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in the Arabidopsis root microbiome
Victor Mataigne1,2, Nathan Vannier2, Philippe Vandenkoornhuyse1* and Stéphane Hacquard2* 

Abstract 

Background: From a theoretical ecology point of view, microbiomes are far more complex than expected. Besides 
competition and competitive exclusion, cooperative microbe-microbe interactions have to be carefully considered. 
Metabolic dependencies among microbes likely explain co-existence in microbiota.

Methodology: In this in silico study, we explored genome-scale metabolic models (GEMs) of 193 bacteria isolated 
from Arabidopsis thaliana roots. We analyzed their predicted producible metabolites under simulated nutritional 
constraints including “root exudate-mimicking growth media” and assessed the potential of putative metabolic 
exchanges of by- and end-products to avoid those constraints.

Results: We found that the genome-encoded metabolic potential is quantitatively and qualitatively clustered by 
phylogeny, highlighting metabolic differentiation between taxonomic groups. Random, synthetic combinations of 
increasing numbers of strains (SynComs) indicated that the number of producible compounds by GEMs increased 
with average phylogenetic distance, but that most SynComs were centered around an optimal phylogenetic distance. 
Moreover, relatively small SynComs could reflect the capacity of the whole community due to metabolic redundancy. 
Inspection of 30 specific end-product metabolites (i.e., target metabolites: amino acids, vitamins, phytohormones) 
indicated that the majority of the strains had the genetic potential to produce almost all the targeted compounds. 
Their production was predicted (1) to depend on external nutritional constraints and (2) to be facilitated by nutritional 
constraints mimicking root exudates, suggesting nutrient availability and root exudates play a key role in determining 
the number of producible metabolites. An answer set programming solver enabled the identification of numerous 
combinations of strains predicted to depend on each other to produce these targeted compounds under severe 
nutritional constraints thus indicating a putative sub-community level of functional redundancy.

Conclusions: This study predicts metabolic restrictions caused by available nutrients in the environment. By exten-
sion, it highlights the importance of the environment for niche potential, realization, partitioning, and overlap. Our 
results also suggest that metabolic dependencies and cooperation among root microbiota members compensate for 
environmental constraints and help maintain co-existence in complex microbial communities.

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
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mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Microorganisms are known to colonize macroorgan-
isms by establishing a dense network of interactions and 
contributing to essential functions that maintain their 
host homeostasis [1]. These functions are varied, rang-
ing from protection against pathogens to nutrient uptake, 
and resistance to stresses such as heat or drought [2, 3]. 
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Together with other factors such as temperature, pH, 
oxygen, nutrients [4], or priority effects [5], the host itself 
is a niche that influences the composition of its micro-
biota [6, 7]. In plants, soil can be considered as a reser-
voir of microorganisms from which microorganisms are 
recruited to form the root microbiota [8, 9] and where 
root exudates play an active role [10, 11]. Last, microbe-
microbe interactions are essential in shaping the struc-
ture and dynamics of microbiota [12–14], resulting in a 
dense network of interactions [15].

Understanding the diverse interactions between 
microbes is a critical step in achieving a holistic, com-
munity-level understanding of microbiota functioning. 
These microbe-microbe interactions exist on a spectrum 
from competition to cooperation [16], depending on time, 
space, the presence of other species, and energetic cost 
(etc.) [12]. Two main competing theories explain micro-
bial assemblages. The niche differentiation theory states 
that phylogenetically similar species are more likely to 
compete due to their shared functional traits and over-
lapping resources, leading to less probable co-existence 
[17]. The habitat filtering theory suggests that dominant 
species exhibit similar functional traits because their 
presence is determined by environmental parameters 
[18]. The relative importance of competition and coop-
eration remains unclear [16, 19]. Different approaches 
have produced conflicting results: several computational 
approaches predict cross-feeding possibilities whereas 
several in vitro experiments rather pointed to competition 
[16]. Nevertheless, metabolic interactions and particularly 
metabolic dependencies are reported to play a major role 
in maintaining community diversity and stability and in 
explaining microbial co-existence [15, 20–24]. Extracel-
lular metabolites can thus play a major role in microbial 
community assembly [25], and metabolic dependencies 
among strains may explain why some microbes cannot be 
cultured in standard laboratory conditions [26].

