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A detector-independent quality score for cell
segmentation without ground truth in 3D live

fluorescence microscopy
Jules Vanaret, Victoria Dupuis, Pierre-François Lenne, Frédéric Richard, Sham Tlili, Philippe Roudot

Abstract—Deep-learning techniques have enabled a break-
through in robustness and execution time in automated cell
detection in live fluorescence microscopy datasets. However, the
heterogeneity, dimensionality and ever-growing size of 3D+time
datasets challenge the evaluation of measurements. Here we
propose a quality score for the accuracy of cell segmentation
maps that is detector-independent and does not need any ground-
truth nor priors on object appearance. Our method learns
the dynamic parameters of each cell to detect inconsistencies
in local displacements induced by segmentation errors. Using
simulations that approximate the dynamics of cellular aggregates,
we demonstrate the score ability to rank the performance of
detectors up to 40% of false positives. On live volumetric imaging
of organoids, our score is able to appropriately rank two state-
of-the-art pre-trained deep-learning detectors (Stardist3D and
Cellpose).

Index Terms—Image segmentation, Error analysis, Biological
cells, Microscopy, Fluorescence, Stochastic processes, Particle
tracking, Dynamics, Image motion analysis, Biophysics.

I. INTRODUCTION

RECENT progress in fluorescence microscopy has enabled
high-resolution volumetric imaging of complete cellular

systems in their physiological context with minimal phototox-
icity, fast sampling, and near-isotropic resolution [1]–[3]. Cell
detection methods based on deep learning have been a break-
through toward the automated quantification of such terascale
datasets where the shape and textures of objects of interest
can vary widely depending on the cell type, the microscope
and environment [4]–[6]. However, their performances are still
limited by the difficult annotation of cellular heterogeneity in
complex three-dimensional datasets as well as signal artifacts
brought by light scattering, bleaching, labeling efficiency,
spatial under-sampling and illumination absorption across the
volume. Furthermore, their performances can be challenging
to predict, as even recent and widely used approaches output
different results on the same sample (Figure 1a,b). While
an unbiased evaluation and comparison of those different
tools is already a difficult task in two dimensions, the task
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is virtually impossible in 3D+time sequences as data size
increases quadratically compared to a 2D segmentation.

In this paper, we propose a novel score to evaluate the
accuracy of cell segmentation tools in live cell fluorescence
microscopy imaging. In a nutshell, our score exploits the
variation in temporal consistency to predict detection errors
while remaining fully independent from the type of detec-
tor used (Figure 1c). The idea behind the approach comes
from the observation that segmentation errors provide a time-
varying response that is different from the usual dynamics.
For example a cell cluster can be mis-detected as a single
cell, a cell mis-detected as two cells, and a false positive
detection in the background. To measure those inconsistencies,
we first infer the parameters of cellular dynamics for each
trajectory hypothesis, then, we evaluate for each detection the
stability of the optimal set of trajectory by combining discrete
optimization and a statistical resampling of the trajectory-to-
detection likelihood. This study builds upon our previous work
on trackability inference in the context of diffraction limited
particles [7] with key differences: the detection is here a much
more challenging task with a broader variety of error types
and our approach focuses here on detection quality rather than
trajectory.

The paper is organized as follows. We first provide a
brief review of quality scores that have been proposed to
evaluate detection algorithms [8]–[10]. To our knowledge, no
approaches have been proposed for a comparison of detection
results without ground truth or a priori knowledge on the
object structure. Second, we present the design of our score,
our stochastic motion modeling for cellular dynamics as well
as the combinatorial optimization framework for multiple
hypothesis tracking. Third, we study the behavior of our
estimator on simulated data, specifically its robustness toward
false positives, false negatives as well as error-induced split
and merged cells. Fourth, we then demonstrate the perfor-
mances of our score in predicting local segmentation errors,
and overall F1 score on an experimental dataset where a
single frame has been manually annotated. On a challenging
two-photon 3D imaging of live organoid [11] specimens, we
show that our score is able to rank the performances of pre-
trained cell detectors accurately. Our data also suggest that the
heterogeneity of the underlying cellular dynamics may impact
ranking accuracy. We finally discuss how the idea of our
approach can be extended toward more challenging scenarios
such as heterogeneous detector response.
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Fig. 1. The density and heterogeneity of cellular objects challenge the comparison and validation of leading-edge segmentation approaches based on deep
neural networks. (a) 3D volumetric rendering of a gastruloid imaged with two-photon microscopy along with a maximum intensity projection (MIP) rendering
of a region of interest (ROI) and its associated segmentation. (b) Two ROIs rendered as orthogonal MIPs showing different artifacts ranging from the detection
of cellular clusters as a single cell (under-segmentation) to false negatives. (c) Our accuracy score uses temporal consistency to evaluate the likelihood of
errors. Top: Without segmentation errors, the detector provides a single measurement compatible with the cell dynamics. Bottom: A segmentation error, here
a split, will result in two measurements with ambiguous associations to the trajectory.

