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A detector-independent quality score for cell
segmentation without ground truth in 3D live

fluorescence microscopy
Jules Vanaret, Victoria Dupuis, Pierre-François Lenne, Frédéric Richard, Sham Tlili, Philippe Roudot

Abstract—Deep-learning techniques have enabled a break-
through in the robustness and execution time of cell segmentation
algorithms for fluorescence microscopy datasets. However, the
heterogeneity, dimensionality and ever-growing size of 3D+time
datasets challenge the evaluation of measurements. Here we
propose an estimator of cell segmentation accuracy that is
detector-independent and does not need any ground-truth nor
priors on object appearance. To assign a segmentation quality
score, our method learns the dynamic parameters of each
cell to detect inconsistencies in local displacements induced
by segmentation errors. Using simulations that approximate
the dynamics of cellular aggregates, we demonstrate the score
ability to rank the performance of detectors up to 40% of false
positives. We evaluated our method on two experimental datasets
presenting contrasting scenarios in density and dynamics (stem
cells nuclei in organoids and carcinoma cells in a collagen matrix)
using two state-of-the-art deep-learning-based segmentation tools
(Stardist3D and Cellpose). Our score is able to appropriately
rank their performances as reflected by accuracy (centroid
matching) and precision (segmentation overlap).

Index Terms—Image segmentation, Error analysis, Biological
cells, Microscopy, Fluorescence, Stochastic processes, Particle
tracking, Dynamics, Image motion analysis, Biophysics.

I. INTRODUCTION

RECENT progress in fluorescence microscopy has enabled
high-resolution volumetric imaging of complete cellular

systems in their physiological context with minimal photo-
toxicity, fast sampling, and near-isotropic resolution [1]–[3].
Cell detection methods based on deep learning have been
a breakthrough toward the automated quantification of such
terascale datasets where the shape and textures of objects of
interest can vary widely depending on the cell type, the mi-
croscope and the environment [4]–[6]. However, their perfor-
mances are still limited by the difficult annotation of cellular
heterogeneity in complex three-dimensional datasets as well as
inhomogeneous signal across the volume. Furthermore, their
performances can be challenging to predict, as even recent
and widely used approaches output different results on the
same sample (Figure 1a,b). While an unbiased evaluation and
comparison of those different tools is already a difficult task
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in two dimensions, the task is virtually impossible in 3D+time
sequences as data size increases quadratically compared to a
2D segmentation.

In this paper, we propose a novel score estimator to evaluate
the accuracy of cell segmentation tools in live cell fluorescence
microscopy imaging. In a nutshell, our score exploits the
variation in temporal consistency to predict detection errors
while remaining fully independent from the type of detec-
tor used (Figure 1c). The idea behind the approach comes
from the observation that segmentation errors provide a time-
varying response that is different from the usual dynamics.
For example a cell cluster can be mis-detected as a single
cell, a cell mis-detected as two cells, and a false positive
detected in the background. To measure those inconsistencies,
we first infer the parameters of cellular dynamics for each
trajectory hypothesis, then, we evaluate for each detection the
stability of the optimal set of trajectory by combining discrete
optimization and a statistical resampling of the trajectory-to-
detection likelihood. This study builds upon our previous work
on trackability inference in the context of diffraction limited
particles [7] with key differences: the detection is here a much
more challenging task with a broader variety of error types
and our approach focuses here on detection quality rather than
trajectory.

The paper is organized as follows. We first provide a
brief review of quality scores that have been proposed to
evaluate detection algorithms [8]–[10]. To our knowledge, no
approaches have been proposed for a comparison of detection
results without ground truth or a priori knowledge on the
object structure. Second, we present the design of our score,
our stochastic motion modeling for cellular dynamics as well
as the combinatorial optimization framework for multiple
hypothesis tracking. Third, we study the behavior of our
estimator on simulated data, specifically its robustness toward
false positives, false negatives as well as error-induced split
and merged cells. Fourth, we then demonstrate the perfor-
mances of our score in predicting local segmentation errors,
and overall F1 score on experimental datasets: on two 3D
datasets (a challenging two-photon 3D live imaging of nuclei
in organoid [11] specimens and a reference data of human
breast carcinoma cells from the Cell Tracking Challenge [12]),
we show that our score is able to rank the performances of
both pre-trained and trained cell detectors accurately. Our data
also suggest that the heterogeneity of the underlying cellular
dynamics may impact ranking accuracy. We finally discuss
how the idea of our approach can be further generalized.
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Fig. 1. The density and heterogeneity of cellular objects challenge the comparison and validation of leading-edge segmentation approaches based on deep
neural networks. (a) 3D volumetric rendering of a gastruloid imaged with two-photon microscopy along with a maximum intensity projection (MIP) rendering
of a region of interest (ROI) and its associated segmentation. (b) Two ROIs rendered as orthogonal MIPs showing different artifacts ranging from the detection
of nuclei clusters as a single nucleus (under-segmentation) to false negatives. (c) Our accuracy score uses temporal consistency to evaluate the likelihood of
errors. Top: Without segmentation errors, the detector provides a single measurement compatible with the cell dynamics. Bottom: A segmentation error, here
a split, will result in two measurements with ambiguous associations to the trajectory.

