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Abstract

This paper proposes a Distributed Moving Horizon Estimation (DMHE) approach performed by an external static Sensor Network
(SN) composed of surveillance cameras and their associated low-cost computers. This approach allows to localize a non-cooperative
Multi-Vehicle System (i.e. intruder vehicles which do not communicate with the SN) from sporadic measurements. In this context,
measurements are available at time instants a priori unknown and the proposed DHME technique is designed to face this issue by
resorting to time-dependent parameters in the problem formulation. Moreover, this technique is well-suited to better estimate the
state of the intruder vehicles thanks to its capability to efficiently exploit environmental information via constraints. In fact, when
dealing with sporadic measurements and biased noisy sensors data, the use of output constraints can contribute to locally enhance
the estimation accuracy. In order to confirm its effectiveness, the proposed method is validated on an experimental setup (video
presentation available at https://youtu.be/1CkSba2wVuI) within an indoor arena equipped with a motion capture system.
Three scenarios are considered for the localization of a non-cooperative Multi-Vehicle System composed of five robots, where the
proposed DMHE technique is performed using sporadic position measurements provided by an external static Sensor Network with
low-cost cameras (webcams) and computers (Raspberry PI) connected to them. Rigorous comparisons in terms of computation
time and accuracy of the estimates highlight the efficacy of the proposed approach.

Keywords:
Distributed Moving Horizon Estimation, constrained state estimation, Sensor Networks, sporadic measurements, Multi-Vehicle
Systems’ localization

1. Introduction

During the past years, several research works have been
dedicated to model, estimate and control distributed Multi-
Agent Systems (MAS), see Negenborn and Maestre (2014),
Vadigepalli and Doyle III (2003), Millán et al. (2013), Rego
et al. (2019), etc. Considerable studies help to better cope
with Multi-Agent Systems by developing suitable distributed
algorithms to deal with state estimation of large-scale systems
(Segovia et al. (2021)), with applications on Multi-Vehicle Sys-
tem (MVS) (Halsted et al. (2021)), also used to localize such
systems. Two different main classes of problems can be con-
sidered, depending whether the localization is performed by
the vehicles themselves and/or accounting for information from
them (cooperative localization, e.g. Shorinwa et al. (2020), Vie-
gas et al. (2018)), or by an exogenous system without any ex-
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change of information with the vehicles (non-cooperative lo-
calization). This second class of problems can be related to
area monitoring or surveillance applications, where the local-
ization of intruders (e.g. non-cooperative vehicles) has to be
estimated by a Sensor Network (SN) (Sharma and Chauhan
(2020); Foresti and Snidaro (2002)), e.g. cameras. This is the
class of problems and applications considered in the current pa-
per.

When dealing with a network of several sensors, different es-
timation algorithms can be developed depending whether the
information provided by each sensor is processed globally by
a single entity (centralized estimation) or locally by comput-
ing nodes attached to the sensors (distributed estimation). In
recent decades, the interest in distributed state estimation has
increased tremendously. For instance, in He et al. (2020), the
authors reviewed several outcomes of distributed state estima-
tion over a low-cost Sensor Network (SN), pointing out their
characteristics, benefits, and challenging issues. One critical
point for such Sensor Networks comes from the limited compu-
tation and communication resources associated to local sensors,
which strongly motivates the current paper.

Consensus techniques have often been used for designing
distributed state estimation algorithms for Sensor Networks.
A consensus problem in which the agreement value is a dis-
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tributed estimation of some non-constant quantity of interest
is referred to as a dynamic consensus, see Manfredi (2013).
Recently, such algorithms have pervaded the control engineer-
ing literature on numerous topics, e.g. state estimation (see
Duan et al. (2022), Postoyan and Nešić (2011), Olfati-Saber
(2007)), detection and mitigation of cyber-attacks (Gheitasi
et al. (2019)), combined control and state estimation (Millán
et al. (2013), Vadigepalli and Doyle III (2003)), etc.

Among all state estimation algorithms, Moving Horizon Es-
timator (MHE) techniques have been studied over the past
decades due to their capacity to consider constraints within
their formulation, which is based on a finite horizon “least-
square” optimization problem (Muske et al. (1993)). These
techniques use an estimation window of specified size, which
moves forward at each instant. Therefore, the problem re-
mains computationally tractable since only the latest measure-
ments are processed, while previous information is condensed
in the so-called arrival cost (Rao et al. (2001)). The con-
strained optimization problem brings with it a certain compu-
tational load, which may become problematic for large-scale
systems (Haber and Verhaegen (2013), Vukov et al. (2015)), or
when using MHEs techniques for computationally demanding
purposes (see e.g. Famularo et al. (2022) where the authors
proposed a MHE scheme using Linear Matrix Inequalities for
fault detection and isolation). In addition to specific optimiza-
tion methods, several techniques have been developed to reduce
the computational load in Moving Horizon Estimation. Recent
approaches on learning-based MHE rely on existing machine
learning frameworks to computationally improve the estima-
tor (Muntwiler et al. (2022), Karg and Lucia (2021)). Another
method, inter alia, is to reduce the number of optimization pa-
rameters by replacing the sequence of unknown inputs (or state
noise) to be estimated in the dynamical model of the system by
a Luenberger pre-estimation observer, which leads to less com-
putation time, while preserving the accuracy of the estimates,
as introduced in Sui and Johansen (2014) for linear systems,
in Suwantong et al. (2014) for nonlinear systems, and more re-
cently in Venturino et al. (2020) for distributed state estimation
of linear systems.

In the context of MAS and Sensor Networks, Distributed
Moving Horizon Estimation (DMHE) has indeed received in-
creased attention in recent years, starting from the estimation
for linear systems by Farina et al. (2010), where the authors
proved the convergence of the estimation error even under weak
observability conditions. An extension of DMHE to nonlin-
ear systems subject to constraints has been further proposed
by the same authors in Farina et al. (2012). A Distributed
MHE (DMHE) scheme for a class of nonlinear systems with
bounded output measurement noise and process disturbances
is designed in Zhang and Liu (2013), while J. Zeng and Liu
(2015) considered Distributed Moving Horizon Estimation of
nonlinear systems subject to communication delays and data
losses. The authors of Yin and Liu (2017) developed a DMHE
for a class of two-time-scale nonlinear systems described in the
framework of singularly perturbed systems. In addition, Bat-
tistelli (2018) developed a DMHE with fused arrival cost suit-
able for a fully distributed implementation. An extension of

this approach with pre-estimation (Venturino et al. (2020)) has
been proposed in Venturino et al. (2021b) by also adding an ob-
servability rank-based feature to compute the consensus terms
(while only using local available information), leading to bet-
ter estimation accuracy. Additionally, the authors proposed in
Venturino et al. (2021a) a Distributed Moving Horizon Estima-
tion with pre-estimation and diffusion information mechanism,
in which the information is spread out through the Sensor Net-
work by exploiting the moving horizon paradigm. In the con-
text of large-scale systems, Segovia et al. (2021) designed a
two-step distributed state estimation scheme in the presence of
unknown-but-bounded disturbances and noises, which involves
a set-membership-based MHE. A Distributed Moving Horizon
Estimation via operator splitting for automated robust power
system state estimation has been proposed in Kim et al. (2021).
More recently, in Yin and Huang (2022) an event-triggered
DMHE is proposed for general linear systems that comprise
several subsystems. A consensus variational Bayesian MHE for
distributed Sensor Networks with unknown noise covariances
has been proposed in Dong et al. (2022), where three consensus
tasks are performed in parallel at each time instant.