II. RELATED WORK

A few wide-ranging studies [9], [12] have used manually-
annotated data to analyze the performances of multiple cell
segmentation algorithms. The metrics used for comparison
typically distinguishes between the ability to segment a cell,
using a metric of the overlap between estimated and annotated
cell mask, and the ability to detect a cell, using a measure
of object instance matching accuracy. On the one hand, a
study focusing on cell morphogenesis will need a precise
matching of the measured contour with the ground truth. On
the other hand, a study analyzing cell count, lineage and cycle
will require high detection accuracy against missed detection,
false positives, split and merge artifacts. Since the seminal
challenge on cell detection and tracking algorithms [12], deep
learning approaches have enabled a breakthrough in both cell
segmentation and detection. In their detailed and unbiased
comparison of the capacity of conventional and deep-learning-
based approaches to measure biologically relevant metric,
Caicedo and colleagues [9] have shown that deep learning
approaches are indeed performing better overall. However,
their results also show that benchmarking techniques remain
more important than ever. For example, while the count of
false negatives obtained with U-net [4] is almost twice lower
than with conventional adaptive thresholding approaches, the
amount of cells artificially split by the neural network is
higher than a threshold-based approach and a random-forest-
based classifier. They also show that the performances of
deep neural networks can vary significantly from one network
structure to another or depending on the amount of annotations

available. Importantly, while the relative performance of a
conventional approach with respect to a specific task can be
intuitively interpreted from the parameters and features that
are used, the best purpose of a neural network can only be
done with comprehensive benchmarking of its breakpoint. As
such, comparing detectors remains a critical task in the routine
use of cell segmenter.

Whether it is for benchmarking or training, annotation in 2D
images is a time consuming process that becomes even longer,
challenging and bias-prone in datasets of larger dimension.
First, each Z plane and time point must be annotated to match
the degree of accuracy in the entire volume. For example, in
[9], authors measure 50 hours to annotate 11500 objects in 2D
static images and efficiently train the network. Reproducing
this process for a 3D dataset (with typically 5-10 2D Z-planes
per object) would take up to 500 hours, even when ignoring
the need to annotate all time points. Second, the 3D nature
is difficult to interpret for the user. Correspondences must be
made between Z-plane and time point, a non-trivial task when
both images are not seen at the same time. 3D rendering
is also prone to bias, as two different views may not result
in the same visual interpretations [13]. To overcome those
challenges, several papers have been focusing on improving
annotation techniques for multidimensional datasets. In [14],
authors propose to solve an inverse problem to recreate a
3D annotated volume from a collection of 2D annotations
on maximum intensity projections. However, this approach is
designed for sparse objects (e.g. vessels images) and poorly
suited for the segmentation of the cluttered scene of cellular
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aggregates. In [15], authors experiment with the eye-tracking
capacity of a virtual reality headset to annotate cell location
and displacement from mere observation. While the tracking is
seamless and robust to wavering attention by the annotator, this
remains impractical for a large number of cells and ill-adapted
to very dense scenarios. As such, there is to our knowledge
no efficient solution to the annotation of 3D+time dataset, a
challenge when comparing various approaches.

Considering the ever-growing amount of data produced by
next generation microscopy and its multidimensional nature,
a few approaches have been developed for annotation-free
quality control through the use of prior information on the
object shape. First, goodness-of-fit analysis is routinely used
to evaluate detection quality when the objects follow a simple
template. For example, in a study on high-throughput super-
resolution imaging, Beghin and colleagues [8] use chi-square
maps to control point-source detection across all the imaged
wells. Since the cell intensity does not follow such a strict
diffraction-limited model, those approaches cannot be used in
our scenario. Fehri et al [16] proposed to alleviate this limita-
tion with a graph-based criteria that characterize contour detec-
tion quality through a criteria on object intensity smoothness
and object-to-background transition. More recently, Audelan
et al [10] proposed a probabilistic approach score for the
validation of generic segmentation tools based on the same
intensity-base assumptions. However, those quality scores are
only designed to evaluate the precision of the segmented
contour as opposed to the accuracy of cell detection, a funda-
mental aspect of quantitative cell biology. More importantly,
all those approaches make assumptions on object appearances
that may not hold in experimental acquisition and especially
in the challenging case of interest: low signal-to-noise ratio
can corrupt intensity and blur the line between background
and object, high scattering can modify this intensity across
the object itself and low optical section typically makes
the evaluation of contour quality more difficult in the axial
orientation. To tackle those limitations, our contributions in
the paper focus on a detector-independent quality score that
makes no assumption on the object appearance, but rather on
its dynamics. In particular, we focus on the capacity of this
score to discriminate between false positive, negative, merging
and splitting events. To our knowledge, this approach and the
study of its performance is original and will hopefully pave
the way to further investigation in this field.

