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ABSTRACT
For efficient analysis of non-stationary signals, such as radar, sonar, speech, music, or general audio, time-
frequency (TF) representations are required. They allow performing non-stationary filtering, ie extracting non-
stationary "components" in signals. However, ad-hoc procedures are frequently used, whose accuracy is difficult
to assess and control. In this contribution, we are interested in such time-frequency filtering, which we define
as follows: the attenuation of a given, small region Ω in the time-frequency plane. This problem, addressed in a
recent publication, is referred to as time-frequency fading (TFF).
We address a local version of TFF, called LTFF, that only exploits a neighborhood Ω of the time-frequency
region of interest Ω, which is supposed to be much smaller than the full time-frequency domain. This problem
will be referred to as local time-frequency fading. We propose a method for determining such a neighborhood Ω.
The local TFF problem is then solved using a variational approach, that minimizes a suitable quadratic objective
function. Thus, there is a closed-form solution involving Gabor multipliers.
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1 INTRODUCTION
Filtering is one of the fundamental techniques in signal processing. By filtering one often means linear time
invariant (LTI) filtering, which has a simple characterization in time and/or frequency domains. We refer to [1]
for an in-depth description, in view of audio applications. Sticking to linear filters, time varying (LTV) filtering
is also fundamental, as most devices actually feature time variations. LTV filters form a much wider class than
LTI filters, and may be represented in several different ways, for example as matrices as described in [1] for
digital signals, or pseudo-differential operators in the mathematical literature [2] in the analog case. Among
LTV filters, filters that can be efficiently represented in a joint time-frequency domain have received significant
interest in the last two decades. These include filters whose spectral characteristics (frequency response) vary
slowly as a function of time, or filters designed to enhance, attenuate or cancel out components which possess
specific localization properties in joint time-frequency domain (e.g., chirps with prescribed or parameterized fre-
quency modulation laws, transient oscillatory waves). Several formulations for non-stationary Wiener filtering
have been proposed, that rely on time-frequency representations such as the spectrogram [3] or Wigner distribu-
tion [4, 5, 6]. These generally rely on pointwise multiplication in the time-frequency domain prior to inversion,
very much in the spirit of classical LTI filtering. Filtering in the time-frequency domain has been used for a
wide range of applications including decision, detection, or time-frequency segmentation.

Time-frequency filtering exploits the ability of some time-frequency representations to efficiently represent
signals of interest. Limited to linear transforms, usual choices are Gabor transform [7] or Short Time Fourier
Transform [8], on which we will focus in the present paper, or wavelet transform, constant Q transform or S
transform, the choice often depending on the application domain.

In this paper, we discuss a local version of time-frequency fading (TFF) [9], which is a type of time-
frequency filter design. Time-frequency fading is the process of restoring a signal that has been degraded by
an additive disturbance, in the case where the latter is well localized in a specific region of the time-frequency
domain. We previously investigated and proposed a rigorous formulation of TFF in our previous paper [9]. We
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solved it and proposed several algorithms that make use of random projection techniques to enable numerical
scaling. TFF, on the other hand, formulates the problem in the signal dimension. As a result, despite the fact
that dimension reduction methods have been used to approximate the solution, TFF remains difficult to apply
to long signals, such as those sampled at 44100 Hz. Here, we rely on the formulation proposed in and take
advantage of the support reduction. In section 2 we briefly recall the time-frequency fading problem, and we
introduce and formulate local TFF. In section 3, we illustrate LTFF on an example of signal mixing. Section 4
presents the ongoing work. An extended version of this work is under preparation.

