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ABSTRACT

In this paper, we present a method for performing isotropic and anisotropic adaptive computations. The discontinuous Galerkin
method that is used for solving transient flow problem is briefly introduced. We show then a general scheme to compute high-order
derivatives of discontinuous fields. The Hessian of the density is used for computing a correction indicator. We present three sample
problems involving hundred of mesh refinements, both in 2D and 3D.
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1. INTRODUCTION

Transient flow problems involving wave propagation are of
great interest in computational fluid dynamics. An accurate
tracking of features like moving shocks or fluid interfaces
in an Eulerian fashion implies multiple mesh adaptations in
order to follow complex features of the flow.

The discontinuous Galerkin method (DGM) is a good candi-
date for solving our problems of interest. The DGM can be
regarded as an extension of finite volume methods to arbi-
trary orders of accuracy without the need to construct com-
plex stencils for high-order reconstruction. In this paper, we
outline the DGM we are using [1] and we introduce a gen-
eral scheme for computing stable high-order derivatives of
discontinuous fields. We will use the Hessian matrix as a
correction indicator together with an innovative shock detec-
tor.

The aim of this is to be able to do computations involv-
ing thousands of mesh adaptations. We present two dif-
ferent methods for doing the mesh adaptation. The first
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one consists of non-conforming mesh modifications since
the DGM does not impose inter-element continuity of the
approximated fields. Therefore, do not need to construct
complex constraints when we divide elements in a non-
conforming way. The second mesh adaptation method is
based on conformal mesh modifications: element splitting,
edge swapping, edge collapsing and etc. This second adap-
tation scheme isa priori more risky for methods with con-
servation requirements because of the possible introduction
of numerical diffusion during certain critical mesh modifica-
tions like edge swapping. Despite this, the second scheme
has the advantage of being expandable to anisotropic mesh
adaptation and easy to use with continuous finite element ba-
sis.

In sections §7. and §6., we present examples of 2D
and 3D computations and show results on the ad-
vantage of anisotropic mesh refinement. For all ex-
amples, we have used the Algorithm Oriented Mesh
Database. AOMD is available as open source at
http://www.scorec.rpi.edu/AOMD . AOMD pro-
vides the operations that are necessary to do the mesh adap-
tation: local mesh modifications, introduction of solver call-
backs, access to mesh entities and their classification [2].



2. DISCONTINUOUS FINITE ELEMENTS
FOR SOLVING CONSERVATION LAWS

Consider an open setΩ ⊂ R3 whose boundary∂Ω is Lips-
chitz continuous with a normal~n that is defined everywhere.
We seek to determineu(Ω, t) : R3×R → L2(Ω)m = V (Ω)
as the solution of asystem of conservation laws

∂tu + div ~F(u) = r. (1)

Herediv = (div , . . . , div ) is the vector valued divergence
operator and

~F(u) = (~F1(u), . . . , ~Fm(u))

is the flux vector with theith component ~Fi(u) :
(H1(Ω))

m → H(div , Ω). Function spaceH(div , Ω) con-
sists of square integrable vector valued functions whose di-
vergence is also square integrable i.e.,

H(div , Ω) =
{

~v | ~v ∈ L2(Ω)
3

, div~v ∈ L2(Ω)
}

.

With the aim of constructing a Galerkin form of (1), let
(·, ·)Ω and 〈·, ·〉∂Ω denote the standardL2(Ω) andL2(∂Ω)
scalar products respectively. Multiply equation (1) by a test
functionw ∈ V (Ω), integrate overΩ and use the divergence
theorem to obtain the following variational formulation

(∂tu,w)Ω − (~F(u),gradw)Ω + 〈~F(u) · ~n,w〉∂Ω

= (r,w)Ω , ∀w ∈ V (Ω). (2)

Finite element methods (FEMs) involve a double discretiza-
tion. First, the physical domainΩ is discretized into a col-
lection ofNe elements

Te =

Ne⋃
e=1

e (3)

called a mesh. The continuous function spaceV (Ω) con-
taining the solution of (2) is approximated on each element
e of the mesh to define a finite-dimensional spaceVe(Te).
With discontinuous finite elements,Ve is a “broken” func-
tion space that consists in the direct sum of elementary ap-
proximationsue (we use here a polynomial basisPq(e) of
orderq):