III. METHODS

Our approach aims at detecting segmentation errors through
the dynamic footprint of objects’ dynamics. In this section,
we first present the framework of Bayesian filtering to learn
motion parameters, then we explain how we exploit ambigui-
ties in local trajectories-to-measurement associations to detect
potential errors.

A. Inferring motion parameters

For the sake of scalability, we use the Bayesian filtering
framework to learn the parameters of each object’s dynamics
in a temporally greedy fashion. In this formalism, the state of

an object at frame t ∈ N is represented by xt ∈ RN , with N
the number of state variables in our model. For example,

xt = (x(t), y(t), z(t), ẋ(t), ẏ(t), ż(t)) (1)

can be used to model the state of a point-like particle in
3D moving in a directed fashion. Under the Markovian chain
hypothesis that xt+1 can be determined exclusively from xt,
one can propose a dynamical model f : RN ×N→ RN for xt
known up to some precision represented by wt ∈ RN defined
as a realization of a random variable that represent the model
(or process) noise:

xt+1 = f(xt, t) + wt. (2)

wt could represent deviations from the reality of an over-
simplistic model, or real stochastic terms in the equation of
the dynamics, like Langevin forces [17]. The complete state
variable xt is hidden and information about the object can only
be obtained via the measurement of variable zt ∈ RM , with
M ≤ N (e.g position but not velocity in the example above).
The process of measurement is modeled by a function h :
RN ×N→ RN corrupted by vt ∈ RM defined as a realization
of a random variable modeling a measurement noise such that:

zt = h(xt, t) + vt. (3)

In biological applications, vt could represent measurement
errors due to optical limitations (e.g particles below the diffrac-
tion limit appearing as point-spread functions) or systematic
errors in detection algorithms.

Considering that the prior probability density function
(PDF) p(xt+1|z1:t), where z1:t denotes all measurements of
a single object up to time t, is known, the Bayesian filtering
equation provides the posterior PDF p(xt+1|z1:t+1), with:

p(xt+1|z1:t+1) ∝ p(zt+1|xt+1)

∫
p(xt+1|xt)p(xt|z1:t)dxt

(4)
In a multiple unlabeled target tracking (MTT) framework, a

common approximation consists in iteratively associating each
measurement zt to its most likely state xt.

Simplifying assumptions are often made to make the pos-
terior PDF tractable [18]. Notably the models f and h for
the dynamics and measurement are assumed to be linear, i.e
f(xt, t) = Fxt and h(xt, t) = Hxt, and the noises variables
wt and vt are assumed to be sampled from Gaussian laws.
In this case, p(xt+1|z1:t) and p(xt+1|z1:t+1) are normally
distributed too. Kalman filters give an optimal [19] estimation
of the parameters of the dynamics by providing a recurrent
formula to compute the prior and the posterior PDFs at each
frame [20]. Kalman filters can be implemented efficiently for
thousands of objects in parallel, as is routinely the case in
biological imaging, e.g endocytic events, microtubule poly-
merization at the molecular level and developing embryos at
the cellular level.

B. Detecting motion inconsistencies

One of the key challenges we face in inferring ambiguities
is that a measurement with a lower trajectory-to-measurement
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likelihood does not necessarily mean that the segmentation
is false (if the cell changes shape for example). In order
to assess the presence of false positive, merging or splitting
errors (leaving isolated false negative aside for now), we must
estimate the likelihood of association between a measurements
and neighboring trajectories and test if the optimal solution is
unique, i.e. if other local combinations have a significantly
lower likelihood. In theory, this would require the filtering
of every possible sequence of measurements, which would
grow exponentially even with efficient pruning of hypotheses.
As such, similarly to MTT approaches, the comparison is
carried out on a per-frame basis. We iteratively solve a one-to-
one bipartite graph assignment problem between current track
segment ends at frame t and detections at frame t+ 1 through
the resolution of a linear assignment problem:

argmin
aij

∑
i∈Ω,j∈Dt+1

cijaij ,

s.t
∑
i∈Ω

aij = 1,
∑

j∈Dt+1

aij = 1
(5)

with Ω the current set of track segments ends, Dt+1 the
set of detections in frame t + 1, aij ∈ {0, 1} denotes
the assignment of track segment end i to detection j (1 if
the link is made, 0 otherwise), and the cost of association
cij is the trajectory-to-measurement negative log likelihood
cij = − log p(zit+1|x

