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Abstract—Setting up IoT monitoring solutions requires a
significant workforce for deployment and maintenance. This
becomes particularly costly when a massive number of sensors
are deployed.

In this paper, we propose a generic solution based on energy-
autonomous LPWAN sensors deployed on the fly. On one side,
we propose an efficient management strategy that adapts the
transmission period of sensors in order to receive a chosen
amount of information on each sensor cluster that emits similar
information. Moreover, we develop a method that generates real-
time estimates based on the sensor message history.

After showing the relevance of our estimation method, we show
that our sensor management method is efficient by comparing it
to a baseline. Additionally, our tools are robust to the hazards
occurring in the IoT: sensor arrivals and departures, noisy
measuring in a highly variable environment, misplacement of
sensors.

Overall, this paper proposes a way to scale up IoT, breaking
the deployment cost barrier and paving the way for universal
and versatile monitoring solutions.

I. INTRODUCTION

A. Motivations

The IoT has enabled the development of monitoring solu-
tions on a large scale, now providing numerous monitoring
methods (resource and flow optimization, risk management,
tracking [1]) for different contexts (agriculture [2], industries
[3], smart cities [4]). Current solutions are based on a rigid
system, where each sensor deployment is calibrated for a
specific need, making them efficient but costly to deploy and
maintain.

Advances in electronics, along with the development of new
high-constraint networks, have enabled the creation of low-
cost embedded sensors to accomplish simple tasks: regular
measurements of temperature, humidity, or CO2, for exam-
ple [5,6]. These sensors are powered by batteries and are very
inexpensive, allowing them to be deployed on a very large
scale on the fly.

Our goal is to develop generic monitoring solutions with
minimal human intervention regarding sensor configuration.
Such solutions require a high degree of versatility in the
management of unpredictable events that can come from
the network, the sensors, or the environment. Since we are
considering miniature battery-powered sensors, a key aspect
is energy efficiency.

B. Existing Literature

Energy management is one main challenge spotted for
IoT [7-10]. The aim is to efficiently use the energy of sensors
to monitor an environment. This is all the more critical for
the miniature, low-cost objects with limited battery capacity
envisioned with massive IoT.

Initially, intelligence mechanisms for sensors are proposed
to limit emissions, the primary source of battery consump-
tion [11,12]. Messages are only sent if there is a behavior
change or adaptively according to variations of the physical
quantity studied. These approaches remain energy-consuming
since the sensor is always awake to scan its environment.

Several other papers propose solutions to limit sensor emis-
sions, relying on sensors that emit messages periodically and
switch to deep sleep mode between each emission [13-16].
The proposed updated emission periods are based on the inter-
sensor distance, the standard deviation of the returned values,
and the battery level of the sensor. These mechanisms extend
the network’s life, lengthening the period of use of a sensor
whose area is already covered or whose battery is low.

In 2006, the authors of [17] proposed a solution for the
efficient management of sensor transmissions, allowing the
sleeping of sensors whose measurement can be estimated by
other sensors sending similar information. Their approach is
composed of two separated phases: similarity analysis between
sensors, and generation of sensor subsets so that each subset
is capable of estimating the emissions of all the sensors. This
work is very promising since it allows, in a dense deployment
of sensors, to multiply by at least four the emission period of
sensors while keeping the same tracking precision. However,
no method is proposed to implement this emission scheduling
in an optimal and dynamic way. Plus, the proposed approach
considers that all sensors send measurements belonging to a
limited set of discrete values, and that all messages are sent
at the same time stamps.

In our first works [18,19], we proposed practical ways to
dynamically schedule the sensor’s emissions. These methods
allow receiving a requested quantity of messages per unit
of time, distributed between the sensors, by updating their
emission period when they emit if needed. For instance, in [19]
we propose a period update function that is resilient to the
inclusion and departure of sensors, minimizing the number of
period modifications to be performed when the sensor field is



modified.
The objective of this paper is to use similar principles for

sensor similarity management as those proposed by [17] and
to use the transmission management method defined in [19]
to build an efficient monitoring solution that is versatile and
robust to the hazards that can occur in the massive IoT.

C. Our Contributions

In this paper, we consider battery-powered sensors emitting
over LPWANs that are densely deployed into an environment
we want to monitor. We don’t know the position of the sensors.
Most of them follow interesting phenomena, others follow
isolated phenomena that are not relevant. Based on these
considerations, we want to manage the sensors in an energy-
efficient way and provide real-time output estimates.

