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Abstract—Embedded systems in critical domains, such as auto-
motive, aviation, space domains, are often required to guarantee
both functional and temporal correctness. Considering transient
faults, fault analysis and mitigation approaches are implemented
at various levels of the system design, in order to maintain
the functional correctness. However, transient faults and their
mitigation methods have a timing impact, which can affect the
temporal correctness of the system. In this work, we expose
the functional and the timing implications of transient faults
for critical systems. More precisely, we initially highlight the
timing effect of transient faults occurring in the combinational
and sequential logic of a processor. Furthermore, we propose
a full stack vulnerability analysis that drives the design of
selective hardware-based mitigation for real-time applications.
Last, we study the timing impact of software-based reliability
mitigation methods applied in a COTS GPU, using a fault tolerant
middleware.

Index Terms—Transient faults, Real-time systems, Critical
Systems, Vulnerability analysis, Fault tolerance

I. INTRODUCTION

Embedded systems in critical domains, such as automotive,
aviation, space domains, are often required to guarantee both
functional and temporal correctness. Functional correctness
is provided by a meticulous design and verification process,
which guarantees the high assurance of these systems. Tem-
poral correctness is based on estimations of the Worst-Case-
Execution-Time (WCET) and timing guarantees, which are
provided when the application’s worst-case response time is
less than the deadlines and/or the total execution does not
exceed a given latency requirement [46].

However, electronic systems are susceptible to faults due
to their nature. The system is threatened by several phe-
nomena, such as manufacturing process variation, aging and
soft errors, that can lead to several permanent or temporary
faults, occurring during execution [44]. Especially due to the
reduced transistor sizes and lower supply voltages of modern
technologies [13], [21], systems are becoming more and more
sensitive to environmental sources [38], such as ionization,
radiation, and high-energy electromagnetic interference, lead-
ing to temporary reliability violations, called transient faults,
which can affect the system execution. Transient faults due

to their challenging nature are considered as one of the
most important reliability threats [31], [38]. Transient faults
can affect the system behavior in several ways. The energy,
transferred by a particle, can corrupt the state of sequential
logic, e.g., by flipping the bit contained in a memory cell
or a flip-flop. The result is a single-bit error, known as
Single-Event-Upset (SEU). On top, combinational logic can
be also affected, as the transferred energy by the particle can
create a current or voltage transient, known as Single-Event-
Transient (SET). The SET is propagated in the forward cone
of the impacted combinational cell and it can be eventually
latched by sequential logic [43], modifying one or several bits,
potentially leading to multiple-bit errors, known as Multi-Bit-
Upset (MBU).

In critical systems, applications with approximate process-
ing characteristics, such as computer vision, image, video,
speech and other types of signal processing, are often used.
These applications typically produce outputs, computed based
on dynamic input and feedback, and approximate computa-
tional kernels. The unpredictable input data streams can affect,
in many cases, the quality of the application’s output. Transient
faults can exacerbate this problem, despite the fact that some of
the faults (but not all) can be tolerated, due to the approximate
nature of these applications. However, some faults can still
cause catastrophic events if they affect specific parts of the
approximate circuit, by causing Silent Data Corruption (SDC)
errors or application crashes.

Overall, the exploration of how transient faults, along with
corresponding mitigation methods, impact the application out-
put, quality and time, is inevitable for critical systems.

Contributions: In this work, we expose the functional and
timing implications of transient faults and mitigation methods
applied at different system levels for critical systems. In
particular, after examining the related work in Section II, in
Section III we expose the timing effect of transient faults,
occurring in the combinational and sequential logic of a
processor. Section IV presents an emulation-based vulnera-
bility analysis that drives selective hardware-based reliability
mitigation for real-time approximate applications. Last, in



Section V we study the timing impact of software-based
reliability mitigation methods applied in a COTS GPU, using
a fault-tolerant middleware.

II. RELATED WORK

Vulnerability analysis and fault mitigation approaches can
be applied at different system levels in order to maintain
the functional correctness of the software. However, transient
faults and mitigation methods have a timing impact, which can
affect the temporal correctness of the system.