j
t+1). The constraints enforce the one-to-

one linking condition in the bipartite graph. In a conventional
tracking framework, track segment creation and termination
are considered by adding virtual nodes in the bipartite graph,
and a gating parameter forces the termination of trajectories
that have only a low likelihood of association between trajec-
tory and detection. Two modifications must be made to allow
for the inference of detection errors. First, we need to detect if
other spurious or missing detections create ambiguities in the
graph of association. The problem is convex and the global
optimum can be reached exactly using linear programming
without the possibility for error inference. In order to detect
ambiguities in track-to-detections associations, we resample
the predicted state from the PDF p(xit+1|zi1:t) and the new
linking assignments gives us a direct way to evaluate locally
the stability of the optimal solution. Another modification lies
in the gating parameters used to explore new associations.
While tracking approaches use the motion prediction to accept
or reject measurements into the optimization problem, we need
to explore the measurement candidates in an area correspond-
ing to possible measurement errors, including merging and
splitting which may be larger than the area defined by motion
only. Thus, we use a search radius SR that is both bigger than
the prediction error dpred, provided by the covariance of the
innovation [20] and segmentation error derr. Similarly, SR
should be smaller than the average distance between particles
d0 to ensure that our score does not measure ambiguities from
linking a particle to a track it does not belong to. As a result
we chose to set SR to an intermediate scale given by the
geometric mean of the upper bound d0 and of whichever scale
is largest between dpred and derr

Fig. 2. Our evaluation score uses Monte Carlo resampling of the prior
distribution associated with each current track end to measure the instability
of the optimal linking previously chosen.

SR ∼
√

max (derr, dpred) · d0 (6)

The principle behind our evaluation score is shown on
Figure 2. We denote T ij

t our stability score for the given
optimal link a∗ij made between frames t and t+ 1, given by

T ij
t =

1

Ns

Ns∑
n=1

[
a∗ij = anij

]
, (7)

where we perform Ns Monte Carlo resamplings, anij is the
newly computed assignment during the n-th resampling, and
[·] are Iverson brackets, which equal 1 when the proposition
evaluated is true. As such, our local stability score is defined as
the ratio between the number of times a link has remained un-
changed after resampling and the total number of resamplings.
A lower value of the score T ij

t reflects a larger instability in the
optimal assignment. As such, a merged, split and false positive
detection will create an additional detection candidate that will
create an ambiguity captured by the score. While the present
work does not model the case of an isolated false negative,
our results show that this simple approach can already capture
a large array of detection errors. In the experiments, we set
Ns = 100.

C. Implementation

We based our implementation on the well-established open-
source tracking software utrack [7], [18] to take advantage of
its efficient Bayesian-filtering framework. This software has
been used to track morphologically and dynamically diverse
cellular structures, including single molecules, adhesion com-
plexes, and larger macromolecular structures such as +TIP
protein complexes associated with growing microtubules. Its
flexibility allows the modeling of multiple types of states and
associated cellular dynamics parallel, e.g piecewise Brownian
and diffusive dynamics as can be observed with microtubules.
Initialization of the Kalman filter parameters is tackled via a
forward-backward tracking scheme.
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IV. EVALUATION METRICS

When comparing detections, having a ground-truth allows one
to precisely quantify which true objects have been detected
(TP), and which ones have been missed (FN) or correspond
to false detections (FP). The F1 score, also called the Dice
score, is a popular choice for a universal score taking all error
types into consideration [9]. It is defined as the harmonic mean
of precision and recall, and reads

F1 =
2TP

2TP + FN + FP
. (8)

Note that it is monotonously related to the accuracy metric.
If an object can be represented by a single point, e.g if it
is point-like by nature or if its centroid gathers most of its
positional information, these quantities are computed in a one-
to-one assignment framework, in which a detection is consider
a TP if it is sufficiently close (up to a threshold distance τc)
to a point in the ground-truth. We will call this metric the
centroid-based F1 score F1c (τc). Points that are not matched
in the detected and ground-truth datasets are considered FPs
and TPs respectively. When objects are detected as volumes as
opposed to points, they can be made of several pixels/voxels
or be represented by enclosing volumes (e.g bounding boxes).
The correspondence between two individual objects can be
assessed by computing the Intersection over Union score from
their volume

IoU =
VD ∩ VGT

VD ∪ VGT
(9)

with VD and VE the volumes defined by a detected and
a ground-truth object. The F1 score can then be computed,
in which case a detected object is considered matched to a
ground-truth object (and thus a TP) if their IoU is above
a certain threshold τIoU (usually above 0.5). This is again
determined in a one-to-one assignment framework. We will
call this metric the IoU-based F1 score F1IoU (τIoU ).

V. VALIDATION ON SYNTHETIC DATA

Here we want to measure the performances of the detection
quality score in a variety of scenarios to establish its capacities
and breaking points. Since our method relies strongly on
dynamic information and is dedicated to cell segmentation, we
use simulations that reproduce the motions present in cellular
aggregates. We then use these simulations to test the robustness
of our quality score with respect to targeted types of errors that
reflect segmentation errors made by state-of-the art detection
algorithms.