2 GLOBAL AND LOCAL TIME-FREQUENCY FADING
2.1 TFF and notations
The Time-Frequency Fading (TFF) problem introduced in [9] may be seen as a time-frequency analogue of a
stop-band filter design problem, where one tries to attenuate a set of prescribed regions Ωp ⊂ Λ of the time-
frequency plane Λ, with prescribed gains. This is achieved via a variational formulation, of the form

x∗ = arg min
x∈CL

∥Vgggx−Vgggzzz∥2
Ω
+

P

∑
p=1

λp∥Vgggx∥2
Ωp

, (1)

where zzz ∈ CL is the input signal, Vggg : CL → Λ is a linear time-frequency transform (see below for notations),
Ωp ⊂ Λ, p = 1, . . .P are the regions of interest in the time-frequency plane Λ, and the λp ∈ R∗

+ are parameters
that control the tradeoff between the various terms in (1). ∥·∥ is the usual Frobenius norm on the time-frequency
space Λ, and ∥ · ∥Ω denotes its restriction to a given region Ω.

The quadratic nature of the objective function naturally leads to a linear system, whose closed-form solution
reads (see [9] for details)

x∗ = zzz−

(
I+

P

∑
p=1

(1−λp)MΩp

)−1 p

∑
p=1

λpMΩpzzz , (2)

which can involve high dimensional linear system for large signals. In [9], dimension reduction techniques were
proposed to handle the problem and use a spectral approach that exploits time-frequency localization properties.
However, the formulation of [9] involves a L-dimensional problem, which may involve regions of the time-
frequency plane quite far away from Ω and do not significantly influence the solution.

The approach can be developed for any linear time-frequency transform, but in the present paper we will
limit to the discrete Gabor transform (DGT) defined as follows (we refer to [9] for more details and notations,
and to [10, 11] for numerical implementations we use in this work). Let a,b be two divisors of L, and set
M = L/b and N = L/a. The discrete time-frequency space is denoted by Λ =ZM ×ZN . For any x ∈CL, its DGT
Vggg ∈ ℓ2(Λ) = CM×N is defined by

Vgggx[m,n] = ⟨x,gggmn⟩=
L−1

∑
ℓ=0

x[ℓ]ggg[ℓ−na]e−2iπmℓ/M , (m,n) ∈ Λ , (3)

where the gggmn ∈ CL, called Gabor atoms, are obtained from ggg by time-frequency translations, i.e. gggmn[ℓ] =
e2iπmℓ/Mggg[ℓ− na]. For convenience we introduce the time-frequency shift operators πmn such that gggmn = πmnggg.
These operators satisfy the composition rule πmnπm′n′ = e−2iπm′na/Mπm+m′ n+n′ , and the adjoint operator reads
π∗

mn = e−2iπmna/Mπ−m −n.

Given M ∈ CM×N , the corresponding Gabor multiplier is the linear operator MM : CL → CL given by

MM = V ∗
ggg MVggg , (4)

where by abuse of notation we have denoted by M the operator of pointwise multiplication with M. M is
called time-frequency mask, or upper symbol, of MM. When M is the indicator function of a subset Ω ⊂ Λ

we will use the notation MΩ. Elementary properties of Gabor multipliers can be found in [12]. Among these,
the approach of [9] relies strongly on the fact that for real valued masks, corresponding Gabor multipliers are
self-adjoint, and their spectrum can be controlled under suitable assumptions on the window ggg.



The closed form solution of the problem (1) can be expressed in terms of Gabor multipliers, and will appear
as a special case of the solution given below, we thus refrain to reproduce it in this section.

2.2 Local TFF
In this section, we are interested in the estimation of a part of a locally degraded signal. We define an

envelope around the masked region, and formulate LTFF from the newly defined regions.

2.2.1 Determination of the time-frequency regions of interest
Let ε > 0 be a fixed tolerance parameter. For each sub-region Ωp, we define the influence envelope Ωε

p of Ωp
as follows:

Ω
ε
p =

{
(m,n) ∈ Λ : ∃ (m′,n′) ∈ Ωp, |⟨gggmn,gggm′n′⟩|2 ≥ ε

}
(5)

The set Ωε
p consists in the time-frequency points where the corresponding atoms "communicate" with those in

the masked region Ωp, and therefore depends on the window ggg and the sampling parameters. Notice that