Various distributed state estimation algorithms have been de-
veloped to address the localization problem of Multi-Vehicle
Systems. In the more specific context of non-cooperative local-
ization of MVS using Sensor Networks, distributed estimation
algorithms relying on these consensus and DMHE paradigms
have been developed, see e.g. Petitti et al. (2011), Simonetto
et al. (2011) or Yousefi and Menhaj (2014). In Simonetto et al.
(2011), the DMHE problem has been addressed by focusing
on the non linearity of the model and on the possible local ob-
servability issues at the sensor level. In Yousefi and Menhaj
(2014), the authors accounted for mobile nodes in the Sensor
Network that led to a dynamic topology. Indeed, using a flock-
ing algorithm for the motion control, the mobile sensors attempt
to move in a specific way in order to get the best positions to
observe the target and to avoid collisions between neighbor-
ing agents. In this context, distributed state estimation over not
fully reliable Sensor Network could lead to sporadic measure-
ments, i.e. available at time instants a priori unknown, as con-
sidered in Ferrante et al. (2016), Postoyan and Nešić (2011). In
the case of sensors with limited field of views (e.g. cameras),
sporadic measurements are prone to be even more frequent.

This paper addresses the problem of Distributed Moving
Horizon Estimation for non-cooperative localization of a Multi-
Vehicle System via a Sensor Network of static cameras which
provides sporadic measurements. The contributions are the fol-
lowing.

First, since the proposed DMHE algorithm is based on the
work of Venturino et al. (2020), it inherits the reduced compu-
tation time and the enhanced accuracy due to the pre-estimation
observer. In addition, this new method is designed for realistic
Multi-Vehicle Systems scenarios involving sporadic measure-
ments. For this objective, constraints on measurements (given
by the knowledge of the environment where the Multi-Vehicle
System is evolving) are integrated using binary parameters in
this novel Distributed Moving Horizon Estimation formulation.
Therefore, the environmental information (such as the field of
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view of the cameras or road constraints) is exploited to better
estimate the system state, allowing to localize the MVS. Sec-
ond, the current paper aims at evaluating the performance of the
proposed DMHE approach (in terms of accuracy and computa-
tion time) on three real experiments1 using different numbers of
sensors, different communication network topologies and cov-
erages of the cameras’ fields of view. Indeed, one of the main
contributions of this paper consists in the experimental valida-
tion of the proposed DMHE localization technique of a MVS.
In the developed experiment setup, the static Sensor Network is
composed of low-cost cameras which provide measurements on
the positions of the vehicles. Each camera is attached to a Rasp-
berry PI (RPI) for computational and network communication
capabilities. The proposed DMHE algorithm has been imple-
mented within the Robot Operating System (ROS) framework
to run in a distributed way on each RPI. The non-cooperative
Multi-Vehicle System is composed of five Turtlebot3 robots
performing formation motion within a road-like area. This cor-
responds to a reduced-scale mockup of a surveillance scenario
of an urban area where a sensor network would be used to lo-
calize intruders.

The area used for experiments is located in an indoor arena
equipped with a motion capture system that will be used to eval-
uate the estimation accuracy of the proposed algorithm. To cor-
roborate its efficiency, the proposed DMHE constrained formu-
lation is compared with the notable DMHE algorithm Farina
et al. (2010).

The paper is structured as follows. Section 2 describes the
problem under investigation and introduces the main theoret-
ical elements. The proposed DMHE algorithm is detailed in
Section 3. Section 4 focuses on the hardware setup, the analysis
and the comparison of the experimentation results obtained by
using a Sensor Network with different communication topolo-
gies. Concluding remarks and further developments are drawn
in Section 5.

Notation. The symbol In ∈ Rn×n defines an n-by-n identity
matrix. The transpose of a matrix M is denoted by M⊤. For
a vector x ∈ Rn, and a positive definite matrix R ∈ Rn×n, a
weighted norm is denoted by ∥x∥R =

√
x⊤Rx. Here, diag(·)

denotes a block diagonal matrix. Given a set S, then Co(S)
denotes its convex hull. Within a Multi-Vehicle System, the left
superscript ν from (ν·) refers to the ν-th vehicle. To soften the
notation, when referring to the whole Multi-Vehicle System,
the left superscript ν is omitted. In (·i), the right superscript
i refers to the i-th sensor. We distinguish local information,
i.e. referring only to the sensor i, and regional information, i.e.
referring to sensor i and its neighbors. A general bar notation
(·̄) is used to denote the regional information.

2. Distributed State Estimation over static Sensor Network
with Sporadic Measurements

This section describes the problem of Distributed State Esti-
mation (DSE) of a non-cooperative Multi-Vehicle System over

1A video presentation of the first experiments is available at: https://

youtu.be/1CkSba2wVuI.

a Sensor Network with sporadic measurements. The consid-
ered models, and the characteristics of the Sensor Network are
presented.

2.1. Problem description
Consider the problem of Distributed State Estimation of the

state (in this paper the 2D position) of a non-cooperative Multi-
Vehicle System by a Sensor Network. In this setting, we assume
that the Sensor Network is composed of nS different sensors
performing sporadic measurements, i.e. the measurements are
not obtainable at all times by each sensor. For example, a mov-
ing vehicle can be detected by a camera only when it is within
its field of view. A (formation2 of) vehicle(s) moving in un-
known directions can thus be detected by a given sensor of the
network at time instants a priori unknown.

The Multi Vehicle System under observation consists of nV

ground vehicles which are restricted to move in specific loca-
tions, e.g. on roads in urban environments (delimited by the
yellow borders in Fig. 1). We additionally make use of this en-
vironment knowledge as position constraints in the Distributed
State Estimation optimization problem.

2.2. Vehicle dynamical model for state estimation
Consider nV vehicles. The ν-th vehicle dynamical model is

represented as a discrete-time linear time-invariant (LTI) sys-
tem

νxt+1 =
νA νxt +

νwt, ν = 1, . . . , nV , (1)

where νxt ∈
νX ⊆ Rνnx is the state vector and νwt ∈

ν
W ⊆ Rνnx

is an exogenous input (e.g. an unknown control input, state
perturbation, etc.), with νX and νW convex sets.