Ve(Te) = {u | u ∈ L2(Ω)m,ue ∈ Pq(e)m = Ve(e)}. (4)

Because all approximation are disconnected, we can solve
the conservation laws on each element to obtain

(∂tue,w)e − (~F(ue),gradw)e + 〈Fn,w〉∂e

= (r,w)e , ∀w ∈ Ve(e). (5)

Now, a discontinuous basis implies that the normal trace
Fn = ~F(u) · ~n is not defined on∂e. In this situation, a
numerical fluxFn(ue,uek ) is usually used on each portion
∂ek of ∂e shared by elemente and neighboring elementek.

Here,ue anduek are the restrictions of solutionu, respec-
tively, to elemente and elementek. This numerical flux must
be continuous, so~F ∈ H(div , Ω)m, and be consistent, so
Fn(u,u) = ~F(u) · ~n. With such a numerical flux, equa-
tion (5) becomes

(∂tue,w)e − (~F(ue),gradw)e

+

ne∑
k=1

〈Fn(ue,uek ),w〉∂ek

= (r,w)e , ∀w ∈ Ve(e), (6)

wherene is the number of faces of elemente. Only the nor-
mal traces have to be defined on∂ek and several operators
are possible [3, 4]. It is usual to define the trace as the solu-
tion of a Riemann problem across∂ek. Herein, we consider
problems with strong shocks [4,5]. An exact Riemann solver
is used to compute the numerical fluxes and a slope lim-
iter [6] is used to produce monotonic solutions when poly-
nomial degreesq > 0 are used.

The choice of a basis forVe(e) is an important issue in con-
structing an efficient method. Because the field is discon-
tinuous, there is substantial freedom in the selection of the
elemental basis. Here, we chose theL2-orthogonal basis de-
scribed in [1] as a basis ofP (e):

P (e) = {b1, . . . , bk}

where
(bi, bj)e = δi,j .

For the time discretization, we use the local time stepping
procedure described in [7] that allows to use time steps more
the20 times bigger that the classical stability limit of explicit
schemes.

We will present the results of some compressible inviscid
flow problems involving the solution of the Euler equations
[8] by a DG method. The three-dimensional Euler equations
have the form (1) with

u = {ρ, ρvx, ρvy, ρvz, E}t (7)
~F(u) = {ρ~v, ρvx~v + P~ex,

ρvy~v + P~ey, ρvz~v + P~ez, (8)

(ρE + P )~v}t,

r = 0. (9)

Hereρ is the fluid density,~v the velocity,E the internal en-
ergy,P the pressure and~ex, ~ey and~ez are the unit vectors
in the x, y and z directions, respectively. An equation of
state of the formP = P (ρ, E) is also necessary to close
the system. The DG method and the associated software [1]
may be used for any equation of state which only enters the
numerical method through the calculation of the numerical
flux. Here, we have chosen the perfect gas equation of state

P = (γ − 1) ρ

[
E − ‖~v‖2

2

]
(10)

with the gas constantγ = 1.4.



3. COMPUTING HESSIAN’S OF
DISCONTINUOUS SOLUTIONS

It is common in Computational Fluid Dynamics to use sec-
ond order derivatives

Hi,j(u) =
∂2u

∂xi∂xj

of a flow variableu in order to compute an error indicator. In
[9], authors provide anad hocprocedure for the computation
of H(u) for first order continuous finite elements solutions.
Here, we provide a general approach which can be applied
for higher order and/or discontinuous finite elements.

In case of classicalC0 finite elements, the computation of
the gradient of the finite element solution is straightforward
because of theC0 continuity of the field. In case of discon-
tinuous finite elements, gradients have a contribution due to
inter-element jumps. In order to recover some control on the
gradients, we compute them using a discontinuous Galerkin
technique i.e. findw ∈ Ve\R = V 0

e such that

grad u− grad w = 0 in Ω (11)

The fact that we have taken of the constant part out ofV 0
e

allows (11) to have a unique solution. Characterization of
spaceV 0

e (e) is done by choosingV 0
e (e) = {b2, . . . , bk}, the

constant part of aL2 orthogonal space being contained into
its first functionb1. We consider the following formulation:
find w ∈ V 0

e (e) such that

((grad u− grad w) , grad w′)e = 0 ∀w′ (12)

This equation is solved in each element in order to recover
a stable gradientgrad w. To stabilizegrad w, we will inte-
grate (12) by parts in order to have a term that reflects the
jumps ofu on∂e.