⟨gggmn,gggm′n′⟩= ⟨π∗
m′n′πmnggg,ggg⟩= e2iπ(m−m′)n′a/M⟨πm−m′ n−n′ggg,ggg⟩= e2iπ(m−m′)n′a/MAggg[m−m′,n−n′] , (6)

Aggg being the ambiguity function of the window ggg: Aggg[m,n] = ⟨πmnggg,ggg⟩. Therefore the ambiguity function of
the analysis window ggg is used as the selection criterion. We also denote by

∆p = Ω
ε
p\Ωp , ∆ =

⋃
p

∆p , Γ = Ω\∆ (7)

respectively the complementary region of Ωp in Ωε
p, the union of these complementary regions and the comple-

mentary region of ∆ in Ω, and Ω = Λ\
(⋃

p Ωp
)
.

We will also need the projection of the envelope Ωε
p onto the time domain, which is the interval obtained

as follows:
Ip = [anmin(p),anmax(p)], (8)

where nmin(p) = min
{

n | ∃m ,(m,n) ∈ Ωε
p

}
and nmax(p) = max

{
n | ∃m ,(m,n) ∈ Ωε

p

}
are respectively the mini-

mum and maximum time indices in the time-frequency envelope Ωε
p (we recall that a is the time sampling step,

i.e. the hop size).

2.2.2 Local TFF formulation
Similarly to TFF, and using the above notations, we formulate local TFF as follows:

x∗ = arg min
x∈CL

P

∑
p=1

∥Vgggx−Vgggzzz∥2
∆p

+
P

∑
p=1

λp∥Vgggx∥2
Ωp

+∥Vgggx−Vgggzzz∥2
Γ , (9)

In this formulation, we keep the part of the signal that is not masked (terms 1 and 3) and control the energy
within each sub-region Ωp (term 2) Note that, at this point, the reconstructed signal has length L. The following
resolution will make the concept of "local" more clear. By setting the gradient of the objective function in (1)
equal to zero, we obtain the following linear system:[

MΓ +
P

∑
p=1

(
M∆p +λpMΩp

)]
x =

[
MΓ +

P

∑
p=1

M∆p

]
zzz , (10)

which we now approximate as a family of smaller dimensional problems.
For all q = 1, . . .P, denote by 1q the indicator function of Iq. Assuming that the intervals Iq are disjoint

∩P
q=1Iq = /0, we have

x =
P

∑
q=1

1qx+1Jx, (11)



where 1J the complementary of ∪P
q=1Iq. The linear system becomes (10):[

∑
p

∑
q

(
M∆p +λpMΩp

)
1q +∑

q
MΓ1q

]
x =

[
∑
p

∑
q
MΩp1q +∑

q
MΓ1q

]
zzz

Assuming that the non-diagonal terms in the sums can be neglected, i.e. that∥∥(M∆p +λpMΩp

)
1q
∥∥ , ∥∥MΩp1q

∥∥
are small enough for all q ̸= p, and ∥∥MΓ1q

∥∥
are small enough for all q, we end up with[

M∆p +λpMΩp

]
xp =MΩpzzzp , (12)

where we have set xp = 1px. The operator M∆p +λpMΩp is in fact a Gabor multiplier associated to a constant
mask M = 1∆p +λp1Ωp , where 1∆p (respectively 1Ωp ) is the indicator function of the subregion Ωp (respectively
∆p). If λp > 0 for all p, then the smallest value of the mask M is strictly positive, so the mask is said to
be semi-normalized 1, which implies invertibility (see Proposition 3.7 in [13]). From now on, we assume that
λp > 0 for all p. The solution (12) is then written :

xp =
[
M∆p +λpMΩp

]−1
MΩpzzzp (13)

Thus, for each sub-region p, the masked time domain signal is reconstructed. In this formula we have re-
duced the dimension of the problem. From a Gabor multiplier, initially of dimension L, we pass to a multiplier
in the dimension of the masked region which is much smaller.

3 Experiments
We illustrate the approach on a (single) synthetic mixture of two real audio signals.We first describe the signals,
but we do not recall the actions of Gabor multipliers already widely discussed in [9]. We also consider the case
where P = 1, i.e. a single masked region.

