∣∣∣)
n∈N

−→
n→+∞

0 P-a.s.

Moreover, ((log ∥An∥ − nλµ)/n)n∈N and ((log κ(An)− nλµ)/n)n∈N converge P-a.s. and in L1 to

0; and ((log v(An)− nλµ)/n)n∈N converges P-a.s. to 0.

Proof. First notice that Proposition 4.1 applies, which yields the P-a.s. and L1 convergence for

((log ∥An∥)/n)n∈N and for ((log ∥At
n∥)/n)n∈N by item (iii) of Lemma 2.2.

By Lemma 4.3, there exists a random variable W > 0 such that, for every x, y ∈ S+ and

every n ∈ N, on the set {T ≤ n} (recall that T is defined in (4.2)),

0 ≤ log ∥An∥ − log⟨y, Anx⟩ ≤ logW + log ∥An∥ − log ∥Y t
1 · · ·Y t

ny∥ . (4.5)

Let ε > 0. Using that (Y1, . . . , Yn) and (Yn, . . . , Y1) have the same law, we get

∑
n≥1

P( sup
y∈S+

∣∣ log ∥Y t
1 · · ·Y t

ny∥ − log ∥Y t
1 · · ·Y t

ne∥
∣∣ ≥ εn)

≤
∑
n≥1

P( sup
y∈S+

sup
m∈N

∣∣ log ∥Y t
m · · ·Y t

1 y∥ − log ∥Y t
m · · ·Y t

1 e∥
∣∣ ≥ εn) <∞ ,

where we used Proposition 3.2 for µ̃.

By the Borel-Cantelli lemma, using item (ii) of Lemma 2.2, we infer that

supy∈S+

∣∣ log ∥Y t
1 · · ·Y t

ny∥ − log ∥At
n∥
∣∣

n
−→

n→+∞
0 P-a.s. (4.6)

Combining this with (4.5) (recall that P(T <∞) = 1 and that ∥g∥ ≤ d∥gt∥ for every g ∈ G) we

obtain that

sup
x, y∈S+

∣∣ log ∥An∥ − log⟨y, Anx⟩
∣∣

n
−→

n→+∞
0 P-a.s.

This gives the desired convergence for the coefficients. The P-a.s. convergences for (log κ(An)/n)n∈N

and (log v(An)/n)n∈N follow from the inequalities

infx, y∈S+ log⟨y, Anx⟩
n

≤ log v(An)

n
≤ log κ(An)

n
≤ log ∥An∥

n
.

12



The L1 convergence for (log κ(An)/n)n∈N, follows from Theorem 4.2 applied to µ̃, using item

(iii) of Lemma 2.2 and noticing that (Y1, . . . , Yn) has the same law as (Yn, . . . , Y1). □

Under our assumptions, one cannot expect the L1 convergence in Theorem 4.4 for v(An).

For instance take µ such that for every k ∈ N, µ({gk}) = 1
3k(k+1)

and µ({h}) = µ({Id}) = 1/3,

with gk =

(
2−k 1/2

0 1/2

)
and h =

(
1/2 1/2

1/2 1/2

)
. Then, for every g ∈ suppµ, ∥g∥ ≤ 1,

which implies that for every g ∈ Γµ (the closed semi-group generated by the support of µ),

v(g) ≤ ∥g∥ ≤ 1. Moreover, using (2.2), v(gk) = 2−k and v(gtk) = 1/2. In particular, µ̃ admits a

moment of order 1 while µ does not, since E(log v(Y1)) ≤
∑

k∈N
−k log 2
3k(k+1)

= −∞.

For every integer n ≥ 2, set Λn := {Y2 = . . . = Yn = Id}. Then, E(log v(An)) ≤
E(log v(Y1)1Λn) = 3−(n−1)E(log v(Y1)) = −∞.

Similarly, even if µ and µ̃ are strictly contracting and admit a moment of order 1, we may not

have L1 convergence for the coefficients. For instance, let µ be such that µ({Id}) = µ({h}) = 1/2.

Then, µ∗n({Id}) ≥ 2−n and, with {e1, e2} the canonical basis of R2, µ∗n({g ∈ G : ⟨e1, ge2⟩ =

0}) > 0, so that E(log⟨e1, Ane2⟩) = −∞.

5 The CLT and the asymptotic variance

In this section, we state and prove various CLTs. Those CLTs are proved in Hennion [15] by

a slightly different approach (also based on a martingale-coboundary decomposition). Again,

Hennion only proved result under moment conditions on µ̃ but, since the CLT is a result about

convergence in law, it is easy to derive results under µ from the ones under µ̃ and vice versa,

using for instance item (iii) of Lemma 2.2 and the fact that Yn · · ·Yn has same law as Y1 · · ·Yn.
Our proof allows us to identify the asymptotic variance s2 in several ways and to characterize

the fact that s2 > 0. The obtained characterization is the same as in [4] and [5] but its proof

does not require exponential moments as in those works.

We start by proving a martingale-coboundary decomposition. In the case of invertible ma-

trices, such a decomposition was only available for p ≥ 2 while here it holds as soon as p ≥ 1.

Proposition 5.1. Assume that µ is strictly contracting and admits a moment of order p ≥ 1.

There exists a continuous and bounded function ψ on X such that
(
σ(Yn, An−1·x)−λµ+ψ(An·x)−

ψ(An−1·x)
)
n∈N is a sequence of martingale differences in Lp. If moreoverW0 is a random variable

with law ν, independent of (Yn)n∈N, then
(
σ(Yn, An−1 ·W0)−λµ+ψ(An ·W0)−ψ(An−1 ·W0)

)
n∈N

is a stationary and ergodic sequence of martingale differences in Lp.

13



Remark. The function ψ in the theorem is given by

ψ(x) :=
∑
n≥1

(∫
G×G

σ(g, g′ · x)dµ(g)dµ∗(n−1)(g′)− λµ

)
. (5.1)

Proof. Let ψ be given by (5.1). The fact that ψ is well-defined and continuous follows from

Proposition 3.2.

Then, notice that

σ(g, x)− λµ = σ(g, x)−
∫
G

σ(g′, x)dµ(g′) +

∫
G

σ(g′, x)dµ(g′)− λµ

and, using the definition of ψ,∫
G

σ(g, x)dµ(g)− λµ +

∫
G

ψ(g · x)dµ(g) = ψ(x) .

Now,
(
σ(Yn, An−1 · x)−

∫
G
σ(g, An−1 · x)dµ(g)

)
n∈N

is a sequence of martingale differences in Lp

(notice that x 7→
∫
G
σ(g, x)dµ(g) is bounded). Moreover,∫

G

σ(g, An−1 · x)dµ(g)− λµ + ψ(An · x)− ψ(An−1 · x) = ψ(An · x)−
∫
G

ψ(gAn−1 · x) dµ(g),

and the right-hand side defines a sequence of bounded martingale differences.

The final statement follows from the fact that ((Yn, An−1 · W0))n∈N is a stationary and

(uniquely) ergodic Markov chain. □

Definition 5.1. We say that a probability µ on G is aperiodic if the group generated by

{log κ(g) : g ∈ Γµ} is dense in R.

Proposition 5.2. Assume that µ is strictly contracting and that µ admits a moment of order

2. Then, there exists s2 ≥ 0 such that, with W0 as in Proposition 5.1,

1

n
E[(σ(An,W0)− nλµ)

2] −→
n→+∞

s2 (5.2)

and 1√
n
(σ(An,W0)−nλµ) ⇒ N (0, s2). In addition, if there do not existm ∈ N and ψm continuous

on S+ such that

σ(g, x)−mλµ = ψm(x)− ψm(g · x) for µ⊗m ⊗ ν-almost every (g, x) ∈ G× S+ , (5.3)

then s2 > 0. In particular, if µ is aperiodic, then s2 > 0.

14



Remark. Under the assumptions of the proposition we actually have the functional central

limit theorem. Moreover, it is well known that the variance is given by

s2 = E(σ(A1,W0)
2) + 2

∑
n≥2

E(σ(A1,W0)σ(An,W0))

=

∫
G×S+

σ2(g, x)dµ(g)dν(x) + 2
∑
n≥2

∫
G2×S+

σ(g, x)σ(g′g, x)dµ∗(n−1)(g′)dµ(g)dν(x) .

Proof. For every n ∈ N, set Dn := σ(Yn, An−1 ·W0) − λµ + ψ(An ·W0) − ψ(An−1 ·W0). By

Proposition 5.1, (Dn)n∈N is a stationary and ergodic sequence of martingale differences in L2.

In particular, (D1 + . . . + Dn)/
√
n ⇒ N (0, s2), with s2 = E(D2

1) = E((D1 + . . . + Dn)
2)/n.

