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For efficient analysis of non-stationary signals, such as radar, sonar, speech, music, or general audio, timefrequency (TF) representations are required. They allow performing non-stationary filtering, ie extracting nonstationary "components" in signals. However, ad-hoc procedures are frequently used, whose accuracy is difficult to assess and control. In this contribution, we are interested in such time-frequency filtering, which we define as follows: the attenuation of a given, small region Ω in the time-frequency plane. This problem, addressed in a recent publication, is referred to as time-frequency fading (TFF). We address a local version of TFF, called LTFF, that only exploits a neighborhood Ω of the time-frequency region of interest Ω, which is supposed to be much smaller than the full time-frequency domain. This problem will be referred to as local time-frequency fading. We propose a method for determining such a neighborhood Ω. The local TFF problem is then solved using a variational approach, that minimizes a suitable quadratic objective function. Thus, there is a closed-form solution involving Gabor multipliers.

INTRODUCTION

Filtering is one of the fundamental techniques in signal processing. By filtering one often means linear time invariant (LTI) filtering, which has a simple characterization in time and/or frequency domains. We refer to [START_REF] Smith | Introduction to Digital Filters: With Audio Applications[END_REF] for an in-depth description, in view of audio applications. Sticking to linear filters, time varying (LTV) filtering is also fundamental, as most devices actually feature time variations. LTV filters form a much wider class than LTI filters, and may be represented in several different ways, for example as matrices as described in [START_REF] Smith | Introduction to Digital Filters: With Audio Applications[END_REF] for digital signals, or pseudo-differential operators in the mathematical literature [START_REF] Margrave | The Gabor transform, pseudodifferential operators, and seismic deconvolution[END_REF] in the analog case. Among LTV filters, filters that can be efficiently represented in a joint time-frequency domain have received significant interest in the last two decades. These include filters whose spectral characteristics (frequency response) vary slowly as a function of time, or filters designed to enhance, attenuate or cancel out components which possess specific localization properties in joint time-frequency domain (e.g., chirps with prescribed or parameterized frequency modulation laws, transient oscillatory waves). Several formulations for non-stationary Wiener filtering have been proposed, that rely on time-frequency representations such as the spectrogram [START_REF] Lander | Enhanced ensemble averaging using the time-frequency plane[END_REF] or Wigner distribution [START_REF] Boudreaux-Bartels | Time-varying filtering and signal estimation using Wigner distribution synthesis techniques[END_REF][START_REF] Hlawatsch | Time-frequency formulation, design, and implementation of time-varying optimal filters for signal estimation[END_REF][START_REF] Stankovic | On the time-frequency analysis based filtering[END_REF]. These generally rely on pointwise multiplication in the time-frequency domain prior to inversion, very much in the spirit of classical LTI filtering. Filtering in the time-frequency domain has been used for a wide range of applications including decision, detection, or time-frequency segmentation.

Time-frequency filtering exploits the ability of some time-frequency representations to efficiently represent signals of interest. Limited to linear transforms, usual choices are Gabor transform [START_REF] Gabor | Theory of communication. part 1: The analysis of information[END_REF] or Short Time Fourier Transform [START_REF] Portnoff | Time-frequency representation of digital signals and systems based on short-time Fourier analysis[END_REF], on which we will focus in the present paper, or wavelet transform, constant Q transform or S transform, the choice often depending on the application domain.

In this paper, we discuss a local version of time-frequency fading (TFF) [START_REF] Krémé | Time-frequency fading algorithms based on Gabor multipliers[END_REF], which is a type of timefrequency filter design. Time-frequency fading is the process of restoring a signal that has been degraded by an additive disturbance, in the case where the latter is well localized in a specific region of the time-frequency domain. We previously investigated and proposed a rigorous formulation of TFF in our previous paper [START_REF] Krémé | Time-frequency fading algorithms based on Gabor multipliers[END_REF]. We solved it and proposed several algorithms that make use of random projection techniques to enable numerical scaling. TFF, on the other hand, formulates the problem in the signal dimension. As a result, despite the fact that dimension reduction methods have been used to approximate the solution, TFF remains difficult to apply to long signals, such as those sampled at 44100 Hz. Here, we rely on the formulation proposed in and take advantage of the support reduction. In section 2 we briefly recall the time-frequency fading problem, and we introduce and formulate local TFF. In section 3, we illustrate LTFF on an example of signal mixing. Section 4 presents the ongoing work. An extended version of this work is under preparation.