Our approach has two main components. First, we use
splitting/merging mechanisms to dynamically cluster sensors
emitting similar information. We then build a transmission
strategy that adapts the sensor emission period to receive an
overall constant amount of messages for each cluster. Second,
we perform a hierarchical sensor clustering to propose an on-
line adaptive estimation tool that represents the phenomena
studied by the largest number of sensors without taking into
account the messages of isolated sensors.

Simulations show that our online estimation tool is relevant,
as it correctly groups sensors of the same phenomenon and
attenuates the noise from imperfect measurements. Moreover,
we show that our transmission strategy is energy-saving by
comparing it to a classic scheduling strategy, with the draw-
back of a higher number of period changes. These proposals
encompass noise measurement issues, handle that sensors can
enter and exit the environment, and identify isolated sensors.

The rest of the paper is organized as follows. The hy-
potheses and objectives of the paper are exposed in Sec-
tion II. Section III presents a generic estimation function as
well as a distance between sensors that correspond to the
characteristics of the sensor messages. The proposed online
adaptive estimation method is then developed in Section IV,
and the transmission strategy is presented in Section V.
Section VII provides experimental and comparative results for
our proposals. Finally, Section VIII concludes by proposing
perspectives for future work.

II. MODEL ASSUMPTIONS AND OBJECTIVES

A. The Phenomena

A physical quantity is monitored in an environment, with
IoT sensors deployed in massive numbers. For example, one
could imagine temperature/CO2/humidity sensors included in
false ceiling plates of a building. Another example would be
biodegradable sensors dropped in a land to study soil moisture.

We consider that the environment is split into several
distinct phenomena, where the physical quantity varies over
time differently from one phenomenon to another. According
our examples, there may be different phenomena in separate
rooms, or on distant land areas. Since these sensors are
deployed without knowledge of the variations of physical

quantities, it is possible that some of them study localized
phenomena (compared to global phenomena which would be
more interesting to follow).

B. The Sensors

Sensors are deployed in large quantities on the fly: it is
assumed that the phenomenon studied by a sensor is unique but
not initially known. Real-world experiments from the literature
have shown that sensors can be grouped by similarity of their
measurements [17]. The measurements sent to the monitoring
system are noisy because the sensors are considered to be
cheap.

The fleet of sensors can change over time as a consequence
of new node activations or sensors exiting the system due to
battery discharge or electronic problems. A sensor consumes
its battery over time for each message sent, transmitting a
measurement just made. Between two emissions, the sensor
goes to sleep mode to save energy.

C. The Network

Transmissions are modeled based on the LPWAN standards.
Sensors send periodic messages; the transmission period can
be redefined by the gateway only during a short listening
window after each message sent by the sensor.

These considerations are the most constraining (Aloha net-
works), which allows adapting them, with some adjustments,
to any other network: Bluetooth Low Energy, 5G, for example.

D. Levers of Action and Objectives

The objective of this paper is to define a transmission
strategy through a period update function that manages the
emissions of sensors efficiently in order to track phenomena
present in the environment while limiting sensors’ consump-
tion.

From this emission stream, we want to provide an online
adaptive estimation that tracks the most significant phe-
nomena in the environment. One can consider that only the
major phenomena should be shown: a user sets the number
of estimates representing the phenomena studied by the most
sensors.

A pertinent quantity of messages should be given from the
transmission strategy to the online adaptive estimation. There
is inertia between the actions performed by the transmission
strategy (by changing the emission period of a sensor) and
the data sent to the monitoring system. The objective for the
transmission strategy is to anticipate any change in the behav-
ior of the phenomena (e.g., two initially similar phenomena
that become different). On the other hand, the objective of
the estimation is to produce an output for the user that is an
estimate of the phenomena present over the entire monitoring
time. Although both tools we propose have the same goal (i.e.,
grouping sensors by similarities), we develop two separate
methods, each respecting the specificities of their problem.
In this way, it would be possible to use either tool without
needing the other.



III. DEFINITION OF AN ESTIMATION FUNCTION AND A
DISTANCE BETWEEN TIME SERIES

We propose a noise attenuating estimation function that we
use to build a distance between two sets of measurements. This
distance will be used to identify similarities between sensor
messages in the online adaptive estimation tool as well as in
the transmission strategy.