A. Simulation

1) Model: We implemented a multi-particle simulator mim-
icking the two main dynamical features observed in real cellu-
lar movement, namely cells non-interpenetrability and active
behavior leading to heterogeneous dynamics. The framework
used is inspired by well-established and interpretable active-
particle models [17], [21]–[23], where each cell is represented
by a point-like particle subject to forces of different micro-
scopic origins. This framework has been successfully used

to recreate many complex biological phenomena, like cell-
sorting, convergent extension, or active cell jamming [24].
Despite similarity, the notations that follow for acceleration
and forces are not related to the stochastic filtering notations
introduced in the previous section. We nevertheless elected
to keep the standard notations for the sake of readability.
The equation of motion, expressing the acceleration xi for
a particle i of mass mi at position xi, reads

miẍi = F drag
i +

∑
j neigh.

F att−rep
ij + F rand

i , (10)

where the terms on the right-hand side are the forces ex-
erted on the particle, namely viscous drag, attraction-repulsion
interactions with neighboring particles, and stochastic forces
inducing active behaviors. The combination of all forces is
represented on Figure 3a.

First, the particles are subject to a viscous drag force
due to the dissipation in cell-cell junctions and in adhesion
remodeling [21], with

F drag
i = −γi

(
ẋi − 〈ẋ〉ℵi

)
, (11)

where γi is an effective friction between neighboring cells,
and 〈ẋ〉ℵi is the ensemble averaged velocity of the nearest
neighbors ℵi of the cell i. Second, to model cell-cell adhesion
while preventing cell inter-penetrability, we add Lennard-
Jones-type (sticky spheres) spherical forces representing short-
range repulsion and mid-range attraction. In our implementa-
tion, we approximate the typical Lennard-Jones force profile
with a piecewise linear profile inspired by [23], such that the
force exerted by a particle j at distance r of i reads

F att−rep
ij = ε (fatt(r; ri, rj)− αfrep(r; ri, rj))

fatt(r; ri, rj) = max(0, r − (ri + rj))

frep(r; ri, rj) = max(0, ri + rj − r)
(12)

where ri and rj are the radii of particles i and j, ε is
the strength of the interaction, and α is a dimensionless
parameter that can be used to tune the relative importance
of attraction and repulsion. Using a piecewise linear profile
improves stability and leads to easier initialization of the
simulation while not changing the overall dynamics. The force
is set to 0 above a distance rmax = β(ri + rj), with β a
proportionality constant ensuring that cells do not interact with
their next-nearest neighbors or with neighbors that are too far.

Finally, to drive heterogeneous dynamics and to prevent
particles from rapidly reaching a jammed configuration [22],
we add a stochastic force term following an isotropic Ornstein-
Uhlenbeck process without drift [24]–[26]. Let F rand

i,k be the
k-th component of the force (e.g k ∈ {x, y, z} in 3D). It
satisfies

dF rand
i,k (t) = −F rand

i,k (t)/τpi dt+ f0dWi(t), (13)

with persistence time τpi and f0dWi(t) a Wiener process of
variance f2

0 = 2dDi, with d the number of spatial dimensions
and Di the effective diffusion coefficient of particle i. This
leads to the magnitude of the stochastic force having a variance
of σ2 = 2dDiτ

p
i . This can be interpreted as a classical

Langevin force [17] whose direction can vary randomly in all
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directions, but with added temporal persistence, resulting in
correlation of the magnitude and of the direction of the force
over timescales of order τpi . Biologically, these Langevin-
type forces can be related to the motility forces associated
with cell protrusions [24]. Notably, it is easy to modulate the
dynamical behavior of cells by varying the individual values
of τpi : particles with low persistence times (compared to the
observation timescale) move in a diffusive fashion reminiscent
of Brownian motion (the Langevin force corresponds to the
limit τpi → 0), whereas cells with high persistence times can
move in a quasi-directed manner during timescales of order
τpi .

2) Implementation: In our data, the dynamics is over-
damped (friction dominates) such that forces exerted on a cell
effectively balance at all times. This motivates us to neglect
the inertia term in the equation of motion, which becomes a
first-order ordinary differential equation in the position of the
particles [21], [23]

ẋi = 〈ẋ〉ℵi +
1

γi

 ∑
j neigh.

F att−rep
ij + F rand

i

 . (14)

The term 〈ẋ〉ℵi is computed at t using the velocities at the
previous time point t − ∆t to keep the system of equations
separable. This would require us to choose a very low value
for ∆t, so we use Heun’s integration scheme (of order 2)
to compensate for this and keep a reasonable value of the
time step [23]. To compute the attraction-repulsion forces,
we build a k-d tree with the positions of the particles at
each time point, which is a data structure that allows for fast
lookup of nearest-neighbor relationships and computation of
pair-distances. Because these forces vanish beyond a certain
distance, the pair-distance matrix is highly-sparse and thus
can be computed efficiently. The simulator is implemented
in Python3 and multiprocessing is used with Numba to take
advantage of the separability of the system of equations at
each time point.