GLOBAL AND LOCAL TIME-FREQUENCY FADING 2.1 TFF and notations

The Time-Frequency Fading (TFF) problem in [START_REF] Krémé | Time-frequency fading algorithms based on Gabor multipliers[END_REF] may be seen as a time-frequency analogue of a stop-band filter design problem, where one tries to attenuate a set of prescribed regions Ω p ⊂ Λ of the timefrequency plane Λ, with prescribed gains. This is achieved via a variational formulation, of the form

x * = arg min x∈C L ∥V g g g x -V g g g z z z∥ 2 Ω + P ∑ p=1 λ p ∥V g g g x∥ 2 Ω p , (1) 
where z z z ∈ C L is the input signal, V g g g : C L → Λ is a linear time-frequency transform (see below for notations), Ω p ⊂ Λ, p = 1, . . . P are the regions of interest in the time-frequency plane Λ, and the λ p ∈ R * + are parameters that control the tradeoff between the various terms in [START_REF] Smith | Introduction to Digital Filters: With Audio Applications[END_REF]. ∥•∥ is the usual Frobenius norm on the time-frequency space Λ, and ∥ • ∥ Ω denotes its restriction to a given region Ω.

The quadratic nature of the objective function naturally leads to a linear system, whose closed-form solution reads (see [START_REF] Krémé | Time-frequency fading algorithms based on Gabor multipliers[END_REF] for details)

x * = z z z -I + P ∑ p=1 (1 -λ p )M Ω p -1 p ∑ p=1 λ p M Ω p z z z , (2) 
which can involve high dimensional linear system for large signals. In [START_REF] Krémé | Time-frequency fading algorithms based on Gabor multipliers[END_REF], dimension reduction techniques were proposed to handle the problem and use a spectral approach that exploits time-frequency localization properties. However, the formulation of [START_REF] Krémé | Time-frequency fading algorithms based on Gabor multipliers[END_REF] involves a L-dimensional problem, which may involve regions of the timefrequency plane quite far away from Ω and do not significantly influence the solution.

The approach can be developed for any linear time-frequency transform, but in the present paper we will limit to the discrete Gabor transform (DGT) defined as follows (we refer to [START_REF] Krémé | Time-frequency fading algorithms based on Gabor multipliers[END_REF] for more details and notations, and to [START_REF] Soendergaard | The linear time frequency analysis toolbox[END_REF][START_REF] Průša | The Large Time-Frequency Analysis Toolbox 2.0[END_REF] for numerical implementations we use in this work). Let a, b be two divisors of L, and set M = L/b and N = L/a. The discrete time-frequency space is denoted by

Λ = Z M × Z N . For any x ∈ C L , its DGT V g g g ∈ ℓ 2 (Λ) = C M×N is defined by V g g g x[m, n] = ⟨x, g g g mn ⟩ = L-1 ∑ ℓ=0 x[ℓ]g g g[ℓ -na]e -2iπmℓ/M , (m, n) ∈ Λ , (3) 
where the g g g mn ∈ C L , called Gabor atoms, are obtained from g g g by time-frequency translations, i.e. g g g mn [ℓ] = e 2iπmℓ/M g g g[ℓna]. For convenience we introduce the time-frequency shift operators π mn such that g g g mn = π mn g g g.

These operators satisfy the composition rule π mn π m ′ n ′ = e -2iπm ′ na/M π m+m ′ n+n ′ , and the adjoint operator reads π * mn = e -2iπmna/M π -m -n .

Given M ∈ C M×N , the corresponding Gabor multiplier is the linear operator M M : C L → C L given by

M M = V * g g g MV g g g , (4) 
where by abuse of notation we have denoted by M the operator of pointwise multiplication with M. M is called time-frequency mask, or upper symbol, of M M . When M is the indicator function of a subset Ω ⊂ Λ we will use the notation M Ω . Elementary properties of Gabor multipliers can be found in [START_REF] Feichtinger | A first survey of Gabor multipliers[END_REF]. Among these, the approach of [START_REF] Krémé | Time-frequency fading algorithms based on Gabor multipliers[END_REF] relies strongly on the fact that for real valued masks, corresponding Gabor multipliers are self-adjoint, and their spectrum can be controlled under suitable assumptions on the window g g g.

The closed form solution of the problem (1) can be expressed in terms of Gabor multipliers, and will appear as a special case of the solution given below, we thus refrain to reproduce it in this section.