In the application studied in this paper, single-integrator dy-
namics are considered for the vehicles. The state vector νx =
[νpx

νpy]⊤ ∈ R2 consists of planar position coordinates. The
control input vector (i.e. the velocity components) is assumed
unknown by the external sensor network for distributed state
estimation (in the context of non-cooperative vehicles consid-
ered as intruders) and it is therefore considered as the unknown
exogenous input νwt ∈ R2.

Remark 1. Notice that, according to the adopted notation, the
state of the global Multi-Vehicle System is denoted by xt =

[1x⊤t . . .
nV x⊤t ]⊤, where its global dynamics is described by

A = diag(1A, . . . , nV A). The sensors of the SN have to estimate
this state vector xt in a distributed way. Notice that explicit
estimation of the unknown inputs νwt is not considered in this
paper.

2.3. Sensor measurement model
Given that each vehicle can be detected individually by each

sensor i (right superscript), the following mathematical expres-
sion models the measurement provided by sensor i with respect
to the ν-th vehicle

νyi
t =

νCi νxt +
νvi

t, i = 1, . . . , nS , (2)

2This paper also deals with the case when only a part of a formation of
vehicles can be within the field of view of a camera.
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where νyi
t ∈ Rni

y is the measurement vector and νvi
t ∈ Rni

y is the
measurement noise with covariance Ri.

In the application considered in this paper, νyi consists in a
noisy measurement of the position coordinates νx of vehicle ν,
i.e. νCi = I2. More details are provided in Section 4.1 ex-
plaining how these measurements are obtained in practice in
the experimental setup.

Remark 2. Notice that in (2), the right superscript i refers to
the i-th sensor and the left superscript ν to the ν-th vehicle. In
this respect, νCi is the output matrix specifying that the sensor
i is measuring the vehicle ν position. The notation Ci (without
the left superscript ν) refers to the output matrix of the global
Multi-Vehicle System Ci = diag(1Ci, . . . , nV Ci).

Figure 1: Experiment scenario setup: MVS with 5 vehicles in the starting place
and Sensor Network composed of 12 cameras and Raspberry PI computers.

In this paper, we consider that all the measurements are spo-
radic. This way, we avoid abstruse notation to discern sporadic
and non-sporadic measurements.

The following notation is necessary to denote the global sys-
tem’s collective output matrix which aggregates both the mea-
suring and non-measuring situations of each sensor i

Ci
αt
= Di

αt
Ci, (3)

where Di
αt

is a squared diagonal matrix of size
∑nV
ν=1
νny with

ναi
t ∈ {0, 1} as components, for ν = 1, . . . , nV , defined as

Di
αt
= diag(1αi

t I1ny
, . . . , nVαi

t InV ny ), (4)

with Iνny the identity matrix of dimension νny.

Remark 3. Notice that ναi
t is a time-dependent binary param-

eter marking if the sensor i can detect the ν-th vehicle at time
t (i.e. ναi

t = 1) or not (i.e. ναi
t = 0). Hereafter, the sensor i is

called active sensor at time t when ναi
t = 1.

2.4. Constraints

This subsection defines measurement constraints exploiting
the a priori knowledge of the environment and the cameras

composing the Sensor Network. First, denote by R the sub-
set of planar coordinates corresponding to the road (assumed to
be non-convex and marked by the blue lines in Fig. 2) on which
the vehicles can drive. Further on, denote by F i the set of the
points forming the sensor i field of view (in yellow in Fig. 2).
The convex hull of the intersection of these two sets denoted by

Si = Co(R ∩ F i) (5)

is further used to constrain the position of the vehicle in the
state estimation process when the mobile vehicle is within the
field of view of the sensor i, i.e. when this sensor detects the
vehicle (see Fig. 2 for a graphic illustration).

Figure 2: Road R (blue line), fields of view F 1 and F 2 (yellow), and convexi-
fied constraints S1 (red polygone) and S2 (blue polygone).

2.5. Sensor Network
In Distributed State Estimation schemes, the nearby sensors

share data among each other. The Sensor Network is described,
as in Farina et al. (2010), by a directed graph G = (N ,E),
where N = {1, 2, . . . , nS } is the set of all nodes (sensors) and
E ⊆ N×N is the set of all edges (communication links). There-
fore, the pair (i, j) ∈ E exists if and only if the sensor j can
receive information from the sensor i. The neighborhood N i

of the sensor i is defined as N i = { j ∈ N : (i, j) ∈ E} and its
cardinality ni

S = card(N i). In this paper, we consider that the
topology of the Sensor Network is fixed.

We distinguish local information, i.e. referring only to the
sensor i, and regional information, i.e. referring to its entire
neighborhood N i. Based on aforementioned notation, the re-
gional output of sensor i at time t is

ȳi
t = [(yi

t)
⊤ (y j1

t )⊤ (y j2
t )⊤ . . . (y

jni
S

t )⊤]⊤, { j1, . . . , jni
S
} ∈ N i (6)

with ȳi
t ∈ Rn̄i

y .
The edges of the graph G are weighted by the components of

a stochastic matrix K, those values are given as follows

ki j > 0 if ( j, i) ∈ E, (7a)
ki j = 0 otherwise, (7b)

nS∑
j=1

ki j = 1, ∀i = 1, . . . , nS . (7c)

The ki j values can be selected according to some criteria. For
instance, in Venturino et al. (2021b) the authors proposed an ob-
servability rank-based method that leads to a better accuracy for
the estimations since the K matrix will be used in the DMHE al-
gorithm to compute some consensus terms, as described further
on in Section 3.
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2.6. Problem statement
Consider the discrete-time LTI system (1) and the Sensor

Network G with the linear measurement equation (2), under the
assumption that the graphG = (N ,E) is strongly connected, i.e.
every node is reachable from every other node. The role of each
sensor i ∈ N , at each time t, is to (possibly) get measurement
on (part of) the Multi-Vehicle System, to exchange information
among neighbor nodes of N i and to process locally available
information in order to determine a local estimate x̂i

t of the real
state xt of the Multi-Vehicle System.

3. Constrained DMHE with sporadic measurements for
Multi-Vehicle Systems

This section recalls the Distributed Moving Horizon Estima-
tion approach with pre-estimation and observability rank-based
weights proposed in Venturino et al. (2021b) and presents its
novel formulation to handle the Multi-Vehicle localization ap-
plication considered in the current paper. This novel formula-
tion extends and validates the preliminary results presented in
Venturino et al. (2022).

Moreover, thanks to the observability rank-based weights,
the accuracy of the estimates is improved and also it enables
the use of classic DMHEs for sporadic measurements.

In the DMHE approach, each sensor has to compute an esti-
mate by online solving an optimization problem involving the
use of a model of the system dynamics, a cost function and con-
straints. Each of these elements are presented hereafter and the
optimization problem is further formulated in Section 3.6.