II. RELATED WORK

A few wide-ranging studies [9], [12] have used manually-
annotated data to analyze the performances of multiple cell
segmentation algorithms. The metrics used for comparison
typically distinguishes between the ability to segment a cell,
using a metric of the overlap between estimated and annotated
cell mask, and the ability to detect a cell, using a measure
of object instance matching accuracy. On the one hand, a
study focusing on cell morphogenesis will need a precise
matching of the measured contour with the ground truth. On
the other hand, a study analyzing cell count, lineage and cycle
will require high detection accuracy against missed detection,
false positives, split and merge artifacts. Since the seminal
challenge on cell detection and tracking algorithms [12], deep
learning approaches have enabled a breakthrough in both cell
segmentation and detection. In their detailed and unbiased
comparison of the capacity of conventional and deep-learning-
based approaches to measure biologically relevant metric,
Caicedo and colleagues [9] have shown that deep learning
approaches are indeed performing better overall. However,
their results also show that benchmarking techniques remain
more important than ever. For example, while the count of
false negatives obtained with U-net [4] is almost twice lower
than with conventional adaptive thresholding approaches, the
amount of cells artificially split by the neural network is
higher than a threshold-based approach and a random-forest-
based classifier. They also show that the performances of
deep neural networks can vary significantly from one network
structure to another or depending on the amount of annotations

available. Importantly, while the relative performance of a
conventional approach with respect to a specific task can be
intuitively interpreted from the parameters and features that
are used, the best purpose of a neural network can only be
done with comprehensive benchmarking of its breakpoint. As
such, comparing detectors remains a critical task in the routine
use of cell segmenter.

Whether it is for benchmarking or training, annotation in 2D
images is a time consuming process that becomes even longer,
challenging and bias-prone in datasets of larger dimension.
First, each Z plane and time point must be annotated to match
the degree of accuracy in the entire volume. For example, in
[9], authors measure 50 hours to annotate 11500 objects in 2D
static images and efficiently train the network. Reproducing
this process for a 3D dataset (with typically 5-10 2D Z-planes
per object) would take up to 500 hours, even when ignoring
the need to annotate all time points. Second, the 3D nature
is difficult to interpret for the user. Correspondences must be
made between Z-plane and time point, a non-trivial task when
both images are not seen at the same time. 3D rendering
is also prone to bias, as two different views may not result
in the same visual interpretations [13]. To overcome those
challenges, several papers have been focusing on improving
annotation techniques for multidimensional datasets. In [14],
authors propose to solve an inverse problem to recreate a
3D annotated volume from a collection of 2D annotations
on maximum intensity projections. However, this approach is
designed for sparse objects (e.g. vessels images) and poorly
suited for the segmentation of the cluttered scene of cellular
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aggregates. In [15], authors experiment with the eye-tracking
capacity of a virtual reality headset to annotate cell location
and displacement from mere observation. While the tracking is
seamless and robust to wavering attention by the annotator, this
remains impractical for a large number of cells and ill-adapted
to very dense scenarios. As such, there is to our knowledge
no efficient solution to the annotation of 3D+time dataset, a
challenge when comparing various approaches.

Considering the ever-growing amount of data produced by
next generation microscopy and its multidimensional nature,
a few approaches have been developed for annotation-free
quality control through the use of prior information on the
object shape. First, goodness-of-fit analysis is routinely used
to evaluate detection quality when the objects follow a simple
template. For example, in a study on high-throughput super-
resolution imaging, Beghin and colleagues [8] use chi-square
maps to control point-source detection across all the imaged
wells. Since the cell intensity does not follow such a strict
diffraction-limited model, those approaches cannot be used in
our scenario. Fehri et al [16] proposed to alleviate this limita-
tion with a graph-based criteria that characterize contour detec-
tion quality through a criteria on object intensity smoothness
and object-to-background transition. More recently, Audelan
et al [10] proposed a probabilistic approach score for the
validation of generic segmentation tools based on the same
intensity-base assumptions. However, those quality scores are
only designed to evaluate the precision of the segmented
contour as opposed to the accuracy of cell detection, a funda-
mental aspect of quantitative cell biology. More importantly,
all those approaches make assumptions on object appearances
that may not hold in experimental acquisition and especially
in the challenging case of interest: low signal-to-noise ratio
can corrupt intensity and blur the line between background
and object, high scattering can modify this intensity across
the object itself and low optical section typically makes
the evaluation of contour quality more difficult in the axial
orientation. To tackle those limitations, our contributions in
the paper focus on a detector-independent quality score that
makes no assumption on the object appearance, but rather on
its dynamics. In particular, we focus on the capacity of this
score to discriminate between false positive, negative, merging
and splitting events. To our knowledge, this approach and the
study of its performance is original and will hopefully pave
the way to further investigation in this field.

III. METHODS

Our approach aims at detecting segmentation errors through
the dynamic footprint of objects’ dynamics. In this section,
we first present the framework of Bayesian filtering to learn
motion parameters, then we explain how we exploit ambigui-
ties in local trajectories-to-measurement associations to detect
potential errors.

A. Inferring motion parameters

We use the Bayesian filtering framework to learn the parame-
ters of each object’s dynamics in a temporally greedy fashion.
In this formalism, the state of an object at frame t ∈ N is

represented by xt ∈ RN , with N the number of state variables
in our model. For example,

xt = (x(t), y(t), z(t), ẋ(t), ẏ(t), ż(t)) (1)

can be used to model the state of a point-like particle in
3D moving in a directed fashion. Under the Markovian chain
hypothesis that xt+1 can be determined exclusively from xt,
one can propose a dynamical model f : RN ×N→ RN for xt
known up to some precision represented by wt ∈ RN defined
as a realization of a random variable that represent the model
(or process) noise:

xt+1 = f(xt, t) + wt. (2)

wt could represent deviations from the reality of an over-
simplistic model, or real stochastic terms in the equation of
the dynamics, like Langevin forces [17]. The complete state
variable xt is hidden and information about the object can
only be obtained via the measurement of variable zt ∈ RM ,
with M ≤ N (e.g position but not velocity in the example
above). The process of measurement is modeled by a function
h : RN × N→ RN corrupted by vt ∈ RM defined as a
realization of a random variable modeling a measurement
noise such that:

zt = h(xt, t) + vt. (3)

In biological applications, vt could represent measurement
errors due to optical limitations (e.g particles below the diffrac-
tion limit appearing as point-spread functions) or systematic
errors in detection algorithms.