The simulation produces sphere-like aggregates of densely
packed particles, as shown on Figure 3b. We add a small
amount of heterogeneities in the radii of the particles by
sampling them from a normal distribution of mean d0/2 and
standard deviation d0/20, truncated at d0/2±d0/20. This leads
to particles having an average radius ri = d0/2 and separated
from their immediate neighbors by a distance d0.

3) Simulation of point-like segmentation errors: We pro-
duce typical segmentation errors like false negatives (FN),
false positives (FP), splits, and merges by corrupting the
positions of the simulated particles at each frame. To add
random FN errors at a given rate ρFN from a simulation with
N particles, we draw ρFNN particles in a uniform manner
(every random choice in this section is done following a
uniform distribution) at each frame and remove them. For
FP errors at a given rate ρFP , we choose ρFPN positions
uniformly inside the volume of the particles at which we
add fake particles. For merges at a rate ρme, we compute at
each frame all pairs of particles that are immediate neighbors
from one another, we take ρmeN pairs, remove the associated
particles and add fake particles at their barycenter. For splits

at a rate ρsp, we choose ρspN particles, and for each one,
with radius ri at position xi, we choose a random 3D vector
u of magnitude ri/2. We then remove the particle and add
two fake particles at positions xi ± u.

B. Behavior of our score under controlled conditions

We simulated N = 400 particles for a duration T = 50∆t,
with ∆t the integration time step, chosen so that the average
displacement between frames matches what we observe in our
data (illustrated on Figure 4). Particle positions were initialized
by choosing N random points uniformly in a sphere whose
radius is such that the density inside the sphere is below that
of random sphere packing. This leads to particles expanding
outwards before the aggregate settles to its equilibrium radius,
after which particles are on average at distance d0 from
their nearest neighbors (Figure 4a). The expansion phase of
the dynamics was removed in our experiments. Particles are
simulated with infinite lifetimes. To compute our score, we set
the search radius SR using our heuristic on the length scales
of the different phenomena. Here, the average displacement
ddyn ∼ d0/10, with d0 the average nearest-neighbor distance.
By design, merge and splits errors produce an average dis-
placements of d0/2 and d0/4 respectively. We thus set

SR =
√

(d0/2) · d0 ∼ 0, 7d0. (15)

We first study the behavior of the score in conditions
corresponding to adding a single error type and varying its rate.
While this is an unrealistic scenario that may not reflect the
behavior of the score in experimental conditions, this approach
allows us to unbiasedly test the strength and weaknesses of our
method. The results are shown on Figure 5a, where we plot
the evolution of our score along the centroid-based F1 score
F1c (τc) against error rates. For merge and split conditions,
the ground-truth F1c (τc) is plotted for the complete range
of possible values for τc, showing that the true performance
heavily varies depending on the choice of the matching
threshold. The darker F1c curve in the middle is obtained for a
value τc close to the typical scale of the respective events. The
dimmer curves correspond to the extremal curves of F1c (τc)
when τc → 0 and τc → ∞. FN and FP events do not have a
typical scale associated with them since they will always be
detected in those uniform scenarios. We show that for merges,
splits and FP errors, our score follows the trend of the true
F1 score, both in its monotonicity and in qualitative proximity
to its value. For FN errors, the score shows little sensitivity.
This is unsurprising since an isolated false negative will not
be creating dynamic instability. As such, while we do not
have an exact match with a given accuracy score, our score
is capable of ranking those simulated detection approaches
without ground-truth in three scenarios.

To study conditions closer to realistic cases, where multiple
type of error arise jointly, we plot on Figure 5b the evolutions
of our score and of F1c for different rates of both FN and
FP errors. When corrupting point positions, we first added
FN errors before FP to ensure that no FP error added would
be canceled by a FN error. We use τc = SR to compute
F1c. We observe that the F1 score decreases significantly
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(a) (b)

Fig. 3. We use simulations to measure the performances of our detection quality score in a variety of scenarios to establish its capacities and breaking points.
(a) In our simulation, particles are subject to three forces: drag due to dissipation at cell-cell interfaces, attraction/repulsion due to non-interpenetrability of the
membranes and nuclei, and stochastic Langevin-like forces creating active motion and heterogeneous dynamics. (b) Simulated particles form dense aggregates
and show complex dynamics (left: sphere rendering, right: trajectories).

with the increase of the FN and FP rates, which is consistent
with an increase in the number of errors. Again, we observe
that our score is less sensitive to FN than FP errors, as it
significantly decreases when increasing the FP rate at a given
FN rate. On the other hand, Figure 5c shows that fixing the
FP rate and varying the FN rate yields small variations of
the score. For small or intermediate values of the FP rate,
Spearman’s coefficient (defined as the Pearson correlation
coefficient applied to the set of rank of each values, instead
of the values themselves) between the score and true F1
indicates that the ranking property is conserved, but at high
FP rates (more than 40%), the score increases when the F1
score decreases (negative Spearman’s coefficient). Our score
reaches its descriptive limit in this extreme scenario because
no trajectories can be formed, even in-between a few time
points. As such, no ambiguities in trajectory-to-detections can
be measured. Considering the large percentage of FP and FN
required to reach its breakpoint, we are confident that our score
can properly rank detectors, especially since such a large rate
of false negatives or false positives can be detected by mere
visual inspection.

