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Abstract. Industry 4.0 leads to a strong digitalization of industrial processes, but also a significant increase in communication 

and cooperation between the machines that make it up. This is the case with autonomous industrial vehicles (AIVs) and other 

cooperative mobile robots which are multiplying in factories, often in the form of fleets of vehicles, and whose intelligence and 

autonomy are increasing. While the autonomy of autonomous vehicles has been well characterized in the field of road and road 

transport, this is not the case for the autonomous vehicles used in industry. The establishment and deployment of AIV fleets raises 

several challenges, all of which depend on the actual level of autonomy of the AIVs: acceptance by employees, vehicle location, 

traffic fluidity, collision detection, or vehicle perception of changing environments. Thus, simulation serves to account for the 

constraints and requirements formulated by the manufacturers and future users of AIVs. In this paper, after having proposed a 

broad state of the art on the problems to be solved in order to simulate AIVs before proceeding to experiments in real conditions, 

we present a method to estimate positions of AIVs moving in a closed industrial environment, the extension of a collision 

detection algorithm to deal with the obstacle avoidance issue, and the development of an agent-based simulation platform for 

simulating these two methods and algorithms. The resulting/final/subsequent simulation will allow us to experiment in real 

conditions. 

Keywords: autonomous industrial vehicle, vehicle location estimation, vehicle collision avoidance, agent-based simulation. 

1. Introduction 

Digitization of the factory is the main objective of Industry 4.0 [1]. It's also the prospect of the factory being 

smarter. This smart factory is characterized by continuous communication between the various tools and 

workstations integrated into the production, storage and supply chains. Among the challenges facing Industry 4.0 

are the development and optimization of the flows of data, products, and materials in production companies. Certain 

technological bricks have been defined [2], in particular, for the use of automated guided vehicles and other 

autonomous mobile robots. While the autonomy of autonomous vehicles has been well characterized in the field of 

road and road transport (six autonomous driving levels distinguished by the Society of Automotive Engineers [3]), 

this is not the case for the autonomous vehicles used in industry (autonomous industrial vehicles or AIVs) and other 

types of intelligent mobile robots [4] or intelligent autonomous vehicles [5]. 

The establishment and deployment of AIV fleets in industrial companies remain problematic in several respects, 

including their acceptance by employees, the location of vehicles, the fluidity of traffic, and the vehicles’ perception 

of disturbance in its surroundings and, therefore, dynamic environments. Autonomy of AIVs has, accordingly, been 

limited to predetermined trajectories and the visibility or knowledge of each AIV. Thus, we assume that the capacity 

to exchange information among the various AIVs of a fleet should improve this autonomy in terms of: 

 adaptation to traffic constraints, especially when the AIV environment changes over time (in the dynamic 

environments of storage areas, production lines, etc.), with this adaptive capacity making full use of the development 

of AI and IoT technologies [6] to perceive the environment; 

 decision-making, even when the information available to an AIV is incomplete, uncertain, or available but 

fragmented [7]; 



 

 communication with other AIVs in a fleet and with the associated infrastructure or people (commonly referred 

to as “V2X communications” for road vehicles) [8];  

 and reduction (or simply control) of the energy impact, irrespective of any traffic constraints [9]. 

To increase the autonomy of an AIV, and even more the autonomy of a fleet of AIVs in a decentralized approach 

[10], one way is to develop a collective intelligence to make the behaviors of vehicles adaptative. So, we started by 

developing a method based on matrix beaconing for estimating the position of AIVs, essential to implement 

collective strategies to address traffic problems [11]. Then, we focused on a class of problems faced by AIVs related 

to collision and obstacle avoidance [12]. This occurs when two vehicles need to cross an intersection at the same 

time, known as a deadlock situation, but also, when obstacles are present in the aisles and need to be avoided by the 

vehicles safely. We then developed an enhancement to the cooperative collision avoidance algorithm experimented 

in the study [13], in order to handle the problem of obstacle avoidance. 

All these algorithmic developments have followed the same methodological framework, namely a modeling of 

traffic problems to be solved collectively by a fleet of AIVs, then a cyberphysical co-simulation, allowing both 

virtual and physical simulation. This co-simulation is driven by scenarios that can be deployed on a simulation 

platform in which different types of circuits are integrated. These circuits can be completely specific to deal with a 

specific problem which occurs at a high frequency by design,s this is the case for the illustration used in this article; 

they can also reflect the reality of an industrial environment (factory, warehouse, for instance). 

The primary aim of this paper is to propose a cooperative approach to avoiding obstacles and collisions between 

AIVs in a co-simulation platform. The paper is organized as follows: section 2 presents a survey of the related work, 

relevant research questions, and open issues; section 3 presents a fuzzy agent-based simulation platform used for 

our experimentations; section 4 presents a method for estimating the positions of AIVs moving in a closed industrial 

environment; section 5 presents the extension of a collision detection algorithm to deal with the obstacle avoidance 

issue; section 6 presents illustrations and results of simulations from various scenarios; and finally, section 7 

provides the conclusions as well as a discussion of the study’s implications for future research. 

2. State of the art 

In researches on Intelligent Transport System (ITS), mainly in context of smart cities [14], the autonomy of 

vehicles is well determined with six levels of autonomy [6]. However, no such scale exists in the industrial context, 

and too little research exists in this area [15]. A few articles establishing a state of the art on the algorithms and 

techniques proposed to improve the control and relevance of the reactions of AIVs in the face of complex situations 

make it possible to verify the importance of this subject for industry 4.0 [10]. These articles show a very active 

domain with more and more decentralized control algorithms proposals in fields as varied as: cooperative control 

in production and logistics [16], production system for the automotive industy [17], control strategy for the 

coordination of AGV systems [18], control of multi-AGV systems in autonomous warehousing applications [19], 

distributed control for engineering applications [20], control architectures in the context of Industry 4.0 [21]. 