Microbial Systems Ecology is now regularly used to 
model complex systems such as ecological processes [27–
31]. The acquisition and analysis of -omics data, coupled 
with modeling approaches, make it possible to computa-
tionally predict an organism’s resource use, biosynthetic 
capabilities, deficiencies, and growth in different con-
ditions, notably available nutrients [26, 28], hereafter 
referred to as “nutritional constraints” (Table  1). These 
models rely on the reconstruction of metabolic networks, 
genome-scale metabolic models (GEMs) from annotated 
genomes [31, 32]. Thus, making it possible to predict fun-
damental niche overlaps and competition between mem-
bers of the same microbial community [33]. Studying the 
phylogenetic structure of microbial communities also 
enables the detection of correlations between the phylo-
genetic signal and metabolism [34–37].

We investigated in silico how phylogeny shapes GEMs 
at the scale of both individual strains (1) and small ran-
dom combinations of strains (SynComs) (2), tested the 
strength of the effect of the constraint applied by avail-
able nutrients (including root exudates) on GEMs (3) 
and inspected  whether metabolic cooperation among 
strains can alleviate these nutritional constraints (4). 
We tested four hypotheses: (i) unconstrained metabo-
lism (see definition in Table  1) is highly clustered by 
phylogeny, meaning that predicted producible metab-
olites are differentiated or overlap between strains 
according to their taxonomy (H1); (ii) combinations 
of GEMs have more producible metabolites than sin-
gle GEMs depending on the phylogenetic similarity 
between the corresponding bacteria (H2); (iii) available 
nutrients may have an impact on the metabolism of 
bacteria, leading to a reduction of producible metabo-
lites from unconstrained to constrained metabolism 
(H3); and (iv) metabolic cooperation is common and 
likely compensates for nutritional constraints by allow-
ing the production of specific key compounds (H4) 
under the strong hypothesis that every compound pro-
duced by a bacterium can be shared with others. This 
hypothesis is at least partially supported by several 
studies which analyzed or predicted bacteria and plant 
secretomes [38–40] . To test these hypotheses, we ana-
lyzed a collection of genomes of bacterial strains iso-
lated from the roots of Arabidopsis thaliana [41]  and 
used systems biology approaches to predict genome 
functioning in silico. The metabolism of each bacterium 
was predicted with GEMs reconstructed using genome 
annotation.

Materials and methods
Table  1 lists the specific vocabulary and definitions 
used in this study. For a summary of genome sequence 
data processing and metrics acquisition, see Fig. 1.

Genome data
We used 193 annotated genomes [41] belonging to a 
culture collection of bacteria isolated from A. thaliana 
roots grown in the Cologne Agricultural Soil (Germany) 
and representing a taxonomically diverse core set of bac-
teria of the host plant [41]. Annotated genomes [41, 42] 
were downloaded from the At-SPHERE database (http:// 
www. at-sphere. com/). Both the taxonomy and phylogeny 
of the whole set of genomes [41] were used. The phylo-
genetic tree was inferred by maximum likelihood [41] 
from a multi-alignment of 31 bacterial AMPHORA [43] 
genes obtained with Clustal Omega v1.2.1 [44] passed 
into FastTree v2.1 [45]. The genomes were sequenced on 
a HiSeq2500 (Ilumina Inc, USA) and were considered as 
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high-quality drafts genomes (see Bai et al. [41]). Paired-
end reads were trimmed using Trimmomatic v0.33 [46]. 
Genomes were assembled using A5 [47] and SOAP-
denovo [48]. In all cases, the assembly with the smaller 
number of contigs was selected. Functional annotation 

was carried out using Prokka v1.11 [49] and the SEED 
subsystem, using the RAST server API [50]. Data assess-
ing the quality of assembly (N50, N90, total length, 
number of contigs, number of reads) are available as 
supplementary data no. 3 and no. 4 in Bai et  al. [41]. 