Hence, the CLT with the description of the variance follows from the following reformulation of

Proposition 5.1:

σ(An,W0)− nλµ = (D1 + . . .+Dn) + ψ(W0)− ψ(An ·W0) . (5.4)

Assume now that s2 = 0. Then∫
G

(σ(g, x)− λµ − ψ(x) + ψ(g · x))2 dµ(g)dν(x) = 0 .

Hence, (5.3) holds with m = 1 and ψ1 = ψ. Let m > 1. Notice that µ∗m is strictly contracting

and admits a moment of order p and that the unique µ∗m-invariant measure is the unique µ-

invariant measure. Notice also that λµ∗m = mλµ. Applying the above argument to µ∗m, we infer

that there exists a continuous ψm satisfying (5.3).

Using that ψm is continuous, we see that (5.3) holds for every g ∈ suppµ∗m and every

x ∈ supp ν. Let g ∈ suppµ∗m ⊂ Γµ. Then, ug ∈ Λµ ⊂ supp ν (recall that ug has been defined

before (3.1)). Since g · ug = ug and σ(g, ug) = log κ(g), we infer that ψm(g · ug) = ψm(ug) and

that log κ(g) = mλµ. Hence, log κ(Γµ) ⊂ λµN and µ cannot be aperiodic. □

Let us now give the CLT for σ(An, x), log ∥An∥, log v(An) and log κ(An). Below and in the

rest of the section, we shall use the notation: ϕs(t) = P(sZ ≤ t) with Z a standard normal

variable.

Proposition 5.3. Assume that µ is strictly contracting and admits a moment of order 2. Then,

the following limit exists

s2 := lim
n→+∞

1

n
E((log ∥An∥ − nλµ)

2) , (5.5)
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and we even have

s2 = lim
n→+∞

E[(σ(An,W0)− nλµ)
2]

= lim
n→+∞

1

n
sup
x∈S+

E((σ(An, x)− nλµ)
2)

= lim
n→+∞

1

n
E((log v(An)− nλµ)

2) ,

and

s2 = lim
n→+∞

1

n
E((log κ(An)− nλµ)

2) . (5.6)

Moreover the CLT in Proposition 5.2 also holds if we replace σ(An,W0) with σ(An, x), log ∥An∥,
log v(An) or log κ(An) and we also have

sup
x∈S+

sup
t∈R

∣∣∣P(σ(An, x)− nλµ ≤ t
√
n)− ϕs(t))

∣∣∣ −→
n→+∞

0 .

If we assume that µ̃ is strictly contracting and admits a moment of order 2 then the CLTs

for (log ∥An∥)n∈N and (log κ(An))n∈N still hold with s2 given by (5.5) (or equivalently by (5.6)).

Remark. When it is assumed that µ̃ admits a moment of order 2, we do not know whether s2

is also equal to any the above limits other than (5.5) or (5.6) (we even do not know whether the

limits themselves exist) but we will see that the CLTs still hold.

Proof. We start with the case where µ is strictly contracting and admits a moment of order 2.

The different expressions of s2 follow from (5.2), Proposition 3.2 and the fact that for every real

random variables U, V , |E(U2) − E(V 2)| ≤ ∥U − V ∥2(∥U∥2 + ∥V ∥2). Next, note that we can

deduce the CLT for (σ(An, x))n∈N by using (3.3). To get the CLT for (log ∥An∥)n∈N, it suffices

to notice that, for any x ∈ S+,

log ∥An∥ − log v(An) ≥ log ∥An∥ − σ(An, x) ≥ 0 , (5.7)

and to use the fact that by (3.4), supn∈N(log ∥An∥−log v(An)) is in L
2. The CLT for (log v(An))n∈N

follows from the CLT for (log ∥An∥)n∈N and (3.4). Finally, the CLT for (log κ(An))n∈N follows

from the fact that v(An) ≤ κ(An) ≤ ∥An∥ and (3.4). To get the last convergence, we use previ-

ous arguments and Inequality (5.8) below which is stated in [20, equation (1)]: Let U, V and R

be random variables with |U − V | ≤ R P-a.s. For any ψ : R → R and any ε > 0, we have

sup
t∈R

|P(U ≤ t)− ψ(t)| ≤ sup
t∈R

|P(V ≤ t)− ψ(t)|+ P(R > ε) + sup
t∈R

|ψ(t− ε)− ψ(t+ ε)| . (5.8)

Assume now that µ̃ is strictly contracting and admits a moment of order 2. Applying the

first part of Proposition 5.3 to µ̃, we obtain a CLT for (∥Y t
n · · ·Y t

1 ∥)n∈N which, by item (iii) of
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Lemma 2.2, implies a CLT for (∥Y1 · · ·Yn∥)n∈N. Similarly, since for any matrix κ(gt) = κ(g), we

infer the convergence in law for (log κ(An))n∈N.

The fact that s2 is still given by (5.5) or (5.6) also follows from the above arguments. □

We also have a (functional) CLT for the coefficients. As noticed in the previous section, one

cannot expect in general to identify s2 thanks to the matrix coefficients as in Proposition 5.3.

Proposition 5.4. Assume that µ or µ̃ is strictly contracting and admits a moment of order 2.

Then, with s2 be given either by (5.5) or (5.6),

sup
x, y∈S+

sup
t∈R

∣∣∣P(log⟨x,Any⟩ − nλµ ≤ t
√
n)− ϕs(t)

∣∣∣ −→
n→+∞

0 ,

sup
t∈R

∣∣∣P( inf
x, y∈S+

log⟨x,Any⟩ − nλµ ≤ t
√
n)− ϕs(t)

∣∣∣ −→
n→+∞

0 . (5.9)

In particular, we also have a CLT for (σ(An,W0))n∈N, (log v(An))n∈N or (σ(An, x))n∈N.

Proof. We prove (5.9), the other convergences follow from the fact that for every u, v ∈ S+

and any n ∈ N,

inf
x, y∈S+

log⟨x,Any⟩ ≤ log⟨u,Anv⟩ ≤ σ(An, v) ≤ log ∥An∥ , (5.10)

inf
x, y∈S+

log⟨x,Any⟩ ≤ log v(An) ≤ log ∥An∥ . (5.11)

We start with the case where µ̃ is strictly contracting and admits a moment of order 2. We

proceed as for the proof of Theorem 4.4. By Proposition 3.2 applied to µ̃,∑
n∈N

P( sup
y∈S+

∣∣ log ∥Y t
1 · · ·Y t

n∥ − log ∥Y t
1 · · ·Y t

ny∥
∣∣ ≥ ε

√
n)

≤
∑
n∈N

P( sup
y∈S+

sup
m∈N

∣∣ log ∥Y t
m · · ·Y t

1 ∥ − log ∥Y t
m · · ·Y t

1 y∥
∣∣ ≥ ε

√
n) <∞ .

In particular, since for any g ∈ G, ∥g∥ ≤ d∥gt∥,

P( sup
y∈S+

∣∣ log ∥An∥ − log ∥Y t
1 · · ·Y t

ny∥
∣∣ ≥ ε

√
n) −→

n→+∞
0 . (5.12)

To conclude it remains to use Inequality (5.8) below with U := (infx, y∈S+ log⟨x,Any⟩)−nλµ)/
√
n,

V := (log ∥An∥ − nλµ)/
√
n and

R := (|U |+ |V |)1{T>n} + | logW |+ log d+ sup
y∈S+

∣∣ log ∥An∥ − log ∥Y t
1 · · ·Y t

ny∥
∣∣ ,

where T is defined by (4.2) and W is the positive random variable defined in (4.5). By (4.5)

again, |U − V | ≤ R and (5.9) follows from Inequality (5.8), using Proposition 5.2 and the fact

that P(T <∞) = 1.
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Assume now that µ is strictly contracting and admits a moment of order 2. Notice that,

for every n ∈ N, infx,y∈S+ log⟨x, Yn · · ·Y1y⟩ = infx,y∈S+ log⟨Y t
1 · · ·Y t

nx, y⟩ and that the latter as

same law as infx,y∈S+ log⟨x, Y t
n · · ·Y t

1 y⟩. Hence, it suffices to apply the already proven part of

the proposition to µ̃, using (5.10) and (5.11). □

6 The almost sure invariance principle

Theorem 6.1. Let p ≥ 2. Assume that µ is strictly contracting and admits a moment of order

p. Let s2 be as in Proposition 5.2. Then, one can redefine the process (σ(An,W0))n∈N on another

probability space on which there exist iid variables (Nn)n∈N with law N (0, s2), such that

|σ(An,W0)− nλµ − (N1 + . . .+Nn)| = o(
√
n log log n) P-a.s. if p = 2

and |σ(An,W0)− nλµ − (N1 + . . .+Nn)| = o(n1/p) P-a.s. if p > 2

Remark. It is not necessary here that s2 > 0.

Proof. When p > 2, the result follows from Theorem 1 of [10] by taking into account (3.2).