Among the problems to be solved to make AGVs (and also AIVs) more autonomous, considering the global 

vehicle system [22], we can note the following main problems: multi-robots task allocation (MRTA) that has been 

the subject of numerous state-of-the-art reviews: a survey and analysis of MRTA algorithms [23], a survey on the 

principal approaches to MRTA with a strong focus in solutions used in service and field robotics [24], a formal 

analysis and taxonomy of MRTA systems [25], and a review on challenging aspects of MRTA problem [26]; 

localization and vehicles positioning estimation: a localization of a low-cost automated guided cart [27], a flexible 

AGV system using topological and grid maps [28], a RFID-enabled positioning system [29], a mapping of 

technologies for AGVs, including those concerning localization [30], a sensor fusion for automated guided vehicle 

localization [31]; path planning: issues in path planning and obstacle avoidance [32], a guide to selecting path 

planning algorithm [33], and a survey of path planning algorithms [34]; motion planning, considering: the robot 

mobile system architectures [35], the artificial intelligence solutions [36], the centralized collision avoidance for 

AGVs in a flexible manufacturing system [37] or in an industrial plant inspection system [38], and the decentralized 

collision avoidance for industrial AGVs [39] or industrial cooperating robots [40]; deadlock avoidance: deadlock 

detection and resolution for multiple mobile robots [41], protocol for AGVs in industrial environments [42], and 

solution in a flexible manufacturing system [43]; and vehicle resources management [44] with mainly battery 

management [45]. 

The main objective of our research is to improve the AIV autonomy integrated in a fleet based on collective 

intelligent strategies. The capacity to exchange information between the different AIVs of a fleet is necessary to 

improve this autonomy [46]. Thus, problems like obstacle detection or collision avoidance can be solved by the 

cooperation between IAVs [33]. 



 

Consequently, we will divide the study of bibliography into four areas: 1) problems of communication among 

AIVs, 2) methods for estimating the positions of the AIVs in a simulation platform, 3) issues on collision detection 

and obstacle avoidance, and 4) perspectives of development of an agent-based simulation platform. 

2.1. Communication among vehicles 

Research in the field of the connected and communicating car is very abundant and interests the readers of many 

scientific journals. For example, the journal Computer‐Aided Civil and Infrastructure Engineering (CACAIE) has 

just published a special issue: “Computational modeling of connected and automated transport systems” [47] 

providing contributions on a wide variety of topics such as the behavior of connected cars in intersections [48], the 

problem of lane change in mixed environments of autonomous vehicles and human-driving vehicles [49, 50], the 

self-driving technology achieved through the communication between road infrastructure and the vehicle where 

sensors are mainly installed on the road [51], the autonomous transportation systems considering parking behavior 

[52], or the traffic regulation in highway work zones [53]. 

The experimental self-driving cars that are already plying roads all over the world to accumulate data and miles 

do not cooperate with their surroundings. Instead, they rely on on-board sensors [54], such as radar, laser or lidar, 

cameras, and GPS and information collected internally (through an odometer, assessment of the condition of the 

wheels, etc.), to acquire raw information with which they build a representation of their surroundings. To improve 

its self-positioning a vehicle’s control system could match its perception with a priori known information, such as 

a detailed map or a learned representation of the environment in which it is operating [55] or it is simulated [56]. 

The same is true for the AIVs increasingly deployed at industrial production sites, which still have very limited 

capacity of self-adaptation [57]. 

In recent years, the automotive industry has joined forces with telecommunications players to develop 

communication standards that facilitate direct cooperation among vehicles through the exchange of structured 

information [58]. Thus, for instance, a vehicle may start to decelerate or brake, not because it observes that it is 

approaching the vehicle ahead of it, but because the vehicle ahead indicates that it has initiated such an action. This 

type of coordination saves precious time in reactions to critical events and, therefore, improves safety in addition to 

contributing significantly to profitability. Thus, for example, vehicles can be linked for movement on a highway in 

convoys (platooning) [59] or to optimize passing through intersections [60]. 

The European Institute of Telecommunications Standards (ETSI) has published a standard for these kinds of 

cooperative awareness messages (CAM) (ETSI EN 302 637-2 standard: Cooperative Awareness Basic Service [61], 

and Cooperative awareness in VANETs [62]) and decentralized environmental notification messages (DENM) 

(ETSI EN 302 637-3 standard [63]). These specifications and messages are approved and constitute building blocks 

for the safety of future intelligent transport systems [64]. The purpose of CAM messages is similar to Hello_msg in 

[13]. They make it possible to learn where are other vehicles in real time. DENM messages are alert messages. They 

are issued at the time of an unexpected event in order to cooperate, notify and consequently disseminate information 

in the relevant geographical area. 

ETSI has also published a standard for Cooperative Perception Messages (CPM) (ETSI TR 103 562 standard 

[65]). They allow vehicles to broadcast information about objects perceived in their detection area by their sensors 

to other vehicles such as obstacles, pedestrians or other vehicles. Another way to cooperate is to inform other 

vehicles of these intentions. In this regard, the ITS WG1 is currently working on the definition of a Maneuver 

Coordination Service (MCS) and its associated Maneuver Coordination Messages (MCM) [66].  

2.2. Estimating the locations and positions of AIVs 

The CAM messages standardised by ETSI are based on the strong assumption that a vehicle knows where it is, 

using GPS. However, in indoor environments GPS does not work, and even more in disturbed industrial 

environments, GPS is not the tool used for AIVs to locate themselves. Vehicles must therefore be given other means 

to locate themselves. A position estimation provides an approximation of a vehicle’s location in relation to its 

environment; whether the environement is outdoor or indoor [67]. The literature on estimation theory is vast, 

encompassing a wide variety of techniques and ideas. Naturally, the most common techniques receive frequent 

attention. These general techniques can be applied to a variety of problems, an example being parametric estimation 

methods such as weighted least squares estimators, maximum-likelihood estimators and minimum mean-square 

error estimators [68].  

Incremental or relative localization [69] makes it possible to determine the position and orientation of a vehicle 

by taking into account its successive movements from a known starting point. Absolute localization [70], by 

contrast, involves determining the position of a vehicle or robot in its external or internal environment using 

exteroceptive sensors. Two strategies are used for localization that rely on either natural or artificial landmarks (e.g., 



 

GPS or beacons), respectively. Absolute localization by definition avoids the drift over time that characterizes 

relative localization; the main disadvantage of this strategy is the loss of visibility of the landmarks in the 

environment that a vehicle uses to determine its position. 

In our study, the measurements necessary for the estimation were susceptible to corruption by noise. The result 

can be generation of an input that introduces uncertainty into the inference. Uncertainty is, then, at the heart of the 

estimation problem: in the absence of uncertainty, many problems would have simple algebraic solutions [68]. 

