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Abstract

This note shows that Model Free Control strategy is simply a PI control strategy. The note
shows also the influence of the estimated values of the plant gain upon the performance of
the control system.
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discrete-time

List of Acronyms

MFC - Model Free Control
PI - Proportional + Integral Controller
YK - Youla Kucera

1. Continuous Time Case

In MFC [4] it is assumed that the output of the plant to be controlled an be expressed
as:

y′(t) = F (t) + αu(t) (1)

where u(t)is the plant input, y(t) is the output and F(t) is a disturbance. In fact, it is
assumed that the output of the plant can be represented by an integrator with the gain α
subject to an input disturbance F (t). In MFC papers [..] F (t) is termed ”ultra local model”
of the plant. However F (t) is not a model of the plant because thje dependence on u(t) is
not taken into account. In MFC, F(t) is theoretically estimated through

F̂ (t) = y′(t)− αu(t) (2)

and the theoretical control law is:

u(t) = −[F̂ (t)− y∗′(t) +Kp(y(t)− y∗(t))]g (3)

where y∗ is the reference and g = 1/α.
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2. Discrete time case

Unfortunately in practice y′(t) can not be exactly obtained and one should use time
discretization. In addition the gain α is not exactly known and should be replaced by its
estimation. Why it is relatively easy to get an order of magnitude of α, getting a very
precise estimation is difficult without using plant model identification techniques. Therefore
one has to take into account for building the control, that one has just an estimation of α
which will be denoted α̂.
The plant equation becomes in discrete time [1] :

y(t+ 1) = y(t) + F (t+ 1) + αu(t) (4)

where F in discrete time is the continuous time F multiplied by Ts ( = FTs) where Ts is the
sampling period. Eq. (2) becomes in discrete time:

F̂ (t) = y(t)− y(t− 1)− α̂u(t− 1) = (1− q−1)y(t)− α̂q−1u(t) (5)

This is just a Youla - Kucera disturbance observer used in many control schemes and in
particular in adapive regulation (see [5], [2]). The control law given in Eq. (3) becomes in
discrete time:

u(t) = −[F̂ (t)− (y∗(t+ 1)− y∗(t))]ĝ −Kp[y(t)− y∗(t)]ĝ (6)

where y∗ is the reference which is known one step ahead (we know at time t the value which
we want to attain at t+ 1) and ĝ = 1

α̂
. Combining Eq. (5) with Eq. (6) the diagram of the

control scheme shown in Fig. 1 is obtained.

Figure 1: Model Free Control Diagram

Taking into account Fig.1, Eq.(6) can be rewritten as:

S(q−1)u(t) = T (q−1)y∗(t+ 1)−R(q−1)y(t) (7)
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where:
S(q−1) = 1− q−1 = 1 + s1q

−1 (8)

T (q−1) = [1− (1−Kp)q
−1]ĝ = t0 + t1q

−1 (9)

R(q−1) = [1 +Kp − q−1]ĝ = r0 + r1q
−1 (10)

The controller is a digital PI controller in R-S-T form (see [3]) The corresponding equivalent
diagram is shown in Fig.2.
The poles of the closed loop are given by:

Figure 2: Model Free Control Diagram - R-S-T form.

P = AS+BR = (1−q−1)(1−q−1)+αq−1[1+Kp−q−1]ĝ = 1−[2−ĝα(1+Kp)]q
−1−(1−ĝα)q−2

(11)
where A = 1− q−1 , B = αq−1 and the transfer operator from y∗ to y is given by:

Syy∗ =
TB

P
=

[1− (1−Kp)q
−1]ĝαq−1

1− [2− ĝα(1 +Kp)]q−1 − (1− ĝα)q−2
(12)

The I/O steady state gain is given by

Syy∗(1) =
KP ĝα

2− ĝα(2 +Kp)
(13)

For ĝ = 1
α
the I/O transfer operator has a unit steady state gain. Of course it is possible to

obtain a unit gain also for α̂ ̸= α by taking T (q−1) = R(q−1) or T = R(1).

In the case ĝ = 1
α
the poles of the closed lop are given by:

P = 1− (1−Kp)q
−1 ; for ĝ = 1/α (14)

the stability of the closed loop is assured for 0 < Kp < 2 (or 0 < Kp < 1 if one wants a pole
with an a periodic response) while this is not true when α̂ ̸= α. In this later case Kp has to
be chosen such the P given in Eq.(11) has its roots inside the unit circle (one can use well
known stability criteria). It is also possible solving a Bezout equation to find the values of
the coefficients of R(q−1) for given desired closed loop poles [3].
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