((w − u), div (grad w′))e (13)

+

ne∑
k=1

〈{u} − {w}, grad w′ 〉∂ek = 0 ∀w′.

Fieldsu andw on ∂e are not defined directly. There we use
the average fluxes

{u} = ~n
ue + uek

2
.

in evaluating (13). This choice is not as “natural” as the one
we made for the numerical flux in the hyperbolic case where
this kind of Riemann problem has well known solution in
terms of simple waves [8]. A second integration by parts
yields jumps ofu andw across∂e:

(grad u− grad w), grad w′)e

+

ne∑
k=1

〈(JuK− JwK), grad w′〉∂ek = 0 ∀w′. (14)

where
JuK = ~n

ue − uek

2

is the half flux jump. Without any other assumption on the
regularity ofw, the solution of (14) isu = w. By choosing
w in a space such that

(JwK, grad w′)e = 0 ∀w′, (15)

i.e. choosingw so that there is no flux jump (in a weak sense)
of the field through faces, equation (14) transforms to

B(w, w′) = L(u, w′) ∀w′ (16)

with

B(w, w′) = (grad w, grad w′)e

and

L(u, w′) = (grad u, grad w′)e +

ne∑
k=1

〈JuK, grad w′〉∂ek

The hypothesis in (15) requires further consideration: as-
sumption (15) is similar to the one used for building the
Crouzeix-Raviart finite element family [10]. Those elements
generate stable gradients and that’s what we are looking for.

For second order derivatives, we proceed exactly the same
way. If u is the variable we intend to compute second order
derivatives, we do it in 2 steps:

• First step, the gradients:

B(w, w′) = L(u, w′)

• Second step: the Hessian:

B(hj , w
′) = L

(
∂w

∂xj
, w′

)
, j = 1, 2, 3

wheregrad hj is thejth row of the Hessian matrix. The in-
terest of this technique is that it allows us to build any higher
order derivative of a field by a general procedure. Even if the
number of elements that are involved to compute a higher-
order derivative is increased at each step, the procedure (16)
remains the same. Gradients are constructed using face
neighbor elements. The Hessian is also constructed using
gradients at neighbor elements but those were constructed
using their own neighbors. Discrete versions of formsL and
B can be re-used so that the procedure is fast and easy to
code. As an example, let us consider the following function

f(x, y) = x3 + x2y2 + 3y3

whose Hessian is easy to compute. We haveL2-projected
this function on an unstructured triangular mesh and have
usedq = 0 for the finite element approximation. Results of
numerical computation of the Hessian componentsHij on a
line 0 < x < 1 , y = 0.5 are shown on Figure 1.



Figure 1: Numerical computation of the Hessian
of a piecewise constant function, the figure shows
the results on an triangular mesh (40 points per
length).

4. A CORRECTION INDICATOR AND MESH
SIZE FIELD

Using Hessians for tracking shocks may be a pragmatic tech-
nique but it cannot be considered as an error estimator:

• the hypothesis of smooth convergence (interpolation
theory) of finite element solution cannot be used in
shocks and other discontinuities,

• higher order solutions may have large second order
derivatives which are perfectly resolved.

In order to track shocks and other complex features of tran-
sient flows, we build a smoothness indicator. Then, we will
use the Hessian to compute the direction of shocks and other
discontinuities.