Regarding vulnerability estimation approaches, existing
methods currently focus only on estimating the functional
correctness, i.e., functional interruptions and erroneous values
of the system under study. To achieve that, fault injection
is applied through simulation at software or hardware level,
and emulation, speeding-up the fault injection time. Software
fault injection is hardware agnostic and can flip bits only
in the application data structures [25], [30], [32], [51]. To
improve accuracy, vulnerability analysis approaches have to
consider the hardware details. They typically inject single-bit
faults at the circuit sequential logic [5], [36]. Few hardware
approaches considering also the circuit combinational logic,
through single-bit and multiple-bit faults [9], [34]. However,
not only the functional behaviour, but also the timing be-
haviour must be taken into account during vulnerability anal-
ysis for critical systems. Few recent studies, in the domain of
iterative methods, explore such impact through software fault
injection, focusing on average performance [25], [30], [32]. To
provide accurate timing vulnerability analysis, hardware fault
injection in sequential and combinational logic, considering
single-bit and multiple-bit faults, is required.

Note that, fault injection is a time consuming procedure,
especially in the case where the analysis spans different system
layers. Therefore, emulation-based fault injection techniques
are used to speed up fault injection campaigns and to provide
acceptable observability and controllability. Several works
use emulation-based techniques to analyze the effects of
faults [14], [26], [37], [49]. Although these works manage
to provide valuable information for the whole system, they
lack the capability of providing analysis at finer granularity.
The works in [7], [8], [11] provide both coarse and fine-
grained reliability analysis using a fault injection emulation-
based framework and show that the severity of SEUs can
change at different abstraction layers. However, they do not
incorporate this analysis to design fault-tolerant solutions, able
to decrease the area overheads.

Several approaches exist for fault detection and mitigation
at various system layers. Typical software approaches for real-
time and autonomous systems are based on task replication [4],
[6], [22] and check-pointing/re-execution [2], [19]. Their tim-
ing impact is taken into account in order to provide timing
guarantees through schedulability analysis [10], [33], [47].
Other approaches targeting the automotive domain use diverse
redundancy in the form of dual-lockstep execution potentially
combined with check-pointing [18] or exploiting the intrinsic
redundancy available in hardware platforms [3], [45]. Other

real-time solutions based on hardware redundancy focus on
faults in memories, to maintain the initial timing characteristics
of hardware, despite the presence of faults, e.g., by using cache
redundant entries [1]. Applying such techniques, especially at
the system level, can lead to prohibitive overheads in terms
of area, complexity, power, etc. However, some components
can be inherently tolerant to errors, and thus, may not require
protection [42]. Therefore, selective hardware redundancy-
based protection can significantly reduce area and power
overheads with minimal impact on system’s reliability [15],
[16], [35], [42]. To avoid costly and unnecessary use of redun-
dancy mechanisms, the reliability of individual components,
along with the quality of the application’s output, must be
accurately assessed first. Consequently, selective hardening
can be applied to only critical components leading to cost-
effective mitigation solutions.

Last, but not least, modern processors and systems-on-
chip (SoCs) have special features to report the presence
of SEUs and/or their location in the hardware, as well as
whether the error was corrected or not. For example, x86
based processors use the machine check architecture (MCA)
in order to provide this information [52]. This mechanism
is implemented as a set of a specific registers which encode
this information, and various software utilities which can be
used to read this information. ARM-based architecture have
recently obtained similar functionality, which is called Relia-
bility, Availability, and Serviceability (RAS) [40]. This feature
is also implemented using a combination of architecture spe-
cific registers as well as vendor specific registers. Similarly,
peripheral devices incorporate error reporting functionalities
for hardware failures. Storage devices such as hard drives and
solid state drives (SSDs) use the Self-Monitoring, Analysis
and Reporting Technology (SMART) feature in order to report
recovered errors in these devices and health indications which
can signify device failures in future. The information provided
from such error reporting mechanism can be integrated in a
fault tolerant middleware in order to take proper mitigation
actions. Furthermore, the timing impact of such actions should
be analysed for critical systems.

III. EXPOSING THE TIMING IMPACT OF TRANSIENT FAULTS

Due to technology size reduction, faults occurring in both
combinational logic and smaller sequential logic inside the
processor cannot be considered negligible anymore [28], [43].
Such faults can significantly affect the execution time of a
task. In critical systems, such an increase can impact the
WCET estimation, compared to the fault-free one. In this
section, we expose the following key aspect: the presence
of transient faults in processors does not impact only the
functional correctness of an application, but it also has a
significant impact on the application’s execution time. To show
that, we perform a vulnerability analysis for an open-source
RISC-V processor, considering both the functional correctness
and the timing correctness of applications, when executed
on a processor, under the presence of single and multiple



transient faults, occurring in both the sequential logic and the
combinational logic of the processor.