A. An Estimation Function from Message History

We propose a continuous representation with noise attenu-
ation of sensor’s measurements. Considering a discrete time
series I , each message e ∈ I is composed of a time et and
a value ex. A discrete time series is composed of messages
from one or multiple sensors. An estimation function EI is a
continuous function by parts from I , aiming to interpolate the
measurements with noise attenuation.

faire un lien avec Ordered weighted averaging aggre-
gation operator : papier On ordered weighted averaging
aggregation operators in multi-criteria decision making

For this paper, we consider an estimation function defined
by the average value of the previous messages, weighted by a
freshness function f(δt) which decreases according to the age
of the data δt [20,21]. Mathematically, our estimation function
at time t is:

EI(t) =
1∑

e∈I,et≤t f(t− et)

∑
e∈I,et≤t

f(t− et)ex (1)

We could have chosen other methods to build an estimation
of a noisy time series (auto-regression, Kalman filters, etc.)
[22]. On the other hand, our solution does not rely on any
assumption about the physical quantity or the shape of the
measurement noise and is simpler to implement.

B. A Distance Between Discrete Time Series Based on the
Estimation Function

The clustering tools that will be later developed require no-
tions of distances between measurement sets. The considered
discrete time series have some particularities.
• Variable sampling steps: the number of messages can vary
in time and can be very different between two elements to
compare.
• Different definition intervals: two elements may not be
comparable when not defined on overlapping time ranges.
• Imperfect information: measurements are noisy.

For these reasons, the usual distances proposed in the
literature for time series are not directly applicable here [23].

We propose a distance between discrete time series relying
on the estimation function. We define the distance between
two time series I, J as the average distance between their
respective estimation function EI , EJ on their joint definition
interval; if they have no joint support, their distance is infinite.
Mathematically, with tmin = max(mine∈I(et),mine∈J(et))

and tmax = min(maxe∈I(et),maxe∈J(et)), the joint defini-
tion duration δ(I, J) and the distance D(I, J) we use can be
expressed as:

δ(I, J) = max (0, tmax − tmin)

D(I, J) =

{
+∞ if δ(I, J) = 0∫ tmax

t=tmin
|EI(t)−EJ (t)|dt
δ(I,J) otherwise

(2)

Fig. 1. Representation of the distance built from an estimation function

Abuse of language has been made here: D(I, J) is not a
distance since the triangular inequality property is not always
respected. Still, this definition is sufficient for its future use.

IV. ONLINE ADAPTIVE ESTIMATION BASED ON
HIERARCHICAL SENSOR CLUSTERING

In this section, we develop an online adaptive estimation
method to display a given number of estimates F , aiming
to represent the phenomena containing the most sensors. The
goal here is to propose a generic method that takes as input
message sets from sensors, and provide estimation of the main
observed phenomena.

A global scheme is displayed in Fig. 2: according to sensors
time series, we start by grouping sensors returning similar
information into clusters, and keep the clusters containing the
most elements to build the estimation.

Fig. 2. Online adaptive estimation method scheme

A. Hierarchical Clustering for Sensors Discrete Time Series

We want to cluster sensors represented by their time series
and keep the F clusters represented by the largest number of
sensors. Time series clustering is a widely studied subject [24-
26]. In our context, (i) clusters can have significantly different
sizes, and (ii) their number is not known. Moreover, (iii) the
distance as defined in Eq. (2) can be infinite.

We choose an ascendant hierarchical clustering since the
method can handle these specificities [27]. Initially, each
sensor defines a cluster; at each iteration, the two clusters
whose inter-distance is minimal are grouped together; the



algorithm is stopped if F clusters remain or if the minimal
inter-cluster distance exceeds a threshold desti.

We denote the distance between clusters i and j by Di,j

and the computation duration by δi,j . We initialize the distance
between the clusters i and j from the time series I, J of the
respective sensors, using Eq. (2): δi,j = δ(I, J) and Di,j =
D(I, J).

We compute the inter-cluster distance using the distances
between sensors in order to avoid further distance calculations.
We define it as the mean sensor distances weighted by their
joint duration interval; this way, more importance is given
to distances calculated over longer periods. Mathematically,
considering each sensor time series I ∈ i for cluster i and
J ∈ j for j, the distance between the clusters i and j can be
expressed as:

Di,j =

∑
I∈i

∑
J∈j δ(I, J)D(I, J)∑

I∈i

∑
J∈j δ(I, J)

If I and J have zero joint definition duration, we settle that
δ(I, J)D(I, J) = 0.

This clustering method can be implemented by a Lance-
Williams algorithm, which is represented by a recursive for-
mula for updating the distances between groups at each step.
After merging the clusters i and j that have the closest
distance, the distance and computation duration between the
merged cluster i+ j and any other cluster k is:

Di+j,k =
δi,k

δi,k+δj,k
Di,k +

δj,k
δi,k+δj,k

Dj,k

δi+j,k = δi,k + δj,k

As explained above, we stop merging clusters when there
are F clusters (meaning that there are no identified isolated
phenomena) or if the minimal inter-cluster distance is higher
than a threshold parameter desti.