3.1. Dynamic model with pre-estimation
The optimization problem to be solved in DMHE to compute

a state estimate involves the use of a model of the system dy-
namics. Regarding system (1), a straightforward choice would
be to consider for sensor i the following model to represent the
global MVS dynamics

x̂i
t+1 = A x̂i

t + ŵi
t. (8)

This choice is mainly used in classical MHE formulations
which have consequently to estimate the sequence of ŵ over
the measurement horizon, since they are unknown. However,
this leads to a possibly large number of optimization parameters
depending on the horizon length N and the dimension of w.

In the current paper, following Sui and Johansen (2014) and
Venturino et al. (2020), a model of the system dynamics without
w is chosen to drastically reduce the number of optimization pa-
rameters and computation time. Not estimating and neglecting
w would possibly lead to large model errors and would result
in poor performance of the estimator. Therefore, model mis-
match is accounted for through feedback information provided
by measurements, under the form of a correction term, lead-
ing to the following “pre-estimation” Luenberger observer-like
model:

x̂i
t+1 = A x̂i

t + Li
αt

(
yi

t − Ci x̂i
t

)
. (9)

The dependence with ναi
t is formulated via Li

αt
= LiDi

αt
, with

Di
αt

defined by (4). Moreover, the global Luenberger gain Li

is computed such that Φi = A − LiCi is Schur stable when the
Multi-Vehicle System is detectable by sensor i, i.e. the pair
(A,Ci) is detectable. As extrema ratio, one could compute the
Li gain by keeping the spectral radius of Φi as small as possi-
ble. One may compute the gain related to the global MVS or
separately, since Li = [1Li . . . nV Li].

3.2. Fields of view constraints
The binary parameter ναi

t allows to deal with the sporadic
measurements. Indeed, it is effective to discern when the con-
straints Si can be used by sensor i and when not, i.e., respec-
tively, when the sensor i can detect a specific vehicle and when
not. In particular, considering the vehicle ν detected or not by
sensor i at time t, the following constraints νSi

αt
are defined

ν
Si
αt
=

{
Si if ναi

t = 1
Rνnx if ναi

t = 0.

3.3. Objective function
The binary parameter ναi

t plays a crucial role also in the ob-
jective function Ji

αt
, which is defined as

Ji
αt

(·) =
1
2

t∑
k=t−N

∥∥∥ȳi
k − C̄i

αt
x̂i

k

∥∥∥2
(R̄i)−1 + Γ

i
t−N(·), (10)

where R̄i is the regional covariance matrix of the measurement
noise. Here, we assume that R̄i is a positive definite matrix.
The term R̄i weights the difference between the predicted out-
puts and the measurements within the fixed window of size N.
In the MHE paradigm the last term Γi

t−N(·) of (10) is known as
the arrival cost. This non negative term summarizes the effect
of the past measurements, before time t − N and is usually ap-
proximated by some initial penalty function defined as follows:

Γi
t−N(·) =

1
2

∥∥∥ x̂i
t−N −

ˆ̄xi
t−N |t−1

∥∥∥2
(Π̄i

t−N |t−1)−1 , (11)

which involves two consensus terms, ˆ̄xi
t−N |t−1 and Π̄i

t−N|t−1, de-
scribed below. These consensus terms help the estimates com-
puted by the neighbor sensors to converge to a common value
and, thus, to reach consensus over the sensor network. They
also help to cope with local non observability issues.

3.4. Consensus terms
The first term included in the penalty function Γi

t−N is the
consensus-on-estimates term, denoted by ˆ̄xi

t−N |t−1. It consists in
a weighted average state estimate computed over the neighbor-
hood N i as follows:

ˆ̄xi
t−N |t−1 =

∑
j∈N i

ki j|t x̂
j
t−N |t−1, (12)

where x̂ j
t−N |t−1 is the estimated state computed at time t − 1 by

sensor j ∈ N i. It is a consensus term in the sense that it penal-
izes deviations of x̂i

t−N from ˆ̄xi
t−N |t−1.
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The second term is the positive definite matrix Π̄i
t−N |t−1 which

is computed similarly as in Farina et al. (2010). For exhaustive-
ness, we describe here the entire procedure to compute it by:

Π̄i
t−N |t−1 =

∑
j∈N i

ki j|tΠ
j
t−N |t−1, (13)

where the iteration ofΠi
t−N |t−1 is calculated by the sensor i based

on regionally available data. Specifically, the matrix Πi
t−N |t−1,

with i ∈ N , is the result of one iteration of the difference Riccati
equation associated to a Kalman filter for the following systemxt−N = Axt−N−1 + wt−N−1

z̄i
t−N = Ō

i
N xt−N + V̄ i

t−N ,
(14)

where z̄i
t−N ∈ RN·ni

y is the output and where V̄ i
t−N denotes the

measurement noise and Ōi
N represents the i-th sensor regional

observability matrix

Ōi
N =
[
(C̄i)⊤ (C̄iA)⊤ · · · (C̄iAN−1)⊤

]⊤
. (15)

Then, if we define the following matrices

Si
N =


0 0 · · · 0
C̄i 0 · · · 0
...

...
. . .

...
C̄iAN−2 C̄iAN−3 · · · C̄i

 ∈ Rn̄i
yN×nx(N−1), (16)

R̄i
N = diag(R̄i, . . . , R̄i) ∈ Rn̄i

yN×n̄i
yN , (17)

QN−1 = diag(Q, . . . ,Q) ∈ Rnx(N−1)×nx(N−1), (18)

R̄∗iN = Cov[V̄ i
t ] = R̄i

N + S
i
N QN−1(Si

N)⊤, (19)

and set the covariance of the estimate x̂i
t−N−1 as

Π∗it−N−1|t−2 =

((
Π̄i

t−N−1|t−2

)−1
+ (C̄i)⊤(R̄i)−1C̄i

)−1
, (20)

the resultant Riccati recursive equation is given by

Πi
t−N |t−1 = AΠ∗it−N−1|t−2A⊤ + Q − AΠ∗it−N−1|t−2

(
Ōi

N

)⊤
·

(
Ōi

NΠ
∗i
t−N−1|t−2

(
Ōi

N

)⊤
+ R̄∗iN

)−1

· Ōi
NΠ
∗i
t−N−1|t−2A⊤.

(21)

If we assume that the communication network topology is
time-invariant then these equations can be computed off-line.
Once the matrices Πi

t−N |t−1 have been computed and shared
among the neighbors, sensor i can then perform a consensus
weights’ update in order to compute the matrix Π̄i

t−N |t−1 accord-
ing to (13).

These two consensus terms help to improve the accuracy of
the local estimates and they are necessary to guarantee conver-
gence of the state estimates to the state of the observed system
even if it lacks of regional observability (Farina et al. (2010)).

3.5. Observability rank-based weights technique
Here, we adapt the weights’ tuning technique proposed in

Venturino et al. (2021b) for the stochastic matrix K associated
with the graph G to the considered Multi-Vehicle localization
problem by DMHE over a Sensor Network with sporadic mea-
surements.