A. Functional and timing vulnerability analysis methodology

Our aim is to analyse the impact of hardware faults on the
functional and timing correctness of applications. To perform
a realistic analysis, we consider transient faults that can lead
to single-bit and multiple-bit errors. By flipping the bits stored
in the sequential logic of the processor (e.g., pipeline registers
and the register file), we model SEU. By inserting pulses to its
combinational logic (e.g., Fetch, Decode, ALU, multiple-cycle
operators, multiplexers, Forwarding Unit, etc.), we model
SET, which can be propagated and latched as MBUs. Our
vulnerability analysis is based on fault injection, applied at
two layers.

The gate-level analysis characterizes the SEU occurrence
and the SET propagation, under latching window masking of
sequential logic and logical masking of combinational logic,
based on the processor clock, the size, delay and type of
combinational and sequential cells, taking into account the
processor technology. Fault injection is performed per each
pipeline stage using a single-cycle simulation. The gate-level
netlist is modified by inserting an injection block at the output
of each cell of the netlist, which flips the output of the cell
for a given time period. The inputs of the pipeline stage are
instructions randomly generated from the instruction set of
the processor, with random operands. For each such input,
a fault-free cycle is executed to obtain the fault-free output.
The selection of the cell to inject the fault is driven by the
area of the cells. If the selected cell is sequential, the fault is
injected directly to the pipeline register, and thus, a single-bit
error occurs. If the selected cell is combinational, an SET is
inserted to the netlist. The time offset for SET injection is
randomly chosen within a clock cycle. Its duration is chosen
from the results obtained by physical simulation tools based on
the processor target technology [20]. Then, the SET is injected
and the output is latched by the register. If the injected fault
survived both logical and window latching masking, it led to
a single-bit or multiple-bit error. The number and the position
of faulty register bits are logged.

The microarchitectural-level analysis characterizes the im-
pact of single-bit and multiple-bit errors, obtained from the
gate-level analysis, on the functional and timing correctness
of the application, under microarchitecture and application
structure masking. A cycle-accurate bit-accurate simulator of
the processor is used for fault injection. The simulator injects
faults to the processor registers, while the application runs. The
cycle to inject the faults is chosen randomly between the first
cycle and the total number of cycles needed for the fault-free
execution. The location, where the faults are injected, is driven
by the size of the combinational and sequential logic of the
processor. The larger the area, the higher its probability to be
selected. The type of the fault to be injected in the register (i.e.,
single-bit or multiple-bit and which register bits are affected) is
provided by the gate-level results. The more times a specific
error has appeared during gate-level analysis, the higher is

its probability to be injected, during the microarchitecture-
level analysis. After the fault injection and upon application
termination, the results are compared to the set of golden
references, in order the impact of faults on the application
to be categorised as:

o Execution Cycles Mismatch (ECM): The execution cycles
are different than the fault-free execution cycles.

e Hang (H): The application has entered an infinite loop.

e Crash (C): The execution of the application has terminated
unexpectedly.

o Application Output Mismatch (AOM): The application out-
put is different than that of the golden reference.

o Internal State Mismatch (ISM): The system state (memory
and registers) are different than those of the golden refer-
ence.

o Functionally Masked (FM): The application has finished
execution, with no AOM and no ISM.

B. Experimental results

Our case study is an open-source 32-bit 5-stage pipeline
RISC-V processor [41]. The processor is synthesized using
Synopsys Design Compiler with a target frequency of 500
MHz. The target technology library is 28nm FDSOI from
ST-Microelectronics using a supply voltage of 1.0V. The
design kit cells are analyzed using MUSCA [20], considering
neutron injections with an LET equal to 58MeV/cm. The
peak of the SET distribution is used as SET duration in our
experiments, i.e., 400 ps. Nine benchmarks from MiBench
and PolyBench are analyzed, with a statistical fault injection
(99.8% confidence interval, 5% error margin) [50].

Table I provides the minimum and maximum number of
concurrent erroneous bits and error size with the highest occur-
rence per pipeline stage. These results confirm the importance
to consider multiple-bit upset (MBU) when analyzing the
vulnerability of a processor to transient faults.

TABLE I: Min, max and highest occurrence gate-level error
size.