Considering that the prior probability density function
(PDF) p(xt+1|z1:t), where z1:t denotes all measurements of
a single object up to time t, is known, the Bayesian filtering
equation provides the posterior PDF p(xt+1|z1:t+1), with:

p(xt+1|z1:t+1) ∝ p(zt+1|xt+1)

∫
p(xt+1|xt)p(xt|z1:t)dxt

(4)
In a multiple unlabeled target tracking (MTT) framework, a

common approximation consists in iteratively associating each
measurement zt to its most likely state xt.

Simplifying assumptions are often made to make the pos-
terior PDF tractable [18]. Notably the models f and h for
the dynamics and measurement are assumed to be linear, i.e
f(xt, t) = Fxt and h(xt, t) = Hxt, and the noises variables
wt and vt are assumed to be sampled from Gaussian laws.
In this case, p(xt+1|z1:t) and p(xt+1|z1:t+1) are normally
distributed too. Kalman filters give an optimal [19] estimation
of the parameters of the dynamics by providing a recurrent
formula to compute the prior and the posterior PDFs at each
frame [20]. Kalman filters can be implemented efficiently for
thousands of objects in parallel, as is routinely the case in
biological imaging, e.g endocytic events, microtubule poly-
merization at the molecular level and developing embryos at
the cellular level.

B. Detecting motion inconsistencies

One of the key challenges we face in inferring ambiguities
is that a measurement with a lower trajectory-to-measurement
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likelihood does not necessarily mean that the segmentation
is false (if the cell changes shape for example). In order
to assess the presence of false positive, merging or splitting
errors (leaving isolated false negative aside for now), we must
estimate the likelihood of association between a measurements
and neighboring trajectories and test if the optimal solution is
unique, i.e. if other local combinations have a significantly
lower likelihood. In theory, this would require the filtering
of every possible sequence of measurements, which would
grow exponentially even with efficient pruning of hypotheses.
As such, similarly to MTT approaches, the comparison is
carried out on a per-frame basis. We iteratively solve a one-to-
one bipartite graph assignment problem between current track
segment ends at frame t and detections at frame t+ 1 through
the resolution of a linear assignment problem:

argmin
aij

∑
i∈Ω,j∈Dt+1

cijaij ,

s.t
∑
i∈Ω

aij = 1,
∑

j∈Dt+1

aij = 1
(5)

with Ω the current set of track segments ends, Dt+1 the
set of detections in frame t + 1, aij ∈ {0, 1} denotes
the assignment of track segment end i to detection j (1 if
the link is made, 0 otherwise), and the cost of association
cij is the trajectory-to-measurement negative log likelihood
cij = − log p(zit+1|x

j
t+1). The constraints enforce the one-to-

one linking condition in the bipartite graph. In a conventional
tracking framework, track segment creation and termination
are considered by adding virtual nodes in the bipartite graph,
and a gating parameter forces the termination of trajectories
that have only a low likelihood of association between trajec-
tory and detection.
Two modifications must be made to allow for the inference
of detection errors. First, we need to detect if other spurious
or missing detections create ambiguities in the graph of
association. The problem is convex and the global optimum
can be reached exactly using linear programming without
the possibility for error inference. In order to detect ambi-
guities in track-to-detections associations, we resample the
predicted state from the PDF p(xit+1|zi1:t) and the new linking
assignments gives us a direct way to evaluate locally the
stability of the optimal solution. Another modification lies in
the gating parameters used to explore new associations. While
tracking approaches use the motion prediction to accept or
reject measurements into the optimization problem, we need
to explore the measurement candidates in an area correspond-
ing to possible measurement errors, including merging and
splitting which may be larger than the area defined by motion
only. Thus, we use a search radius SR that is both bigger than
the prediction error dpred, provided by the covariance of the
innovation [20] and segmentation error derr. Similarly, SR
should be smaller than the average distance between particles
d0 to ensure that our score does not measure ambiguities from
linking a particle to a track it does not belong to. As a result
we chose to set SR to an intermediate scale given by the
geometric mean of the upper bound d0 and of whichever scale

Fig. 2. Our evaluation score uses Monte Carlo resampling of the prior
distribution associated with each current track end to measure the instability
of the optimal linking previously chosen.

is largest between dpred and derr

SR ∼
√

max (derr, dpred) · d0 (6)

The principle behind our evaluation score is shown on
Figure 2. We denote T ij

t our stability score for the given
optimal link a∗ij made between frames t and t+ 1, given by

T ij
t =

1

Ns

Ns∑
n=1

[
a∗ij = anij

]
, (7)

where we perform Ns Monte Carlo resamplings, anij is the
newly computed assignment during the n-th resampling, and
[·] are Iverson brackets, which equal 1 when the proposition
evaluated is true. As such, our local stability score is defined as
the ratio between the number of times a link has remained un-
changed after resampling and the total number of resamplings.
A lower value of the score T ij

t reflects a larger instability in the
optimal assignment. As such, a merged, split and false positive
detection will create an additional detection candidate that will
create an ambiguity captured by the score. While the present
work does not model the case of an isolated false negative,
our results show that this simple approach can already capture
a large array of detection errors. In the experiments, we set
Ns = 100.