Thanks to this method, each sensor i computes its compo-
nents of K based on only locally available data. Hence, it is ap-
propriate for a distributed scheme, and furthermore, for the ap-
plication considered in this paper with sporadic measurements.
Indeed, this technique enables to improve the accuracy of the
estimates by relying more on the sensors that are currently sens-
ing, in other words, by exploiting the observability properties of
the neighborhoods. Since these properties are time-varying for
the considered problem, the observability rank-based weights
technique is suitable for enhancing the algorithm’s accuracy
and convergence time.

Consider a sensor i at time t. Its current regional observabil-
ity matrix

Ōi
n|t =
[
(C̄i
αt−n+1

)⊤ (C̄i
αt−n+2

A)⊤ · · · (C̄i
αt

An−1)⊤
]⊤

(22)

is of full rank if and only if the the pair (A, C̄i
αt

) is com-
pletely observable at any instant of time within the interval
[t − n + 1, . . . , t], i.e. rank(Ōi

n|t) = nx. For simplicity, we denote
by ρi

O|t = rank(Ōi
n|t). This variable will be considered as an in-

formation on the reliability of node i, i.e. its sensing capability,
and will be used to define the weighting coefficients ki j, which
must satisfy constraint (7). Note that, at some time instants a
priori unknown, the entire neighborhood may not have sensing
capabilities at all, i.e. ρi

O|t = 0. To avoid division by zero a
lower bound smaller than 1 is chosen for the rank, here 0.5 is
chosen, i.e. ρi

O|t = max
{
rank(Ōi

n|t), 0.5
}
. Then the components

ki j|t are computed as follows

ki j|t =
ρ

j
O|t∑

j∈N i ρ
j
O|t

. (23)

3.6. Local optimization problem
Given an estimation horizon length N ⩾ 1, at each time t,

each sensor i ∈ N determines the state estimate x̂i
t|t by solving

the following constrained minimization problem:

x̂i
t−N |t = arg min

x̂i
t−N

Ji
αt

(·) (24)

s.t. x̂i
k+1 = A x̂i

k + Li
αk

(
yi

k − Ci x̂i
k

)
, (25)

x̂i
k ∈ X, (26)

C̄i x̂i
k ∈ S

i
αk
, (27)

∀k = t − N, . . . , t.

where the sets Si are computed as detailed in Section 2.4. The
sequence of state estimates x̂i

t−N+1|t, . . . , x̂
i
t|t is obtained from the

optimal solution x̂i
t−N |t and using the dynamics (25). The A ma-

trix in (25) refers to the global Multi-Vehicle System. More-
over, the positions constraints, as described in Section 2.4, are
integrated in the optimization problem in (26).
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3.7. DMHE modus operandi

Finally, the procedure of the proposed distributed scheme is
described in Algorithm 1.

Algorithm 1 DMHE procedure

1: Off-line: ∀i ∈ N
2: receive from the neighbor nodes j ∈ N i: L j, C j, R j

3: compute the pre-estimation Luenberger gain Li

4: store the a priori initial estimation x̂i
0|0 = x̂0 of x0,

where x̂0 is given, and the covariance matrix Π0 of x0

5: Initialization: ∀i ∈ N , at the first time step t = 0
6: collect a first local measurement yi

0

7: receive from neighbors j ∈ N i their measurements y j
0

8: Online: ∀i ∈ N , ∀t > 0
9: collect the local measurement yi

t
10: receive from the neighbors j ∈ N i the collected data in

step 9
11: compute the matrix Di

αt
according to (4)

12: compute the components ki j|t according to (23)
13: if 1 ⩽ t ⩽ N then
14: set the horizon length N = t, the covariance matrix
Π̄i

t−N |t−1 = Π̄
i
0|t−1 = Π0 and the a priori initial estimation

state x̂i
t−N |t−1 = x̂i

0|t−1
15: else
16: compute Πi

t−N |t−1 according to (19), (20) and (21)

17: receive Π j
t−N |t−1 from the neighbor nodes j ∈ N i

18: compute Π̄i
t−N |t−1 according to (13)

19: solve the local optimization problem of DMHE, mini-
mizing Ji as in (10) and (11) subject to the constraints (25)-
(26)

20: store the solution x̂i
t−N |t and the corresponding estimate

x̂i
t|t

21: receive from the neighbors j ∈ N i their estimates
x̂ j

t−N+1|t

The specific steps related to sporadic measurements are inte-
grated at step 19, with Di

αt
computed at step 11. Notice that the

steps 10, 18 and 21 in the procedure regarding the exchanging
information could be rearranged to include only one synchro-
nization. However, the current formulation has been chosen for
clarity reasons w.r.t. calculation details.

4. Experimental results

This section describes three conducted experiments within
the indoor arena equipped with an OptiTrack motion capture
system used to provide ground truth localization. This infor-
mation is compared with the position estimates performed by
the DMHE algorithms in order to evaluate the estimation ac-
curacy. The estimation algorithms are using the measurements
provided by low-cost cameras (webcams). In the context of in-
truders’ localization, the leading goal is to localize a formation
of several mobile robots moving on a road, by performing the

proposed Distributed Moving Horizon Estimation over a Sen-
sor Network of low-cost cameras within a given communication
topology, performing sporadic measurements. These vehicles
are moving in a formation, along the road, controlled by a dis-
tributed algorithm using localization from the motion capture
system. They are considered as non-cooperative vehicles for
the localization problem performed by the Sensor Network.

The experiments are developed within the Robot Operating
System (ROS) framework. The distributed state estimation al-
gorithm is deployed on the Raspberry PI (RPI), each one being
attached to a low-cost camera (webcam), and in charge of ob-
taining measurements from the camera, of exchanging informa-
tion among neighbors and of locally estimating the state of the
MVS. The AprilTag library (Wang and Olson (2016)) is used to
get position measurements of the vehicles, from each camera.
This library uses tags (known in size and pattern) placed on top
of the vehicles to robustly and efficiently detect the vehicles and
reconstruct their position.

The experimentally collected data are further off-line re-
processed and analyzed by adding artificial Gaussian noise to
the measurements and changing the topology of the Sensor Net-
work. We compare online and off-line results w.r.t. the DMHE
algorithm of Farina et al. (2010).

4.1. Experiments setup

The objective is to track a Multi-Vehicle System (MVS) com-
posed of nV = 5 ground vehicles, one leader in the center of a
square and four follower vehicles in the vertices of the square.
The MVS goes from the starting point (−1.75,−3.25) m to-
wards the final point (0.75, 4) m driving within the road, clearly
indicated in Figs. 3a-5a, controlled by a leader-follower for-
mation distributed control strategy. The control inputs of the
intruders’ vehicles are assumed to be unknown. The details of
this control strategy are beyond the scope of this paper and they
are omitted here.