[ Pipeline stage [ Fetch | Decode | Execute | Memory |

Min 1 1 1 1
Max 63 79 81 58
Highest occurrence 18 44 47 5

Figure 1 shows the results regarding functional and timing
vulnerability. The threshold for considering an application
as not responsive (Hang) is set to eight times the number
of execution cycles without faults. Regarding the functional
correctness (Figure la), on average 4,15% of the fault in-
jections has led to application hangs, 11,76% to application
crashes, 0,64% to wrong application output, 11,76% to wrong
internal state, 7,27% to both wrong application output and
wrong internal state, and 64,87% were masked. Regarding
timing correctness (Figure 1b), all applications experienced
mismatches in their number of execution cycles. The least
affected application is jacobi-1d, where 7.45% of the total
benchmark executions, under the presence of faults, lead to a
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Fig. 1: Vulnerability metrics

different number of execution cycles compared to the fault-
free execution. The most affected application is blowfish
(28.43%). On average, 11.63% of the executions under faults
lead to ECM.

In order to provide further insight on the timing impact,
we perform a detailed analysis of the executions, where ECM
occurred. More precisely, we consider the following cases:

e case i: Execution cycle mismatch and application output
mismatch (only AOM).

o case ii: Execution cycle mismatch and internal state mis-
mach (only ISM).

o case iii: Execution cycle mismatch, application output mis-
match and internal state mismatch (AOM and ISM).

e case iv: Execution cycle mismatch only (neither AOM, nor

ISM).

Table II depicts the number of occurrence for the above
cases, per benchmark. Overall, the most observed cases are
case iii and case iv, with 6.55% and 3.46%, respectively.

Especially case iv is of utmost interest: when the application
is executed under faults, the fault impact cannot be observed
neither in the application output, nor in the internal state
of the processor. However, the number of execution cycles
was different than the fault-free execution. This timing impact
cannot be detected by typical fault tolerant approaches that
replicate tasks and compare their outputs. Furthermore, such
comparison may have to be delayed if one replica takes more
cycles due to a faults, compared to the fault-free execution.
Figure 2 depicts in details the difference in execution cycles,

TABLE II: Percentage of appearance over all experiments

[ Benchmark [ Casei | Caseii | Caseiii | Caseiv [ Total |
trisolv 0.39% 1.86% 8.25% 0.96% 11.46%
blowfish 0.04% 0.44% 27.75% 0.21% 28.44%
mvt 0.39% 0.61% 3.17& 6.91% 11.08%
gsort 1.37% 1.15% 3.63% 1.89% 8.04%
jacobi-1d 0.06% 0.81% 2.37% 4.21% 7.45%
gemver 0.17% 1.91% 2.32% 7.50% 11.90%
strsearch 1.63% 0.77% 3.87% 1.27% 7.54%
atax 0.25% 1.94% 2.83% 4.49% 9.51%
durbin 0.38% 0.41& 4.81& 3.69& 9.29%

[ Average [052% [ 11% [ 655% [ 3.46% [ 11.64% |

compared with the fault-free execution, for all the benchmarks.
The maximum difference is observed for benchmark atax,
where the execution time took 659.64% more than the fault
free execution.
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Fig. 2: Timing behavior under transient faults for case iv.

Last, but not least, Table III provides the minimum, average
and maximum execution cycle difference for case i up to
case iv, considering all applications. The maximum observed
average difference is 12.398%, when the fault is manifested
only as AOM, 273.95%, when the fault is manifested as ISM,
542.246% when the fault is manifested as AOM and ISM, and
332.742%, when the fault is masked, and it cannot be observed
by the application output or the processor internal state, when
the application ends.

TABLE III: Average execution time difference

[ I Min | Avg | Max |
Case i -3.422% | -0.224% 12.398%
Case ii -13.749% 5.862% | 273.975%
Case iii -84.252% 3.062% | 542.246%
Case iv -9.027% 3.536% | 332.742%

IV. REAL-TIME VULNERABILITY ANALYSIS DRIVEN
SELECTIVE HARDENING FOR APPROXIMATE APPLICATIONS

In this section, we explore how vulnerability analysis
can lead to selective protection for real-time applications.
We provide a fine-grain, emulation-based, in-field and full
stack SEU vulnerability analysis, considering hardware and
software levels. Our framework is used to study the impact
of SEUs and to propose optimized selective protection. We
use an FPGA-emulated hardware model, which enables
fault injections at different layers and the operation of the



TABLE IV: Components and total number of Bits per Com-
ponent in the DMC part of the system