C. Implementation

We based our implementation on the well-established open-
source tracking software u-track [7], [18] to take advantage
of its efficient Bayesian-filtering framework. This software
has been used to track morphologically and dynamically
diverse cellular structures. Its flexibility allows the modeling
of multiple types of states and associated cellular dynamics in
parallel, e.g piecewise Brownian and diffusive dynamics as can
be observed with microtubules. Initialization of the Kalman
filter parameters is tackled via a forward-backward tracking
scheme.

IV. EVALUATION METRICS

When comparing detections, having a ground-truth allows one
to precisely quantify which true objects have been detected
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(TP), and which ones have been missed (FN) or correspond
to false detections (FP). The F1 score, also called the Dice
score, is a popular choice for a universal score taking all error
types into consideration [9]. It is defined as the harmonic mean
of precision and recall, and reads

F1 =
2TP

2TP + FN + FP
. (8)

Note that it is monotonously related to the accuracy metric.
If an object can be represented by a single point, e.g if it
is point-like by nature or if its centroid gathers most of its
positional information, these quantities are computed in a one-
to-one assignment framework, in which a detection is consider
a TP if it is sufficiently close (up to a threshold distance τc)
to a point in the ground-truth. We will call this metric the
centroid-based F1 score F1c (τc). Points that are not matched
in the detected and ground-truth datasets are considered FPs
and TPs respectively. When objects are detected as volumes as
opposed to points, they can be made of several pixels/voxels
or be represented by enclosing volumes (e.g bounding boxes).
The correspondence between two individual objects can be
assessed by computing the Intersection over Union score from
their volume

IoU =
VD ∩ VGT

VD ∪ VGT
(9)

with VD and VE the volumes defined by a detected and
a ground-truth object respectively. The F1 score can then
be computed, in which case a detected object is considered
matched to a ground-truth object (and thus a TP) if their IoU
is above a certain threshold τIoU (usually above 0.5). This is
again determined in a one-to-one assignment framework. We
will call this metric the IoU-based F1 score F1IoU (τIoU ).

V. VALIDATION ON SYNTHETIC DATA

Here we want to measure the performances of the detection
quality score in a variety of scenarios to establish its capac-
ities and breaking points. Since our method relies strongly
on dynamic information and is dedicated to cell or nuclei
segmentation, we use simulations that reproduce the motions
present in cellular aggregates. We then use these simulations to
test the robustness of our quality score with respect to targeted
types of errors that reflect segmentation errors made by state-
of-the art detection algorithms.

A. Simulation

1) Model: We implemented a multi-particle simulator mim-
icking the two main dynamical features observed in real cellu-
lar movement, namely cells non-interpenetrability and active
behavior leading to heterogeneous dynamics. The framework
used is inspired by well-established and interpretable active-
particle models [17], [21]–[23], where each cell is represented
by a point-like particle subject to forces of different micro-
scopic origins. This framework has been successfully used
to recreate many complex biological phenomena, like cell-
sorting, convergent extension, or active cell jamming [24].
Despite similarity, the notations that follow for acceleration
and forces are not related to the stochastic filtering notations

introduced in the previous section. We nevertheless elected
to keep the standard notations for the sake of readability.
The equation of motion, expressing the acceleration ẍi for
a particle i of mass mi at position xi, reads

miẍi = F drag
i +

∑
j neigh.

F att−rep
ij + F rand

i , (10)

where the terms on the right-hand side are the forces ex-
erted on the particle, namely viscous drag, attraction-repulsion
interactions with neighboring particles, and stochastic forces
inducing active behaviors. The combination of all forces is
represented on Figure 3a.

First, the particles are subject to a viscous drag force
due to the dissipation in cell-cell junctions and in adhesion
remodeling [21], with

F drag
i = −γi

(
ẋi − 〈ẋ〉ℵi

)
, (11)

where γi is an effective friction between neighboring cells,
and 〈ẋ〉ℵi is the ensemble averaged velocity of the nearest
neighbors ℵi of the cell i. Second, to model cell-cell adhesion
while preventing cell inter-penetrability, we add Lennard-
Jones-type (sticky spheres) spherical forces representing short-
range repulsion and mid-range attraction. In our implementa-
tion, we approximate the typical Lennard-Jones force profile
with a piecewise linear profile inspired by [23], such that the
force exerted by a particle j at distance r of i reads

F att−rep
ij = ε (fatt(r; ri, rj)− αfrep(r; ri, rj))

fatt(r; ri, rj) = max(0, r − (ri + rj))

frep(r; ri, rj) = max(0, ri + rj − r)
(12)

where ri and rj are the radii of particles i and j, ε is
the strength of the interaction, and α is a dimensionless
parameter that can be used to tune the relative importance
of attraction and repulsion. Using a piecewise linear profile
improves stability and leads to easier initialization of the
simulation while not changing the overall dynamics. The force
is set to 0 above a distance rmax = β(ri + rj), with β a
proportionality constant ensuring that cells do not interact with
their next-nearest neighbors or with neighbors that are too far.