4.1 Smoothness indicator

Let us consider 2 elementse and ek sharing the common
face∂ek. The numerical solutionu is in general discontin-
uous along inter-element boundaries. We denote byue and
uek value ofu on e andek respectively. Since the method
is of orderq, we expect‖ue − ū‖L2 = O(hq+1

e ) with he

being the size of elemente andū being the exact solution of
(1). In the DGM, there exists a quantity that exhibits faster
convergence thanL2 norm of the error: the error is super-
convergent in average at outflow boundaries [11]. If we as-
sume that∂ek is an inflow boundary forek (outflow for e),
we have that

Ie =

∫
∂ek

|ue − uek | dl = O(h2q+1
e ) (17)

Result (17) is only valid in smooth regions. In rough regions,
the super-convergence does not apply and the accuracy of

the numerical solution is of orderO(1) i.e. amplitude of
jumps of the solution across inter-element boundaries are of
the same order of magnitude as the solution itself. Then, in
rough regions,Ie = O(he). Using those results, we build
the following smoothness indicator:

εe =
Ie∫

∂ek

ue dl
(18)

We distinguish 2 cases. In presence of a discontinuity, we
have thatεe = O(1). Practically, we decide that, whenever
εe > 0.1, the element is considered to be crossed by a dis-
continuity. In smooth regions,εe = O(h2q

e ) i.e. this value
converges to0 with adaptation. It is then possible, usingεe,
to detect regions where the numerical scheme is unable to
capture strongly varying features.

Using the smoothness indicator (18), we are able to build
a size field. Our goal is, classically, to obtain an uniform
distribution ofεe = ε∗ for all elements. In any elemente of
a smooth region, we compute the desired sizeh∗e of elements
of the optimum mesh in the region delimited bye like

h∗e = he

( ε

ε∗

)2q

.

In rough regions, convergence rate is lost and we can not
define an appropriate mesh size based on the smooth con-
vergence rate. Alternatively, we can decidea priori the res-
olution of discontinuities we want to achieve to reasonable
resolve and isolate the jumps. If the smoothness indicator
εe > 0.1, we choseh∗e = hs wherehs is a give small de-
sired mesh size.

In order to illustrate the power ofεe, we consider the fol-
lowing example. We consider a square domain of size1× 1
centered atx = 0 andy = 0. The problem is initially di-
vided into four quadrants. Quadrant1 is the upper right,2 the
upper left,3 the lower left and4 the lower right. All bound-
ary conditions are transmitting (we copy the interior data
perpendicular to the boundary). We initialize each quadrant
with the quantities given in Table 4.1. In this problem four

1 2 3 4
ρ 1.0 2.0 1.0 3.0
vx 0.75 0.75 -0.75 -0.75
vy -0.5 0.5 0.5 -0.5
P 1.0 1.0 1.0 1.0

Table 1: Initial conditions for the four-contact Rie-
mann problem.

contact discontinuities are rotating around the center of the
square creating vortex sheets. This example has been chosen
to prove the efficiency of the smoothness indicator. We used
εe for both refinement and smoothness indications. When a
discontinuity is detected, i.e.εe > 0.1, the limiter described
in [6] is used to remove oscillations from the solutions. Ev-
erywhere else, i.e. in smooth regions, the DGM scheme is
kept intact with its full accuracy. Figure 2 shows solution for



Figure 2: Refined mesh and density contours at t = 0.3 for the four-contact problem. Views show a zoom of
the central area for the mostly refined computation.

a effective mesh of2560 × 2560 grid points which would
require more that a hundred millions of degrees of freedom
to have the same accuracy on a uniform mesh. The actual
mesh att = 0.3 that is shown on the left side of Figure 2
has four million degrees of freedom after having performed
300 mesh adaptations (one adaptation every0.001 seconds).
At small timest = 0.1, contact discontinuities are stable on
their major parts. After that, Kelvin-Helmholtz’s instabili-
ties grow starting at the center of the square and reaching
the whole interface. The center of the domain is now filled
by a turbulent mixing zone. The cascade to small scales is
not moderated by viscosity effects because we use the Eu-
ler’s equations. For that reason, the more refinement we will
allow, the smaller features we will get.

4.2 Anisotropic metric

In this paper, the rationale is that a primary goal of
anisotropic mesh refinement is to efficiently capture dis-
continuities. In this case, there is one only direction for
anisotropy: the one orthogonal to discontinuities. All the
rest of the field, apart of iscontinuities, is then supposed to
be isotropic.