B. Online Estimation of the Major Phenomena

At the output of the sensor hierarchical clustering algorithm,
we obtain at least F sensor clusters. We keep the F clusters
containing the most sensors as the other sensor clusters are
supposed to follow isolated phenomena.

For one sensor cluster, we consider one time series contain-
ing all the emissions of the sensors belonging to the cluster
and display the output of the estimation function defined in
Eq. (1). The estimation is the set of F continuous functions
by part constructed from sensor measurements.

The estimation can regularly be updated as new messages
are received. The more messages received, the more data
to compare the sensors, and therefore the better we can
group them to identify the major phenomena. Whenever an
estimation is required, the entire process is repeated from the
beginning.

V. CLUSTERING 2-LEVEL ROUND-ROBIN TRANSMISSION
STRATEGY

In this section, we propose a transmission strategy to
manage the sensor battery through a period update function

Fig. 3. Principle of the transmission strategy

that changes the emission period of a sensor that has just
transmitted. We want to follow efficiently the message

To efficiently monitor existing phenomena in the environ-
ment, we propose a generic framework presented in Algo-
rithm 1, where we successively use two methods:
(i) A clustering method, which updates the cluster-ID of a
sensor that has just transmitted. The clustering method must
dynamically group sensors emitting similar information by
dynamically assigning them a similar cluster-ID.
(ii) A period update function, which, based on a new message
and the updated cluster-ID, gives a period change order if
necessary. The period update function must efficiently manage
sensor emissions to track the phenomena energy effectively.

Algorithm 1 Transmission strategy framework
Require: new message

1: updated cluster-ID = clustering method(new message)
2: period = period update function(updated cluster-ID,new

message)
3: if period is not None then
4: Send period to sensor
5: end if

The transmission strategy requires a new message and
provides a new emission period if necessary. Each message
is composed of the time, the value of measurement, and the
ID of the sending sensor. From one method to another is
transmitted the updated cluster-ID of the sending sensor, which
is a compact, understandable and standard information format.
Moreover, we choose to provide a framework that decorrelates
the clustering method from the period update function. That
way, one can propose any other clustering method or period
update function that would better fit the needs or specific use
cases.

A. Splitting/Merging-Based Clustering Method

The objective is to assign an identical cluster-ID to sensors
that emit similar information; assignation is done in real-time
when a sensor emits a new message. To group sensors with
reasonable certainty, it is important to consider a relatively
long observation duration. By contrast, if sensors that were ini-
tially grouped together start returning different measurements,
it is better to consider the most recent messages to quickly
identify that they do not belong to the same phenomenon.
To meet these goals, we update the cluster-ID of a sensor



that has just transmitted by asking ourselves the following
two questions: based on the most recent messages, is the
sensor still well represented by its cluster? During a longer
observation period, can this cluster be grouped with another
cluster?

We thus propose three mechanisms applied successively:
(i) Inclusion/exclusion: include a new sensor or exclude a
sensor that leaves the environment. When a new sensor enters
the environment, a new cluster is created with it alone.
When an expected message is not received, it means that the
corresponding sensor is out of service; it is therefore removed
from its reference cluster.
(ii) Splitting: determine whether it is still relevant that the
emitting sensor is identified by this reference cluster. We
compute the distance between the sensor measurements and
the set of all measurements of sensors belonging to the
reference cluster. If the distance exceeds a distance threshold
ds, the sensor is removed from the cluster, and a new cluster
is created with it alone.
(iii) Merging: determine if the reference cluster can be grouped
to another cluster. We calculate the distance between the
measurements of all sensors belonging to the reference cluster
and any other cluster. If a distance is smaller than a threshold
dm, we merge the reference cluster with the cluster containing
the most sensors, by merging the smallest cluster into the
largest.

In the splitting and merging mechanisms, we use the dis-
tance defined in Eq. (2), and compute distances by grouping
sensor measurements from the same cluster in a single time
series. We could have chosen the inter-cluster distance as the
average distance between sensors as defined in Section IV-A,
but this would have led to much higher computational costs.

We define the observation time windows Ts and Tm so
that if a new sensor message is received at t, distances are
computed only over messages posterior to t− Ts for splitting
and t−Tm for merging. We choose Ts small in order to react
quickly to remove a sensor from a cluster, and Tm bigger to
group sensors together over a sufficiently long study time.