2.3. AIVs collision detection and obstacle avoidance 

Special topics of automated vehicles coordination and/or cooperation, using vehicle-to-vehicle (V2V) or vehicle-

to-infrastructure (V2I) communication techniques, are well studied. 

Rios-Torres and Malikopoulos [71] cover the literature related to coordination of connected and automated 

vehicles for interscetions or merging at highway on-ramps, using centralized and decentralized approaches, with the 

goal to limit traffic congestion and reduce transportation energy consumption and emissions by improving traffic 

flow. 

Mariani et al. [72] propose a taxonomy and a survey on coordination of autonomous vehicles to treat traffic 

problems like intersection management, smart parking, ride sharing, ramp merging or platooning. In the particular 

case of crossing intersections, Glorio et al. [73] propose an adaptive approach capable of selecting the most 

appropriate solution presented in [72], depending on the traffic situation. 

Among the problems to be solved to make AIVs more autonomous, we can particularly note the location and 

positioning of vehicles that we discussed above [11], as well as the avoidance of other vehicles or obstacles [74]. 

The detection and avoidance of collisions are topics that have been the subject of much research for several decades 

[75], both in the field of ITS [76], industrial robots using vision [77] or charge generated virtual force fields [78], 

manipulator robots performing real-time obstacle avoidance [79] or collision avoidance [80], than mobile robots for 

resource-constrained [81] or adaptive navigation [82]. 

In our context, the collision avoidance problem can be solved by the cooperation between AIVs [83], and a 

multiagent approach such as those capable of managing intersections [84] or coordinating traffic [85]. The capacity 

to exchange information between the different AIVs of a fleet should improve this autonomy [86]. The study 

presented in [13], proposed a cooperation strategy based on the exchange of messages to determine the passing 

priority at an intersection between AIVs. The solution requires the vehicle to know its own position, and to be able 

to communicate with the other vehicles. This collision avoidance algorithm allows AIVs to communicate and 

cooperate using different types of messages. 

The communication between AIVs is done with three different types of messages : Hello_msg message sent by 

an AIV to indicate its presence with its position position – which is similar to CAM messages; Coop_msg message 

sent by an AIV before an intersection area to determine passing priority; and Ack_msg message sent by an AIV to 

confirm receipt of a Coop_msg. 

As presented above, CAM and DEMM messages are important messages that would complete the range of 

possible messages to be exchanged to cooperate and avoid collisions for the AIVs in the Bahnes et al. algorithm. We 

will discuss their possible use from an experimental perspective in the last section. 

2.4. Simulation platforms for AIVs 

Before full-scale testing of traffic scenarios involving autonomous vehicles in industrial or more complex traffic 

situations can begin, it is essential to consider the simulation involved. The cooperative activity of mobile robots 

can also be studied by simulation-based virtual environment [87]. Perhaps the greatest advantage to be gained by 

running a simulation is that actionable results can be obtained without applying a scale factor. 

Indeed, there are many urban and industrial challenges concerning autonomous vehicles, and simulation makes 

it possible to address them well: the autonomous vehicles in city traffic [88], autonomous vehicles storage and 

retrieval systems [89], collaborative autonomous vehicles [90], low-cost mixed reality for industrial vehicle 

environment [91], or end-to-end scalable autonomous vehicle testing when rare events appear [92]. As might be 

expected, there are numerous methods in use for such testing [93].  

Key advantages of the use of simulation in evaluating AIV’s operations is well presented by Tsolakis et al. [5]. 

Mainly, simulation reduces development time and cost of an AIV, minimises potential AIV operational-related risks, 

allows feasibility assessment of different AIV scenarios at a strategic or operational horizon, enables rapid 

understanding about AIV’s operations (under limited data availability), and identifies improvement in facility layout 

configurations accommodating AIVs. 

Another advantage of simulation environments consists in introducing humans into simulation scenarios in order 

to convince, before the deployment of autonomous mobile robots on industrial sites (factories or warehouses), of 



 

the secure nature of coexistence and possible interactions between future (mobile) robots and human operators in 

industry [94] or in autonomous transport systems [95]. Moreover, classifications of these Human-AGV safety 

problems have been proposed in the literature, whether for the interaction methods [96] or for the systems developed 

to facilitate their collaboration [97]. 

While progress in the autonomy of automobiles is widely reported [98], particularly in the context of ITS [99] 

and more recently in that of cooperative intelligent transport systems (C-ITS) [100], studies of AIVs have been 

relatively few. AIVs and autonomous mobile robots more generally have the capacity to adapt to their environments. 

Self-adaptation framework development can then increase their autonomy [101]. A combination of computer and 

physical solutions can facilitate shared communications and, thereby, the autonomy of these vehicles. 

Agent-based approaches are often presented in this case: for the management of adverse weather situations on 

the road network [102], for the development of intelligent route management systems [103], and very frequently 

and generally for the simulation of autonomous vehicles [104]. 

Problems like large-scale multiagent path planning [105], multi-agent optimal target assignment [106], or multi-

agent pathfinding [107], with collision and obstacle avoidance, are already well addressed. Multi-agent systems are 

interesting for the simulation and modelling of self-adaptive phenomena, such as self-organization [108], 

complexity of systems [109], and autonomy [110]. They are also adapted to manage the potential heterogeneity of 

organizations [111].  

In this paper, we propose more specially the use of fuzzy agents to manage the levels of imprecision and 

uncertainty involved in modelling the behavior of simulated vehicles [112]. Fuzzy set theory is particularly suitable 

for processing uncertain or imprecise information that must nevertheless lead to decision-making, a situation that 

autonomous agents may face [113]. The concept of fuzzy agent can then be proposed as a partial implementation of 

this theory. Furthermore, fuzzy agent-based modelling has already demonstrated its relevance in other and various 

areas, as recently for the modeling of the motivation and performance of construction teams [114] or the movement 

of users in the urban space [115]. 

Although this is not directly addressed in this article, it is worth noting that all the control tasks performed by 

autonomous mobile robots, as identified by De Ryck et al. [10], have been the subject of a performance improvement 

study with the use of fuzzy logic: for mobile robot navigation with various points of view such as: concepts, theories 

and applications in mobile robot navigation [116], navigation of several mobile robots [117], navigation of a mobile 

robot in an unknown environment [118], navigation of a mobile robot in a real time environment [119], control of 

the mobile robot navigation [120], or performance comparison of fuzzy logic and neural network design for mobile 

robot navigation [121]; for obstacle avoidance with various points of view such as system design [122], comparison 

of different types of fuzzy logic usable for this problem [123], or unknown dynamic environment [124]; for path 

planning strategies with focus on obstacles avoidance [125] or global navigation [126]; for motion planning [127]; 

for mobile robot localization [128]; and for intelligent energy management [129]. 