The case p = 2 follows from (5.4) and the ASIP for martingales with stationary and ergodic

increments in L2, see [23]. □

Proceeding as in the proof of Theorem 4.2 (using in particular the argument yielding (6.1)

below) and using Lemma 4.1 of [2], Proposition 3.2 and (5.7), one can prove that the above

theorem holds if we replace (σ(An,W0))n∈N with any of the following sequences: (σ(An, x))n∈N

(for a given x ∈ S+), (log ∥An∥)n∈N, (log κ(An))n∈N or (log v(An))n∈N.

Let us give the ASIP for the matrix coefficients.

Theorem 6.2. Let p ≥ 2. Assume that µ is strictly contracting and that µ and µ̃ admit a

moment of order p. Then, for every x, y ∈ S+, one can redefine the process (log⟨y, Anx⟩)n∈N on

another probability space on which there exist iid variables (Nn)n∈N with law N (0, s2), such that

| log⟨y, Anx⟩ − nλµ − (N1 + . . .+Nn)| = o(
√
n log log n) P-a.s. if p = 2

and | log⟨y, Anx⟩ − nλµ − (N1 + . . .+Nn)| = o(n1/p) P-a.s. if p > 2.

Proof. We proceed as for the proof of Theorem 4.4. Since µ̃ almost admits a moment of order

p ≥ 1, using (3.3), for every ε > 0, we have∑
n≥1

P
(
sup
y∈S+

∣∣∣ log ∥Y t
1 · · ·Y t

n∥ − log ∥Y t
1 · · ·Y t

ny∥
∣∣∣ ≥ εn1/p

)
<∞ .
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By the Borel-Cantelli lemma, we then infer that

supy∈S+

∣∣∣ log ∥Y t
1 · · ·Y t

n∥ − log ∥Y t
1 · · ·Y t

ny∥
∣∣∣

n1/p
−→

n→+∞
0 P-a.s. (6.1)

We finish the proof by using similar arguments as those developed in the proof of Theorem 4.4

replacing (4.6) by (6.1). □

Remark. In the proof we used that µ̃ almost admits a moment of order p, hence it may seem

that one can weaken the conditions of Theorem 6.2. It turns out that if µ admits a moment of

order p and if µ̃ almost admit a moment of order p, then µ̃ admits a moment of order p. This

follows from the fact that for every g ∈ G, v(gt)| ≤ ∥gt∥ ≤ d∥g∥ and 1
v(gt)

≤ ∥g∥
v(gt)

1
v(g)

.

In the case of exponential moments, combining ideas from [10] and [8], it is possible to obtain

logarithmic rates in the ASIP. This is done in the preprint [11] where it is proved that if µ is

strictly contracting and has a subexponential moment of order γ ∈ (0, 1] then the conclusion of

Theorem 6.1 holds with rate O((log n)2+1/γ).

7 The Berry-Esseen theorem

In this section, we obtain the Berry-Esseen theorem for the norm cocycle and the matrix norm,

when µ admits a moment of order p ∈]2, 3]. We get the rate of convergence n1−p/2 which

corresponds to the rate in the setting of sums of iid random variables.

As far as we know the only rate of that type under polynomial moment condition has been

obtained by Hennion and Hervé [16]. More precisely, they required a moment of order p > 4 for

µ to get the rate n−1/2.

We also obtain Berry-Esseen type results (with possibly suboptimal rates) for the spectral

radius and the quantity log v(An) under stronger moment assumptions. In addition, we get

Berry-Esseen type results for the matrix coefficients under exponential moment conditions. Fi-

nally, assuming that µ has a moment moment of order 3 and satisfies an extra (quite restrictive)

condition, we prove that the spectral radius and the matrix coefficients satisfy Berry-Esseen type

estimates with rate of order n−1/2. The latter result has been obtained independently by Xiao

et al. [27] by a completely different manner. Note that the method of Xiao et al. [27] allows

them to obtain more precise results such as Edgeworth expansions.

In this section, we use the notation ϕs(t) = P(sZ ≤ t) with Z a standard normal variable.
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7.1 Berry-Esseen for the norm cocycle and the matrix norm

Theorem 7.1. Let p ∈ (2, 3]. Assume that µ is strictly contracting and admits a moment of

order p. Assume that s2 > 0 with s2 as in Proposition 5.2. Then, setting vn =
( 1
n

)p/2−1

, we

have

sup
t∈R

∣∣∣P(σ(An,W0)− nλµ ≤ t
√
n
)
− ϕs(t)

∣∣∣ = O(vn) , (7.1)

sup
x∈S+

sup
t∈R

∣∣∣P(σ(An, x)− nλµ ≤ t
√
n
)
− ϕs(t)

∣∣∣ = O(vn) , (7.2)

sup
t∈R

∣∣∣P( log ∥An∥ − nλµ ≤ t
√
n
)
− ϕs(t)

∣∣∣ = O(vn) . (7.3)

Hennion and Hervé [16] obtained the rate (7.1) with vn = 1/
√
n when p > 4, see their

Theorem 3.3.

Proof. The proof of (7.1) and of (7.2) follow the one of Theorem 2.1 of [12] with T = np/2−1,

using the estimate (3.2) instead of their estimate [12, (3.12)]. Indeed, using (3.2), one can

prove that for R1 and U2 − U∗
2 defined in [12, (3.4), (3.5) and (4.15)] we have, for any p ≥ 2,

∥R1∥p = O(1) and ∥U2 − U∗
2∥p = O(1) provided that µ has a moment of order p, whereas in

the case of GLd(R), under the same moment condition on µ, the above quantities were of order

m1/p in [12] (see their Lemmas 4.3 and 4.6). Consequently for positive matrices, analyzing the

proofs of Lemmas 4.10 and 4.11 of [12], we infer that when µ has a moment of order q = r,

the inequalities stated in [12, Lemmas 4.10 and 4.11] hold by replacing their right hand sides by

|t|r/m(p−2)/2 + |t|/m1/2+η (with η > 0). Following the proof of [12, Theorem 2.1] by taking into

account the previous upper bounds and selecting T = np/2−1, the result follows.

The proof of (7.3) requires some extra arguments. Notice that for every x ∈ S+ and every

n ∈ N, ∥Anx∥ = ⟨e, Anx⟩ = ⟨At
ne, x⟩ and that, by items (ii) and (iii) of Lemma 2.2, ∥At

ne∥/d ≤
∥An∥ ≤ d2∥At

ne∥. Hence,∫
S+

∣∣ log ∥An∥ − log ∥Anx∥
∣∣dν(x) ≤ 2 log d+ sup

y∈S+

| log⟨y, x⟩|dν(x) <∞ . (7.4)

Hence, we are in position to redo the proof of the bound [12, (2.4)] (see their Section 3.1.2) since

(7.4) is the precise analogue of [12, (3.30)]. □

Remarks. By some arguments already mentionned, (7.3) also holds if µ̃ is strictly contracting

and admits a moment of order p ∈ (2, 3]. Let us notice that (7.1) follows also from Theorem 2.3

of [18], since the Assumptions 2.1 there are satisfied due to the exponential convergence of the

coefficients δ∞,p in Proposition 3.2.

Finally, let us mention that Xiao et al. [27] obtained (7.2) and (7.3) for p = 3 under their

condition A2, see their Theorem 1.2 (see also Theorem 2.1 of [26] by the same authors, when
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µ has a subexponential moment). It easily follows from Lemma 2.1 of [27] that their condition

A2 is equivalent to the condition used in Theorem 7.8 below (with r = 1). However, it should

be emphasized that [27] and [26] provide Berry-Esseen type results including “target functions”

or Edgeworth expansions, see their papers for further details. Our approach does not seem to

allow to obtain such results.

7.2 Berry-Esseen for the spectral radius and the matrix coefficients

Proposition 7.2. Let p ∈ (2, 3]. Assume that µ is strictly contracting, admits a moment of

order p and almost admits a moment of order q ∈ [p,max(p, (p − 2)/(3 − p))]. Assume that

s2 > 0 with s2 as in Proposition 5.2. Set vn =
( 1
n

)p/2−1

if p ∈ (2, 1 +
√
3] and vn =

( 1
n

)q/2(q+1)

if p ∈ (1 +
√
3, 3]. Then,

sup
t∈R

∣∣∣P( log v(An)− nλµ ≤ t
√
n
)
− ϕs(t)

∣∣∣ = O(vn) (7.5)

and

sup
t∈R

∣∣∣P( log κ(An)− nλµ ≤ t
√
n
)
− ϕs(t)

∣∣∣ = O(vn) . (7.6)

Remark. When p ≤ 1 +
√
3 the condition on q reads q = p hence is satisfied. When p = 3 the

condition on q reads q ≥ p. (7.6) also hold if µ̃ satisfies the assumptions of the proposition, by

the arguments developed in the proof of Proposition 5.3.

Proof. Since µ admits a moment of order p, by Proposition 3.2 and Markov’s inequality, there

exists C > 0 such that for every x > 0 and every n ∈ N, P(| log ∥An∥ − log v(An)| ≥ x) ≤ C/xq.