Finally, to drive heterogeneous dynamics and to prevent
particles from rapidly reaching a jammed configuration [22],
we add a stochastic force term following an isotropic Ornstein-
Uhlenbeck process without drift [24]–[26]. Let F rand

i,k be the
k-th component of the force (e.g k ∈ {x, y, z} in 3D). It
satisfies

dF rand
i,k (t) = −F rand

i,k (t)/τpi dt+ f0dWi(t), (13)

with persistence time τpi and f0dWi(t) a Wiener process of
variance f2

0 = 2dDi, with d the number of spatial dimensions
and Di the effective diffusion coefficient of particle i. This
leads to the magnitude of the stochastic force having a variance
of σ2 = 2dDiτ

p
i . This can be interpreted as a classical

Langevin force [17] whose direction can vary randomly in all
directions, but with added temporal persistence, resulting in
correlation of the magnitude and of the direction of the force
over timescales of order τpi . Biologically, these Langevin-
type forces can be related to the motility forces associated
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(a) (b)

Fig. 3. We use simulations to measure the performances of our detection quality score in a variety of scenarios to establish its capacities and breaking points.
(a) In our simulation, particles are subject to three forces: drag due to dissipation at cell-cell interfaces, attraction/repulsion due to non-interpenetrability of the
membranes and nuclei, and stochastic Langevin-like forces creating active motion and heterogeneous dynamics. (b) Simulated particles form dense aggregates
and show complex dynamics (left: sphere rendering, right: trajectories).

with cell protrusions [24]. Notably, it is easy to modulate the
dynamical behavior of cells by varying the individual values
of τpi : particles with low persistence times (compared to the
observation timescale) move in a diffusive fashion reminiscent
of Brownian motion (the Langevin force corresponds to the
limit τpi → 0), whereas cells with high persistence times can
move in a quasi-directed manner during timescales of order
τpi .

2) Implementation: In our data, the dynamics is over-
damped (friction dominates) such that forces exerted on a cell
effectively balance at all times. This motivates us to neglect
the inertia term in the equation of motion, which becomes a
first-order ordinary differential equation in the position of the
particles [21], [23]

ẋi = 〈ẋ〉ℵi +
1

γi

 ∑
j neigh.

F att−rep
ij + F rand

i

 . (14)

The term 〈ẋ〉ℵi is computed at t using the velocities at the
previous time point t − ∆t to keep the system of equations
separable. This would require us to choose a very low value
for ∆t, so we use Heun’s integration scheme (of order 2)
to compensate for this and keep a reasonable value of the
time step [23]. To compute the attraction-repulsion forces,
we build a k-d tree with the positions of the particles at
each time point, which is a data structure that allows for fast
lookup of nearest-neighbor relationships and computation of
pair-distances. Because these forces vanish beyond a certain
distance, the pair-distance matrix is highly-sparse and thus
can be computed efficiently. The simulator is implemented
in Python3 and multiprocessing is used with Numba to take
advantage of the separability of the system of equations at
each time point.

The simulation produces sphere-like aggregates of densely
packed particles, as shown on Figure 3b. We add a small
amount of heterogeneities in the radii of the particles by
sampling them from a normal distribution of mean d0/2 and
standard deviation d0/20, truncated at d0/2±d0/20. This leads
to particles having an average radius ri = d0/2 and separated
from their immediate neighbors by a distance d0.

3) Simulation of point-like segmentation errors: We pro-
duce typical segmentation errors like false negatives (FN),

false positives (FP), splits, and merges by corrupting the
positions of the simulated particles at each frame, as illustrated
on Figure 4. To add random FN errors at a given rate ρFN from
a simulation with N particles, we draw ρFNN particles in a
uniform manner (every random choice in this section is done
following a uniform distribution) at each frame and remove
them. For FP errors at a given rate ρFP , we choose ρFPN
positions uniformly inside the volume of the particles at which
we add fake particles. For merges at a rate ρme, we compute at
each frame all pairs of particles that are immediate neighbors
from one another, we take ρmeN pairs, remove the associated
particles and add fake particles at their barycenter. For splits
at a rate ρsp, we choose ρspN particles, and for each one,
with radius ri at position xi, we choose a random 3D vector
u of magnitude ri/2. We then remove the particle and add
two fake particles at positions xi ± u.

B. Behavior of our score under controlled conditions

We simulated N = 400 particles for a duration T = 50∆t,
with ∆t the integration time step, chosen so that the average
displacement between frames matches what we observe in our
data (illustrated on Figure 5). Particle positions were initialized
by choosing N random points uniformly in a sphere whose
radius is such that the density inside the sphere is below that
of random sphere packing. This leads to particles expanding
outwards before the aggregate settles to its equilibrium radius,
after which particles are on average at distance d0 from
their nearest neighbors (Figure 5a). The expansion phase of
the dynamics was removed in our experiments. Particles are
simulated with infinite lifetimes. To compute our score, we set
the search radius SR using our heuristic on the length scales
of the different phenomena. Here, the average displacement
ddyn ∼ d0/10, with d0 the average nearest-neighbor distance.
By design, merge and splits errors produce an average dis-
placements of d0/2 and d0/4 respectively. We thus set

SR =
√

(d0/2) · d0 ∼ 0.7d0. (15)

We first study the behavior of the score in conditions
corresponding to adding a single error type and varying its rate.
While this is an unrealistic scenario that may not reflect the
behavior of the score in experimental conditions, this approach
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Fig. 4. Illustration of the different types of errors introduced in the simulations. Each error type is shown in a low and a high error rate scenario.