In the ideal case, the phenomena are initially sufficiently
different: for sensors measuring the same phenomenon, the
distance between a sensor and its reference cluster is at most
ds and between clusters of different phenomena at least dm. In
this case, sensors should be well-grouped thanks to merging.
However, if during the initial instants or a duration Tm,
different phenomena have similar physical quantity values, the
sensors of these phenomena will be grouped (with merging).
It will then be necessary to wait for these phenomena to be
sufficiently different for a duration Ts so that the misrepre-
sented sensors come out one by one (by splitting) and then be
correctly grouped by merging. The splitting mechanism may
also identify a sensor that starts returning outlier values by
putting it outside the cluster.

B. 2LRR-Based Period Update Function

We propose a period update function ensuring that, for each
cluster, a constant chosen amount of messages is received per

time unit to maintain a chosen measurement precision while
conserving energy.

We base our solution on the 2-Level Round-Robin period
update function (2LRR) developed in [19]. The method allows
receiving messages at chosen average time intervals τ dis-
tributed among all the present sensors. Concretely, the sensors
are represented as leaf nodes of a perfectly balanced binary
tree, and the period of a sensor is set to 2dτ , where d is the
depth of the sensor in the tree. When a sensor enters or leaves
the system, dynamic period modification mechanisms allow
keeping the constant time interval reception property while
minimizing the number of period change modifications: two
changes for inclusion of a new sensor (including the period
definition of the incoming sensor), and one or two changes
for the exclusion of a sensor. Fig. 4 illustrates the evolution
of the tree as sensors enter and exit the system.

Fig. 4. Evolution of the binary tree representation as sensors enter (top) or
leave (bottom) the system; each sensor is represented with a colored circle
with an ID, and horizontal dotted lines represent the emission periods of the
sensors at that depth. A dotted line around a sensor means that its position
(and height) was changed in the tree (hence a period change order is needed).
The top part represents the successive arrivals of sensors indexed from 1
to 5; the bottom one shows the successive departure of sensors 4, 2, and 3
(departures are symbolized by a cross) [19].

We extend this method by proposing a period update func-
tion that applies 2LRR for each cluster in order to receive
messages at an average rate of τ on each cluster. We create
a binary tree for each new cluster index returned by the
clustering method. If the cluster-ID of a sensor is changed,
we take it out of its binary tree to place it in the tree of its
new label, by the inclusion and exclusion processes presented
in detailed in [19] and briefly shown in Fig. 4.

Sensors removed from their reference cluster by the splitting
mechanism are placed in a new binary tree. When merging two
clusters, since only the updated cluster-ID is transferred, the
period update function does not initially know the total number
of sensors to move from one tree to another. Thus, the sensors
that change their cluster-ID are included in the new tree one
by one for their new emission. Since there are fewer sensors
to add than sensors already in the tree, this results in the same
period changes as including the sensors in the tree all at once
and giving the period change orders when they emit.

In the end, if the depth of a sending sensor in a tree didn’t
change, none is sent. Otherwise, a period change order is sent,
arising from a change in the clustering or the arrival/departure
of a sensor.



VI. COMPARISON OF THE DIFFERENT CLUSTERING
METHODS

Complexité algorithmique:
Cout de calcul de la distance :
Cout d’une estimation d’un ensemble de message de taille k:

O(k) = k si le temps entre message est superieur a fraishness
Cout du calcul de distance entre ensembles de messages

avec k1 messages pour T1 et k2 message pour T2 en commun:
O(k1 + k2).

On considère qu’on a effectué une durée de monitoring
T , avec N capteurs. Chaque capteur a émit ki, i ∈ [1, N ]
messages. On note K =

∑
ki le nombre total d’émissions

des capteurs.
On considère le faceur entre le temps de monitoring et la

durée de temps merging pT,Tm et le facteur entre le temps de
merg et le temps de split pTm,Ts

. Sur ces fenetres de temps, on
peut considerer que les capteurs on émit pT,Tm

ki pour merg
et pT,Tm

pTm,Ts
ki.

Ascendant hierarchical clustering: distance entre tous les
capteurs pairs a pair : on calcul a chaque fois la distance entre
des messages de taille ki, kj . On a donc O(

∑
i,j(ki + kj)) =

O(K2). On merge de facon itérative ensuite ce qui correspond
a au plus N itérations en temps constant O(N) = o(K2).

Splitting merging: Merging, on compare un cluster avec
tout autre cluster. Finalement, avec les notations prises, on
obtient O(pT,Tm

K).

VII. SIMULATIONS

In this section we study, through simulations, the perfor-
mance of the solutions developed in the paper.