VI. APPLICATION TO EXPERIMENTAL DATA

We demonstrate the usefulness of our approach on live vol-
umetric imaging of mouse embryonic organoid stem cells
imaged with two-photon microscopy. To decrease the effective
visible cell-density, the organoids were made from a mixture
of two mouse embryonic cell lines, with initially 50% of cells
non fluorescent and 50% of cells endowed with a fluorescent
reporter of the gene Brachyury (T-Bra GFP), which makes
the cell nucleus fluorescent when the gene is expressed. A z-
stack acquisition of a 50 micron thickness is performed every
5 minutes and every 1 micron. A volume from the movie is
shown on Figure 6a.

Stardist3D [5] and Cellpose [6] are two open-source state
of the art segmentation tools based on neural networks.
Stardist3D learns for each voxel a “blueprint” of the star-
convex representation of the object it belongs to. Cellpose
learns the vector field representing each object as a basin
of attraction which can be followed to the object center.
Stardist3D is usually more appropriate for ellipsoidal objects
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Fig. 4. Distribution of frame-to-frame displacement and nearest neighbor
distance in our simulation (a) and in real experimental data (b). Vertical black
lines are centered and annotated with the average value of the distributions.

in dense environments, and Cellpose excels for complex
shapes and intensity heterogeneities [27]. Using a custom
ground-truth segmentation of this dataset, we first compare
Stardist3D and Cellpose using the F1 scores on centroid and
on IoU as defined in the Metrics Section. For the sake of
emulating a real-life use of segmentation tools in the context
of biology, we tested off-the-shelf pre-trained neural networks
models for each tool [28], [29]. We also trained our own
version using only the first frame of the movie, the manual
segmentation of which is already cumbersome and takes
approximately 6 hours using Napari [30] with a dedicated
plugin. Examples of qualitative performances of all models can
be observed on Figure 6b. Ground-truth-based metrics, shown
on Figure 7a, are computed using all other frames. We noticed
many FN errors due to objects cut at the frame borders in
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Fig. 5. Our evaluation score responds strongly to simulated merging, splitting and false positive errors and is sensitive to false negatives in scenarios with
mixed error types. (a) When a single error type is introduced in simulated data, our score is well correlated with the F1 score except for false negatives, for
which it is unresponsive by design. For merge and split conditions, the threshold distance is varied to represent the possible range of F1 score profiles. (b)
In mixed FN/FP conditions, our score shows a higher sensitivity to false positives than false negatives, and (c) for high density of false positives, its ranking
property can fail. Plots in (c) display the range of values covered by the colored lines in (b).

most models (particularly Stardist3D, Figure 6b). Since those
errors are typically linked to implementation details rather
than a fundamental limit of the network model, we sought to
fairly compare the performances of Cellpose and Stardist3D
using cropped predictions. For the centroid-based F1 score,
we observe that a hypothetical ranking of the algorithms
based on this metric would be independent from the choice
of the threshold distance τc. Stardist3D performs better than
Cellpose for pre-trained models, while the two reach similar
values of F1c above their pre-trained counterparts once trained.
Secondly, the IoU-based F1 score provides a similar overall
ranking, but with much better performance for the pre-trained
Stardist3D model compared to the pre-trained Cellpose one
for the lower values of the IoU threshold. Trained models are
again close to each other for high levels of the IoU threshold,
but Cellpose lacks in performance for lower values of IoU. In
order to evaluate our score on this dataset, we compute our
heuristic on the search radius SR by visually inferring derr
and d0 on a few slices.

We then analyze the performance of our score applied to this
dataset. Results are shown on Figure 7b, where we present
the average scores (averaged on each frame) obtained with
each segmentation tool along with the average score obtained
by applying our method on the ground truth segmentation.
The score obtained by the ground-truth is smaller than the
theoretically maximal value 1 due to ambiguities induced not
by errors in segmentation but by the dynamics itself (e.g.
bona fides ambiguities due to large displacement combined
with high density, or a real division event that would be
interpreted as a split error). First, we observe correct overall
ranking for the pre-trained versions of Cellpose and Stardist3D
models. Our score predicts correctly the clear difference in
performance measured in both F1c and F1IoU . Second, the
scores for the two trained models are close which reflect their

proximity in centroid-based F1 score, but the overall ranking
predicts that Stardist3D perform better, which is coherent with
the difference in F1IoU .