The anisotropy of the mesh is favorable in 2 ways:

• reducing the number of elements for the same accuracy,

• aligning the element faces with discontinuities which
has the effect of reducing the numerical dissipation of
the Riemann solver

In order to build an anisotropic metric field, we compute the
Hessian of one of the variables, the fluid densityρ e.g:

H(ρ) = R

 λ1 0 0
0 λ2 0
0 0 λ3

 RT

with R being the rotation matrix diagonalizingH andλ1,λ2

andλ3 being the eigenvalues of theH.

We assume here that|λ1| > |λ2| and|λ2| > |λ3|. We build
the metricM for elemente like

M = R

 1/h2
s 0 0

0 |λ1/λ2|/h2
s 0

0 0 |λ1/λ3|/h2
s

 RT

Metric M has two properties:

• Specify an ellipsoidal directional variation of desired
edge length in physical space;

• Define a transformation to a space where the desired
anisotropic mesh is isotropic and normalized.

Let ∆~v represent the vector associated with a mesh edge.
The length of∆~v with respect toM is then computed by:

LM (∆~v) =
√

∆~v M ∆~vT

with LM (∆~v) = 1 if vector ∆~v is of the desired length.
Since, geometrically,∆~v M ∆~vT = 1 describes an ellipsoid
in physical space, the desired length variation with respect to
M follows an ellipsoidal distribution.

Due to symmetry and positive definiteness, metricM can
always be decomposed:

M = Q QT

where

Q = R

 1/hs 0 0

0
√
|λ1/λ2|/hs 0

0 0
√
|λ1/λ3|/hs





which is the representation of a linear transformation from
physical space to a rotated distorted space where desired
mesh is normalized and isotropic.

In general,M varies over the domain. The length and vol-
ume with respect to the metric field can be computed by:

LM (M1
i ) =

∫ 1

0

√
∆~v Q(t) Q(t)T ∆~vT dt (19)

VM (M3
j ) =

∫
M3

j

|Q(x, y, z)| dV (20)

where∆~v is the vector associated with edgeM1
i in physical

space, andQ represents the specified transformation matrix
over the considered mesh entity.

5. MESH ADAPTATION

We want to perform adaptive computations with the aim of
tracking transient features including sharp fronts. In this pa-
per, we want to compare two kind of mesh adaptation pro-
cedures: conforming and non-conforming. Mesh adaptation
is performed in both cases in terms of local mesh modifica-
tions. One cavity triangulationC, i.e. a set of mesh entities
that form a connected volume, is replaced by another cavity
triangulationC′ with the same closure. Formally, we write

T n+1 = T n + C′ − C. (21)

whereT n denotes the mesh before the local mesh modifica-
tion andT n+1 is the mesh after the local mesh modification.
In the kernel of each mesh modification, we ensure that there
is a place when both cavity triangulations are present by do-
ing (21) in two steps:

T ′ = T n + C′. (22)

T n+1 = T ′ − C. (23)

T ′ represents the mesh that is topologically incorrect but
both cavity triangulationsC andC′ are present so that we can
insert a callback to the solver. Here, we call back the DGM
solver that executes aL2 projection of the the solution from
C to C′ without losing conservationi.e. with doing the pro-
jection so that mass, momentum’s and energy are conserved
during the process in the local region covered by the cavity.

5.1 Conforming adaptation

The overall procedure for conforming mesh adaptation con-
sists of:

• Properly mark edges to be split in terms of the mesh
size field and refine the mesh using refinement tem-
plates;

• Collapse short mesh edges with respect to the mesh
size field to coarsen or fix up the mesh;

• Eliminate sliver elements with respect to the mesh size
field to improve connectivity;

• Repeat above steps until the mesh size field is satisfied
or no more improvement possible.

We consider the mesh satisfying the mesh size field if: (i)
all its edge lengths in the transformed space fall into interval
[0.6, 1.4], and (ii) no sliver element exists in the transformed
space.

The reason for using interval[0.6, 1.4] is to ensure that the
two new edges from a bisection will not be short edges so
that oscillation between refining and coarsening will be pre-
vented, and unit length is in the middle of the interval since
the desired edge length is normalized to one in the trans-
formed space. Note that the interval to be[0.6, 1.4] is not
unique. Intervals other than[0.6, 1.4] can also be used as
long as they will not cause oscillation.