[ Component [ #Bits |
Scan Line Buffers (scnbf) 96
Old Pixel Cost (pco) 2240
New Pixel Cost (pno) 2240
Serial-in Parallel Out (dpr) 3072
Multiplier (m4) 8
Multiplier (m6) 8
Box Filter (bflr) 7680
WTA (wta) 2000
Address Generator (ag) T4
Address Column Sum (cs) 11
Sync 1 (s1) 22
Sync 2 (s2) 21

[ Total [ 17472 ]

application in real-time. Using this analysis, we determine
the most critical hardware components, which are driving the
design of selective protection with reduced area overheads.
Moreover, we analyze the area overhead of hardware-based
redundancy schemes, when applied at the selected critical
components, and we compare it with the whole system
protection area overhead. Our case study is a high reliable
and execution time constrained computer vision application,
which detects obstacles and tries to avoid them during the
movement of a robot.

A. Approximate Obstacle Avoidance Use Case

Approximate computer vision applications can be found in
various critical mission applications, such as space exploration,
autonomous vehicles, and mobile robots. In particular, the
application that we use for this evaluation performs Obstacle
Avoidance (OA) that can be used by robots in autonomous
navigation for detecting and avoiding obstacles in their path
[29]. This algorithm is responsible for first detecting the
distance of obstacles, and then decides the direction of the
robot movement. To perform obstacle avoidance, Disparity
Map Computation (DMC) is needed for the estimation of the
depth of the obstacles. DMC is based on a high-performance,
real-time disparity computation engine and it is suitable for
real-time critical applications. After DMC is performed, the
OA system selects the region of interest (ROI). The ROI is
divided into three regions: left, straight, and right. For each
region, a pixel-based analysis is performed, to determine the
number of pixels that have a disparity value bigger than a
predefined threshold. The final decision of the direction is
determined by a Finite-State-Machine (FSM) that selects the
safest direction, i.e., the one with the most distanced obstacles.

As the whole process depends on the disparity computation,
it is evident that an erroneous disparity map value can result
in errors in the selection of the direction of the robot and can
potentially lead the robot to crash on an unrecognized obstacle.
Due to DMC’s criticality, fault injection is performed in this
part of the system. The vulnerability analysis is performed for
the entire system (DMC and OA) in order to reveal the impact
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Fig. 3: Experimental Platform - System block diagram

of DMC errors in the OA application. The DMC architecture
consists of 12 major components listed in Table IV, for a total
number of 17,472 bits, where SEUs can be injected.

B. Underlying Fault Injection Mechanism

This section discusses the Fault Injection Mechanism (FIM)
that is used to provide SEU vulnerability evaluation. The
mechanism allows for coarse and fine-grained reliability anal-
ysis using hardware-based models for fault injection which
are integrated with the system to be evaluated using FPGA-
based emulation. Our FIM dynamically generates and targets
the injection of faults, without the need of a fault-map, via
four different fault injection mechanisms which target different
granularity levels. The first mechanism controls the fault
injection at the system level and randomly selects a clock
cycle, where the fault will be injected, while the application
is running. The second mechanism selects a component and
the third mechanism selects a specific register inside the
selected component. The fourth mechanism is the bit selection
mechanism that selects the bit that will be inverted from the
selected register. The selections regarding the clock cycle,
component, register and bit are done in a pseudo-random
manner, utilizing Linear-Feedback Shift Registers. For the
analysis presented in this paper, we use all four mechanisms to
inject faults. However, we present vulnerability analysis results
only at the component level.

C. Selective Hardening

Fine-grained vulnerability analysis can be used to enhance
the selective protection for the most vulnerable modules of
the system. In this work we, analyze the underlying use case
and identify the most critical components that experience
SDC errors. SDC errors happen when there is an output
discrepancy between the fault-free and faulty execution, which
can manifest differently according to the exact impact on
the application outcome. We analyze the area overhead of
well-known fault tolerant techniques including Dual Modular
Redundancy (DMR) and Triple Modular Redundancy (TMR),
when applied at the selected critical components. DMR has
duplicated components, which work in parallel, and a com-
parator that compares the two executions, whereas TMR has
triplicated components and a voter for selecting the majority
output from the three parallel executions.