Futhermore, various other approaches have been proposed to improve navigation and obstacle avoidance by 

autonomous mobile robots: potential fields, neural networks, genetic algorithm, vision-based navigation, particle 

swarm or ant colony. Elements of comparison of these different approaches are presented in [130]. 

3. A fuzzy agent-based simulation platform 

3.1. Fuzzy agent modelling of AIVs 

Using the paradigm agent to simulate or model complex, adaptive, and interactive systems, either distributed or 

cooperative, is not a new paradigm [131]. Agent-based systems have been proposed in many industrial and 

engineering fields (industry [132], manufacturing [133] or autonomous vehicles [104]), because their distribution 

and decentralization allow engineering systems to be flexible and agents are well suited to enabling cyber-physical 

systems [134]. 

An agent-based system is fuzzy if agents that compose it are fuzzy. This means that: 1) agents have fuzzy 

knowledge (fuzzy decision rules, fuzzy linguistic variables and fuzzy linguistic values) [135] which can be shared 

or communicated to other fuzzy agents; 2) they can have fuzzy behaviours; 3) their interactions, roles and resulting 

organizations can also be fuzzy. 

Reactive and autonomous agents can update and follow the fuzzy information evolution coming from their 

environment and other agents [136]. By interpreting the fuzzy information that they receive or perceive, fuzzy agents 

interact within a multi-agent system; they can also interact in a fuzzy way. For instance, a fuzzy agent can 

discriminate a fuzzy value of interaction to evaluate its degree of affinity (or interest) with another fuzzy agent 

[137]. 



 

We start by defining the model of fuzzy agents, derived from a previous model presented in [112]. Table 1 

describes the different elements of this model: (1) the fuzzy agent-based system 
~

; (2) the behaviour of a fuzzy 

agent i
~ , inspired by the feedback loops perceive-decide-act [138]; (3-5) the behavioural functions of a fuzzy agent; 

and (6) the fuzzy interactions 
~

 between two fuzzy agents. 

Table 1 

Presentation of the fuzzy agent model 
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)~( i : is the i
~ ’s function of action, 

i
~ : is the set of knowledge of the fuzzy agent i

~  (fuzzy 

decision rules, acquaintances, ...). 
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s
~ : is the fuzzy agent source of a fuzzy interaction, 

r
~ : is the fuzzy agent receiver of a fuzzy interaction, 

c
~ : is a fuzzy communication act (for instance, inform, 

diffuse, ask, reply, confirm are used in the basic model) 

 

Figure 1 shows the fuzzy agent model for AIVs simulation. Indeed, an infrastructure is deployed in the 

environment and is composed of a traffic plan, and active elements such as beacons, tags, stations. These three 

active elements are modelled as agents. In fact, static or dynamic obstacles (e.g. operators) may be present in the 

environment. AIV, which are modeled as fuzzy agents, carry out missions defined by path on the traffic map. AIV 

agents are equipped with radar and thanks to their knowledge of the environment they can avoid collisions. 

Moreover, AIV agents can also cooperate by communicating with different types of standardised messages. AIV 

agents are fuzzy agents because they have incomplete, fragmented, fuzzy and uncertain knowledge. Conceptually a 

fuzzy agent is derived from a simple agent to which we have added the specificities listed in table 1. 

Formally, concerning the agentification of the active elements integrated in the simulation platform, each AIV 

of the set  n21 v,...,v,vV   is transformed into an agent 𝑣[1..𝑛] ∈ 𝐴𝑉; each station of the set  n21 s,...,s,sS   is 

transformed into an agent 𝑠[1..𝑛] ∈ 𝐴𝑆; each tag of the set  n21 t,...,t,tT   is transformed into an agent 𝑡[1..𝑛] ∈ 𝐴𝑇; 

each beacon of the set  n21 b,...,b,bB   is transformed into an agent 𝑏[1..𝑛] ∈ 𝐴𝐵 (7): 

Agentification:    𝑉, 𝑆, 𝑇, 𝐵 →   A𝑉, A𝑆, A𝑇, 𝐴𝐵 (7) 

Then, each AIV agent 𝑣[1..𝑛] ∈ 𝐴𝑉 is transformed into a fuzzy agent �̃�[1..𝑛] ∈ �̃�𝑉 (8): 

Fuzzy agentification:    𝑉 →   𝐴𝑉 (8) 

 



 

 
Figure 1 Agent-based model for AIVs co-simulation 

3.2. Presentation of the platform 

The simulation platform is composed of (1) a digital simulation framework that is agent-oriented, allowing it to 

simulate the movements of vehicles in a virtual environment, and (2) a physical platform that serves to develop 

scenarios for the circulation of vehicles of reduced size or a set of small vehicles (Figure 2). The objective is to 

visualize the same movements through the virtual and physical simulations. Figure 1 shows the platform 

architecture. The obstacles that a vehicle encounters on the physical platform must appear on the software platform. 

The platform also offers the ability to conduct augmented simulations (for example, adding a new vehicle, a person, 

or even direct communications between AIVs virtually). We developed two interfaces to follow the evolution of the 

simulations, one on the server side, for viewing the simulation and managing the components of the two systems, 

and the physical system, including communication with the vehicles moving on the platform and the virtual system 

including communication with simulator agents (Figure 2). This latest HMI allows users to increase the simulation 

by introducing a new virtual vehicle to the set or making a human operator appear on the vehicle’s traffic map. 

 

 

Figure 2 Architecture of the co-simulation platform 



 

 

The AIVs of the physical platform are small and capable of following the road (line tracking), stopping in front 

of an obstacle, geolocating on the circuit, communicating by radio, and transmitting information (position, speed, 

for examples) or receiving it from roadside equipment. They can also decide on an action to be taken based on all 

of the information received from the environment.  

The simulator’s AIVs are fuzzy autonomous software agents. Thus, they manage their movements while 

responding to the directives of the server (or of the simulator through the server). To do so, the fuzzy agents 

communicate with the server and/or with the other agents. 