In order to analyze the performance of the proposed Dis-
tributed Moving Horizon Estimation, we designed three exper-
imental scenarios, with a different number of sensors involved
in the distributed state estimation and different poses for the
cameras:

• Scenario 1 (see Fig. 3) uses 12 cameras for a maximum
coverage area by their fields of view (video presentation
available at https://youtu.be/1CkSba2wVuI);

• Scenario 2 (see Fig. 4) uses 6 cameras for a maximum
coverage area by their fields of view;

• Scenario 3 (see Fig. 5) uses 12 cameras for a reduced cov-
erage area by their fields of view w.r.t. Scenario 1.

In Fig. 3-Fig. 5, the yellow polyhedra represent the fields of
view of the cameras3 (together with their reference frames), the

3The fields of view F i of the low cost cameras are determined from the
technical specifications provided by the manufacturer and from the pose infor-
mation of the cameras provided by the OptiTrack motion capture system.
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(a) FoVs real experiment

11

98

7
6

54

3

2

12

1

10

(b) Constraints real experiment

Figure 3: Scenario 1, maximum coverage area with 12 sensors.

solid blue lines define the road boundaries,4the dashed colored
polygons are the constraints, and finally, the red arrows rep-
resent the communication links between the computing nodes
(RPIs) associated to the cameras. Notice that the poses of the
12 cameras used in Scenario 3 (except for the 12th sensor) are
defined such that each camera can detect a maximum of 3 vehi-
cles, i.e. their fields of view points only at half of the road (see
Fig. 5a).

As mentioned in Section 2.2, in the DMHE optimization
problem, each vehicle is modeled as single integrator, where
the state vector νx = [νpx

νpy]⊤ ∈ R2 consists of planar posi-
tion coordinates and the control input vector (i.e. the velocity
components) is assumed unknown and considered as an exoge-
nous input νwt ∈ R2, modeled as an uniformly distributed noise
vector with covariance matrix Q = I2.

Each camera provides position measurements of the vehicles
in its own reference frame (indicated in Fig. 3a-Fig. 5a). Thus,
in order to obtain position measurements in the common abso-
lute reference frame used for the experiments and associated to
the motion capture system, it is necessary to translate and rotate
the measurements with a transformation matrix. To calculate
such a matrix, the knowledge of the poses of the cameras, in a
common reference frame, are necessary. However, these poses
are not always available, or at least not precisely known, as it
is the case in these experiments. Indeed, here we obtained the
poses of the low-cost cameras using the OptiTrack motion cap-
ture system, which detects 3-4 markers glued on each camera.
The precision of these detections was falling on some areas of
the arena, e.g. less observed areas such as corners. Such an er-
ror in the transform matrix therefore results in some bias in the
robots’ position measurement translated in the global frame and
provided to the estimators. Despite this, the robustness of the

4The road boundaries are determined by using the OptiTrack motion capture
system while preparing the experiments.

(a) FoVs real experiment
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(b) Constraints real experiment

Figure 4: Scenario 2, maximum coverage with area 6 sensors.

proposed DMHE to this additional source of uncertainty (i.e.
sensor biases and noise) is further investigated by validating the
usefulness of a priori known road constraints.

(a) FoVs real experiment
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(b) Constraints real experiment

Figure 5: Scenario 3, less coverage area with 12 sensors.

The estimators run with a sampling time Ts = 0.5 s and a
horizon length N = 3. The initial values of the algorithms have
been set as ν x̂0 =

[
0 0
]⊤

, Π0 = 105I2. The measurements
noises νvi

t are assumed to be white normally distributed noises,
with zero mean and covariance matrix Ri = I2.

The optimization problem was solved by the quadratic pro-
gramming solver from Goldfarb and Idnani (1983) imple-
mented in Python on twelve RPI, each one associated to a sin-
gle camera. The considered performance indexes are the com-
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putation time τ needed by the solver to estimate the positions
of the Multi-Vehicle System, and the Root Mean Square Error
(RMSE) computed as follows

RMSEt =
1

nS

∑
i∈N

∥∥∥xt − x̂i
t|t

∥∥∥ ,
both averaged among all the sensors. The RMSE should remain
small for good performance.

We compare the proposed Distributed Moving Horizon Esti-
mation without constraints (denoted by DMHE) and with con-
straints5 (denoted by DMHES). We also provide comparison
with the algorithm of Farina et al. (2010), denoted hereafter
by DMHEF , for the unconstrained case, and by DMHESF when
considering the constraints (5).

nν nS
νni

x
νni

y Ts N

5 12 or 6 2 2 0.5 s 3

Table 1: Setting parameters

Table 1 lists the parameters of the developed experiments.
Notice that nS is 12 for scenarios 1 and 3, while nS is 6 for
scenario 2.

4.2. Experimental results

It is essential to highlight that between experiments some pa-
rameters are not exactly repeatable (e.g. unpredictable lack of
measurements at time instants a priori unknown, different ini-
tial timing synchronization among sensor neighborhoods, ini-
tial positions of the vehicles, etc.) and that a qualitative eval-
uations may therefore suffer from some bias in the compari-
son between two experimental runs. This is why all the mea-
surement data have also been recorded to additionally perform
offline evaluation from the same data. The video available at
https://youtu.be/1CkSba2wVuI shows the online experi-
ment of Scenario 1 on using DMHES and offers additional de-
tails.

Figure 6 illustrates the averaged computation time τ among
all the sensors for the three scenarios. The proposed DMHES

(dotted lines) shows half of the time needed by DMHESF
(dashed lines) in all the scenarios. It is a consequence of re-
placing the system model with unknown input by a Luenberger
observer (pre-estimation strategy) in (25). Indeed, the input se-
quence with a Luenberger pre-estimation involves fewer opti-
mization parameters.

The RMSEs averaged among all the sensors for all scenarios
and algorithms with constraints are shown in Fig. 7. Regarding
Scenario 1, DMHES is better than DMHESF only until cerca
t = 70 s. For Scenarios 2 and 3, DMHES has similar or better
performance w.r.t. DMHESF . As explained before, a rigorous
comparison is hard due to unrepeatable conditions, that is why
we performed more rigorous comparisons in the next section.

5The constraints are added as in (5).

Scenario        

Scenario        

Scenario        

Scenario        

Scenario        

Scenario        

Figure 6: Computation time τ of all algorithms with constraints during the real
experiments.

Scenario        

Scenario        

Scenario        

Scenario        

Scenario        

Scenario        

Figure 7: RMSE of all algorithms with constraints during the real experiments.