Table 1 Description of the metrics used. Here, the term “community” means either the whole community or a random subsample of 
strains (SynCom). The acronyms in bold in the table are used throughout the text

Metric Description

Nutritional constraint Available nutrients on which a GEM can rely on (i.e., the initial reactants of the whole network). 
Nutritional constraints are modeled with simulated growth media. In this paper, an “uncon-
strained” GEM represents its metabolic potential, i.e., all the metabolites it encodes and can 
theoretically produce.

Predicted Producible Metabolites (PPM) The list (number and composition) of all metabolites predicted to be producible by one or several 
GEMs simultaneously (also referred to as a meta-GEM), under a nutritional constraint or in the 
absence of a constraint. This metric is used to summarize the unconstrained and constrained 
(by available nutrients) metabolism inferred from genomes.

Core Predicted Producible Metabolites (CPPM) The part (number and composition) of a community PPM which is individually producible by each 
GEM individually in a set of GEMs.

Targeted Predicted Producible Metabolites (TPPM) A set of 30 metabolites on which part of this study is focused. Their ability to be produced by one 
or several GEMs is analyzed (number and composition), under a nutritional constraint or in the 
absence of a constraint.

Community added value The part of the PPM (number and composition) of several GEMs which is only producible by meta-
bolic interactions within a community (i.e., not producible by a single GEM).

Average phylogenetic distance The average of all pairwise phylogenetic distances between pairs of strains in a synthetic subsam-
ple of strains (SynCom). The whole community also has an average phylogenetic distance.

Fig. 1 Genome sequence data processing and metric acquisition. Our analysis relies on reconstructed metabolic networks, one per genome, for 
which PPM and TPPM production were computed, under several nutritional constraints. PPM can also be computed for communities of several 
cooperating GEMs: in that case, the part of the PPM and TPPM producible only by the community (“added value”) is also returned. Last, minimal 
combinations of GEMs able to produce as many TPPM as possible were computed
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Elsewhere, a graphical summary of this genomic infor-
mation is provided in Figure S1. We also checked the 
quality of the annotation of genomes with Busco v5 [51]. 
Overall, most of the core genes registered in the Busco 
database were identified in the genomes (i.e., in almost all 
the genomes, more than 95% of the searched Busco genes 
were predicted, Supplementary Figure S1C).

Reference database
The reference used to link genome annotation to metabo-
lism was the MetaCyc database, a collection of organism-
specific Pathway/Genome Databases (PGDBs). MetaCyc 
contains ~2 500 metabolic pathways from many organ-
isms [52]. Two criteria motivated the choice of this data-
base: first, it is manually curated; second, our tools, which 
are designed for the reconstruction of the metabolic net-
work (mpwt and AuReMe) [53, 54] are pre-configured to 
work with this curated database.

Reconstruction of the metabolic networks (GEMs)
Metabolic networks of each genome were simulated with 
genome-scale metabolic models (GEMs) reconstructed 
with an automated command-line version of Pathway-
Tools [55–57] using the mpwt program of the meta-
ge2metabo tool suite [52], then converted in padmet and 
sbml format with AuReMe and padmet-utils [54]. GEMs 
in sbml format were parsed with the Python lxml pack-
age when needed. All GEMs were drafts, used without 
gap-filling or manual curation. These steps are usually 
required to improve the quality of a GEM [58], but are 
likely to introduce false positives, particularly in the case 
of poorly known organisms, thereby masking potential 
metabolic dependencies. Consequently, we chose to rely 
on drafts of GEMs, i.e., we chose false negatives (due to 
flaws in genome annotation) over false positives.

Genomes and GEM metrics
In order to detect patterns between strains and metab-
olism, a set of metrics (the full definitions are listed in 
Table  1 above) were used and applied to a single GEM 
(i.e., single strains) and to random combinations (“Syn-
Coms”) comprising two to 20 GEMs. The Python API 
of Miscoto scopes [59] was used to compute all the pre-
dicted producible metabolites, (PPM) for a single GEM, 
SynComs, and the whole community under simulated 
nutritional constraints. AuReMe reports were parsed 
to record constraint-free PPM. Phylogenetic distances 
were computed based on the phylogenetic tree with 
the Python package ete3 [60]. Genome sizes were avail-
able in the annotation data. For each SynCom, the core 
predicted producible metabolites (CPPM) were also 

computed using sets in Python 3 and AuReMe and Mis-
coto scopes outputs (Fig. 1). The added value of the full 
community was also computed with Python sets.