Note that we do not consider here vertex repositioning in our
mesh modification procedure. We intend to perform mesh
adaptation in the context of transient computations. We think
that vertex repositioning could potentially degrade the solu-
tion by introducing numerical diffusion during the solution
transfer. This will be investigated in forthcoming work.

5.1.1 Refinement

We refine the mesh to desired size level in several iterations.
The refinement algorithm can be described as follows:

1. Find Lmax, the maximum edge length of the mesh in
the transformed space;

2. Mark all mesh edges longer thanmax(1.4, αLmax) in
the transformed space as edges to be split, whereα is a
given factor between0.5 ∼ 1.0;

3. Split all marked edges at their middle points in the
transformed space;

4. Split all adjacent faces and regions of these marked
edges using refinement templates with proper diagonal
edges created;

5. Eliminate short edges possibly created in refinement;

6. Repeat above steps untilLmax < 1.4.

To maintain mesh quality during refinement, the algorithm
only marks a set of long mesh edges in the transformed space
in each iteration, then splits these edges at their middle points
in the transformed space, as well as all adjacent faces and re-
gions of these edges using refinement templates [12]. Since
refinement templates may create short edges in case the ini-
tial mesh quality is poor with respect to the mesh size field
(see figure 5 for an example), a following short edge collaps-
ing step is needed before the next refinement iteration.



When applying refinement templates, we consider all pos-
sible surface triangulation options (42 options) of splitting
a tetrahedron so that no additional edge is over refined. Of
these options, four requires creating an interior vertex since
we can not triangulate the prism polyhedron as illustrated
in Figure 3(a), and several have the freedom to select a di-
agonal edge to create (refer to Figure 4). To maintain the
mesh quality of the refined mesh, it is critical to create the
diagonal edges such that the introduction of interior vertex is
prevented as many as possible, and in case multiple diagonal
options, the shortest diagonal edge in the transformed space
is always created.

Figure 3: Select the diagonal edge to avoid insert-
ing interior vertices.

Figure 4: Multiple options to create diagonal edges.

Figure 5 gives a 2D example to demonstrate the refinement
algorithm. In this example, it takes three iterations to refine
the two initial triangles to desired size level. In the first iter-
ation, only two edges (indicated by circles) are split, which
creates a short edge since one of the initial triangle has poor
quality. Collapsing the short edge is needed, and it can be
seen that the combination of split and collapse not only main-
tains but improves the mesh quality. The second iteration
only split the longest edge since it is much longer than oth-
ers. The third iteration splits eight long edges that are in
close length.

Figure 5: 2D example of the refinement algorithm.

5.1.2 Collapsing short edges

We consider an edge as short if its length in the transformed
space is less than 0.6. Short edges may exist in the given

initial mesh, or created during the application of refinement
templates and swap operations.

Two local mesh modification operators are used to eliminate
short edges:

• edge collapsing;

• compound operator [13] (the chain of multiple simple
mesh modifications).

The basic operation is edge collapsing, which removes ei-
ther vertex of the short edge from the mesh by collapsing
it onto the vertex at the other end [12]. Compound opera-
tions are investigated only if the edge collapsing is invalid
(negative volume) or not acceptable. The compound opera-
tion first collapse the short edge, then apply one or several
swap (or collapse) operations to eliminate all tetrahedra that
become unacceptable due to the initial collapsing operation.
The swap (or collapse) operation(s) is identified by analyz-
ing these unacceptable tetrahedra. Collapse operation is first
attempted in case the invalid/unacceptable tetrahedron has
a short edge. Swap operation is attempted in case the in-
valid/unacceptable tetrahedron is a sliver. For instance in the
example given in figure 6, collapsingM0

i to M0
j is not possi-

ble sinceM3
k becomes flat. However, it is easy to determine

the modification that swaps edgeM1
l to eliminate flat ele-

mentM3
k. The compound operator that collapsesM0

i to M0
j ,

then swapsM1
l allows vertexM0

i to be removed from the
existing mesh.