Finally, we observe that the score associated with the pre-
trained Stardist3D model reached the average score measured
with the ground-truth. As such, it does not reflect the rank
established by the true F1 score as opposed to Cellpose-
pre-trained, Cellpose-trained and Stardist3D-trained. Further
measurement and visual inspection performed to understand
this discrepancy (Figure 7 and data not shown) suggest that
Cellpose and Stardist3D exhibit similar rates but possibly
different subtypes of false negatives. Indeed, on the one
hand, cell clusters appear to be systematically missed by
Cellpose but correctly detected by Stardist3D. On the other
hand, isolated cells with unusual shapes seem to produce the
reverse performance. The recent benchmarking study on both
algorithms by Kleinberg and colleagues confirm that intuition
[27]. As such, the discrepancy might stem not only from the
mix of false negatives and false positives rates, but also from
the cellular environment: whether it is in adherent cellular
clusters or a freely moving cell in the aggregate. This could
explain the overestimation of our quality score on the pre-
trained version of Stardist3D since cell tracking in a relatively
static cluster may present less variability in their trajectory-to-
measurement association than freely moving cells. We discuss
the implication of this hypothesis in our concluding Section.

VII. DISCUSSION

Our results demonstrate how using dynamical information
measured through live cell experiments can be a powerful
approach for the ranking of multiple detectors independently
of their design. Indeed, our data shows that a score that
merely described ambiguities in trajectory-to-detection as-
signment responds strongly to merging, splitting and false
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(a) (b)

Fig. 6. Visual example of typical Stardist3D and Cellpose response on challenging 3D live data. (a) Here, a single frame of the dataset is rendered in 3D
using Napari. The dataset exhibits high cell density with heterogeneity in cellular dynamics and appearance. (b) Models tested (CP,SD: Cellpose, Stardist3D;
p,t: pre-trained, trained) are compared to the ground-truth segmentation (GT) in four illustrative ROIs: two highly visible cells, a cluster of cells, a dividing
cell, and a cluster with bad signal-to-noise ratio to the border of the field of view.
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Fig. 7. Our evaluation score can accurately rank three of the four models
studied. (a) We use the F1 scores based on centroid detection and on instance
segmentation to rank the models using the ground-truth segmentation. We
observe better performance from trained models. (b) Our score provides a
similar ranking except for the pre-trained model of Stardist3D.

positive errors. Specifically, we show on simulations that our
score approximates the F1 metric, a score commonly used
for segmentation evaluation [9]. While dynamic ambiguities
cannot detect individual FN, our score nevertheless responds
well to false negatives in more realistic scenarios with mixed
error types. In those mixed scenarios, the ranking between two
detectors with different FN rates is preserved as long as the
rate of FP does not exceed 40%. In practice, a detector with
a 40% FP rate is performing particularly poorly and can be
easily dismissed through visual inspection. For comparison,

the worst false positive rate we can measure across all models
(some of them pre-trained on different datasets by other labs)
using the centroid-based F1 is 15% on our challenging dataset.
We plan to make the code for the simulations freely available
in the near future. Our score also shows very promising results
when tested on experimental datasets with limited acquisition
frequency and signal-to-noise ratio. We are indeed able to cor-
rectly rank the performances of deep-learning-based detectors,
across pre-trained models and across trained models taken
separately. However, we also show that trackability may be
overestimated depending on the area of performance of a given
detector. This indicates that a deeper analysis of the dynamics
of segmentation candidates may help in improving ranking
performances in those specific scenarios. As such, our work
shows the potential for using dynamics to detect segmentation
errors, but it also opens a variety of paths for future work
and exciting perspectives for truly unsupervised validation of
cell segmentation. The remainder of this discussion focuses
on both of those aspects.

A first path of improvement is linked to sensitivity toward
false negatives. This can be improved by injecting more a
priori on the lifetime of our target, which is here virtually
infinite in our organoid scenarios. This approach would help
reduce the likelihood of the trajectory-to-death association and
increase instability. A second challenge that we did not explore
lies in the distinction between split events and cell divisions.
This could be addressed using an a priori on instantaneous
phase transition similar to previous works [20], [31]. Finally,
we will further test the impact of the heterogeneity of the
underlying biophysical processes and the sparse nature of
mosaic imaging techniques This will require new methods for
the simulation of cellular aggregates with a mixture of clusters
and freely flowing cells as well as new imaging experiments
imaged in non-mosaic conditions.

To conclude, our work paves the way toward the automated
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exploration of detection errors at the single cell level and the
routine, annotation-free, evaluation of detection approaches
that typically work as black boxes. An unsupervised score
may also help in evaluating the need for retraining, further
annotation, or even be part of the loss function used to
train deep neural networks. It is our hope that those results
will popularize the combination of live cell imaging and
stochastic inferences to facilitate the validation of image-based
measurements carried out at large scale.
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J. Rodrı́guez-Guerra, H. Muñoz, J. Freeman, P. Boone, A. Lowe,
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from École Normale Supérieure of Lyon, France,
and his engineering degree in computer science
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