(c) Disparity Results

Fig. 4: Example of (a) input left eye image, (b) input right eye
image, and (c) disparity results by DMC

D. Evaluation

The experiments were performed on a prototyped system
implemented using Inrevium’s Kintex-7 FPGA. The entire
process was controlled through an in-house GUI allowing the
user to specify the parameters and granularity of the whole
process via a host PC connected to the FPGA. We have applied
the fault injections at the DMC level and we evaluated the
effects of the faults at both DMC and OA level. A database
of 23 pairs of stereo images with 1280%720 (720p) resolution
was used for our experiments, representing various obstacles
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Fig. 5: SDC rate for different components using Obstacle
Avoidance Algorithm

in a typical office, such as doors, persons, and other office
equipment. Each image in the stereo pair was loaded on
two receiver ports of the HDMI Receiver in the Inrevium’s
Kintex-7 FPGA Display Kit through USB to HDMI cables.
To investigate the effects of SEUs at the lower layer of the
application (disparity map computation) and subsequently at
the higher layer (decision of the obstacle avoidance system),
we designed two DMC systems along with two OA systems
on the Kintex-7 FPGA, as shown in Figure 3.

Figure 4 shows an example of the test images used in our
evaluation (left and right eye images at the top) and the effects
in the disparity (image below). In order to monitor and validate
if a fault was injected correctly, we have added one more
window in our GUI representing the fault injections. When
a fault was injected, the color of the window changes. SEUs
were injected in all the 12 components of the DMC part, listed
in Table IV, at different registers and bits. A set of 19317 SEUs
was generated for the whole system. To ensure the statistical
correctness of the performed fault injection campaign, we used
the method of [24] with a confidence level of 99,8% and an
error margin of 0,05%.

We first study the SDC rate for the different components
by using the fault injection mechanism. To measure this, we
inject a fault at the DMC algorithm and we compare the final
fault free output of the OA with the faulty one, as shown
in Figure 4. Thus, we evaluate the subsequent impact of the
DMC on the decision of the OA model, when the different
components were injected with SEUs. Figure 5 shows the
SDC rate of this component-level analysis on the obstacle
avoidance model. For example scbf component shows an SDC
rate around 10%. This means that 10% of the fault injected at
the scbf component propagate as SDC at some output of the
OA algorithm.

The results in Figure 5 clearly indicate that from the 12
components only 6 experience SDC errors. The most vulner-
able components are the scnbf, bfir, ag, cs, sl, and s2. This



TABLE V: Area overheads for extra hardware needed to
provide DMR and TMR at different design levels (all in
NAND gate equivalent)

Redundancy Techniq Redundant Voters / Total Area
Gates Comparators Overhead
Full System DMR 69888 11 69899 (100.015%)
Full System TMR 139776 10 139786 (200.014%)
Selective Component DMR 31616 577 32193 (46.063%)
Selective Component TMR 63232 410 63642 (91.062%)

result is justified when considering the large number of bits
in the bflr module, and the fact that, even thought they have a
very small size, the ag, cs, sI, and s2 are control units whose
behavior affects the result of the application significantly.
Moreover buffer scnbf is also more susceptible to errors. This
analysis gives an indication of the number of components that
need further exploration or, in this case, protection. To further
reduce the number of critical components parameterized SDC
rate thresholds could be used, which can be determined
according to the criticality of the application. For example,
a 10% SDC rate threshold would exclude component scnb f
from the list of critical components.

To show how the vulnerability analysis can be used to
decide on effective detection/correction techniques, we con-
sider DMR which can offer detection, and TMR which can
offer both detection and correction. Table V compares DMR
and TMR in terms of area overhead (based on NAND gate
equivalents), when applying full system redundancy or se-
lective redundancy at the 6 critical components identified
in the previous analysis. The table shows for each redun-
dancy technique (first column) the overhead for the extra
hardware needed to provide DMR or TMR (second column),
including the cost for comparators in DMR, or voters in
TMR (third column). Additionally, we provide the total area
overhead (fourth column) with the normalized overhead to
the non-protected architecture (fourth column in parenthesis).
A comparator consists of 4 NAND gate equivalents per bit
plus cascading gate network for the output, whereas a voter
consists of 5 NAND gates. Flip-flops (bits) require 4 NAND
gates each. As the numbers depict in Table V, the selective
component approach can provide around 2.17X (2.20X) less
total area overhead, compared to full system DMR (TMR).
Even thought the number of needed comparators (or voters)
increases with selective redundancy, due to increase of outputs
to be protected, this overhead is well compensated with the
significant decrease of redundant gates needed by the selective
protection (second column of V).