allows us to unbiasedly test the strength and weaknesses of our
method. The results are shown on Figure 6a, where we plot
the evolution of our score along the centroid-based F1 score
F1c (τc) against error rates. For merge and split conditions, the
ground-truth F1c (τc) is plotted for the complete range of pos-
sible values for τc, showing that the true performance heavily
varies depending on the choice of the matching threshold. The
darker F1c curve in the middle is obtained for a value τc close
to the typical scale of the respective events. The dimmer curves
correspond to the extremal curves of F1c (τc) when τc → 0
and τc → ∞. FN and FP events do not have a typical scale
associated with them since they will always be detected in
those uniform scenarios. We show that for merges, splits and
FP errors, our score follows the trend of the true F1 score, both
in its monotonicity and in qualitative proximity to its value.
For FP errors, we notice that our score is weakly responsive
for rates below 15%. This is coherent with our previous works
[27] where tracking performances under a varying rate of FP
exhibit a similar regime transition with an inflexion point that
decreases as object velocity increase. This suggests that FP
detection performs better when the density of errors starts to
significantly impact tracking. For FN errors, the score shows
little sensitivity. This is unsurprising since an isolated false
negative will not be creating dynamic instability. As such,
while we do not have an exact match with a given accuracy
score, our score is capable of ranking those simulated detection
approaches without ground-truth in three scenarios.

To study conditions closer to realistic cases, where multiple
type of error arise jointly, we plot on Figure 6b the evolutions
of our score and of F1c for different rates of both FN and
FP errors. When corrupting point positions, we first added
FN errors before FP to ensure that no FP error added would
be canceled by a FN error. We use τc = SR to compute
F1c. We observe that the F1 score decreases significantly
with the increase of the FN and FP rates, which is consistent
with an increase in the number of errors. Again, we observe
that our score is less sensitive to FN than FP errors, as it
significantly decreases when increasing the FP rate at a given
FN rate. On the other hand, Figure 6c shows that fixing the
FP rate and varying the FN rate yields small variations of
the score. For small or intermediate values of the FP rate,
Spearman’s coefficient (defined as the Pearson correlation
coefficient applied to the set of rank of each values, instead
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Fig. 5. Distribution of frame-to-frame displacement and nearest neighbor
distance in our simulation (a) and in real experimental data (b). Vertical black
lines are centered and annotated with the average value of the distributions.

of the values themselves) between the score and true F1
indicates that the ranking property is conserved, but at high
FP rates (more than 40%), the score increases when the F1
score decreases (negative Spearman’s coefficient). Our score
reaches its descriptive limit in this extreme scenario because
no trajectories can be formed, even in-between a few time
points. As such, no ambiguities in trajectory-to-detections can
be measured. Considering the large percentage of FP and FN
required to reach its breakpoint, we are confident that our score
can properly rank detectors, especially since such a large rate
of false negatives or false positives can be detected by mere
visual inspection.

VI. APPLICATION TO EXPERIMENTAL DATA

We demonstrate the usefulness of our approach on two live
volumetric imaging datasets. The first one shows fluorescent
nuclei of mouse embryonic stem cells forming an organoid
which we imaged with two-photon microscopy, and is our
primary dataset for the application of our works. It exhibits
high cellular density and heterogeneities in both cells dynam-
ics and appearance. The second one is a reference dataset from
the Cell Tracking Challenge [12] and shows human breast car-
cinoma cells embedded in collagen. It exhibits sparser cellular
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Fig. 6. Our evaluation score responds strongly to simulated merging, splitting and false positive errors and is sensitive to false negatives in scenarios with
mixed error types. (a) When a single error type is introduced in simulated data, our score is well correlated with the F1 score except for false negatives, for
which it is unresponsive by design. For merge and split conditions, the threshold distance is varied to represent the possible range of F1 score profiles. (b)
In mixed FN/FP conditions, our score shows a higher sensitivity to false positives than false negatives, and (c) for high density of false positives, its ranking
property can fail. Plots in (c) display the range of values covered by the colored lines in (b).

density but higher heterogeneities in both cells dynamics and
appearance, with notably elongated cells.

A. Organoid cells dataset

To decrease the effective visible cell-density, we made the
organoids from a mixture of two mouse embryonic cell lines,
with initially 50% of non-fluorescent cells (cell line ES-
E14TG2a) and 50% of cells endowed with a fluorescent
reporter of the gene Brachyury (cell line T-Bra-GFP/NE-
mKate2), which makes the cell nucleus fluorescent when
the gene is expressed. Biphoton imaging of organoids was
performed in a chamber maintained at 37◦C, 5% CO2 with
a humidifier using a Zeiss 510 NLO (Inverse - LSM) with a
femtosecond laser (Laser Mai Tai DeepSee HP, 900 nm) with
a 40 x/1.2 C Apochromat objective. A z-stack acquisition of a
50 microns thickness is performed every 5 minutes and every
1 micron. Lateral pixel size is 0.62 microns. A volume from
the movie is shown on Figure 7a.

Stardist3D [5] and Cellpose [6] are two open-source state
of the art segmentation tools based on neural networks.
Stardist3D learns for each voxel a “blueprint” of the star-
convex representation of the object it belongs to. Cellpose
learns the vector field representing each object as a basin
of attraction which can be followed to the object center.
Stardist3D is usually more appropriate for ellipsoidal objects
in dense environments, and Cellpose often performs better
for complex shapes and intensity heterogeneities [28]. Using
a custom ground-truth segmentation of this dataset, we first
compare Stardist3D and Cellpose using the F1 scores on
centroid and on IoU as defined in the Metrics Section. For the
sake of emulating a real-life use of segmentation tools in the
context of biology, we tested off-the-shelf pre-trained neural
networks models for each tool [29], [30] (several pre-trained
models are made available by the Cellpose maintainers, we