Targeted predicted producible metabolites (TPPM)
We studied the production capacity of a single GEM 
and of the whole community (meta-GEM, where all 
GEMs can leak and exchange any compound) to pro-
duce TPPM. The production of TPPM by a GEM can 
be computed under various nutritional constraints with 
simulated growth media (see the dedicated section 
below). We focused on 30 TPPM in this study: 17 amino 
acids (serine, alanine, and glutamic acid were excluded 
because they were present in the artificial root exudates, 
which were part of the growth media), eight B vitamins 
(thiamine diphosphate, riboflavin, nicotinate, (R)-pan-
tothenate, pyridoxine, biotin, tetrahydro-folate, adeno-
sylcobalamin), and five phytohormones (auxin, salicylic 
acid, abscisic acid, ethylene, jasmonic acid). Amino acids 
were chosen for their fundamental, ubiquitous biologi-
cal importance. Vitamins were chosen according to their 
importance in metabolism. Phyto-hormones were chosen 
with respect to the root-associated trait of the microbial 
community under study. In addition, according to the ref-
erence database, these metabolite biosynthesis pathways 
and the genes encoding them are relatively well-known, 
easily predictable, and are expected in the studied taxa, 
thus reducing the risk of misses in the genome assem-
bly, annotation errors, and false negatives in the recon-
structed metabolic networks. When under a nutritional 
constraint (see below), TPPM production was computed 
for each GEM with the Python API of Miscoto scopes 
[59]. In the absence of a nutritional constraint, TPPM 
production was assessed with their absence/presence in 
AuReMe reports.

Modeling nutritional constraints (growth media)
Nutritional constraints were established by simulating 
different growth media. We used two online resources 
to choose the growth media: MetaCyc (previously men-
tioned), which contains few growth media with their 
detailed list of nutrients, and the KOMODO database 
[61], which contains a huge number of growth media, 
together with their composition, and their MetaCyc IDs. 
We modeled nine growth media (five poorly nutritive 
with mainly mineral nutrients and four highly nutritive, 
with more carbon sources, Table 2), to which a common 
list of cofactors [62] was added. Each medium has an 
“artificial root exudate” enriched version (giving a total of 
22 media, Table 2), based on Baudoin et al. [63]. Growth 
media, except rich media, were chosen based on two 
conditions: (1) none of the TPPM should be included in a 
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medium’s nutrients and (2) the nutrients should not con-
tain any “mixture compounds,” such as tryptone or yeast 
extract, whose composition is not described in MetaCyc. 
However, rich media did not fully meet these conditions 
because they contain vitamins. Among the rich media, 
LB broth (Lennox) contains tryptone and yeast extract. 
All the growth media were used to investigate a range of 
nutritional constraints on PPM, but some were not used 
for the analysis of the production of TPPM with which 
they were incompatible (Table 2).

Putative GEM combinations for metabolic interactions
For each nutritional constraint (i.e., each medium), 
Miscoto mincom [59] (a version implemented into the 
metage2metabo [53] package) was used with the whole 
microbial community as input (GEMs in sbml format). 
This tool uses answer set programming, a declarative 
approach oriented toward combinatorial problem-solving 
[64, 65]. It rapidly identified all the simplest combinations 
(called “solutions”) of GEMs able to produce as many 
specified TPPM as possible under growth constraints. 
More complex solutions (with more GEMs) are ignored. 
TPPM were either all the aforementioned compounds, 
only amino acids, only vitamins, or only phytohormones, 
in accordance with the aforementioned condition “no 
TPPM in the growth media” (Table  2). Splitting TPPM 
was also important because results are strongly TPPM-
dependent: for example, GEMs with an essential, but 
rare reaction for the production of a given TPPM will be 
very frequently represented, potentially masking alterna-
tive possible combinations of other TPPM. The results of 
each run were stored in a json format.