Hence, (7.5) follows from Theorem 7.1 and Lemma 7.3 below (which is [13, Lemma 2]) with

Un = log v(An) − nλµ, Vn = log ∥An∥ − nλµ, Rn = log v(An) − log ∥An∥, and (up to some

multiplicative constants) an = n(p−2)/2, bn = nq/2(q+1) and cn = (
√
n/bn)

q). Finally, (7.6) follows

from the fact that v(An) ≤ κ(An) ≤ ∥An∥ and the same arguments as above.

Lemma 7.3. Let (Un)n∈N, (Vn)n∈N and (Rn)n∈N be three sequences of random variables. Assume

that |Un − Vn| ≤ |Rn| P-a.s. and that there exist three sequences of positive numbers (an)n∈N,

(bn)n∈N and (cn)n∈N going to infinity as n → ∞, and a positive constant s such that, for any

integer n,

sup
t∈R

∣∣P(Vn ≤ t
√
n)− ϕ(t/s)

∣∣ ≤ 1

an
, and P(|Rn| ≥

√
2πns/bn) ≤

1

cn
.

Then, for any integer n,

sup
t∈R

∣∣P(Un ≤ t
√
n)− ϕ(t/s)

∣∣ ≤ 1

an
+

1

bn
+

1

cn
.
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□

We shall now improve the rates under a strengthening of our integrability condition. The

proof will rely on the following large deviation result.

Lemma 7.4. Assume that µ is strictly contracting and almost admits some exponential moment

of order γ ∈ (0, 1]. Then, there exist η, δ > 0 such that

P( max
1≤k≤n

∣∣ log v(Ak)− log ∥Ak∥
∣∣ ≥ ηn) ≤ e−δnγ

.

Proof. For every n ∈ N, using that ∥ · ∥ is submultiplicative and that v is supermultiplicative,

we see that, setting τ := E(log ∥Y1∥/v(Y1)),

max
1≤k≤n

∣∣(log(∥Ak∥)− log(v(Ak))
∣∣ ≤ max

1≤k≤n

∣∣∣ k∑
i=1

[
log
(
∥Yi∥/v(Yi)

)
− τ
]∣∣∣+ nτ .

Then the desired result follows from Theorem 2.1 of [14], see their estimate (2.7) applied in the

independent case (in particular the quntities in (2.3) and (2.4) of [14] are identical). □

Proposition 7.5. Assume that µ is strictly contracting, admits a moment of order p ∈ (2, 3]

and almost admits an exponential moment of order γ ∈ (0, 1]. Assume that s2 > 0 with s2 as in

Proposition 5.2. Set vn =
(log n)1/γ

n(p−2)/2
. Then,

sup
t∈R

∣∣∣P( log v(An)− nλµ ≤ t
√
n
)
− ϕs(t)

∣∣∣ = O(vn)

and

sup
t∈R

∣∣∣P( log κ(An)− nλµ ≤ t
√
n
)
− ϕs(t)

∣∣∣ = O(vn) . (7.7)

Remark. (7.7) also holds if µ̃ satisfies the assumptions of the proposition.

Proof. Let ε ∈ (0, 1) be such that (3.5) holds. Let x, y ∈ S+. Let n ∈ N. Let ω ∈ Ω. Let

1 ≤ m < [n/r] be such that c(Ymr · · ·Y(m−1)r+1)(ω) ≤ 1 − ε. Using the cocycle property and

several items of Proposition 2.1 (in particular item (iv)), we see that

|σ(An, x)− σ(An, y)|
≤ |σ(Yn · · ·Ymr+1, Amr · x)− σ(Yn · · ·Ymr+1, Amr · y)|+ |σ(Amr, x)− σ(Amr, y)|

≤ 2 ln
(
1/(1− d(Amr · x,Amr · y))

)
+ log ∥Amr∥ − log v(Amr)

≤ 2 ln(1/ε) + log ∥Amr∥ − log v(Amr) .

Define

Γm := {∃k ∈ 1, . . . ,m : c(Ykr · · ·Y(k−1)r+1) ≤ 1− ε} . (7.8)
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Taking the supremum over x and the infimum over y, we infer that on Γm,

log ∥An∥ − log v(An) ≤ 2 ln(1/ε) + max
1≤k≤m

(
log ∥Akr∥ − log v(Akr)

)
.

Hence, for ηm ≥ 4 ln(1/ε), using Lemma 7.4, we have

P(log ∥An∥ − log v(An) ≥ ηm) ≤ P(Γc
m) + P

(
max
1≤k≤m

(log ∥Akr∥ − log v(Akr)) ≥ ηm/2
)

≤ αm + Cηe
−δηmγ

,

where α := P(Γc
1).

Taking m = [C(log n)1/γ] + 1, with C large enough, we infer that the right-hand side is

bounded by D/
√
n, and we conclude using Theorem 7.1 and Lemma 7.3 applied with Un =

log ∥An∥, Vn = log v(An), Rn = log ∥An∥ − log v(An) and (up to some multiplicative constants)

an = n(p−2)/2, bn =
√
n/(log n)1/γ and cn =

√
n. □

Proposition 7.6. Let p ∈ (2, 3]. Assume that µ is strictly contracting and admits a moment

of order p. Assume that s2 > 0 with s2 as in Proposition 5.2. Assume moreover that µ̃ almost

admits a moment of order q ∈ [p,max(p, (p−2)/(3−p))] (resp. an exponential moment of order

γ ∈ (0, 1]). Then, for every x ∈ S+, the conclusion of Proposition 7.2 (resp. Proposition 7.5)

holds with infy∈S+⟨y, Anx⟩ in place of κ(An).

Proof. For every 0 < δ ≤ 1, define

Gδ := {g ∈ G : ⟨y, g · x⟩ ≥ δ ∀x, y ∈ S+} . (7.9)

Notice that ∪δ∈(0,1]Gδ = G+, so that when µ is strictly contracting, there exist r ≥ 1 and

δ ∈ (0, 1] for which µ∗r(Gδ) > 0.

Let p0 = P
(
⟨y, Ar · x⟩ < 1/n0 : x, y ∈ S+

)
. Note that p0 ∈ [0, 1) for n0 large enough.

For n > r, let 1 ≤ m ≤ [n/r] be a positive integer.

Next note that, for any g ∈ Gδ and any g′ ∈ G and any x, y ∈ S+, setting x′ = g′x/∥g′x∥,

⟨y, gg′ · x⟩ =
〈
y,

gg′x

∥gg′x∥

〉
= ⟨y, g · x′⟩ ≥ δ . (7.10)

This implies that if, for some integer k ∈ [m, [n/r]] Ykr . . . Y(k−1)r+1 ∈ G1/n0 , for x, y ∈ S+, we

have

⟨y, Anx⟩ ≥ ⟨Y t
kr+1 · · ·Y t

ny,
Akrx

∥Akrx∥
⟩∥Akrx∥ ≥ (1/n0)∥Y t

kr+1 · · ·Y t
ny∥

∥Anx∥
∥Yn · · ·Ykr+1∥

. (7.11)
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Therefore, if we define

∆n,m := {ω ∈ Ω | ∃k ∈ [m, [n/r]− 1] : (Ykr · · ·Y(k−1)r+1)(ω) ∈ G1/n0} , (7.12)

we get that, on the set ∆n,m and using ∥g∥ ≤ d∥gt∥,

inf
x, y∈S+

(
log⟨y, Anx⟩ − log ∥Anx∥

)
≥ − log(n0)− log d+ min

mr≤ℓ≤n−1

(
log v(Y t

ℓ+1 · · ·Y t
n)− log ∥Y t

ℓ+1 · · ·Y t
n∥
)
. (7.13)

Notice that all the above quantities are non positive and that minmr≤ℓ≤n

(
log v(Y t

ℓ+1 · · ·Y t
n) −

log ∥Y t
ℓ+1 · · ·Y t

n∥
)
has the same law as min1≤ℓ≤n−mr

(
log v(Y t

ℓ · · ·Y t
1 )− log ∥Y t

ℓ · · ·Y t
1 ∥
)
.

Note that

P(∆c
n,m) = p

[n/r−m]
0 . (7.14)

Next, assume that µ̃ almost admits a moment of order q, with q as in the proposition and

take m = 1. Combining the above computations, for every a > log n0 + log d and every x ∈ S+,

we have

P
(∣∣ inf

y∈S+
log⟨y, Anx⟩ − log ∥Anx∥

∣∣ ≥ 2a
)

≤ P(∆c
n,m) +

E
(
supn∈N

∣∣ log(v(Y t
n · · ·Y t

1 )− log ∥Y t
n · · ·Y t

1 ∥
∣∣q)

aq
.

Hence, using Proposition 3.2, one may finish the proof as the proof of Proposition 7.2.