selected the ”nuclei” pre-trained model). We also trained our
own version using only the first frame of the movie, the manual
segmentation of which is already cumbersome and takes
approximately 6 hours using Napari [31] with a dedicated
plugin. Examples of qualitative performances of all models can
be observed on Figure 7b. Ground-truth-based metrics, shown
on Figure 8a, are computed using all other frames. We noticed
many FN errors due to objects cut at the frame borders in
most models (particularly Stardist3D, Figure 7b). Since those
errors are typically linked to implementation details rather
than a fundamental limit of the network model, we sought to
fairly compare the performances of Cellpose and Stardist3D
using cropped predictions. For the centroid-based F1 score,
we observe that a hypothetical ranking of the algorithms
based on this metric would be independent from the choice
of the threshold distance τc. Stardist3D performs better than
Cellpose for pre-trained models, while the two reach similar
values of F1c above their pre-trained counterparts once trained.
Secondly, the IoU-based F1 score provides a similar overall
ranking, but with much better performance for the pre-trained
Stardist3D model compared to the pre-trained Cellpose one
for the lower values of the IoU threshold. Trained models are
again close to each other for high levels of the IoU threshold,
but Cellpose lacks in performance for lower values of IoU. In
order to evaluate our score on this dataset, we compute our
heuristic on the search radius SR by visually inferring derr
and d0 on a few slices.

We then analyze the performance of our score applied to this
dataset. Results are shown on Figure 8b, where we present
the average scores (averaged on each frame) obtained with
each segmentation tool along with the average score obtained
by applying our method on the ground truth segmentation.
The score obtained by the ground-truth is smaller than the
theoretically maximal value 1 due to ambiguities induced not
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(a) (b)

Fig. 7. Visual example of typical Stardist3D and Cellpose response on challenging 3D live organoid cells data. (a) Here, a single frame of the dataset
is rendered in 3D using Napari. The dataset exhibits high cell density with heterogeneity in cellular dynamics and appearance. (b) Models tested (CP,SD:
Cellpose, Stardist3D; p,t: pre-trained, trained) are compared to the ground-truth segmentation (GT) in four illustrative ROIs: two highly visible nuclei, a cluster
of nuclei, a dividing nucleus, and a cluster with bad signal-to-noise ratio at the border of the field of view.

by errors in segmentation but by the dynamics itself (e.g.
bona fides ambiguities due to large displacement combined
with high density, or a real division event that would be
interpreted as a split error). First, we observe correct overall
ranking for the pre-trained versions of Cellpose and Stardist3D
models. Our score predicts correctly the clear difference in
performance measured in both F1c and F1IoU . Second, the
scores for the two trained models are close which reflect their
proximity in centroid-based F1 score, but the overall ranking
predicts that Stardist3D perform better, which is coherent with
the difference in F1IoU .

Finally, we observe that the score associated with the pre-
trained Stardist3D model reached the average score measured
with the ground-truth. As such, it does not reflect the rank
established by the true F1 score as opposed to Cellpose-
pre-trained, Cellpose-trained and Stardist3D-trained. Further
measurement and visual inspection performed to understand
this discrepancy (Figure 8 and data not shown) suggest that
Cellpose and Stardist3D exhibit similar rates but possibly
different subtypes of false negatives. Indeed, on the one
hand, cell clusters appear to be systematically missed by
Cellpose but correctly detected by Stardist3D. On the other
hand, isolated cells with unusual shapes seem to produce the
reverse performance. The recent benchmarking study on both
algorithms by Kleinberg and colleagues confirm that intuition
[28]. As such, the discrepancy might stem not only from the
mix of false negatives and false positives rates, but also from
the cellular environment: whether it is in adherent cellular
clusters or a freely moving cell in the aggregate. This could
explain the overestimation of our quality score on the pre-
trained version of Stardist3D since cell tracking in a relatively
static cluster may present less variability in their trajectory-to-
measurement association than freely moving cells. We discuss
the implication of this hypothesis in our concluding Section.
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Fig. 8. Our evaluation score can accurately rank three of the four models
studied on the organoid dataset. (a) We use the F1 scores based on centroid
detection and on instance segmentation to rank the models using the ground-
truth segmentation. We observe better performance from trained models. (b)
Our score provides a similar ranking except for the pre-trained model of
Stardist3D.

B. Carcinoma cells dataset

Here we show that our approach can be applied successfully to
another dataset with different characteristics. The carcinoma
cells dataset shows MDA231 human breast carcinoma cells
infected with a pMSCV vector including the GFP sequence,
embedded in a collagen matrix. For further informations,
we refer the reader to the Cell Tracking Challenge [12].
This dataset was chosen as a complementary to the organoid
cells dataset, as it is much sparser but with higher shape
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Fig. 9. Visual example of typical Stardist3D and Cellpose response on 3D live carcinoma cells data. (a) Here, a single frame of the dataset is rendered as a
maximum intensity projection along the Z axis. The dataset exhibits sparse cell density but with high heterogeneity in cellular dynamics and appearance. (b)
Models tested (SDp is the same Stardist3D pre-trained model as in Figure 7 and CPp1 and CPp2 are the ”cyto” and ”cyto2” pre-trained models of Cellpose)
are compared to the ground-truth segmentation (GT). The inset displays an illustrative ROI.

heterogeneity. A frame is illustrated on Figure 9(a). We tested
the pre-trained Stardist3D model and two pre-trained Cellpose
models (models ”cyto” and ”cyto2”), which are compared to
the ground truth on Figure 9(b). Notably, the Stardist3D model
does not handle elongated cells well due to their non-star-
convex shapes and also likely due to a lack of similar training
data. Thus, it produces many splits and false positives errors,
while the two Cellpose models seem to produce accurate
segmentations.