V. TIME IMPLICATIONS OF TRANSIENT FAULTS IN
MIDDLEWARE FOR COTS GPUs

In this section, we explore the timing effects of SEUs in the
next abstraction level, where a fault-tolerant middleware inte-
grates information from error reporting mechanisms of modern
processors and exposes this information to the software, in
order to take propoper actions.

Such a feature is very important for systems that have
relatively high probability to experience SEUs and, at the same
time, need to guarantee availability and correct functionality,
such as COTS (commercial off-the-shelf) systems employed
in critical domains. This is the case of an emerging space
sector, known as New Space [23], which is currently on the
rise. Unlike institutional missions executed by Space Agencies,
which rely on space-proven custom designs, such as radia-
tion hardened and radiation tolerant processors (like Cobham
Gaisler’s LEON4/NGMP), New Space is characterised by low-
cost, commercial missions. As a consequence, New Space uses
COTS processors, which, apart from their lower cost, they
allow the use of high performance processing technologies,
such as embedded Graphics Processing Units (GPUs). GPUs
can provide significantly higher processing power than space
processors and are promising candidates for adoption in space.

Despite their lower cost, New Space missions have also
real-time requirements, which need to be addressed in the
presence of transient faults. For example, earth and space ob-
servation missions, acquire periodically images through their
instruments which need to be processed before the next image
is acquired, otherwise data are going to be lost. However, when
COTS processors, such as GPUs, are used for processing, the
radiation errors need to be considered in order to meet the
required timing. In the next subsection we discuss how this
can be achieved.

A. Image Processing Space Case Study

In order to demonstrate the concept in a realistic setup,
we use an image processing space case study from ESA’s
OBPMark Benchmark suite [48]. OBPMark is an open source
benchmarking suite targeting high performance devices for
space. While it was originally developed to benchmark em-
bedded GPUs in order to assess their applicability to space
as part of the GPU4S ESA-funded project [39], it is currently
featuring implementations of space related algorithms for mul-
tiple processing technologies, including multi-core CPUs and a
portable sequential implementation in C. Although OBPMark
Kernels (also known as GPU4S Bench) was restricted only
on computational kernels, which are used across multiple
space domains, OBPMark includes full, representative space
applications [12]. A third variant of the suite, OBPMark-
ML focuses on the implementation of Machine Learning
space applications. All OBPMark benchmarking suites are co-
hosted in github [12] and come with representative input and
verification output in order to ensure the correctness of the
algorithms, making them ideal for use in reliability methods.

In this work, we use the #l.1 Image Calibration and
Correction application. This application represents the typical
on-board processing tasks necessary for panchromatic imaging
instruments in scientific remote sensing applications, such as
deep-space telescopes with long exposure times.

Frames from several acquisitions are pre-processed individ-
ually, then co-registered and summed to create a final image
output. After an image is acquired, the following stages are
performed for each frame: a) image offset correction, b) bad



pixel correction, c) radiation scrubbing, d) gain correction, e)
spatial binning and f) temporal binning. These processing steps
create the processing pipeline shown in Figure 6.
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Fig. 6: General Pipeline

Although some processing steps only depend on a single
image frame, some steps depend on previous/following frames.
For example, the temporal binning step is performed on the
current frame, two previous and two already processed frames,
so a total of five consecutive frames are required. Figure 7
shows how many and which frames are required for each
processing step to have a full image output, after processing
eight complete frames. In fact, due to these dependencies, each
of the processing stages of the application can be considered as
individual, and independent processing pipelines, which have
a length equal to the number of frames that they depend on.

Needs to go through full pipeline
(including offset and bad pixel correcti

Fig. 7: Frame dependencies for each processing step.

The input frames and verification output for this applica-
tion come from ESA’s Herschel mission [17], although the
implementation of the algorithms is generic and not tied to
that mission, in order to be representative of several image
processing space applications.

B. Fault tolerant middleware

We modified the application in order to include 3 points in
which we interact with a custom fault tolerant middleware we
have developed. The middleware queries the error reporting
facilities of the platform, such as MCA, RAS, SMART etc. In
case that an uncorrectable error is detected for a given stage,
it’s data are discarded and the re-execution of its computation
is performed. Figure 8 shows the location of these error checks
within the processing sequence.
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Fig. 8: Pipeline during execution.
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Fig. 9: Execution time with multiple combinations of unre-
coverable error in the different middleware check points in
the application.