Assume now that µ̃ almost admits some exponential moment of order γ ∈ (0, 1] and let x ∈ S+

be fixed. We wish to apply Theorem 7.1 combined with Lemma 7.3 applied to Un = log ∥Anx∥,
Vn = infy∈S+ log⟨y, Anx⟩, Rn = Un − Vn and, up to some multiplicative constants, the sequences

an, bn and cn given at the end of the proof of Proposition 7.5.

To do so, it is enough to find K > 0 large enough (independent from n) and m, such that

P(∆c
n,m)+(P

(
max

1≤ℓ≤n−mr
| log ∥Y t

ℓ · · ·Y t
1 ∥−log v(Y t

ℓ · · ·Y t
1 )| ≥ η[K(log n)1/γ]

)
= O(1/

√
n) , (7.15)

where η is given in Lemma 7.4.

Taking m = [(n−K(log n)1/γ)/r]− 1 and using Lemma 7.4 we have

P
(

max
1≤ℓ≤n−mr

| log ∥Y t
ℓ · · ·Y t

1 ∥ − log v(Y t
ℓ · · ·Y t

1 )| ≥ η[K(log n)1/γ]
)
≤ e−δ[(K(logn)1/γ)]γ .

To conclude one may takeK = max((2δ)−1/γ, 2−1r(log(1/p0))
−1) that implies also that P(∆c

n,m) =

O(1/
√
n). □

To get the results of Proposition 7.6 for the quantity infx, y∈S+⟨y, Anx⟩ instead of infy∈S+⟨y, Anx⟩,
we make an additional assumption on µ.
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Proposition 7.7. Let p ∈ (2, 3]. Assume that µ is strictly contracting and admits a moment

of order p. Assume that s2 > 0 with s2 as in Proposition 5.2. Assume moreover that µ and µ̃

almost admit a moment of order q ∈ [p,max(p, (p− 2)/(3− p))] (resp. an exponential moment

of order γ ∈ (0, 1]). Then the conclusion of Proposition 7.2 (resp. Proposition 7.5) holds with

infx, y∈S+⟨y, Anx⟩ in place of κ(An).

Proof. The proof is very close the proof of Proposition 7.6, hence we only give the main step. We

keep the same notations. Starting from (7.11), we get that, on the set where Ymr · · ·Y(m−1)r+1 ∈
G1/n0 (recall that G1/n0 is defined in (7.9)),

inf
x, y∈S+

(
log⟨y, Anx⟩

)
− log ∥An∥ ≥

− log n0 − log d+
(
log v(An)− log ∥An∥

)
+
(
log v(Y t

mr+1 · · ·Y t
n)− log ∥Y t

mr+1 · · ·Y t
n∥
)
.

Hence, the only difference with the proof of Proposition 7.6 is that we need to handle the term

log v(An) − log ∥An∥ but this may be done, as in the proof of Proposition 7.6, using Lemma

3.2 when µ almost admits a moment of order q and Lemma 7.4 when µ almost admits some

exponential moment of order γ ∈ (0, 1]. □

We shall now obtain the rate O(1/
√
n) for the spectral radius and the coefficients under

a much stronger condition on µ, also considered in [27]. Actually, in Theorem 1.2 of [27] the

authors obtain the results of Theorem 7.8 for p = 3. Recall that the set Gδ has been defined in

(7.9).

Theorem 7.8. Let p ∈ (2, 3]. Assume that µ is strictly contracting and admits a moment of

order p. Assume that s2 > 0 with s2 as in Proposition 5.2. Assume that there exist 0 < δ ≤ 1 and

r ∈ N such that µ∗r(Gδ) = 1. Then the conclusion of Theorem 7.1 holds with log(infy∈S+⟨y, Anx⟩)
(for every x ∈ S+), log v(At

n), or log κ(An) instead of log ∥An∥.

Proof. By assumption, for every n ≥ r and x ∈ S+, using that Anx
∥Anx∥ = (Yn · · ·Yn+1−r) ·(An−rx),

we have, for every x, y ∈ S+

1 ≥ ⟨y, Anx⟩
∥Anx∥

≥ δ P-a.s. (7.16)

Then, the result for (infy∈S+⟨y, Anx⟩)n∈N follows from Theorem 7.1 and the fact that ∥An∥ ≥
infy∈S+⟨y, Anx⟩ ≥ δ∥Anx∥.

To prove the remaining cases, first observe that Gδ is a right ideal, i.e. GδG ⊂ Gδ, which

was already observed in [25] (see also (7.10) for a short proof). Hence, by Lemma 7.10 below,

there exist C > 0 and 0 ≤ γ < 1, such that for every n ≥ r, µ∗n(GC,γ) = 1, with GC,γ defined

by (7.17). In particular, for every n ≥ r, v(At
n) ≥ ∥An∥/C.
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This proves the result for (v(At
n))n∈N, by Theorem 7.1, since d∥An∥ ≥ v(At

n). Then, the last

case follows since ∥An∥ ≥ κ(An) = κ(At
n) ≥ v(At

n), for every n ∈ N. □

To get the conclusion of Theorem 7.8 for the quantities infx, y∈S+⟨y, Anx⟩ and log(v(An))

instead of infy∈S+⟨y, Anx⟩ and log(v(At
n)), we impose the same strong condition on µ and µ̃.

Theorem 7.9. Let p ∈ (2, 3]. Assume that µ is strictly contracting and admits a moment of

order p. Assume that s2 > 0 with s2 as in Proposition 5.2. Assume that there exist 0 < δ ≤ 1

and r ∈ N such that µ∗r(Gδ) = 1 and µ̃∗r(Gδ) = 1. Then the conclusion of Theorem 7.1 holds

with log
(
infx, y∈S+⟨y, Anx⟩), or log v(An) instead of log ∥An∥.

Remark. It follows from Lemma 2.1 of [27] that if µ∗r(Gδ) = 1 and µ̃∗r(Gδ) = 1, all matrices

of the support of µ∗r satisfy Item (1.1) of their condition A1.

Proof. The proof for (v(An))n∈N may be done as the proof for (v(At
n))n∈N in the previous

theorem using that µ̃r(Gδ) = 1. The case of (infx, y∈S+⟨y, Anx⟩)n∈N then follows since, by (7.16),

∥An∥ ≥ infx, y∈S+⟨y, Anx⟩ ≥ δv(An) for every n ∈ N. □

We now give a condition that is equivalent to the condition µ∗r(Gδ) = 1 (or µ∗r(Gδ) > 0).

An equivalent condition, specific to the case of positive matrices (hence not valid in the general

situation considered in Section 10), has been obtained in [27], see their Lemma 2.1.

For every C > 0 and 0 ≤ γ < 1, set

GC,γ := {g ∈ G : c(g) ≤ γ and ∥g∥ ≤ Cv(gt)} . (7.17)

Lemma 7.10. For every 0 < δ ≤ 1, there exist 0 ≤ γ < 1 and C > 0 such that Gδ ⊂ GC,γ.

Conversely, for every 0 ≤ γ′ < 1 and every C ′ > 0 there exists 0 < δ′ ≤ 1 such that GC′,γ′ ⊂ Gδ′.

Hence, there exists 0 < δ ≤ 1 such that µ(Gδ) > 0 (resp. µ(Gδ) = 1) if and only if there exists

0 ≤ γ < 1 and C > 0 such that µ(GC,γ) > 0 (resp. µ(GC,γ) = 1).

Proof. The proof relies on the following observations: for every x ∈ S+, ⟨x, ge⟩ = ∥gtx∥ and

∥gtx∥/∥g∥ ≥ ⟨x, g · e⟩/d ≥ ∥gtx∥/(d∥g∥).

Let g ∈ Gδ, with δ > 0. By the previous computations, ∥g∥ ≤ v(gt)/δ.

Let x, y ∈ S+. Let us bound d(g · x, g · y). For every u ∈ S+, we have

δ⟨u, g · y⟩ ≤ δ ≤ ⟨u, g · x⟩ .

This implies thatm(g ·x, g ·y) ≥ δ (notice that then we must have δ ≤ 1. Similarly, m(g ·y, g ·x) ≥
δ and d(g · x, g · y) ≤ 1−δ2

1+δ2
=: γ < 1. So, Gδ ⊂ G1/δ,γ.
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Let 0 ≤ γ < 1 and C > 0. Let g ∈ GC,γ. Let x, y ∈ S+. Notice that m(g · x, g · y) ≤ 1.

Hence, γ ≥ d(g · x, g · y) ≥ 1−m(y,x)
1+m(y,x)

and m(y, x) ≥ 1−γ
1+γ

. We infer that g · y − 1−γ
1+γ

g · x has non

negative coordinates. Taking, x = e, we see that for every u ∈ S+,

⟨u, g · y⟩ ≥ 1− γ

1 + γ
⟨u, g · e⟩ ≥ 1− γ

1 + γ
∥gtx∥/(d∥g∥) ≥ 1− γ

Cd(1 + γ)
.

