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Globus Pallidus internus deep brain stimulation: An alternative
treatment for Epilesia partialis continua?

Dear Sir.

Resective surgery may involve an unacceptable risk of perma-
nent neurological deficits in drug-resistant epilepsies so alternative
strategies are required. In this regard, palliative neuromodulation
has shown promise [1]. Epilepsia partialis continua (EPC) is an
epileptic syndrome defined as a subclass of focal motor status epi-
lepticus manifesting with frequent repetitive epileptic myoclonia
affecting the limbs and/or face, usually arrhythmic. Even if its
course and underlying aetiologies are largely heterogeneous, EPC
frequently tends to become highly medically refractory [2]. Howev-
er, due to the early involvement of the primary motor cortex, resec-
tive epilepsy surgery carries an inherent functional risk. Here we
report the first clinical and neurophysiological data obtained in a
patient suffering from EPC and receiving unilateral globus pallidus
internus (GPi) deep brain stimulation (DBS) treatment, who was
implanted with a novel sensing-enabled neurostimulator.

A 32-year-old patient with unremarkable personal and family
medical history started his epilepsy in 2008 by right focal motor
seizures characterized by left brachiofacial myoclonus and second-
ary tonic-clonic bilateralisations. Seizures were initially controlled
by single antiepileptic medication (AED). MRI was normal. Exten-
sive workup including search for an inflammatory, infectious or
paraneoplastic aetiology was negative. In 2017, without any
contributing factors, his epilepsy gradually worsened to chronic
persistent non-progressive EPC 3a [3] despite adequate medication.
One year of vagus nerve stimulation (VNS) was ineffective and he
developed permanent left brachiofacial myoclonus with progres-
sive hemiparesis. EEG showed continuous spike-and-wave
pseudo-periodic activity concomitant with myoclonic activity (see
supplemental data). Due to the high functional risk carried by pri-
mary motor cortectomy, a unilateral right quadripolar Percept PC
DBS electrode (Medtronic 3389) was implanted in the sensorimotor
part of the GPi without per- or postsurgical complications. Therapy
was provided as a humanitarian device. DBS electrode localisation
was confirmed using the advanced processing pipeline in Lead-DBS
(see supplemental Data for coordinates) [4]. AED and VNS were not
discontinued.

The patient was monitored three times a week during the
month following implantation by three independent neurologists
expert in epilepsy and DBS programming (DG/JA/EC). DBS efficacy
was evaluated using both visual analogic scale (VAS) and actigraphy
recordings (MotionWatch8, Cambridge Neurotechnology, UK,
Fig. 1a). Effectiveness was assessed with different monopolar stim-
ulation settings: best stimulation results were obtained with con-
tacts 0 and 1, pulse-width 60us, frequency 130 Hz, amplitude
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3mA. The electrode was connected to a sensing-enabled Percept
PC neurostimulator allowing regular local field potential (LFP) re-
cordings with or without stimulation, at rest with eyes closed (bi-
polar montage between two adjacent contacts, sampling
frequency of 250Hz, low pass filter at 100Hz and high pass filter
at 1Hz). Systematic bipolar recordings performed off stimulation
revealed LFP oscillations in the low beta band (14Hz; between
each pair of adjacent contacts). This target frequency was selected
for chronic recordings when stimulation was switched on (record-
ings between contacts 0 and 2, stimulation through contact 1).
Post-hoc time-frequency (TF) and power spectrum density (PSD)
analyses were performed at day 5 (beginning of daily follow-up)
and day 28 (end of daily follow-up) after implantation.

A linear progressive clinical improvement was confirmed by
both VAS and actimetry data (r> = 0.24 and 0.3 respectively;
Fig. 1a). Unfortunately, even though their frequency and intensity
were reduced, the myoclonic episodes did not abate completely
and the patient's disability persisted. LFP recordings in the GPi
showed epileptic paroxysms characterized by repetitive spike-
and-wave activity that tended to be less frequent at the end of
follow-up, as confirmed by TF analysis (Fig. 1b). Concomitantly
we observed a decrease in beta- and gamma-LFP PSD amplitude be-
tween the beginning and the end of follow-up (respectively
p < 0.0002 and < 0.0001 - Fig. 1c). Finally, during continuous GPi
LFP recordings (day 28 after implantation) around the low beta fre-
quency (14+2 Hz), we observed that the LFP oscillations had
decreased in amplitude along with an increase in stimulation
amplitude, with an apparent dose effect (Fig. 1d).