Figure 8 illustrates the results of the real experiment of Sce-
nario 1. In particular, it shows the trajectories estimation (rhom-
bus) by the active sensors operating with DMHES and the actual
trajectories of the vehicles (lines) by the motion capture system
of Scenario 1 on the left hand side and its zoom on the right
hand side. Different colors highlight the vehicles: cyan, red,
green, yellow, and magenta refer to vehicles 1, 2, 3, 4, and 5,
respectively. Moreover, Fig. 8 shows the road boundaries (blue
lines) as well as the constraints (dashed polygones) described
as in (5). Notice that starting position is about py = −3.5 m.
As shown in Fig. 8b, at the beginning only vehicles 1 (cyan
rhombus), 4 (yellow rhombus), and 5 (magenta rhombus) are
detected by the first camera (i.e. they are within the blue dashed
polygone, at the bottom). Indeed, camera 1 does not detect ve-
hicles 2 and 3 (i.e. no red or green rhombuses appearing inside
this blue dashed polygone). Vehicles 2 and 3 start being de-
tected later on. The rhombus outside the road are due to the
initial state estimates considered by the estimators, which are
chosen to be at the origin of the plan. Notice that the biased
sensors data can result in some bias in the estimations (see the
difference between the real trajectories and estimates around
the arrival position in the light green polygone on the top in
Fig. 8a); however, the magnitude of measurement noise is not
perceptible. This is because the AprilTag library (Wang and
Olson (2016)) provides accurate position of the tags mounted
on the robots, by visual reconstruction using calibration infor-
mation of the cameras and tags with known sizes and patterns.
This is what also motivates us to introduce measurement noise
on the experimental data to further validate and analyze the per-
formance of the algorithms.

4.3. Performance evaluation

The ROS framework offers the opportunity to record data for
the three scenarios explained above. This data includes time
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(a) Entire scenario (b) Zoom

Figure 8: Scenario 1: Planar trajectory of the vehicles and estimations by
DMHES using 12 cameras (real experiment).

synchronization among measurements and other useful infor-
mation. Thus, it allows to replay these data in order to repli-
cate the same experiments but with other estimation algorithms
and/or changing their parameters. We also added a posteriori
artificial Gaussian noise in the measurements, with a variance
of 0.15 m2, and in the positions of the cameras (bias), with a
variance of 0.1 m2 to make the scenarios more realistic, e.g.
when using a low-cost Sensor Network with video cameras that
would run computer vision algorithms for visual detection and
position reconstruction of vehicles without tags (e.g. area mon-
itoring scenario).

The first aspect we investigate for Scenario 1 is the topol-
ogy of the Sensor Network, i.e. how the sensors are connected
to each other. For this reason, we define the radius commu-
nication link as the number of edges reachable in communi-
cation by each sensor. Thus, increasing or decreasing this ra-
dius can change the topology of the network, i.e. the edges
of the graph. To this purpose, let define d(i, j) as the dis-
tance, in terms of the number of edges, between nodes i and
j. Formally, having a radius ρ, the neighborhood of sensor i is
N i = { j ∈ N : d(i, j) ⩽ ρ}, i.e. the set of nodes j ∈ N for which
there exists a path at maximum distant ρ edges from sensor i.
For example, in Figs. 3b, 4b and 5b, the radius communication
link is ρ = 1.

In the next sections, the algorithm performance on the three
considered scenarios will be further analyzed by considering
noisy measurements and influence of the communication topol-
ogy.

4.3.1. Scenario 1
The aim of this scenario (see Fig. 3), is to compare the accu-

racy of the algorithms, with and without constraints, changing

the topology of the Sensor Network by varying the radius com-
munication link ρ = {1, 3, 6, 9, 12}. Notice that when the radius
is 12 the graph is complete, i.e. each node is connected to any-
one else. Moreover, we show the effects on using or not the
constraints as in (5).

Figure 9: Scenario 1: RMSE averaged among the estimators and time (all sen-
sors).

The first column of Fig. 9 shows the RMSE for the four im-
plemented algorithms with ρ = 1. In this case, the smallest
value 2.613 (and thus the best accuracy) is obtained with the
proposed DHME algorithm without constraints. Figure 9 also
shows that starting from ρ = 3, the RMSEs are similar to each
other. It means that, for this number of sensors, a graph with
a radius communication link equal to 3 or higher performs as
good as a complete graph. Moreover, the accuracy is always
better for the proposed DMHE (lines 3 and 4, respectively)
compared with DMHEF (lines 1 and 2, respectively), for both
constrained and unconstrained cases.

Figure 10: Scenario 1: RMSE averaged among the estimators and time (only
active sensors).

To check how the constraints Si influence the accuracy of
the estimations, we have to look at the RMSE of the active sen-
sors only since the constraints are used in the local optimization
problem only when the camera is detecting a vehicle. In Fig. 10,
the RMSE of constrained algorithms is always better than their
respective unconstrained version. Indeed, it can be seen that
the values on line 1 are always lower than the values on line 2,
while the values on line 3 are always lower than the values on
line 4.

We have seen that the radius ρ has a specific effect on the
estimation error. In Fig. 11, we can see the RMSE overtime
for the solely DMHES, for different values of the radius ρ. It
is worth noticing that ρ > 3 (yellow, purple and green curves)
leads to having better RMSE than ρ = 3 (red curve) until the
vehicles stop, around t = 88 s.

Figure 12 and its zoom (Fig. 13) illustrate the planar trajec-
tories of the vehicles (solid lines) by the motion capture system
and their respective estimations (rhombus) by the active sen-
sors. Different colors highlight the vehicles: cyan, red, green,
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Figure 11: Scenario 1: RMSE of DMHES over time for all communication
links radius.

yellow, and magenta refer to vehicles 1, 2, 3, 4, and 5, respec-
tively. Moreover, this figure shows the road boundaries (blue
line) as well as constraints (dashed polygones), as in (5). In
these figures, it is possible to see how the constraints improve
the estimation accuracy since the estimates are lying within the
constraints and are hence consistent with locations of the vehi-
cles within the road boundaries. This is more evident in zoom
proposed in Fig. 13 which shows the final part of the Scenario 1.
In particular, Fig. 13a shows the results by using the proposed
DMHE with constraints (DMHES) and Fig. 13b shows the re-
sults by using the proposed DMHE without constraints. Notice
that in Fig. 13a only two points are outside the constraints (due
to mismatch among the considered detection instants by low-
cost cameras, Raspberry Pi, ROS), while Fig. 13b shows a lot
of estimates outside the constraints.

(a) DMHE with constraints (b) DMHE without constraints

Figure 12: Scenario 1: Planar trajectory of the vehicles and estimations with
constraints (left) and without (right).

4.3.2. Scenario 2
This scenario (see Fig. 4) aims to evaluate the algorithms in

terms of accuracy while using fewer sensors and, at the same

(a) DMHE with constraints (DMHES) (b) DMHE without constraints

Figure 13: Scenario 1: Part of the planar trajectory of the vehicles and estima-
tions with constraints (left) and without (right).

time, to diversify the communication topology. Additionally, it
highlights the effects on the convergence of the estimates when
using a different number of sensors in such distributed algo-
rithms compared to Scenario 1. In this case, we used half of
the sensors, which led to more sporadic measurements since
the total covered area by cameras is much smaller (see Fig. 4)
compared to Scenario 1.

Figure 14: Scenario 2: RMSE averaged among the estimators and time (all
sensors).