□

8 Regularity of the invariant measure

We prove here regularity properties of the invariant measure under various moment conditions.

Theorem 8.1. Assume that µ̃ is strictly contracting and almost admits a moment of order

p ≥ 1. Then ∫
S+

sup
y∈S+

| log⟨y, x⟩|p dν(x) <∞ . (8.1)

Remark. In the case of invertible matrices, Benoist and Quint [1] proved that if µ has a moment

of order p > 1, then supy∈X
∫
X
| log⟨y, x⟩|p−1 dν(x) <∞ .

Proof. By Fubini’s theorem, it is enough to prove that∑
n≥1

np−1ν
({
x ∈ S+ : sup

y∈S+

| log⟨y, x⟩| ≥ cn
})

<∞ ,

for some c > 0. Using that ν is µ-invariant, it suffices to prove that∑
n≥1

np−1P
(

sup
x, y∈S+

∣∣ log⟨y, An · x⟩
∣∣ ≥ cn

)
<∞ . (8.2)

Now, on ∆n,1 (recall its definition (7.12)), by (7.13), we have∣∣ log⟨y, An · x⟩
∣∣ ≤ log n0 + log d+ max

1≤k≤n

∣∣ log v(Y t
k · · ·Y t

n)− log ∥Y t
k · · ·Y t

n∥
∣∣ . (8.3)

Since P(∆c
n,1) = η[n/r−1] with η ∈ [0, 1), it is clear that (8.2) will hold if we can find some c > 0

such that ∑
n≥1

np−1P
(
max
1≤k≤n

∣∣ log v(Y t
n · · ·Y t

1 )− log ∥Y t
n · · ·Y t

1 ∥
∣∣ ≥ cn

)
<∞ . (8.4)

By Proposition 3.2, since µ̃ almost admits a moment of order p, supn≥1

∣∣ log v(Y t
n · · ·Y t

1 ) −
log ∥Y t

n · · ·Y t
1 ∥
∣∣ ∈ Lp which yields (8.4). □
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Theorem 8.2. Assume that µ̃ is strictly contracting and almost admits an exponential moment

of order γ ∈ (0, 1]. Then, there exists δ > 0 such that∫
S+

sup
y∈S+

eδ| log⟨y,x⟩|
γ

dν(x) <∞ . (8.5)

Remark. Inequality (8.5) has been proved in Proposition 3.3 of [26] with the supremum outside

the integral, under stronger conditions. On another hand, they also obtained (8.5) with respect

to their measures νs, see [26] for the definition.

Proof. Proceeding as above, the theorem will be proved if we can show that there exist δ, η > 0

such that ∑
n≥1

eδn
γP
(

sup
x,y∈S+

∣∣ log⟨y, An · x⟩
∣∣ ≥ ηn

)
<∞ . (8.6)

We conclude thanks to (8.3) and Lemma 7.4. □

9 Deviation inequalities

We now provide deviation estimates, in the style of Baum-Katz.

Proposition 9.1. Assume that µ is strictly contracting and admits a moment of order p ≥ 1.

Let α ∈ (1/2, 1] such that α ≥ 1/p. For any ε > 0, we have∑
n≥1

nαp−2 sup
x∈S+

P( max
1≤k≤n

|σ(Ak, x)− kλµ| ≥ nαε) <∞ . (9.1)

Remark. Using Proposition 3.2, Inequality (5.7) and the fact that for Z ∈ Lp, p ≥ 1,∑
n≥1 n

pα−1P(Z ≥ nαε) < ∞, for any ε > 0 and any α > 0, one can prove similar results

for log ∥An∥ − nλµ, log κ(An)− nλµ, log v(An)− nλµ or supx∈S+ | log ∥Anx∥ − nλµ|. In addition

to its own interest, let us recall that Proposition 9.1 applied with α = 1/p (hence 1 ≤ p < 2)

implies the Marcinkiewicz-Zygmund strong law of large numbers: for every x ∈ S+,

σ(An, x)− nλµ
n1/p

−→
n→+∞

0 P-a.s. (9.2)

Indeed, by (9.1) with α = 1/p,
∑

n≥0 P(max1≤k≤2n |σ(Ak, x)−kλµ| ≥ 2n/p) <∞ and (9.2) follows

by the Borel-Cantelli lemma.

Proposition 9.1 is the version for positive matrices of Theorem 4.1 of [9], stated for invertible

matrices. The proof is exactly the same. Let us mention the key ingredients: The result

concerns a cocycle for which, when p ≥ 2, the function ψ in (5.1) is well defined and bounded
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and supk≥1 supx∈S+ ∥E((σ(Yk, Ak−1 · x))2|Fk−1)∥∞ < ∞; and, when 1 ≤ p < 2, one can control

the coefficients δ1,∞(n).

Concerning the matrix coefficients, the following result holds.

Proposition 9.2. Assume that µ is strictly contracting and that µ and µ̃ admit a moment of

order p ≥ 1. Let α ∈ (1/2, 1] such that α ≥ 1/p. For any ε > 0, we have∑
n≥1

nαp−2P( sup
x, y∈S+

| log⟨y, Anx⟩ − nλµ| ≥ nαε) <∞ .

Remark. One cannot expect to have a maximum over 1 ≤ k ≤ n inside the probability, since

one may have P(log⟨y, A1x⟩ = −∞) > 0, for some x, y ∈ S+.

Proof. On the set ∆n,1 defined by (7.12), we get by using (7.13) with m = 1,

sup
x, y∈S+

| log⟨y, Anx⟩ − nλµ|

≤ sup
x∈S+

| log ∥Anx∥ − nλµ|+ max
1≤k≤n

∣∣ log v(Y t
k · · ·Y t

n)− log ∥Y t
k · · ·Y t

n∥
∣∣.

To conclude, we apply the remark after Proposition 9.1 and the fact that the random variables

max1≤k≤n

∣∣ log v(Y t
k · · ·Y t

n) − log ∥Y t
k · · ·Y t

n∥
∣∣ and max1≤k≤n

∣∣ log v(Y t
k · · ·Y t

1 ) − log ∥Y t
k · · ·Y t

1 ∥
∣∣

have the same law, combined with Proposition 3.2 applied to µ̃. □

10 Generalization to cones

In this section we show how to extend the previous results to general cones. In the previous

sections we studied products of positive matrices, that is products of matrices leaving invariant

the cone (R+)d. In this section we consider more general cones. This type of generalization was

also investigated in [4].

There are many examples of closed solid cones as the ones considered below. For instance,

the Lorentz (or ice-cream) cone: {(x1, . . . , xn, z) ∈ Rn+1 : z ≥ 0, x21+ . . .+x
2
n ≤ z2}. The linear

operators (of matrices) leaving invariant the Lorentz cone have been studied in details by Loewy

and Schneider [22].

Another example is the cone KS of positive semi-definite matrices of order n viewed as a cone

of the vector space of symmetric matrices of order n. Examples of operators leaving invariant KS

are given by M 7→ AtMA where A is a matrix of size n or M 7→ tr(MR0)S0, with R0, S0 ∈ KS

and convex combinations of those.

Let d ≥ 2. We endow V = Rd with its usual inner product ⟨·, ·⟩ and the associated norm

∥ · ∥2.
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Let K be a closed proper convex cone with non empty interior of Rd. We recall that a cone

of Rd is a set of Rd stable by multiplication by non-negative real numbers and that it is proper

if K ∩ (−K) = {0}.
We shall call such cones closed solid cones, as in [21], page 3.

We associate with K its dual cone K∗ := {x∗ ∈ V ∗ : ⟨x∗, x⟩ ≥ 0 ∀x ∈ K}.

By Lemma 1.2.4 of [21], K∗ is also a closed solid cone. Moreover, for every x∗ ∈ int(K∗),

(the interior of K∗) ⟨x∗, x⟩ > 0 for every x ∈ K\{0} and Σx∗ := {x ∈ K : ⟨x∗, x⟩ = 1} is a

compact convex set.

We define a partial order on V by setting for every x, y ∈ V , x ⪯K y if y − x ∈ K.

In the sequel we will need to work with a monotone norm for K, that is a norm compatible

with ⪯K in the sense of (10.2) below.

Let us fix once and for all x∗0 ∈ int(K∗). Then, for every x ∈ V , set

∥x∥x∗
0
= sup

x∗∈K∗ :x∗⪯K∗x∗
0

|⟨x∗, x⟩| . (10.1)

By Lemma 11.4, ∥ · ∥x∗
0
is a norm on V and, using the definition of K∗,

∥x∥x0∗ ≤ ∥y∥x∗
0

for x, y such that 0 ⪯K x ⪯K y . (10.2)

Notice also that

∥x∥x∗
0
= ⟨x∗0, x⟩ ∀x ∈ K . (10.3)

Recall that (K∗)∗ = K. Hence fixing once and for all some x0 ∈ int(K), with ⟨x∗0, x0⟩ = 1,

one defines also a monotone norm on V ∗ by setting

∥x∗∥x0 := sup
x⪯Kx0

|⟨x∗, x⟩| ∀x∗ ∈ V ∗ .