To our knowledge, this is the first report of clinical and electro-
physiological data obtained in a patient suffering from EPC under
unilateral GPi DBS. We evidenced a slight clinical improvement in
myoclonic activity that was confirmed by both visual analogic scale
assessment and actigraphy. This partial improvement could be due
to the localisation of the implanted electrode, which might have
been positioned too anteriorly and medially to correctly stimulate
the sensorimotor part of the GPi. Epileptic paroxysms recorded
within the GPi confirmed a potential downstream propagation of
seizures from the motor cortex toward the ipsilateral basal ganglia
(BGs) network. In addition, GPi LFP activity in the beta band was
decreased by high frequency stimulation, suggesting a putative
link between epileptic activity generated by the primary motor cor-
tex and oscillatory activity recorded in the BGs. Inferring from
correlative relationship between a given frequency band (e.g.,
beta) and motor dysfunction current theories have assigned pro-
kinetic or anti-kinetic roles to the various oscillatory activities
based on their frequency bands [5]. However, it is plausible that
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Fig. 1. Clinical course with deep electrophysiological recordings during DBS in the sensorimotor part of the GPi in EPC. A: Clinical course after surgery. Orange dots: VAS evolution (0
considered as “no myoclonic activity” and 10 as “maximal myoclonic activity”). Orange line: linear regression analysis of VAS evolution over time (r = 0.24). Purple dot: actigraphy
evolution (0 considered as no actigraphic activity). Purple line represents linear regression analysis of actigraphy evolution over time (r = 0.3). B: LFP recorded in GPi (bipolar
montage between contacts 1 and 2, sampling frequency of 250Hz, low-pass filter at 100Hz and high-pass filter at 1Hz) and their respective corresponding time-frequency analyses.
In each figure, top trace was recorded 5 days after surgery and shows an almost continuous spike-and-wave activity. Bottom trace recorded 28 days after surgery shows clear-cut
incomplete decrease in spike-and-wave activity. C: Left panel shows power spectrum analysis density at day 5 after surgery (dark grey line) and 28 days after surgery (light grey
line). A peak around 13 Hz was observed in both conditions. PSD analysis shows a statically significant decrease in beta frequency (13—35 Hz) at day 28 compared to day 5 after
surgery (Mann-Whitney test, p < 0,0002), suggesting an effect of DBS neuromodulation on GPi beta oscillations. D: Continuous GPi LFP recordings (28 days after surgery) in low beta
frequency (14+2 Hz). It shows that LFP oscillations decreased in amplitude along with an increase in stimulation amplitude with an apparent dose effect. . (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of this article.)

the expression of oscillatory activity in a given frequency band may frequency in refractory epilepsies [9]. In addition, a recent study
vary in the various neuronal populations of the basal ganglia showed that subthalamic nucleus (STN) DBS could reduce interictal
cortical network possibly reflecting very different generation spikes acting with a frequency-dependent upstream modulatory
mechanisms and likely driving varied motor correlates. The fact effect over the motor cortex [10]. Nevertheless, the results of these
that focal seizures involve widespread interaction between the studies require confirmation. STN is usually targeted in hypokinetic
cortices and BGs is now well accepted [6—8]. Other neuromodula- syndromes (e.g. parkinson's disease) while GPI is frequently tar-
tion targets might be of potential interest. DBS of the anterior nu- geted in hyperkinetic syndromes such as dyskinesia. In addition
cleus of the thalamus has been shown to partially reduce seizure GPi remains in primates the main BGs output structure. Therefore,
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Its BDS modulation might offer a more direct opportunity to inhibit
thalamo-cortical activity than STN or SNr stimulation. Moreover,
we recently showed that acute changes in striatal GABAergic ho-
meostasis induce striato-cortical synchronization, leading to focal
bilateral tonic-clonic seizures in non-human primate (NHP) [11].
This is a strong argument in favour of the active role of BGs in con-
trolling cortical activity during focal seizures, as suggested by
chemo- or optogenetic manipulation of this subcortical pathway
in mice [12]. As GPi activity is modulated by both direct and indirect
pathways and inhibits thalamic and thus cortical activity, the GPi
sensory-motor territory could be a potential target for refractory
EPC in human. Altogether, these results suggest that patients in
whom the motor cortex is predominantly involved (focal motor sei-
zures, progressive myoclonic epilepsies, etc) could benefit from GPi
neurostimulation due to the involvement of the cortico striato-
pallido thalamo cortical motor loop. Although these results need
to be confirmed in larger cohorts, we propose that the sensorimotor
territory of the GPi could be a potential target for refractory EPC in
human.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.brs.2022.04.011.
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