A. Simulation Setting

For all our simulations, we consider four temporal phe-
nomena (Fi)i∈[1,4], whose physical quantity is simulated by a
random walk of similar parameters. Each time step ∆T , the
physical quantity can increase of an amplitude step ∆V with a
probability 50%, or decrease of ∆V with the same probability.

Sensors enter the environment during a duration T following
a Poisson process with an arrival rate of λi for Fi; this
simulates the installation time of the IoT monitoring solution.
In this simulation, we choose to include more sensors related
to the phenomena F1, F4 than F2, F3 (i.e., λ1, λ4 > λ2, λ3).
We fix the number of estimates to display to F = 2, implying
that the phenomena F2, F3 should not appear because they
must be considered isolated phenomena.

Sensors can get out of the environment for two main rea-
sons. They consume their energy for each message sent until
being out of battery; we assume that their initial energy follows
an exponential law of mean ce

γ with ce the energy consumed at
each emission and γ the variability of the initial energy at the
entry in the environment. Moreover, the maximum lifetime of a
sensor follows an exponential law of parameter µ, representing
an exceptional event (hardware problem, for example).

Sensor’s measurements are noisy with Gaussian noise of
standard deviation σ.

Simulation parameters are available in Table I; we use h as
the time unit, although the hour is not the temporal reference
to consider.

Parameter Meaning Value
Physical quantity parameters of Fi

∆T Time between two variations 0.01h
∆V Amplitude step 0.1

Sensors field fluctuation and characteristics
T Duration of the sensor inclusion phase 100h
λ1, λ4 Sensor inclusion rate in F1, F4 1h−1

λ2, λ3 Sensor inclusion rate in F2, F3 0.1h−1

1
µ

Maximum mean sensor life span 10000h
1
γ

Mean number of emissions per sensor 100

σ Standard deviation of the Gaussian noise 1

TABLE I
SIMULATION PARAMETERS

B. Setting of the Estimation Function

We are looking for an estimation function that provides a
good estimate of discrete time series with noise attenuation.
For this, we choose the exponential freshness function family
described as fl(δt) = e−

δt
l to use the estimation function

defined in Eq. (1); we are looking for parameters l that provide
an accurate estimation.

We consider several scenarios where the average number
of received messages changes, which we model by Poisson
laws of different rates. First, we perform one simulation
for each message arrival rate with a new drawing of the
physical quantity with the parameters defined in Table I, during
a simulation duration of 100h. Next, we choose different
parameters l and look for the one that minimizes the mean
squared error (MSE) between the estimation and the real
phenomenon: Fig. 5 draws the MSE (on the y-axis) according
to the choice of l (on the x-axis).

The estimation function we built strongly attenuates the
noise: 0.077 of MSE is reached from highly noisy measure-
ments (σ = 1) following a physical quantity of significant
variability (jumps of 0.1 every 0.01h time step), with a
message reception rate of 200.

Moreover, the choice of the optimal parameter l is con-
ditioned by the arrival rate of the messages, varying from
l = 0.07 for an arrival rate of 200 to l = 0.9 for an arrival
rate of 1. Choosing the wrong l can have negative effects on
the accuracy, especially for high arrival rates. According to
this, for further simulations, the parameter l is chosen accord-
ing to the average message arrival rate of the time series
to estimate, which we define as: number of messages

duration of the time series . Thus,
when constructing an estimation function (e.g. for distance
calculations), we will refer to Table II for the choice of the
appropriate freshness parameter l.

C. Setting of the Transmission Strategy and the Online Adap-
tive Estimation

We show that our monitoring solutions are suitable for many
scenarios without rescaling by setting parameters that will
remain for all the simulations.
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Fig. 5. MSE between the estimation function and the physical quantity as a
function of the freshness parameter, for several message arrival rates.

average message arrival rate l
lower bound upper bound
100 0.07h−1

50 100 0.11h−1

25 50 0.15h−1

10 25 0.25h−1

1 10 0.35h−1

1 0.9h−1

TABLE II
CHOICE OF THE FRESHNESS PARAMETER l ACCORDING TO THE AVERAGE

MESSAGE ARRIVAL RATE

First, in Section VII-E we will perform the C2LRR (Clus-
tering 2-Level Round Robin) transmission strategy with small
to large target message reception τ , which translates into more
or less precise monitoring. Thus, the transmission strategy
must handle time series with small and large message arrival
rates. Moreover, the shapes of the time series are different
according to the different mechanisms: for two time series to
be compared during merging, their message arrival rates are
both τ (in a non-changing context); using splitting, for a sensor
in a cluster of n sensors, the ratio of arrival rates between the
two time series to be compared is about 1

n . According to these
considerations, we fix ds, dm parameters to obtain globally
good results; the parameters are summarized in Table III. We
choose rather small analysis time windows Ts, Tm, mainly for
computational time constraints.