 

 

Figure 3 Server HMI to monitor the evolution of AIVs states 

3.3. Presentation of the physical platform 

When designing the first scenarios involving autonomous vehicles, we were particularly interested in those that 

favor crossing traffic situations. Accounting for this characteristic led us naturally to diagram the circulation in four 

loops, as shown in Figure 3 (the server HMI) and Figure 4 (the physical platform). 

 

 

Figure 4 Physical platform: AIVs circulating on the “CircuitLacet4” circuit profile 

We thus defined a traffic platform as an entity consisting, on the one hand, of a circuit made up of four curving 

sections and four straight sections placed end-to-end to form what we designated “CircuitLacet4”; and, on the other 

hand, of a set of 12 RFID tags distributed along the circuit. Each quadrant had three markers, with each marker 

being represented by one RFID tag, so that any nearby vehicle could position itself on the circuit. 

Beyond basic functionality, such as line tracking and the detection of nearby obstacles, we incorporated three 

speed-increasing kinematics into the AIVs. We also developed communication functions (using wifi) between the 

vehicles and the server so that each vehicle could send its position back to the server relative to the RFID tags on 

the road circuit. 

If the “CircuitLacet4” circuit is well suited to simulate and test intensive crossings of AIVs and therefore to 

increase the risk of collisions between vehicles, it is obviously not suitable for addressing other problems related to 

autonomy of AIVs (collective localization, pathfinding, motion planning, AIV management, etc.). 

To experimente these differents situations, the literature provides a large quantity of test circuits, such as the 

circuit proposed by Bahnes et al. [13] that we used to test obstacle detection and avoidance [12], the one proposed 

by Tsolakis et al. [5] which we use to simulate collective obstacle avoidance strategies with the implementation of 



 

pathfinding algorithms [139], or again the typical Kiva warehouse system presented by [106] to illustrate the multi-

agent pathfinding (MAPF) problem and which we use for the current research. . Each of these circuits can easily be 

integrated into the simulation platform. 

3.4. Internal architecture of an AIV 

To conduct our expriments and test our scenarios with fleets of heterogeneous AIVs, we use different types of 

mobile robots. Thus, each of them is equipped with the same modules. These included controlling modules and 

modules for detecting RFID tags, indicating the vehicle’s status on an LCD display, detecting obstacles, regulating 

the power supply, transmitting data to the server, receiving instructions from the server regarding movements, 

operating the motors, and line monitoring. 

It is important that the electronic module for each of these functions be easily identifiable within the system, just 

as each function must be easily monitored, when conducting a dynamic search for sources of dysfunction. Thus, for 

each autonomous vehicle to fulfill the tasks assigned to it, we had to define the organization in a structured manner 

and as much as possible from the perspective of the software, the hardware, and the electronics. 

The result of this work was a complete internal map of the autonomous vehicles. For example, and considering 

the AIVs shown in Figure 4, the Figure 5 highlights the various modules as well as the connections among them. 

 

Figure 5 Internal architecture of the AIVs shown in Figure 4 

The PRAV module, which controls the detection of RFID tags and the display, is connected physically to both 

the RFID module and the AFFI module. The ground markings detection (DEMS) and wheel motor control (PMOT) 

modules are connected to the module dedicated to the line tracking control (PILS) through the BRAC module. We 

designed the BRAC module, located in the center of a star based on DEMS, PMOT, and PILS, to connect with the 

PILS module through simple superposition according to the form factor of an arduino board in a connection 

identified as Bus3. 

The TSAV module, which also controls an obstacle detection module (DOBS) through a direct four-wire 

connection, provides telecommunications with the remote server. Notably, the TSAV is implemented by means of a 

raspberry card, which requires a power supply that is both sufficient and stable. This situation justifies the presence 

of the power supply regulator module (RALI) that is connected through Bus6 to its input (USB-C ). In a multi-

connection crossroads, the TSAV is the most-surrounded module in the system, its neighbors being the server via 

the radio link, the DOBS module via the direct link, RALI via Bus6, the PRAV module via Bus5, and, lastly, PILS 

via Bus3. Figure 5 shows clearly the central position of the TSAV module from the perspectives of both its functions 

and its systemic connections. 



 

4. The AIV position estimation method 

4.1. Conceptual model of the platform 

The co-simulation system includes a simulator capable of reproducing virtually the AIVs evolving in their traffic 

environment, also called traffic zone. The conceptual vision of such a device naturally leads to highlight a set of 

entities, each representing a real object deemed sufficiently relevant for inclusion in the simulation model. The main 

entities that constitute the static model of the simulation device as a whole are the traffic area, the beacons, the AIV’s 

components involved in the estimation of their positions, the circuit that we named “CircuitLacet4” shown in Figure 

4. 

Figure 6 shows the class diagram of the static model of the entire simulation device. This class diagram must be 

read according to the UML language. In this paper section, we are mainly interested in the organization aspects of 

the circulation area, AIV and localization, corresponding to the part surrounded by dotted lines in Figure 6. Seen as 

the global environment in which the AIV operates, the TrafficZone model includes on the one hand a Circuit, and 

on the other hand it has a set of Beacon, distributed according to a matrix grid. The pitch of the grid thus obtained 

constitutes an adjustment parameter. The "has a set of..." relationship is represented with a diamond shape in Figure 

6.  

The model of fuzzy agent representing the Autonomous Industrial Vehicle (AIV) is the extension of an agent 

model, the latter being itself the heir of a Thread process. The inheritance relationship is represented by a hollow 

triangle in Figure 6. Note that the agent aspect brings to the AIV its autonomous character which allows it, for 

example, to arm an internal timer to trigger various actions on its own initiative, such as transmitting its timestamped 

position.   

Furthermore, the AIV model has a reference on a RadioInterface model, which allows it to have remote 

communication with the AIV server (not mentioned in Figure 6). The location of the autonomous industrial vehicle 

in the traffic area is gathered in the TimeStampedPosition model, which includes the data of the geographical 

position, extended by the corresponding date. The "has a refence on..." relationship is represented by a simple line 

in Figure 6. Thus, the TimeStampedPosition model will give the position of the AIV at a given time. In the traffic 

zone, the AIV concretely follows a circuit whose form can change according to the application context.  