Local TFF

In this section, we are interested in the estimation of a part of a locally degraded signal. We define an envelope around the masked region, and formulate LTFF from the newly defined regions.

Determination of the time-frequency regions of interest

Let ε > 0 be a fixed tolerance parameter. For each sub-region Ω p , we define the influence envelope Ω ε p of Ω p as follows:

Ω ε p = (m, n) ∈ Λ : ∃ (m ′ , n ′ ) ∈ Ω p , |⟨g g g mn , g g g m ′ n ′ ⟩| 2 ≥ ε (5) 
The set Ω ε p consists in the time-frequency points where the corresponding atoms "communicate" with those in the masked region Ω p , and therefore depends on the window g g g and the sampling parameters. Notice that

⟨g g g mn , g g g m ′ n ′ ⟩ = ⟨π * m ′ n ′ π mn g g g, g g g⟩ = e 2iπ(m-m ′ )n ′ a/M ⟨π m-m ′ n-n ′ g g g, g g g⟩ = e 2iπ(m-m ′ )n ′ a/M A g g g [m -m ′ , n -n ′ ] , (6) 
A g g g being the ambiguity function of the window g g g: A g g g [m, n] = ⟨π mn g g g, g g g⟩. Therefore the ambiguity function of the analysis window g g g is used as the selection criterion. We also denote by

∆ p = Ω ε p \Ω p , ∆ = p ∆ p , Γ = Ω\∆ (7) 
respectively the complementary region of Ω p in Ω ε p , the union of these complementary regions and the complementary region of ∆ in Ω, and Ω = Λ \ p Ω p .

We will also need the projection of the envelope Ω ε p onto the time domain, which is the interval obtained as follows:

I p = [an min (p), an max (p)], (8) 
where

n min (p) = min n | ∃m , (m, n) ∈ Ω ε p and n max (p) = max n | ∃m , (m, n) ∈ Ω ε p
are respectively the minimum and maximum time indices in the time-frequency envelope Ω ε p (we recall that a is the time sampling step, i.e. the hop size).

Local TFF formulation

Similarly to TFF, and using the above notations, we formulate local TFF as follows:

x * = arg min

x∈C L P ∑ p=1 ∥V g g g x -V g g g z z z∥ 2 ∆ p + P ∑ p=1 λ p ∥V g g g x∥ 2 Ω p + ∥V g g g x -V g g g z z z∥ 2 Γ , (9) 
In this formulation, we keep the part of the signal that is not masked (terms 1 and 3) and control the energy within each sub-region Ω p (term 2) Note that, at this point, the reconstructed signal has length L. The following resolution will make the concept of "local" more clear. By setting the gradient of the objective function in [START_REF] Smith | Introduction to Digital Filters: With Audio Applications[END_REF] equal to zero, we obtain the following linear system:

M Γ + P ∑ p=1 M ∆ p + λ p M Ω p x = M Γ + P ∑ p=1 M ∆ p z z z , (10) 
which we now approximate as a family of smaller dimensional problems. For all q = 1, . . . P, denote by 1 q the indicator function of I q . Assuming that the intervals I q are disjoint ∩ P q=1 I q = / 0, we have

x = P ∑ q=1 1 q x + 1 J x, (11) 
where 1 J the complementary of ∪ P q=1 I q . The linear system becomes (10):

∑ p ∑ q M ∆ p + λ p M Ω p 1 q + ∑ q M Γ 1 q x = ∑ p ∑ q M Ω p 1 q + ∑ q M Γ 1 q z z z
Assuming that the non-diagonal terms in the sums can be neglected, i.e. that

M ∆ p + λ p M Ω p 1 q , M Ω p 1 q
are small enough for all q ̸ = p, and M Γ 1 q are small enough for all q, we end up with

M ∆ p + λ p M Ω p x p = M Ω p z z z p , (12) 
where we have set x p = 1 p x. The operator M ∆ p + λ p M Ω p is in fact a Gabor multiplier associated to a constant mask M = 1 ∆ p + λ p 1 Ω p , where 1 ∆ p (respectively 1 Ω p ) is the indicator function of the subregion Ω p (respectively ∆ p ). If λ p > 0 for all p, then the smallest value of the mask M is strictly positive, so the mask is said to be semi-normalized 1 , which implies invertibility (see Proposition 3.7 in [START_REF] Stoeva | A survey on the unconditional convergence and the invertibility of multipliers with implementation[END_REF]). From now on, we assume that λ p > 0 for all p. The solution ( 12) is then written :

x p = M ∆ p + λ p M Ω p -1 M Ω p z z z p (13) 
Thus, for each sub-region p, the masked time domain signal is reconstructed. In this formula we have reduced the dimension of the problem. From a Gabor multiplier, initially of dimension L, we pass to a multiplier in the dimension of the masked region which is much smaller.