In addition, for the online adaptive estimation, we set the
threshold desti in Table III in order to identify phenomena with
the same initial value (in Section VII-D) and to perform well
when considering spaced initial values but with possible large
time steps for the sensor emissions (in Section VII-E).

Parameter Meaning Value
Splitting/merging mechanisms

Ts Max observation duration for splitting 100h
Tm Max observation duration for merging 200h
ds minimum distance for splitting 10
dm maximum distance for merging 3

Sensor hierarchical clustering
desti maximum inter-cluster distance 5

TABLE III
SETTINGS FOR THE MONITORING SOLUTIONS

D. An Illustrative Example

In this part of the simulation, we consider phenomena with
the same initial value; the four phenomena are displayed in
Fig. 6(a). We apply the C2LRR transmission strategy defined in
Section V and we compare it to a baseline strategy. We did not
find in the literature any method of sensor message manage-
ment that are directly applicable in the context proposed here.
Therefore, we define the transmission strategy Static that gives
the same transmission period p to any new sensor entering the
environment.

Considering the estimation defined in Section IV performed
when all sensors are dead, we define the beginning and end
of the monitoring as the minimum and maximum time when
the two main phenomena are displayed. Our energy efficiency
metric is the monitoring duration, defined by the duration
between the beginning and end of the monitoring.

In this example, we parametrize C2LRR to a target pe-
riod reception of τ = 0.1h. Fig. 6(b) shows the emis-
sions of sensors with their respective cluster-ID given by
the splitting/merging-based clustering method. The bound of
monitoring are the vertical lines in Fig. 6(b): we obtain a
monitoring duration of 983h. In order to compare the two
strategies according to a similar monitoring duration, we set
the individual period parameter of Static to p = 2 to obtain
a monitoring duration of 986h. Emissions of the sensors by
the use of the Static method and the bound of monitoring are
displayed in Fig. 6(c).

First, we see in Fig. 6(c) that the sensors from F1, F4

stay alive longer (almost until 1000h) than those from F2, F3

(around 500h) because a greater amount of sensors is in
F1, F4. This is even more visible in Fig. 6(b) using C2LRR
where F2, F3 are no more represented after 350h.

Focusing on the C2LRR clustering performance, we see
in Fig. 6(b) that at the beginning of the monitoring, the
splitting/merging-based tool incorrectly groups the sensor
since phenomena have similar values: the method groups all
sensors belonging to F1, F2, F4. Then, as the phenomena
become more distinguishable, they are more easily identified.
As a result, at 270h, sensors related to the same phenomenon
are grouped under a similar cluster-ID.

Conclusions on the efficient grouping of sensors can also be
transposed in terms of message reception rates. In Fig. 6(d) is
depicted the sum of the inverse of the period of sensors present
in F1, F4 for Static and C2LRR, characterizing message arrival
rates in these main phenomena. Our proposed period update
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Fig. 6. (a) : physical quantities over time between 0 and 1000.
(b): all the emissions and their cluster-ID given by C2LRR with τ = 0.1h, with bounds of monitoring in vertical lines.
(c): all the emissions of sensors by the use of the Static transmission strategy with p = 2h, with bounds of monitoring in vertical lines.
(d): message arrival rate of sensors belonging to F1, F4 phenomena over time while using either Static or C2LRR.
(e): last 15% of the cumulative distribution function (cdf) of the distance between real phenomena F1, F4 and the estimation performed at the end of the
monitoring. The horizontal line draws the 99th percentile of distance.
(f): 99th percentile of the distance between real phenomena and the estimation over time.

function is tuned so that the sensors of a cluster send messages
to receive a constant message arrival rate of 1

τ . Thus, C2LRR
allows to receive on average 10 messages per time unit on
the two main phenomena, starting from 350h. For the Static
transmission strategy, the number of messages per time unit
starts at a high rate (46 messages per time unit in each
phenomenon) and decrease steadily over time to zero.

Fig. 6(e) shows the last 15% of the cumulative distribu-
tion function of the distance between real phenomena and
the estimation done at the end of the monitoring. The 99th

percentile of distance (represented by a horizontal line) defines
our precision metric: according to this figure, in 99% of the
monitoring duration, the distance between the estimation and

the real phenomena doesn’t exceed 2.21 for C2LRR and 2.91
for Static.