The simulation system must be able to virtually reproduce the kinetics of an AIV on a circuit representation, 

without making strong assumptions about its shape or profile. For this reason we design the circuit as a series of 

sections, each of these reflecting the local topology. The section has a great importance in our modeling. It is 

important to note that during its movement, the AIV has a reference to the section of circuit on which it is currently 

located. It is therefore the current section of the AIV which will inform it about its next position. 

One of these sections is the initial section of the circuit, referenced by S0. It can be noted that the Circuit model 

can be extended to other more concrete models, such as CircuitLacet4, or CircuitIndus8 [11]. Similarly, the Section 

model can be extended to other more concrete Section models. The Section model has references to other models 

with which it is associated, such as: the previous Section (Previous) and the following Section (Next) on the circuit, 

the position of the first end (Ex1), and that of the second end (Ex2) of the Section. 

 



 

 
Figure 6 AIV position estimation point of view, dotted outline in red, from static model of the global simulation system. 

4.2. Mathematical position estimation model 

Our computational approach also makes it possible to obtain the next position of the AIV on the circuit given its 

current position. Schematically, we defined the current position of the AIV as Pn and the next position as Pn+1. Our 

approach was to define an abstract chunk model in which the updating of the current position would only be stated 

in principle, with no details provided about the concrete implementation. 

We then defined a concrete traffic section model by building on the aforementioned abstract model. The concrete 

section model served for the actual calculation of Pn+1. Thus, we formally defined three types of concrete sections 

with their associated calculation intelligences: a circular arc section, a horizontal section, and a vertical section. 

For a circular arc section with center C and radius R, and for a time step t, the update of the position of the AIV 

is given by the expression (9). For horizontal and vertical sections respectively, expressions (10) and (11) give the 

required update. 
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4.3. AIV position update algorithm 

The algorithm for updating the position of an AIV makes it possible to calculate the new position Pn+1 given 

its current position Pn. Before the update calculation, the Distance Traveled on the Current Section (DTCS) is 

known. Here, the term “current section” means the section of the circuit on which the AIV is “currently” located. 

The DTCS can be updated by adding the Distance To Travel (DTT), according to the expression DTCS = DTCS + 

DTT.  



 

At this step, it is important to know if the current movement of the AIV remains or not within the limits of the 

current Section. To do this, we calculate the Length of the Route Outside the Section (LROS) according to the 

expression LROS = DTCS - LCS, where LCS is the Length of the Current Section. The LROS value can be negative 

or positive. If it is negative, then the next position Pn+1 belongs to the current Section. Consequently, there is no 

Section change, and the AIV remains on the current Section on the circuit. It is then possible to calculate the new 

position Pn+1, knowing the current one Pn. 

It should be noted that the intelligence of the update of the position of the AIV is hosted in the model of the 

Section, which is normal, because this calculation depends on the topological profile of the considered Section. 

Thus, the current section being referenced by the variable CS, and the position update function, being called 

"computeNextAIVPosition", the calculation of the next position of the AIV will be carried out, in a programming 

language such as python, thanks to the instruction Pos = CS.computeNextAIVPosition(Pos, DTT), where the Pos 

variable designates the successive positions Pn and Pn+1, and the incoming parameter DTT gives the function the 

Distance To Travel. If, on the contrary, the value of LROS is positive, then the next position Pn+1 belongs to the 

following Section. Therefore the AIV must continue on the next Section on the circuit. The next Section becomes 

the current Section, the first end (Ex1) of the current Section becomes the current Position of the AIV, the DTCS is 

reset to zero, and the previously calculated LROS becomes the new Distance To Travel (DTT). The position update 

algorithm, coded by the “computeNextPosition” function of class AIV, is presented by the flowchart of Figure 7, in 

the case of a non-iterative modification of the variable DTT. 

 

 

Figure 7 Algorithm for updating the position of an AIV agent 

5. Algorithm improvement 

The collision avoidance algorithm proposed by Bahnes et al. [13] makes it possible to deal with the priority of 

different vehicles when approaching an intersection. However, it does not deal with the problems of detection, 

communication and avoidance of fixed or moving obstacles (e.g. human operators). 

The Bahnes’s algorithm proposed a cooperation strategy based on the exchange of messages to determine the 

priority to pass an intersection between AIVs. The solution requires the vehicle to know its own position, and to be 

able to communicate with the other vehicles. This collision avoidance algorithm allows AIV agents to communicate 

and cooperate using different types of messages.  

The communication between AIVs is done with three different kinds of messages: 

 Hello_msg: a type of message used by an AIV for indicating its presence and its position to other AIV; 

 Coop_msg: a type of message sent by and AIV before an intersection area to other AIVs, in the goal to 

determine priority; 

 Ack_msg: a type of message sent by AIVs to confirm receipt of a Coop_msg message from another AIV. 



 

We extended the Bahnes’s algorithm, in a previous work [12], to handle the presence of fixed or moving 

obstacles in Figure 8. In order to address the problem of obstacles present in warehouse aisles, we proposed two 

new types of messages for collaborative perception (added to the three messages already defined): 

1) the Obstacle_msg message sent by an AIV to other AIVs circulating in the warehouse to indicate the 

perception of an obstacle, 

2) the Alert_msg message sent by an AIV to other AIV circulating in the warehouse to indicate an unavoidable 

obstacle. 

Then, we simulate the algorithm staying within the framework of the three scenarios proposed by Bahnes et al. 

[13]. These simulations rely on a fuzzy agent-based model where the AIVs are fuzzy agentified (cf. §3.1). Indeed, 

agent-based simulation for AIVs [140] is the most common approach in the same way as simulations based on 

discrete events or robotics software [141].  

AIV agents have the ability to exchange messages and are equipped with radar. This allows them to detect 

vehicles in front of them. For instance, given an AIV agent �̃�𝑖, if another AIV agent �̃�𝑗 in front of it is stopped or 

travelling at a slower speed, the AIV agent �̃�𝑖 can detect it with its radar and stop accordingly to avoid hitting it, as 

shown in Figure 9. 

We assume that individual autonomy facilitates the deployment and operation of the fleet, however sharing some 

information would increase the responsiveness of each robot. Thus, increasing the collective autonomy of the AIV 

agents would strengthen the decision making, and the individual autonomy of each AIV agent. 