Experiments

We illustrate the approach on a (single) synthetic mixture of two real audio signals.We first describe the signals, but we do not recall the actions of Gabor multipliers already widely discussed in [START_REF] Krémé | Time-frequency fading algorithms based on Gabor multipliers[END_REF]. We also consider the case where P = 1, i.e. a single masked region.

Experimental setting

We consider two audio signals sampled at 8 kHz of length 16384 (about 2 seconds). The signal of interest is a car engine noise and the perturbation signal is the song of a bird. As mentioned in the previous sections, the signal of interest has a broadband spectrogram (i.e., with energy spread all over the time-frequency plane), while the perturbation signal has its energy well localized in the time-frequency plane. The Gabor transform for each of these signals is calculated with a Gauss window of length 256, the time-frequency lattice parameters are set to a = 32 and b = 512, generating a 513 × 256 time-frequency matrix. The observation is a linear combinations of these two signals, as shown in Fig 1 (left). The corresponding binary mask is on the right. The goal is to filter the bird song from the mixture. We construct the Ω ε p region as described in section 2.2.1. The value of ε here is 10 -6 . The We then restrict the frequency time plane of dimension of size 513 × 256 to 513 × 80. We solve TFF from this reduced time-frequency plane. The time domain signal to be reconstructed corresponds only to the time domain signal which is in the Ω p region and and is of length 1600 here. The closed-form solution [START_REF] Feichtinger | A first survey of Gabor multipliers[END_REF] depends on the regularization parameter λ p = λ > 0 which is adjusted using the strategy presented in [START_REF] Krémé | Filtering out time-frequency areas using Gabor multipliers[END_REF]: the optimal value of λ is chosen as the one for which the energy of the reconstructed signal in the region Ω p corresponds to a given target energy E. Here, the energy E was chosen roughly by hand. In this example, the optimal value of λ is 10 -3 . We quantitatively evaluate the quality of the reconstruction, via the source-to-distortion ratio (SDR) [START_REF] Vincent | Performance measurement in blind audio source separation[END_REF] expressed in decibel by

SDR x p , x re f p = 20log 10 ∥x re f p ∥ ∥x p -x re f p ∥ , (14) 
where x re f p is the reference signal. The right panel of Figure 2 shows the reconstruction of the part of the car engine noise signal masked by the bird song in red. We can see that on this simple example, LTFF reconstructs almost perfectly the missing part of the signal with SDR = 40 dB. This experiment shows that LTFF could lead to satisfactory reconstruction results in the case of several regions P >1. Moreover, LTFF could solve such problems in high dimension since it has fast computation time.

Ongoing work

We present a novel method for performing local time-frequency fading in this paper. Because it is limited to a neighborhood of the masked region, this method can handle longer signals. However, the obtained theoretical results are based on assumptions concerning a control on the norm of the sum of the two Gabor multipliers that we have not presented here. As part of this work, we will establish more rigorous proof results. From an experimental point of view, we have presented one example to illustrate the idea of our work. In the rest of our work, we will extend these experiments to the case where we have P > 1 regions and also to signals sampled at 44.1 kHz. We will also compare the results of reconstructions obtained with TFF as well as the computation times. The experiments will then be extended to a larger class of signals by automating the code. Finally, the combination of TFF and LTFF may result in a novel source separation method.

  Fig 2 shows the masked Ω p region (in dark yellow) as well as the Ω ε p region (in light yellow). The corresponding time interval is I p = [47 127].
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 12 Figure1. Left: Spectrogram of the mixture of the engine noise of a car (energy spread everywhere in the time-frequency plane) and of a bird "cuicui" (energy well localized -dark yellow area). Right: binary mask constructed from the spectrogram of two sources as in[START_REF] Krémé | Time-frequency fading algorithms based on Gabor multipliers[END_REF] 
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A sequence M = (M[n]) n>1 is said to be semi-normalized if there exist a and b such that 0 < a ≤ |M[n]| ≤ b < ∞ for all n ∈ N.