Figure 14 shows that for different values of the radius com-
munication links, i.e. ρ = {1, 3, 4, 6}, the RMSEs are not so dif-
ferent from each other, and probably a radius ρ = 2 would have
been the optimum trade-off between the number of communi-
cation links and the accuracy of the estimates. Moreover, com-
paring the RMSE values in Fig. 9 (Scenario 1) and in Fig. 14
(Scenario 2) it is evident, as expected, that having less covered
area by cameras leads to less accuracy, when ρ > 1. Although
this is not always the case, as illustrated in the first column of
these figures (i.e. for ρ = 1), the RMSE values are comparable
among the same algorithms. Indeed, even though Scenario 1
has a larger covered area, it also has more sensors, which re-
sults in more consensus communication steps needed for the
convergence of all the estimators, accentuated by the fact that
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ρ = 1. For this reason, even with fewer communication links
than in Scenario 1, the convergence is faster as we can clearly
see by comparing the curves in Figs. 11 and 15 around time
t = 88 s.

Figure 15: Scenario 2: RMSE of DMHES over time with a different communi-
cation link radius.

Furthermore, Fig. 15 shows that the RMSE value obtained
for ρ > 1 (red, yellow and purple curves) is better than the one
with ρ = 1 (blue curve) only until the vehicles stop, around
t = 88 s. Thus, in the end, the five vehicles are only detected
by sensor 12, which is the only active sensor, thus the only one
using constraints as in (5). Moreover, it sends its measurements
to its neighbors, which contribute to the global state estimation
convergence without using the constraints. Hence, the more
neighbors sensor 12 has, the more they contribute to the global
estimation without constraints, i.e. emphasizing measurements
noise and biased sensor data. To avoid this, a solution could
have been to directly consider whether the sensor is active or
not in the observability rank-based weights technique (Section
3.5). It might lead to better estimation accuracy.

Figure 16a and its zoom (right hand side of Fig. 16b) show
the planar trajectories of the vehicles (solid lines) by the mo-
tion capture system and their respective estimates (rhombus)
by the active sensors. Different colors highlight the vehicles:
cyan, red, green, yellow, and magenta refer to vehicles 1, 2, 3,
4, and 5, respectively. This figure also shows the road bound-
aries (blue line) as well as the constraints (dashed polygones),
as considered in (5). It is worth noticing that in Scenario 2 most
of the time the vehicles are not detected (see Fig. 16a). Indeed,
vehicles 2 (red rhombus) and 3 (green rhombus) began to be de-
tected around t ≃ 45 s (see the zoom Fig. 16b where the green
and red rhombuses appear only inside the light orange dashed
polygone, on the top). Moreover, after some moments when
no vehicle is detected, vehicles 1, 2, 3 and 5 are detected again
around t ≃ 70 s (see the corresponding rhombuses in Fig. 16a).
Only nearby the arrival point all the vehicles are detected at
once, cerca t ≃ 88 s (see Fig. 16a). In addition, Fig. 15 shows
that around the time instants t ≃ 45 s, t ≃ 70 s, and t ≃ 88 s
when the vehicles are detected again, the RMSE decreases and
it drops significantly especially around t ≃ 88 s since all the
vehicles are detected (thus leading to a very small value for the
RMSE).

4.3.3. Scenario 3
The goal of the last scenario (see Fig. 5) is to evaluate the per-

formance of the proposed DMHE when the poses of the cam-

(a) DMHE with constraints (b) Zoom

Figure 16: Scenario 2: Planar trajectory of the vehicles and estimates with
constraints (left) and zoom (right).

eras are such that a single camera cannot detect all the vehicles
at once, except sensor 12. Moreover, 10 trials have been run
to show the robustness against different realization of measure-
ment noise and bias. The provided results are averaged among
the 10 trials (only for Scenario 3) and compared with the previ-
ous scenarios (notice that only one trial is considered for Sce-
narios 1 and 2). The radius communication link is ρ = 1.

Figure 17 illustrates the RMSEs of all scenarios consider-
ing the proposed DMHE algorithm with constraints DMHES.
The green curve refers to the RMSE of the third scenario which
also shows the bounds of the minimum and maximum RMSE
of each trial (dashed lines). As expected, Scenario 3 (green
curve) offers better accuracy than Scenario 2 (red curve) until
the vehicles stop, since Scenario 3 has double of the sensors
w.r.t. Scenario 2, thus leading to a larger covered area. More-
over, Scenario 3 (green curve) has always worse accuracy than
Scenario 1 (blue curve), since Scenario 3 has the same num-
ber of sensors as Scenario 1 but less covered area. It can also
be noticed that around t ≃ 88 s, the RMSE drops since all the
vehicles are detected.

5. Conclusion and perspectives

This paper proposed a Distributed Moving Horizon Estima-
tion (DMHE) algorithm for localizing a Multi-Vehicle System
(MVS) over a static sensor camera network with sporadic mea-
surements, i.e. available at time instants a priori unknown.
The proposed approach, which considers measurement con-
straints, has been implemented on a real Sensor Network com-
posed of several low-cost cameras, each of them attached to a
RaspBerry Pi for distributed implementation of the algorithms
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Figure 17: Comparison between the RMSE of the DMHES for the 3 scenarios
for the ρ = 1, with an average among 10 trials for Scenario 3.

(using Robot Operating System (ROS) middleware) and net-
work communication. The objective was to track a fleet of au-
tonomous vehicles (ground robots) moving in an urban-like en-
vironment with road constraints. Three different experimental
scenarios evaluated distinct aspects of the proposed algorithm,
which differ in the number of sensors involved, the topology of
the communication network, and the covered area by the cam-
eras’ fields of view.

The computation time of the proposed DMHE has been de-
ceased by a factor two w.r.t. the time needed by the one of
Farina et al. (2010). This result is obtained thanks to the pre-
estimation observer included in the optimization problem that
replaces the need to estimate the sequence of unknown inputs
of the model over the estimation window and therefore leads
to fewer optimization parameters. Taking advantage of con-
straint handling in online optimization required by MHE, the
proposed algorithm exploits a priori information as environ-
mental constraints (such as the road boundaries) to better esti-
mate the state of the system. Moreover, the proposed DMHE
formulation can deal with sporadic measurements thanks to the
time-varying binary parameters embedded into the algorithm.
Finally, it improves the accuracy of the estimation by utilizing
an observability rank-based method to adjust the components
of the consensus matrix associated with the graph of the Sen-
sor Network. This particular aspect is particularly well suited
to cases with sporadic measurements, as the one considered in
this paper.

Several experiments have been realized, and collected data
have been re-executed off-line in order to make rigorous perfor-
mance analysis and comparison of the proposed DMHE with
one of reference DMHE algorithms in literature Farina et al.
(2010) and analyzing the effect of changing some properties of
the application. Indeed, results have been shown in terms of ac-
curacy by changing the number of sensors composing the net-
work and the communication topology among neighbor nodes.

The proposed algorithm could be further extended by taking
into account active and non active sensors when computing the
consensus terms. Furthermore, in a context of fault detection,
the possible sensor faults can be treated in the same manner as
non active sensors, extending the application field of the current
paper.
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