 

 

Figure 8 Improvement of Bahnes’s algorithm to deal with the correlated problem of collision and obstacle 

6. Illustration from simulations 

The simulation platform presented above was designed generically to integrate different types of circulation 

plan. The circulation plan chosen and presented in Figure 9 allows us to launch scenarios that we consider as a 

benchmark plan to compare results. This specific circuit includes several intersections, where vehicles can arrive 

from different sides like in a warehouse (four intersections on a short circuit, two types of scenarios and the 

possibility of generating obstacle randomly on the circuit are shown in Figure 9 and Figure 10). Thus, this kind of 

circulation plans provides the different characteristics of an industrial environment and allows us to realize simulated 

experimental tests in line with realistic scenarios of intersection situations.  

Let us consider the scenario 1 in which four AIV agents circulate continuously, independently (while exchanging 

messages to cross intersections) and at randomly changing speeds (see Figure 10.a). To make the illustration more 

visual, the AIV agents each have their own colour (orange, blue, green and red). When approaching the intersection, 

the green and red AIVs send a Coop_msg message to the other AIVs. After receiving a request, an AIV send an 



 

ACK_msg message to show its agreement. A priority list of intersections known to the AIVs is then updated after all 

AIVs have agreed. Thus, an AIV that has received agreement from everyone and has received its agreements first is 

at the top of the priority list and can therefore afford to cross (see Figure 10.b). 

The simulations of scenario 1 on the circuit “CircuitLacet4” with four AIVs circulating at different speeds made 

it possible to verify the absence of collisions when using the extended Bahnes algorithm. We were able to measure 

the cost of implementing this algorithm on the AIVs, with the objective of maximizing the number of complete laps 

performed by each AIV (Table 2):  

 31% less of complete laps for the AIV that circulates the fastest, which is the result of the many slowdowns 

at very frequent intersections – nevertheless, this is still superior to an AIV at average speed and in nominal 

conditions (without other AIV on the circuit, or obstacles); 

 15% less of complete laps for an average speed, which becomes acceptable for the implementation of anti-

collision between AIVs – the cost in number of complete laps performed is less and the energy expenditure is much 

lower since the speed variations (speed reductions then accelerations to cross the intersections) decrease 

significantly compared to the AIV moving at a higher speed;  

 13% less of complete laps for a lower speed, which represents a small gain compared to the average speed 

and which means that it is not necessary that the AIVs circulate too slowly. 

Table 2 

Scenario 1: anti-collision algorithm simulation results 

 
 

Let us now consider scenario 2 which allows to randomly generate obstacles on the circuit (spatial and temporal 

generation). The radar of an AIV agent can also perceive obstacles in the aisles ahead that constrain its path. On 

perceiving them, it cooperates to warn other AIVs by sending an Obstacle_msg, and then avoids the fixed obstacle 

by going around it, if possible, as in the situation (see Figure 9.a and Figure 9.b). 

The simulations of scenario 2 are carried out using the same specifications/constraints as scenario 1, but this 

time adding the presence of obstacles on the circuit. 

Table 3 provides the results of these simulations, in number of complete laps performed by the four AIVs, 

according to varying numbers and sizes of obstacles. Given the circuit chosen for these tests, a number of obstacles 

greater than ten does not seem to make sense. On the other hand, the sizes of the obstacles are classified from 1 to 

4 in ascending order of their encumbrance on the circuit. 

Table 3 shows that for the same number of obstacles, the impact on the number of turns made by the AIVs will 

depend on the size of these obstacles. Thus, considering three obstacles, the AIV1 will do 23 laps if the obstacles 

are small or medium (sizes = 1, 2, and 3), while it will only do 19 laps if they are large (sizes = 4, 3 and 4). The 

incidence is much lower on the two AIVs having an average speed, and not remarkable for the AIV4 moving at low 

speed. 

If we vary the number of obstacles with sizes of similar values (here four, five then ten obstacles), the incidence 

only becomes slightly significant for ten obstacles. The probability of having ten obstacles (even a group of humans) 

on this small circuit at the same time being very low, we can consider that this is a very good result. 

Table 4 provides the values of the cost of using this algorithm extended to obstacle avoidance by AIVs (here for 

four obstacles of sizes = 1, 2, 3, and 4). It appears that only the AIV1 which circulates at the highest speed is 

impacted: the cost goes from 31% with the anti-collision algorithm alone to 44% with the extension for obstacle 

avoidance. For the other three AIVs, this extension of the algorithm to obstacle avoidance has no impact. 

Table 3 and 4 

Scenario 2: obstacles avoidance algorithm simulation results    Scenario 2: anti-collision and obstacles avoidance algorithm cost 

     
 

AIV1 5 39 27 31%

AIV2 4 13 11 15%

AIV3 4 13 11 15%

AIV4 3 8 7 13%

AIV Velocity
nb turns / 15mn

nominal conditions

nb turns / 15mn

anti-collision algo

Anti-collision 

algorithm cost

AIV1 5 23 19 22 22 18

AIV2 4 11 10 11 11 10

AIV3 4 11 10 11 11 10

AIV4 3 7 7 7 7 7

AIV Velocity
3 obstacles

sizes [1,2,3]

3 obstacles

sizes [4,3,4]

4 obstacles

sizes [1,2,3,4]

5 obstacles

sizes [1,2,3, 

4,1]

10 obstacles

sizes [1,2,3,4,

1,2,2,4,1,3]
AIV1 5 39 22 44%

AIV2 4 13 11 15%

AIV3 4 13 11 15%

AIV4 3 8 7 13%

AIV Velocity
nb turns / 15mn

nominal conditions

nb turns / 15mn

anti-collision-

obstacle algo

Anti-collision-

obstacle 

algorithm cost



 

We verify in these visual scenarios that the obstacles and other AIV agents are perceived by each AIV agent, and 

consequently, they will be able to avoid collisions. Therefore, the simulation validates the extended Bahnes’s 

algorithm with collision avoidance and fixed or dynamic obstacle detection processing.  

 

 

Figure 9 Simulation of a radar use: a) at the top of the picture: a green AIV perceives a fixed obstacle in front of him; while waiting for the 

green AIV to avoid the obstacle, the radar of the blue AIV allows him to stop and keep its distance to avoid colliding, b) the green AIV avoided 

the obstacle, and the blue AIV perceives in turn the obstacle 

 

 
 

Figure 10 Simulation of the Bahnes algorithm: a) on the right top side of the picture two green and red AIVs arrive at an intersection, b) the 
green AIV passed the intersection after communicating with other AIVs, and the red AIV waits to cross the intersection 

 



 

Beyond the simulation context, if we wish to cross the threshold of experimentation based on actual and 

cooperative mobile robots, we must take an interest in communication standards, starting with those presented in 

our state of the art at the “Communication among vehicles” section. It is then a question of asking whether it is 

possible to adopt the same standards in the industry than the one developped in the C-ITS community for road 

vehicles (or even adapt the standards if it is more relevant). 