To prevent the possible oscillation among refining, collaps-
ing short edges and eliminating slivers, we consider any edge
collapsing and compound operation unacceptable if it cre-
ates much longer mesh edge or decrease local mesh quality
too much in the transformed space.

Figure 6: eliminating M0
i by compound operation.

5.1.3 Eliminating sliver elements

Sliver element is characterized by very small volume with-
out short bounding edges in the transformed space. Since
the existing of slivers can dramatically reduce time step and
degrade results, it is critical to eliminate them.

As indicated in figure 7, we distinguish two types of slivers:



Type I two opposite edges are almost intersected.

Type II one vertex is close to the centroid of its opposite
face;

For type I, the key mesh entity in determining the local mesh
modification to eliminate the sliver is a pair of mesh edges
(as indicated by circles); For type II, the key mesh entity is
the vertex indicated by a black bullet and the face opposite
to the vertex.

Figure 7: Two types of slivers and associated key
entities.

We use three local mesh modification operators to eliminate
slivers in the priority order as listed. The next operator is
attempted only if all previous operators are not acceptable.

1. Delete the sliver and reclassify new boundary mesh en-
tities in case the sliver is next to model boundary and it
is valid to remove it;

2. Edge swapping. In particular, for a sliver of type I, we
check swapping either of the two key mesh edges; For
a sliver of type II, we check swapping any edge that
bounds the key mesh face. If more than one swap op-
erations are possible, the one that leads to better result
mesh quality is selected;

3. The chain of split(s) and collapse operation. Specif-
ically, for a type I sliver, it first splits both key mesh
edges, then collapse the new interior edge; For a type
II sliver, it first splits the key mesh face, then collapse
the new interior edge.

On Figure 8, we have adapted a mesh based on an analytical
metric field. The metric field represents the intersection of
two spheres.

5.2 Non-conforming adaptation

Non-conforming adaptation consists of splitting elements in-
dependently, leading to the creation of hanging nodes. One
refinement template is needed which simplifies greatly the
process. The non conforming adaptation is easily applicable
to hybrid grids composed of a mixture of tetrahedra, hexahe-
dra and prisms. The different levels of the mesh are stored
in memory so that the coarsening procedure consists simply
in retrieving upper level meshes locally. This procedure is

fast and simple. One major advantage of the method is that
projections between cavitiesC andC′ can be done without
introducing any loss of precision:

• in case of cell splitting, the projection is an identity
operator so that no loss of accuracy is observed,

• in case of cell unsplitting, the error onC is small so that
loss of accuracy is small.

As a smoothing procedure, we have decided to allow only
one level refinement between two neighboring cells.

6. A TWO-DIMENSIONAL EXAMPLE

Consider the parallel Mach 3 flow of a gas in a channel where
a step is impulsively inserted. In order to generate a more
complex flow, we also insert a quadrilateral object into the
channel. The channel is of length3, height2 and the step is
situated atx = 0.6 and of height0.2. The initial conditions
areP = 1, ρ = 1 and~v = (Ms

√
γ, 0).

We have solved this problem using the anisotropic conform-
ing mesh refinement technique, starting from an initial un-
structured triangular mesh with an uniform mesh size of
0.1. The final time of the computation was1.2 sec and the
mesh was refined every0.01 second, which makes a total
of 120 mesh refinements. The parameterhs was chosen as
hs = 0.005.

Figure 9 show mesh evolution during time together with den-
sity profiles. The main advantage of the anisotropic mesh
refinement technique is the ability to align elements with
shocks, allowing the numerical scheme to produce a min-
imum of numerical diffusion. Figure 9 shows highly well
captured shocks. On Figure 10, we see zooms of mesh re-
finement at shocks intersections.

7. A THREE-DIMENSIONAL EXAMPLE

References [1, 14, 15] and the example of Figure 2 demon-
strate that non-conforming refinement is an effective proce-
dure to track complex flow features like shocks or vortex
sheets when used in combination with discontinuous spa-
tial discretizations. The non-conforming strategy is fast (less
than5% of the total computation time) and does not intro-
duce any loss of accuracy, even when it is used hundreds of
times like in the example of Figure 2. In fact, we will not ex-
pect conforming isotropic mesh refinement to compete with
non-conforming refinement for such problems. However, the
anisotropic mesh refinement can provide improvement to the
non-conforming technique because of its directional control.
However, we must consider that, in the conforming case, the
refinement procedure takes approximatively30% of the total
computational time in the current explicit code.