Quasi-Poisson GLMs
The correlations between the number of PPM/CPPM 
and SynCom size, genome size, and phylogenetic 

distance were computed (in the absence of a nutritional 
constraint) on random SynComs. First, for each num-
ber of members (variable “SynCom size”) between 2 
and 20 (with a step of 1), 500 SynComs were built by 
randomly picking strains from the initial pool of 193 
strains, without replacement. First, independence 
between explanatory variables was assessed (Figure 
S2D). Then, two generalized linear models (GLMs) 
were built based on a quasi-Poisson distribution (to 
counter overdispersion of the response metrics, Figure 
S2, C1 to C4), modeling the response of the number of 
PPM and CPPM of SynComs according to average phy-
logenetic distance, average genome size, and SynCom 
size. A supplemental polynomial (degree 2) term of 
phylogenetic distance was added to model the curve of 
the response metrics:

where i is a SynCom, Y is the number of PPM or CPPM it 
contains, P its average phylogenetic distance, G its aver-
age genome size, and S its number of strains (i.e., GEMS). 
The maximum SynCom size to include in the model was 
12 strains. This size was chosen because of its position at 
the start of the plateau reached by all the metric values 
or variance (Figure S2, B1 to B4). This was also the size 
at which bigger Syncoms started to show no significant 
difference from one SynCom size to the next when tested 
with many bootstrapped subsamples (for each SynCom 
size: 500 iterations of 50 strains each, one-sided Wil-
coxon, Mann-Whitney tests, Figure S3). The model resid-
uals were slightly biased and non-normal, caused by the 
uneven spreads of values in different-sized SynComs (Fig-
ures S4 and S5). Since R2 are not automatically returned 
with the models we used, they were computed with the 
following formula: 1—residual deviance/null deviance 
(which are available in the models’ R summaries). The 

Y ∼ P(µi, θ)

Table 2 Summary of the growth media used for nutritional constraints. Since rich media always contain some TPPM, the set of growth 
media studied varies with the analysis: TPPM were either analyzed all at once, without vitamins, or only phytohormones, depending on 
the content of the medium concerned. Details on the composition of the media can be found on gitlab

Growth media Type Contains TPPM With mixture Analyzed TPPM

M63 Poor No No All

M9

Mineral medium

Hydrogen oxidizing

MBM

Basal Rich Vitamins Amino acids, 
phyto-hormonesphb pyruvate

MMJS

LB-lennox enriched Vitamins + amino acids Tryptone (amino acids) + yeast 
extract

Phyto-hormones
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added value of SynCom’s PPM was disregarded for this 
analysis, because it was computed with Miscoto, which 
works only under an applied growth constraint.

Other statistical analyses
Tests of the effect of taxonomy on metric distribution 
and of the growth media on the number of PPM were 
performed using non-parametric tests (Wilcoxon and 
Mann-Whitney rank-sum tests). Corresponding effect 
sizes were computed with Cliff ’s delta method. Principal 
Coordinate Analysis (PCoA) was performed on Jaccard 
distance matrices, with the pcoa and vegdist functions 
of the R packages ape and Vegan [66]. PERMANOVA 
was performed on the distance matrices with the Adonis 
function associated with a multivariate analog of Levene’s 
test for homogeneity of variances (PERMDISP2 proce-
dure), with the betadisper function of the same package. 
The growth media dendrogram was built by hierarchi-
cal clustering with the R base hclust function (with the 
default “complete” method), after computation of Bray-
Curtis distances (with the vegdist function) based on the 
composition of the corresponding whole community 
PPM (qualitatively, i.e., which compounds are producible 
under which nutritional constraint, by how many GEMs). 
Tests involving a taxonomic effect excluded Bacteroidetes 
and Firmicutes phyla because of their small sample sizes 
(4 and 7 strains, respectively). The significance threshold 
was set at 0.01.