3.1 Experimental setting
We consider two audio signals sampled at 8 kHz of length 16384 (about 2 seconds). The signal of interest is
a car engine noise and the perturbation signal is the song of a bird. As mentioned in the previous sections, the
signal of interest has a broadband spectrogram (i.e., with energy spread all over the time-frequency plane), while
the perturbation signal has its energy well localized in the time-frequency plane. The Gabor transform for each
of these signals is calculated with a Gauss window of length 256, the time-frequency lattice parameters are set
to a = 32 and b = 512, generating a 513×256 time-frequency matrix. The observation is a linear combinations
of these two signals, as shown in Fig 1 (left). The corresponding binary mask is on the right. The goal is to
filter the bird song from the mixture. We construct the Ωε

p region as described in section 2.2.1. The value of
ε here is 10−6. The Fig 2 shows the masked Ωp region (in dark yellow) as well as the Ωε

p region (in light
yellow). The corresponding time interval is Ip = [47 127].

We then restrict the frequency time plane of dimension of size 513 × 256 to 513 × 80. We solve TFF
from this reduced time-frequency plane. The time domain signal to be reconstructed corresponds only to the
time domain signal which is in the Ωp region and and is of length 1600 here. The closed-form solution (12)
depends on the regularization parameter λp = λ > 0 which is adjusted using the strategy presented in [14]: the
optimal value of λ is chosen as the one for which the energy of the reconstructed signal in the region Ωp
corresponds to a given target energy E. Here, the energy E was chosen roughly by hand. In this example, the
optimal value of λ is 10−3.

1A sequence M = (M[n])n>1 is said to be semi-normalized if there exist a and b such that 0 < a ≤ |M[n]| ≤ b < ∞ for all n ∈ N.
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Figure 1. Left: Spectrogram of the mixture of the engine noise of a car (energy spread everywhere in the
time-frequency plane) and of a bird "cuicui" (energy well localized - dark yellow area). Right: binary mask
constructed from the spectrogram of two sources as in [9]

0 0.5 1 1.5 2

Time (s)

0

500

1000

1500

2000

2500

3000

3500

4000

F
re

q
u
en

cy
 (

H
z)

0.65 0.7 0.75

Time (s)

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

M
ag

n
it

u
d
e

original

reconstructed

Figure 2. Left: Illustration of Ωp and Ωε
p regions in the case of a single region. The value of e is 10−6. Right:

a zoom on reconstruction of the part of the signal of interest masked by the bird song.

We quantitatively evaluate the quality of the reconstruction, via the source-to-distortion ratio (SDR) [15]
expressed in decibel by

SDR
(
xp,xre f

p
)
= 20log10

(
∥xre f

p ∥
∥xp −xre f

p ∥

)
, (14)

where xre f
p is the reference signal. The right panel of Figure 2 shows the reconstruction of the part of the car

engine noise signal masked by the bird song in red. We can see that on this simple example, LTFF reconstructs
almost perfectly the missing part of the signal with SDR = 40 dB. This experiment shows that LTFF could
lead to satisfactory reconstruction results in the case of several regions P >1. Moreover, LTFF could solve such
problems in high dimension since it has fast computation time.

4 Ongoing work
We present a novel method for performing local time-frequency fading in this paper. Because it is limited to a
neighborhood of the masked region, this method can handle longer signals. However, the obtained theoretical



results are based on assumptions concerning a control on the norm of the sum of the two Gabor multipliers
that we have not presented here. As part of this work, we will establish more rigorous proof results. From an
experimental point of view, we have presented one example to illustrate the idea of our work. In the rest of our
work, we will extend these experiments to the case where we have P > 1 regions and also to signals sampled
at 44.1 kHz. We will also compare the results of reconstructions obtained with TFF as well as the computation
times. The experiments will then be extended to a larger class of signals by automating the code. Finally, the
combination of TFF and LTFF may result in a novel source separation method.
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