As a first attempt to demonstrate the efficiency of our tran-
sient anisotropic refinement strategy, we have computed a



Figure 8: Anisotropic adapted mesh based on an analytical metric field.

simple problem: a traveling planar shock moving at Mach
10. Boundary conditions are set to those corresponding to
the exact motion of a Mach10 shock. Physical parameters
for the gas ahead of the shock areP1 = 1 andρ1 = 1.4. The
Rankine-Hugoniot relations

vs = Ms

√
γP1/ρ1 = 10,

P2/P1 = (2γM2
s − (γ − 1))/(γ + 1),

ρ2/ρ1 = (γ + 1)M2
s /((γ − 1)M2

s + 2),

and
ρ1vs = ρ2(vs − v2)

are used to compute post shock conditions. The shock is
propagating in a rectangular box. We have used a value of
hs = 0.05 while the initial mesh was uniform with a mesh
size of0.4 i.e. a reduction of a factor of8 to the mesh in
the shock. In the non-conforming case, we use3 levels of
refinement which also corresponds to a reduction of8 of the
element sizes in the shocks.

Figure 12 and 11 show meshes and density contours for
both non-conforming and anisotropic conforming refine-
ment techniques. Some important improvements have been
achieved by using anisotropic mesh refinement:

• The number of elements is significantly smaller in the
anisotropic case;

• The shock is much better captured in the anisotropic
case, even if the size of the elements on the direction

normal to the shock is similar. On Figure 11, we see
that the pre and post-shock noises are largely reduced
in comparison with the non-conforming case. This is
due to the fact that those element faces that are aligned
with the shock will introduce minimal numerical dissi-
pation in the Riemann solver (the real Riemann prob-
lem is not 1D but 3D);

• C.P.U. time for computation is, in this case,O(5) times
smaller in the anisotropic case, even with the refine-
ment procedure being more expensive. Our local time
stepping procedure [7] has allowed us to use time steps
O(20) times bigger that the CFL limit in both cases.
It has taken one hour of C.P.U. on a1.4 GHz Intel
Pentium 4 to reacht = 0.5, involving 100 anisotropic
mesh adaptations;

• In general, it seems that it is possible to use numerous
mesh adaptations while predicting correctly the posi-
tion of shocks, even using conforming mesh modifica-
tions including edge swapping’s.

8. CONCLUSIONS

This paper has presented a new procedure to build high-
order derivatives of discontinuous fields. Then, we have
shown how to construct an error indicator based on super-
convergence of the DGM at downwind faces of elements.
Combined with the Hessian, we have developed a method
to compute a metric field that serves as input to the mesh



Figure 9: Mesh (left) and density contours (log scale) of the 2D backward facing step at times t = 0.2, t = 0.4
and t = 1.2.

Figure 10: Zooms of the mesh at t = 1.2.

adaptation procedure. Finally, we have then applied non-
conforming and conforming mesh refinement to transient
compressible flow problems and have found that anisotropic
mesh refinement is advantageous to track discontinuous fea-

tures of flows like shocks: it produces less diffusion and
sharper shocks for the same mesh resolution through discon-
tinuities, while needing less computer resources.

The mesh adaptation procedure that we have developed is



Figure 11: Density contours after 20 (top), 40 (middle) and 60 (bottom) refinements. The problem has O(150, 000)
degrees of freedom for the anisotropic case (left) and O(450, 000) degrees of freedom for the non-conforming
case (right).

able to produce highly anisotropic meshes when the adap-
tation is driven by an analytic metric field (see Figure 8 for
example). Our numerical method, the DGM, is able to han-
dle large number of refinements while preserving conserva-
tivity, for both non-conforming and conforming adaptations
(see Figures 2 and 11 for example). The next point which
need further investigations is the application of our method
on real 3D problems with complex geometries.
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