The online adaptive estimation tool allows returning an
estimation of the phenomena through time; the estimation
changes as new messages are received. Fig. 6(f) shows the
precision of the estimation along the time until the end of the
monitoring: a value at t is the 99th percentile of the distance
between the real phenomena and the estimation considering
only messages prior to t. Before 400h, for both Static and
C2LRR, the estimation tool misidentifies the phenomena,
which results in very high values of the 99th percentile of
distance. After this time, as the reception rate is constant
for C2LRR, the accuracy remains relatively stable until the



end of the monitoring. For Static, since there is no effective
management method, many messages are received, and the
99th percentile of distance drops. However, as the sensors die
due to overuse, it increases to be overall less precise than
C2LRR at the end of the monitoring.

E. Larger Scale Comparison of the Transmission Strategies

We perform here a more important simulation campaign.
We want to evaluate our C2LRR transmission strategy to the
baseline strategy Static, for different precision requirements.
Here, the initial instants of each phenomenon are spaced:
F1(0) = 0, F2(0) = 50, F3(0) = 100, F4(0) = 150. This way,
no clustering error will occur for the estimation part, and the
transmission strategy should perform well.

We run the simulation multiple times for different parame-
ters: 50 simulations for each strategy, with reception rates of
τ ∈ [0.05, 0.55] with steps of 0.01 for C2LRR and sensor
emission period of p ∈ [0.20, 6.2] with steps of 0.12 for
Static. For each simulation, we build the estimation at the
end of the monitoring (using Section IV), which we evaluate
through the monitoring duration (energy efficiency metric) and
the 99th percentile of distance between the estimation and the
phenomena (precision metric). Moreover, we count the number
of period change orders.

In Fig. 7(a), each simulation is represented as a point with
the 99th percentile of distance on the x-axis and the monitoring
duration on the y-axis. Overall, the C2LRR strategy provides
more efficient solutions than Static, as the points representing
its performance metrics in Fig. 7(a) are more at the top left of
the figure. By performing linear regression on the performance
of each strategy, we obtain the following linear equations: y =
1168x − 988 for C2LRR and y = 945x − 1654 for Static.
Based on these regression results, for a given precision, there
is at least an absolute monitoring duration difference of 1000h
between the two strategies (comparison for x > 1.5). We can
also say that we lengthen the monitoring duration by at least
64% using C2LRR compared to the baseline and the result is
better for more precise requirements (comparison for x < 4.5).

Regarding the performance in terms of sensor period man-
agement, Fig. 7(b) displays the number of period change
orders for the different simulations performed. Since Static
assigns the emission period to sensors only once, it is the
best method in terms of period changes. By contrast, because
C2LRR includes sensors dynamically from the beginning of
monitoring, groups them as new messages are received, and
reacts to the death of each sensor, the number of period change
orders is greater. As a result, there are, on average, 217 period
changes for Static, and 1033 for C2LRR.

Qualitatively, choosing the optimal parameter of a transmis-
sion strategy is a key point for its implementation. However, it
is impossible to fix the parameter p for the Static proposition
if we don’t know in advance the number of deployed sensors.
Instead, although this result is subject to the efficiency of
the clustering (here, our splitting/merging method), the τ
parameter of C2LRR represents the average time between
two message receptions on each identified phenomenon. This

parameter can be requested by a user who wants to follow
phenomena over time.

Overall, C2LRR efficiently manages sensor emissions by
attempting to have the desired number of messages per time
unit received on each phenomenon, as long as there are still
active sensors; however, this has a significant management cost
represented by the number of period change orders.

VIII. CONCLUSION

This paper proposes a new approach based on IoT battery-
powered sensors deployed on the fly for the monitoring of
multiple phenomena present in an environment. We developed
a method that dynamically identifies phenomena present in
the environment and efficiently manages sensor transmissions
accordingly. In addition, we propose an estimation method
that tracks the phenomena followed by most sensors over time.
These solutions are resilient to various uncertainties considered
in Massive IoT.

More globally, we show in this paper that low-cost wireless
sensors can be deployed in any way and the monitoring system
can automatically and energy-efficiently manage sensors while
providing relevant and accurate estimation. This marks a new
step towards an even larger scale deployment of monitoring
solutions using IoT.

A lot of work remains to be done. Among other things,
the next step is the development of a test bed to study the
considerations taken in this paper: (i) can a real environment
be divided into distinct phenomena? (ii) To what extent the
No Ack on the uplink and downlink can degrade the proposed
solution?

On the other hand, it is interesting to expand this solution by
considering other parameters like uncertainties of the network
and heterogeneity of the returned information. This knowledge
about sensors is another milestone for a better understanding
of the data and its integration into more efficient management
policies.
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