The centroid-based F1 metric of Figure 9(a) reflects the
much better performances of the Cellpose models compared
to Stardist3D, but is not enough to separate the former two.
From the IoU-based F1 score, we see that Cellpose model cyto
has improved segmentation performances compared to model
cyto2, which itself is marginally superior to Stardist3D. We
note that despite visually identifying Cellpose models as accu-
rate on Figure 9(b), all models have rather mediocre IoU-based
F1 scores. This is easily explained by visually comparing the
ground truth and Cellpose segmentations (Figure 10(b)), the
ground truth being limited to the cell body and excluding
protrusions while CellPose is typically more precise. Overall,
the cyto model performs better than cyto2.

Finally, we show the performances given by our score on
Figure 10(b). The search radius SR was still chosen using
the previous heuristic and the score is again averaged on
all frames. We see that the score accurately ranks the three
detectors, with a relatively low value for Stardist3D compared
to the two Cellpose models. The latter are also correctly
separated, with cyto ranking higher than cyto2.

VII. DISCUSSION

Our results demonstrate how using dynamical information
measured through live cell experiments can be a powerful
approach for the ranking of multiple detectors independently

Fig. 10. Our evaluation score can accurately rank all models studied on
the carcinoma cells dataset. (a) We use the F1 scores based on centroid
detection and on instance segmentation to rank the models using the ground-
truth segmentation. (b) Our score provides a similar ranking.

of their design. Indeed, our data shows that a score that
merely described ambiguities in trajectory-to-detection as-
signment responds strongly to merging, splitting and false
positive errors. Specifically, we show on simulations that our
score approximates the F1 metric, a score commonly used
for segmentation evaluation [9]. While dynamic ambiguities
cannot detect individual FN, our score nevertheless responds
well to false negatives in more realistic scenarios with mixed
error types. In those mixed scenarios, the ranking between two
detectors with different FN rates is preserved as long as the
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rate of FP does not exceed 40%. In practice, a detector with
a 40% FP rate is performing particularly poorly and can be
easily dismissed through visual inspection. For comparison,
the worst false positive rate we can measure across all models
(some of them pre-trained on different datasets by other
labs) using the centroid-based F1 is 15% on our challenging
dataset. The scripts for the analysis of the score are available
on Github at github.com/bioimage-mining-group/disco-wight,
and we plan to make the code for the simulations freely
available in the near future. Our score also shows very
promising results when tested on experimental datasets with
limited acquisition frequency and signal-to-noise ratio. We
are indeed able to correctly rank the performances of deep-
learning-based detectors, across pre-trained models and across
trained models taken separately. However, we also show that
trackability may be overestimated depending on the area of
performance of a given detector. This indicates that a deeper
analysis of the dynamics of segmentation candidates may help
in improving ranking performances in those specific scenarios.
As such, our work shows the potential for using dynamics
to detect segmentation errors, but it also opens a variety
of paths for future work and exciting perspectives for truly
unsupervised validation of cell segmentation. The remainder
of this discussion focuses on both of those aspects.

A first path of improvement is linked to sensitivity toward
false negatives. This can be improved by injecting more a
priori on the lifetime of our target, which is here virtually
infinite in our organoid scenarios. This approach would help
reduce the likelihood of the trajectory-to-death association and
increase instability. A second challenge that we did not explore
lies in the distinction between split events and cell divisions.
This could be addressed using an a priori on instantaneous
phase transition similar to previous works [20], [32]. Finally,
we will further test the impact of the heterogeneity of the
underlying biophysical processes and the sparse nature of
mosaic imaging techniques This will require new methods for
the simulation of cellular aggregates with a mixture of clusters
and freely flowing cells as well as new imaging experiments
imaged in non-mosaic conditions.

To conclude, our work paves the way toward the automated
exploration of detection errors at the single cell level and the
routine, annotation-free, evaluation of detection approaches
that typically work as black boxes. An unsupervised score
may also help in evaluating the need for retraining, further
annotation, or even be part of the loss function used to
train deep neural networks. It is our hope that those results
will popularize the combination of live cell imaging and
stochastic inferences to facilitate the validation of image-based
measurements carried out at large scale.
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bryonic tissues as active foams,” Nature Physics, vol. 17, no. 7, pp.
859–866.

[27] K. M. Dean, P. Roudot, C. R. Reis, E. S. Welf, M. Mettlen, and R. Fi-
olka, “Diagonally Scanned Light-Sheet Microscopy for Fast Volumetric
Imaging of Adherent Cells,” Biophysical Journal, vol. 110, no. 6, pp.
1456–1465.

[28] G. Kleinberg, S. Wang, E. Comellas, J. R. Monaghan, and S. J. Shefel-
bine, “Usability of deep learning pipelines for 3D nuclei identification
with Stardist and Cellpose,” Cells & Development, vol. 172, p. 203806.

[29] “stardist/stardist-models.” [Online]. Available: https://github.com/
stardist/stardist-models

[30] “Models — cellpose 0.7.2 documentation.” [Online]. Available:
https://cellpose.readthedocs.io/en/latest/models.html

[31] N. Sofroniew, T. Lambert, K. Evans, J. Nunez-Iglesias, G. Bokota,
P. Winston, G. Peña-Castellanos, K. Yamauchi, M. Bussonnier, D. Don-
cila Pop, A. Can Solak, Z. Liu, P. Wadhwa, A. Burt, G. Buck-
ley, A. Sweet, L. Migas, V. Hilsenstein, L. Gaifas, J. Bragantini,
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