In order for each vehicle in a fleet of vehicles to cooperate and provide relevant information to the other vehicles 

in the fleet, it is necessary that it can locate itself accurately. Using this condition as a springboard, we started by 

working on this aspect and have proposed a method in this paper. We will therefore develop the problem of 

standardized messages in the rest of this section. 

The standardized cooperative messages defined by ETSI are of several types; we have selected three of them: 

1) CAM (Cooperative Awareness Message) messages which broadcast the position of the transmitting vehicle and 

which thus allow other vehicles to locate themselves in real time in relation to it; 2) CPM (Cooperative Perception 

Message) messages which broadcast the relevant objects perceived by the transmitting vehicle and which thus make 

it possible to inform vehicles in the same area of the presence of objects such as obstacles, pedestrians or other 

vehicles; and 3) DENM (Decentralized Environmental Notification Message) messages which allow the 

transmitting vehicle to broadcast notification messages when detecting/perceiving special events such as vehicle 

collisions or vehicle breakdowns. 

In addition, the ETSI ITS WG1 is curently working on the definition of a ”Maneuver Coordination Service” 

(MCS) and its associated Maneuver Coordination Messages (MCM) [66]. The outcome of this work item is planned 

for end of 2023. We expect MCM could be used or enhanced to schedule the access to crossroads. 

It is then possible to transform the two algorithms presented in this article (the one of Bahnes and its augmented 

version) by replacing the messages in the following way: 

 the Coop_msg messages sent by an AIV at the entrance of an intersection zone to determine its priority have 

no equivalent yet in the ITS standards, but will hopefulle be replaced by future MCM or an extension of them; 

 in the same logic, the ACK_msg messages sent by an AIV to confirm the reception of a Coop_msg message 

will be replaced by the future MCM; 

 the Hello_msg messages sent by an AIV to indicate its presence and position are replaced by CAM messages; 

 the Obstacle_msg messages sent by an AIV to indicate the presence of a perceived obstacle are replaced by 

CPM messages; 

 the Alert_msg messages sent by an AIV to indicate an unavoidable obstacle are replaced by a DENM message. 

To illustrate the use of standardized ITS messages in our industrial context, we will consider the situation 

described below (see Figure 11). 

 

 

Figure 11 Situation of intersection crossing by three AIVs 

The following figure (see Figure 12) specifies the type and the order of the standardized messages sent by the 

AIV1 which wants to cross the intersection as presented in Figure 11. Following the perception of the Tagi 

announcing the intersection, AIV1 must send a MCM message that will be broadcast in the intersection area. 

Depending on the MCM messages received in return (from AIV2 and AIV3, for instance), AIV1 may decide to cross 

the intersection, or to wait until the intersection is cleared. While advancing in the intersection, AIV1 will perceive 

the Tagj indicating to it that the intersection is crossed. At this time, AIV1 will send a MCM message to signal any 

AIVs on standby that it is leaving the intersection area (AIV2, for instance). 

 



 

 

Figure 12 Cooperative messages used for intersection crossing. (note: In a purely distributed scenario, infrastructure is not required) 

7. Conclusions and perspectives 

There has been a great deal of research on autonomous vehicles, but relatively little of it has concerned industrial 

vehicles (or mobile robots), the focus instead remaining on road vehicles. Obvious similarities exist between these 

two types of autonomous vehicles, starting with the need to simulate the vehicles and their traffic contexts before 

developing and deploying them in real environments.  

In the industrial field, simulation serves to account for the constraints and requirements formulated by the 

manufacturers and future users of autonomous vehicles, before their secure integration in situ. Design a safe 

workplace, shared by human and robot, which also increase their mutual interactions, requires simulating and testing 

anti-collision systems before they are developed.  

The development of simulation platforms is, therefore, an important step in improving the autonomy of AIVs. 

The platforms identified in the literature are either exclusively virtual or physical oriented. However, as our 

approach relies on co-simulation experiments combining physical and/or virtual situations of AIV circulation, we 

decided to develop an agent-based co-simulation platform. On both the physical and virtual levels, it is essential to 

determine the correct location of the vehicles. Therefore, we proposed an approach for estimating the position of 

AIVs according to the principle of matrix beaconing that we then implemented in our simulation framework. 

This platform allows us to consider heterogeneous fleets managed by different actors but sharing a common part 

of the infrastructure, such as in an industrial area for example. Moreover, the Industry 4.0 context implies that many 

actors cross paths in different areas of a warehouse or a factory: vehicles, operators, obstacles (objects that fall or 

are left in aisles). This heterogeneity of mobile robots and the multiplication of interactions between actors and 

mobile robots generate a complexity that makes the use of a simulation platform even more essential. 

We extended a cooperative algorithm based on a message communication protocol that allows the AIVS to 

prioritize passage through an intersection in order to have the possibility of handling the detection of these fixed 

and mobile obstacles. We validated the extended algorithm by a simulation approach; then, in a perspective of real 

experimentation with heterogeneous mobile robots, we proposed an adaptation of this new algorithm using the 

standard messages defined by ETSI. 

In the future, we want to focus not only on the cooperation of vehicle perception information but also on the 

participation in common tasks. We will also work on simulating other levels of autonomy through collective 

strategies - cooperation between AIVs but also cooperation integrating the infrastructure and the AIV environment. 

Cooperation with sensors in the infrastructure can also help to announce information, such as the presence of 

pedestrians, and thus reduce the cost of AGVs by limiting the number of sensors they must carry.  

This cooperation of the infrastructure would help the safety of humans in a shared work environment with 

autonomous and intelligent mobile robots, whether for simple coexistence or for human-robot co-working in the 

perspective of industry 5.0 [142], should become a more important concern in our work. It will be a question of 

progressively considering this problem more like risk management (pre-collision, post-collision and risk prevention) 

than the unique development of anti-collision systems. We also plan to continue our research work according to our 

parallel working methodology – simulations and real experiments with intelligent mobile robots – to validate our 

future collective strategies. 
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