Then, for every x∗ ∈ K∗, ∥x∗∥x0 = ⟨x∗, x0⟩.

Set

S+ := K ∩ {x ∈ V : ∥x∥x∗
0
= 1} = {x ∈ K : ⟨x∗0, x⟩ = 1}

and

S++ := int(K) ∩ {x ∈ V : ∥x∥x∗
0
= 1} = {x ∈ int(K) : ⟨x∗0, x⟩ = 1} .

Notice that those definitions are consistent with (1.1) and (2.6), taking x∗0 = (1, . . . , 1).

We shall now define an application d on (K\{0})2 that will make (S+, d) a metric space.
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We first define an equivalence relation ∼K on K, by setting for every x, y, x ∼K y if there

exists 0 < α ≤ β such that αx ⪯K y ⪯ βx. The equivalence classes for ∼K are called parts of

K. By Lemma 11.2, int(K) is a part of K.

Given x, y ∈ K\{0}, set

m(x, y) = sup{λ ≥ 0 : λy ⪯K x} .

This definition is consistent with the definition of the function m defined in Section 1 when

K = (R+)d.

Notice that if some λ > 0 is such that λy ⪯K x then x − λy ∈ K, hence x/λ − y ∈ K. So

m(x, y) < +∞ since K is closed and K ∩ (−K) = {0}.

In particular, using again that K is closed, m(y, x)m(x, y)y ⪯K m(y, x)x ⪯K y so that

m(y, x)m(x, y) ≤ 1.

Then, we define for every x, y ∈ K\{0},

d(x, y) = φ(m(x, y)m(y, x)) ,

where φ is given by (2.3).

It follows from the definition of ∼K that x ∼K y if and only if m(x, y)m(y, x) > 0 if and only

if d(x, y) < 1.

Note that d(x, y) = tanh
(
(1/2)dH(x, y)

)
where dH is introduced page 26 of [21]. Actually,

dH is defined when x ∼K y and when one does not have x ∼K y then one sets dH(x, y) = +∞.

Proposition 10.1. (S+, d) is a complete metric space and S++ is closed. Moreover, there exists

Cx0 > 0 such that

∥x− y∥x∗
0
≤ Cx∗

0

d(x, y)

1− d(x, y)
∀(x, y) ∈ S+. (10.4)

Remark. When x ∼K y the right-hand side of (10.4) is finite. Otherwise, d(x, y) = 1 and the

right-hand side of (10.4) has to be interpreted as +∞.

Proof. We first prove that (S+, d) is a metric space. Let x, y, z ∈ S+ be such that x ∼K y and

y ∼K z. By Proposition 2.1.1 of [21], dH(x, z) ≤ dH(x, y) + dH(y, z). Using that u 7→ tanh(u/2)

is subadditive, the inequality remains true with d in place of dH . If we do not have x ∼K y and

y ∼K z, then m(x, y)m(y, x) = 0 or m(y, z)m(z, y) = 0, hence d(x, y) = 1 or d(y, z) = 1 so that

the triangle inequality is still satisfied.

The fact that d is a distance on S+ then follows from (other statements of) Proposition

2.1.1 of [21]. The fact that (S+, d) is complete follows from Lemma 2.5.4 of [21]. Indeed, if

31



(xn)n∈N ⊂ S+ is a Cauchy sequence for d, then d(xp, xq) < 1, say for q, p ≥ N , so that (xn)n≥N

is included in a part P of K. But, by Lemma 2.5.4 of [21], S+ ∩ P is complete for d.

Let us explain why S++ is closed. Using similar arguments as above we see that it is enough

to prove that int(K) is a part of K, but this follows from Lemma 11.2.

Inequality (10.4) follows from (2.21) page 47 of [21], using the relation between dH and d. □

We shall now define the analogue of the positive matrices.

Let

G := {g ∈Md(R) : g(K\{0}) ⊂ K\{0}, g(int(K)) ⊂ int(K)} .

It follows from Lemma 11.3 below that

G := {g ∈Md(R) : gt(K∗\{0}) ⊂ K∗\{0}, gt(int(K∗)) ⊂ int(K∗)} .

In particular, g ∈ G is allowable in the sense of [4] (see a) page 1527). Hence, the allowability

condition in [4] is redundant.

We endowMd(R) with the norm: ∥g∥x∗
0
:= supx∈K, ∥x∥x∗0=1 ∥gx∥x∗

0
. The fact that this is indeed

a norm follows from the fact that K has non empty interior (i.e. K −K = V ). Notice that for

g ∈ G,

∥g∥x∗
0
= sup

x∈K, ⟨x∗
0,x⟩=1

⟨x∗0, gx⟩ .

Define also

G+ := {g ∈ G : g(K\{0}) ⊂ int(K)} .

By Lemma 10.1,

G+ := {g ∈ G : gt(K∗\{0}) ⊂ int(K∗)} .

Define for every g ∈ G

vx∗
0
(g) = inf

x∈K, ∥x∥x∗0=1
∥gx∥x∗

0
,

Notice that for g ∈ G, v(g) = infx∈K, ⟨x∗
0,x⟩=1⟨x∗0, gx⟩.

We then define Nx∗
0
(g) := max(∥g∥x∗

0
, 1/vx∗

0
(g)) and Lx∗

0
(g) :=

∥g∥x∗0
vx∗0

(g)
.

The semi-group G is acting on S+ as follows.

g · x =
gx

∥gx∥x∗
0

=
gx

⟨x∗0, gx⟩
∀(g, x) ∈ G× S+ .

We then define a cocyle by setting σ(g, x) = log(∥gx∥x∗
0
) for every (g, x) ∈ G× S+.
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For every g ∈ G set

c(g) := sup
x, y∈K\{0}

d(gx, gy) .

Proposition 10.2. For every (g, g′, x, y) ∈ G2 × (S+)2 we have

(i) |σ(g, x)| ≤ logN(g);

(ii) |σ(g, x)− σ(g, y)| ≤ 2Cx∗
0
L(g)d(x, y) if d(x, y) ≤ 1/2;

(iii) |σ(g, x)− σ(g, y)| ≤ 2 ln
(
1/(1− d(x, y))

)
;

(iv) c(gg′) ≤ c(g)c(g′);

(v) c(g) ≤ 1 and c(g) < 1 iff g ∈ G+;

(vi) d(g · x, g · y) ≤ c(g)d(x, y).

Remark. The constant C > 0 appearing in item (ii) is the same as in (10.4).

Proof. Item (i) is obvious. Item (ii) may be proved exactly as item (i) of Lemma 5.3 of [15],

using (10.4).

Let us prove Item (iii). Let x, y ∈ S+. Assume that x ∼K y, since otherwise the right-

hand side in item (iii) equals +∞ and the inequality is clear. We have m(x, y)y ⪯K x and

m(y, x)x ⪯K y. Since g ∈ G, m(x, y)gy ⪯K gx and m(y, x)gx ⪯K gy. Using that ∥ · ∥x∗
0
is

monotone we infer that m(x, y)∥gy∥x∗
0
≤ ∥gx∥x∗

0
and m(y, x)∥gx∥x∗

0
≤ ∥y∥gx∗

0
. Hence

m(x, y) ≤
∥gx∥x∗

0

∥y∥x∗
0

≤ 1/m(y, x) .

Then, the proof may be finished as the proof of item (ii) of Lemma 5.3 of [15].

The proof of Item (iv) may be done exactly as in [15].

Item (v) follows from Proposition 10.3 below and Item (vi) may be proved as in [15]. □

We may define as above a distance d∗ on K∗ to which we associate a function c∗ on the set

G∗ := {g ∈Md(R) : g(K∗\{0} ⊂ K∗\{0}, g(int(K) ⊂ int(K)} .

Notice that by Lemma 11.3, G∗ = {gt : g ∈ G}.
Set S∗+ := {x∗ ∈ K∗ : ⟨x∗, x0⟩ = 1} and denote by E(S∗+) the extreme points of S∗+.

Denote also E(S+) the extreme points of S+.
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Proposition 10.3. For every g ∈ G, we have

c(g) = sup
x,y∈S+,x∗,y∗∈S∗+

⟨x∗, gx⟩⟨y∗, gy⟩ − ⟨x∗, gy⟩⟨y∗, gx⟩
⟨x∗, gx⟩⟨y∗, gy⟩+ ⟨x∗, gy⟩⟨y∗, gx⟩

(10.5)

= sup
x,y∈E(S+),x∗,y∗∈E(S∗+)

⟨x∗, gx⟩⟨y∗, gy⟩ − ⟨x∗, gy⟩⟨y∗, gx⟩
⟨x∗, gx⟩⟨y∗, gy⟩+ ⟨x∗, gy⟩⟨y∗, gx⟩

. (10.6)

The suprema in (10.5) and (10.6) are taken other the (x, y, x∗, y∗) such that ⟨x∗, gx⟩⟨y∗, gy⟩ > 0.