The re-execution increases the execution time of the next
output frame. Therefore, the latency between the output of two
consecutive frames needs to consider, not only regarding the
execution time which is required for the correct processing —
as it would have happened on a radiation hardened processor
— but also for the re-execution overheads.

Note, however, that the execution time increase is not linear.
The reason for this is that, as mentioned before, each of the
processing stages forms an independent pipeline. For example,
if an uncorrectable error is detected during the image copy
from the instrument, the copy operation is replicated. On the
other hand, if an error is performed between the first and the
second middleware error checks, which we call part 1 (P1)
of the application, only the processing performed in the P1
needs to repeated, but not the copy operation. Similarly, if an
uncorrectable error is detected between the second and third
error checks, only the P2 computation needs to be recalculated.

C. Evaluation

We have evaluated our implementation on an NVIDIA
Xavier NX embedded GPU SoC, which is a promising COTS
embedded GPU platform for adoption in space, using the
CUDA version of the application. That is the image processing
steps are executed on the Volta-based embedded GPU of the
platform. Since the GPU provides significantly higher perfor-
mance than the space processors, we use images of 4Kx4K
size as an input, although the original Herschel instrument is
processing 1Kx 1K sized images.

The deadline between two consecutive processed frames of
the application is set to 800 ms. The optical instrument of
the Herschel mission provides a new frame with a rate of
10Hz [27], and since the longest processing step of the image
processing pipeline of the application requires eight frames,
the processing of each output frame requires to be processed
in below the 800ms time limit, in order to avoid a missing
frame.

Figure 9 shows the timing results of our evaluation, both for
the nominal execution without experiencing any unrecoverable
transient faults, as well as for combinations of one, two and



three errors in each of the error check points. The execution
times are collected by measurements over multiple frames, and
high watermark values are provided.

The execution time when no errors are experienced is below
550ms. When a single unrecoverable error takes place, the
additional execution time overhead varies depending on the
failure point. If the error is in the P1, the re-execution time
overhead is longer, due to the fact that the bad pixel correction
stage is the most time consuming one, while the impact of the
other two is minimal. This is also evident when two faults
are experienced, and one of them involves a re-execution of
P1. Finally, even when three faults are experienced in all
the middleware check points, the re-execution time overhead
reaches its maximum value, but still well below the 800ms
deadline.

In fact, the presented values are overly pessimistic, since
simulations based on data obtained during radiation testing
using protons on this device, predict that three faults are
expected to happen within a single year of operation at a low-
earth orbit (LEO) [40].

VI. CONCLUSIONS

In this paper we present three case studies of reliability
analysis and mitigation at different levels of the system, and
we explore their timing and functional impact.

The obtained results of the proposed functional and timing
vulnerability analysis show that even when the application’s
output is correct, the application execution time can be signifi-
cantly increased under the presence of faults, even up to almost
700%, compared to the application execution time without
faults. This observation has a direct three-fold consequence: 1)
current fault-tolerant techniques, based only on the functional
correctness of the application, are incapable of detecting this
impact of faults on the application execution time, ii) current
WCET estimation methods do not account for this timing
impact, and 1iii) current fault-tolerant techniques, based on
fault-free WCET estimations, may become unsafe. To deal
with this timing impact, fault tolerant techniques should be
employed in order to mitigate it at a lower level than the
task level, and WCET estimation approaches should account
for it. Our future directions is to analyse the software and
hardware parts that lead to significant timing impact and
provide countermeasures.

We also highlighted the need of having an FPGA-based
emulation vulnerability analysis tool, which allows for in-field
fault injections, improving the analysis time. This framework
has allowed us to study the impact of SEUs from coarse-
level to fine-grained system levels in reasonable time, of an
approximate hardware implementation and its effect to the
application running on top of it. Moreover, we analyze the
area overhead of different redundancy schemes, when applied
at the selected critical components. Future work will focus
at the register-level vulnerability analysis, which can provide
even finer-grained insights that can lead to further area savings
for selective redundancy.

Last, we have experimentally measured the timing impact
of re-execution required in a space application due to SEUs
in a COTS embedded GPU, when a fault tolerant middleware
informs the application for non recoverable transient faults. We
have seen that the actual overhead depends on the particular
execution time cost of the original computation and that
factoring this overhead is not straightforward. Moreover, we
observed that the performance benefit of a COTS GPU is high
enough to allow meeting the deadline, even when accounting
for the additional re-execution overhead.
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