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Synopsis

We augment the recently introduced SPARKLING algorithm and propose an
improved mathematical formulation that takes the temporal dependence of the
MR signal into account. This prevents the trajectories from sampling similar
portions of k-space at different times, thereby reducing distortions and blurring
induced by B0 inhomogenieties. Overall, these trajectories present a smooth
distribution over time in k-space and Minimized Off-Resonance Effects (MORE-
SPARKLING), verified both retrospectively and prospectively with scans per-
formed in vivo at 3T on a healthy volunteer.

Summary of main findings

New trajectories result in minimized off-resonance artifacts with 3dB gain in
PSNR with retrospective studies. In prospective scans at 15-fold acceleration,
they permit recovery of the signal dropouts observed on original SPARKLING
acquisitions at larger B0 field inhomogenieties.

1 Introduction

Reducing the scan time in MRI while preserving the highest image quality has
been a longstanding goal within the MR community. According to compressed
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sensing theory, k-space can be optimally undersampled through variable den-
sity sampling. Recently, the SPARKLING6 algorithm was introduced to gener-
ate sampling patterns that cover the k-space according to a prescribed target
sampling distribution (TSD) whereby each k-space trajectory satisfied the MR
hardware constraints. This method was successfully extended to 3D,1,7 however
the presence of amplified patient-induced ∆B0 artifacts was observed.1 While
the B0 field inhomogeneities can be addressed through post-processing with cor-
rection methods4 without additional scans,2 it seems possible to mitigate their
impact with improved design of the trajectories.

In this work, we incorporate additional components of the MR signal in the
formulation of the SPARKLING optimization problem and produce trajectories
with Minimized Off-Resonance Effects (MORE) in the final reconstructed MR
image.

2 Theory

Following the original formulation,1 a k-space sampling pattern K = (ki)
Nc
i=1 is

composed of Nc shots, with each 3D shot composed of Ns samples acquired over
the readout duration such that ki(t) = (ki,x(t), ki,y(t), ki,z(t)). The trajectory
K is optimized1,6 as:

K̂ = arg min
K∈QNc

Fp(K) = F a
p (K)− F r

p(K) (1)

with p = Nc×Ns samplings points, QNc the Nc-dimensional set of feasible shots
that meet the MR hardware constraints ( [1, Eq.(2)]), F a

p (K) the attraction term
which ensures the sampling pattern K follows a prescribed TSD ρ and F r

p(K)
the repulsion term to avoid clumping of samples. From [1, Eq.(5)], we obtain
F r
p(K) as:

F r
p(K) =

1

2p2

∑
1≤i,j≤p

||K[i]−K[j]||2 (2)

Ideally, the measured k-space samples Y = (yj)
Nc
j=1 are given by:

yj(t) =

∫
xr e

−(αr+ıωr)te−2ıπ(kj(t)·r)dr (3)

with xr the transverse magnetization of the object, αr the T ∗2 decay and ωr the
off-resonance at voxel r. Note the temporal dependence of Y on αr and ωr, not
considered in the original SPARKLING formulation. This results in trajectories
that may be locally inconsistent because close samples may be collected at
different times (Fig.1(A)), leading to amplified ∆B0 artifacts as observed in [1,
Fig.S6].
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3 Methods

We propose to mitigate the impact of B0 inhomogeneities by adding the follow-
ing temporal weights in the repulsion term F r

p(K) as:

F r
p(K) =

1

2p2

∑
1≤i,j≤p

e|ti−tj |||K[i]−K[j]||2 (4)

where ti and tj correspond to the times when the samples K[i] and K[j] are
acquired. Note that e|ti−tj | ≥ 1, thereby increasing the repulsion term between
temporally spaced out points. While generating the modified trajectories, large
k-space holes are observed in Fig.1(B) as increased repulsion occurs in regions
where the trajectories that start and end nearly at the same location along a
plane. To address this issue, we benefited from the multi-resolution sampling
design implemented in SPARKLING [1, Sec.II-E] which starts by spreading
pimax

= p/2imax samples at the maximal imax = 5 decimation levels and iterates
through a dyadic process, i.e. pimax−i = 2ipimax

for i = 1 : 5 (p0 = p). Here,
we introduce the temporal weighting in the optimization process, and we call
TWi, i = 0 : 2, when this weighting is activated up to to the decimation step
i with pimax−i samples. This results in significantly reduced k-space holes for
TW1 and TW2 as presented in Fig.1(C)-(D).

To evaluate this advancement, different T ∗2 volumes were acquired on a phan-
tom and a healthy volunteer at 3T using a 64-channel head/neck coil array,
paired with additional ∆B0 field maps. All acquisitions parameters are detailed
in Tab.1. For in vivo scans, a Cartesian GRAPPA4-accelerated reference was
also acquired to perform a retrospective study, by simulating the B0 inhomo-
geneities4 using the acquired field map (Fig.2). On the phantom, volumes were
collected in standard conditions with low artifacts (Fig.3(1)), then B0 inhomo-
geneities were added by degrading the machine B0 shimming (Fig.3(2)).

All image reconstructions were performed using the self-calibrated approach3

and implemented in pysap-mri.5

Table 1: All acquisition parameters used in the phantom and in vivo studies.
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Figure 1: Comparison of different SPARKLING trajectories generated with
Nc = 5329 (AF=15), Ns = 2048 : (A) Without temporal weights, (B) with
TW0, (C) with TW1, and (D) with TW2. In each case, the 3D sampling pattern
is shown in (1) and the mid-plane k-space slices along (2) kx-axis, (3) ky-axis
and (4) kz-axis. A rainbow coloring scheme overlays the sampling trajectories
to encode the time in k-space samples.

4 Results

The retrospective study on a volunteer (Fig.2) shows a quality peak for TW1

with an improved PSNR by 3dB compared to the original SPARKLING. Aside
from sensitivity and registration differences, the retrospective study shows real-
istic B0 inhomogeneity simulation compared to prospective in vivo acquisitions
(Fig.4). While TW1 brings better k-space coverage than TW0, as visible in
Fig.1 (B1, C1), TW2 mostly shows a less mitigated impact of ∆B0 artifacts
(red/yellow arrows).
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The prospective study on the phantom (Fig.3) shows significant improve-
ments over B0 inhomogeneities with temporal weights (blue arrows), decreas-
ing with TW1 and TW2 (red arrows). However, without inhomogeneities TW0

shows slightly degraded quality (B1, yellow arrows) over other trajectories. Sim-
ilar results are observed in vivo (Fig.4) with more signal for MORE-SPARKLING
in ∆B0 regions (blue arrows). Importantly, sharper details and a cleaner con-
trast are recovered using TW1 (E, red/yellow arrows). Overall, TW1 shows
improvements over TW0 that can be attributed to balanced repulsion and re-
duced k-space holes.

5 Conclusion

In this work, we present a significant advancement to the SPARKLING formu-
lation which takes the temporal nature of the signal acquisition into account,
resulting in MORE-SPARKLING trajectories that exhibit reduced ∆B0 arti-
facts.

However, our first proposition to tackle this problem resulted in the appari-
tion of k-space holes during the optimization process due to increased repulsion.
Although we addressed this issue by disabling the temporal weighting prior to
the final decimation step, more generic solutions could be achieved by further
improving further the formulation. These aspects will be addressed in future
works.
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