In particular c(g) ≤ 1 and c(g) < 1 if and only if g ∈ G+.

Remarks. When K = (R+)d (10.6) is just (2.5). For g ∈ G, (10.8) implies that c∗(gt) = c(g).

Proof. As in (2.7) page 35 of [21], noticing that they denote by m(x/y) the quantity m(x, y),

we have

m(x, y) = inf
x∗∈S∗+

⟨x∗, x⟩
⟨x∗, y⟩

= inf
x∗∈E(S∗+)

⟨x∗, x⟩
⟨x∗, y⟩

.

Here and in the sequel, it is implicit that we take the infimum other the x∗ such that ⟨x∗, y⟩ > 0.

Hence, we have

m(x, y)m(y, x) = inf
x∗,y∗∈S∗+

⟨x∗, x⟩⟨y∗, y⟩
⟨x∗, y⟩⟨y∗, x⟩

= inf
x∗,y∗∈E(S∗+)

⟨x∗, x⟩⟨y∗, y⟩
⟨x∗, y⟩⟨y∗, x⟩

.

Extending naturally φ to a non decreasing function on [0,+∞[, we infer that

d(x, y) = sup
x∗,y∗∈S∗+

φ
(⟨x∗, x⟩⟨y∗, y⟩
⟨x∗, y⟩⟨y∗, x⟩

)
= sup

x∗,y∗∈E(S∗+)

φ
(⟨x∗, x⟩⟨y∗, y⟩
⟨x∗, y⟩⟨y∗, x⟩

)
. (10.7)

For every g ∈ G, we have

sup
x,y∈S+

d(gx, gy) = sup
x,y∈S+,x∗,y∗∈S∗+

φ
(⟨x∗, gx⟩⟨y∗, gy⟩
⟨x∗, gy⟩⟨y∗, gx⟩

)
(10.8)

= sup
x,y∈S+,x∗,y∗∈E(S∗+)

φ
(⟨x∗, gx⟩⟨y∗, gy⟩
⟨x∗, gy⟩⟨y∗, gx⟩

)
(10.9)

= sup
x∗,y∗∈E(S∗+)

d∗(gtx∗, gty∗)

= sup
x∗,y∗∈E(S∗+),x,y∈E(S+)

φ
(⟨x∗, gx⟩⟨y∗, gy⟩
⟨x∗, gy⟩⟨y∗, gx⟩

)
,

where we used (10.7) for d∗ to obtain the last equality.

Then, (10.5) and (10.6) follow by noticing that for every s, t, u, v ≥ 0, with uv > 0

φ(st/uv) =
uv − st

st+ uv
.
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The fact that c(g) ≤ 1 is obvious.

Let g ∈ G+. Then, ⟨x∗, gx⟩ > 0 for every x ∈ K\{0} and x∗ ∈ K∗\{0}. Hence, the

continuous function (for either d or ∥ · ∥) (x, y, x∗, y∗) 7→ ⟨x∗,gx⟩⟨y∗,gy⟩−⟨x∗,gy⟩⟨y∗,gx⟩
⟨x∗,gx⟩⟨y∗,gy⟩+⟨x∗,gy⟩⟨y∗,gx⟩ defined on the

compact (S+)2 × (S∗+)2 takes values in [−1, 1[. So, c(g) < 1.

Assume now that g ∈ G\G+. By assumption, there exists x ∈ S+ such that gx ∈ K\int(K).

By Lemma 11.1, there exists y∗ ∈ S∗+ such that ⟨y∗, gx⟩ = 0. Since gx ̸= 0 and gty∗ ̸= 0, there

exist x∗ ∈ S∗+ and y ∈ S+ such that ⟨y∗, gy⟩ > 0 and ⟨x∗, gx⟩ > 0. Hence, c(g) = 1. □

We shall now consider the analogous statements as those given in Lemma 2.2. Only item (ii)

requires a proof.

Lemma 10.4. There exists C > 0 such that for every g ∈ G,

∥gx0∥x∗
0
≤ ∥g∥x∗

0
≤ C∥gx0∥x∗

0
.

Proof. Since ⟨x∗0, x0⟩ = 1, ∥gx0∥x∗
0
≤ ∥g∥x∗

0
. Let x ∈ K be such that ⟨x∗0, x⟩ = 1. Let g ∈ G.

Using Lemma 11.2 with the cone K∗ there exists ε > 0 such that gtx∗0 ⪯K∗
∥gtx∗

0∥x0
ε

x∗0. Hence,

using that gx ∈ K and Lemma 11.1,

∥gx∥x∗
0
= ⟨x∗0, gx⟩ = ⟨gtx∗0, x⟩ ≤

∥gtx∗0∥x0

ε
⟨x∗0, x⟩

=
⟨gtx∗0, x0⟩

ε
=

⟨x∗0, gx0⟩
ε

=
∥gx0∥x∗

0

ε
.

□

All the results of the previous sections hold true for a cocycle satisfying all the properties

listed in Proposition 2.1 and Lemma 2.2, replacing the quantities N(g) and L(g) in the moment

conditions by the quantities Nx∗
0
(g) and Lx∗

0
(g).

11 Technical results

The next lemma is just Lemma 1.2.4 of [21].

Lemma 11.1. Let K be a closed solid cone. Then

int(K∗) = {x∗ ∈ K∗ : ⟨x∗, x⟩ > 0 , ∀x ∈ K\{0}} .

The next lemma follows from the proof Lemma 1.2.4 of [21]. We recall the arguments.
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Lemma 11.2. Let ∥ · ∥ be a norm on V = Rd. Let K be a closed solid cone. Then, for every

x ∈ int(K), there exists ε > 0, such that for every y ∈ K ∩ B̄∥·∥(0, 1), where B̄∥·∥(0, 1) is the

closure of the unit ball B∥·∥(0, 1), we have y ⪯ 1
ε
x. Then ∥y∥ ≤ 1

ε
. In particular, int(K) is a

part of K.

Proof. Let x ∈ int(K). There exists ε > 0 such that B̄∥·∥(x, ε) ⊂ int(K). Let y ∈ B̄∥·∥(0, 1).

Then, x− εy ∈ K, which means precisely that y ⪯ 1
ε
x. In particular, if x, y ∈ int(K), x ∼K y.

It remains to prove that for every (x, y) ∈ int(K)×K, x ∼K y ⇒ y ∈ int(K).

Hence, let x ∈ int(K). There exists ε > 0 such that B∥·∥(x, ε) ⊂ K.

Let y ∈ K be such that y ∼K x. There exists α > 0 such that x ⪯K αy. So αy− x ∈ K and

αy = x+ αy − x ∈ ∪z∈K(z +B∥·∥(x, ε)) ,

which is an open subset of K. □

Lemma 11.3. Let g ∈Md(R) and let K be a closed solid cone of E.

(i) g(K\{0}) ⊂ K\{0} if and only if gt(int(K∗)) ⊂ int(K∗);

(ii) g(int(K)) ⊂ int(K) if and only if gt(K∗\{0}) ⊂ K∗\{0}.

Proof. Assume that g(K\{0}) ⊂ K\{0}. Let x∗ ∈ int(K∗) and x ∈ K\{0}. We have

⟨gtx∗, x⟩ = ⟨x∗, gx⟩ > 0 ,

by Lemma 11.1. Using Lemma 11.1 again, we see that gtx∗ ∈ int(K∗).

Assume that gt(int(K∗)) ⊂ int(K∗). Let x ∈ K\{0} and x∗ ∈ int(K∗). We have

⟨x∗, gx⟩ = ⟨gtx∗, x⟩ > 0 .

Hence gx ∈ K∗∗ = K (see Exercise 2.31 of [3]) and gx ̸= 0, which proves item (i).

Item (ii) is just item (i) for K∗ using that K∗∗ = K. □

Lemma 11.4. ∥ · ∥x∗
0
defined by (10.1) is a norm for every x∗0 ∈ int(K∗).

Proof. By Lemma 1.2.5 of [21], the set {x∗ ∈ K : x∗ ⪯K∗ x∗0} is bounded, hence ∥ · ∥x∗
0
is finite

on V . The fact that ∥ · ∥x∗
0
satisfies the triangular inequality and is positively homogeneous are

obvious.

Assume that x ∈ E, is such that ∥x∥x∗
0
= 0. By Lemma 11.2 applied to K∗ (with x = x∗0),

for every x∗ ∈ K∗, ⟨x∗, x⟩ = 0. Since K∗ has non empty interior, K∗ −K∗ = V ∗ and x = 0. □
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approximation for some classes of random iterates. Stochastic Process. Appl. 128 (2018),

no. 4, 1347–1385.
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