Scripting
Data acquisition and links between tools inputs and out-
puts (Fig.  1) were organized using homemade Python 3 
scripts. All Miscoto outputs were stored in json format, 
and the relevant data they contained (PPM and TPPM, 
number of genomes producing a TPPM under a given 
nutritional constraint, etc.) were parsed and stored as csv 
tables. Figures and data analysis were performed with R 4 
with the ggplot2 package [67] and Python 3 with the mat-
plotlib and seaborn packages. Scripts and data are avail-
able at https:// gitlab. com/ matai vic/ artic le_ metab olic_ 
model ling_ thali ana_ micro biome.

Results
A link between PPM composition and phylogeny at strain 
level resolution
We first tested how phylogeny structured the distri-
butions of the different metrics under the hypothesis 

that metabolic functions derived from unconstrained 
GEMs’ differ among phylogeny groups (H1). Uncon-
strained GEMs corresponded to the situation where all 
the putative genes carried by a genome are considered 
as functioning (Table  1). Only Actinobacteria and Pro-
teobacteria distributions were statistically tested because 
the number of strains was insufficient for other phyla. 
Smaller genome sizes and fewer PPM were observed in 
Actinobacteria than in Proteobacteria (Fig. 2B, p=0.0038 
and p < 0.0001, with effect sizes of −0.27 and −0.48). 
The bigger the genome, the bigger the number of PPM 
and TPPM (Fig.  2C). Bacteroidetes in the culture col-
lection (n=4) displayed small genomes and small num-
bers of PPM, while the number of PPM and the size of 
the genomes of Firmicutes (n=7) were similar to those 
of the other phyla. Differentiation in PPM composition 
was also detected among phyla based on PERMANO-
VAs (p < 0.001, R2=0.213, p (permdisp) = 0.005) with 
well-separated groups (including Bacteroidetes and Fir-
micutes) observed on PCoA (Fig.  2D). When only con-
sidering the 30 selected TPPM, this effect remained 
significant (p<0.001, R2=0.175, p (permdisp) = 0.2325), 
but between-group differentiation was reduced (Fig. 2D, 
Figure S6D). The same patterns were observed at the 
class level (Figure S6). This suggests strong metabolic dif-
ferentiation between phyla at the whole GEM scale, but a 
more conserved metabolism at the TPPM scale.

SynCom PPM under unconstrained metabolism are more 
diverse than that of single strains and rapidly reach 
saturation
We extended the previous single-strain GEM approach 
to random SynComs to analyze the metabolic capaci-
ties (number of PPM and CPPM, without nutritional 
constraint) of merged GEMs (i.e., fully cooperative with 
all possible metabolic exchanges, H2). The correla-
tions of the number of PPM and CPPM with SynCom 
size (n=2 to 20 members on plots, n=2 to 12 in GLMs), 
mean genome size, and mean phylogenetic distance were 
explored. The three explanatory variables were signifi-
cantly correlated with both the number of PPM (R2=0.86, 
diagnostic plots in Figure S4) and CPPM (R2=0.82, diag-
nostic plots in Figure S5).

The size of the SynComs was positively correlated 
with their number of PPM (coefficient=0.36, p < 2e−16) 
and negatively correlated with their number of CPPM 
(coefficient=−0.65, p < 0.001), but this effect was more 

(See figure on next page.)
Fig. 2 Description of the 193 genomes collected from A. thaliana root microbiota A Phylogenetic tree (maximum likelihood from a multi-alignment 
of AMPHORA genes in Clustal Omega). B Boxplots displaying the quantitative effect of phyla on genome size and on the distribution of the number 
of PPM. C Dot plots of the number of PPM and TPPM as a function of genome size. D PCoA displaying the qualitative effect of phyla on metabolite 
production (i.e., which compounds are produced by which taxa). Across the panels, colors match genome phyla

https://gitlab.com/mataivic/article_metabolic_modelling_thaliana_microbiome
https://gitlab.com/mataivic/article_metabolic_modelling_thaliana_microbiome
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Fig. 2 (See legend on previous page.)
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pronounced in small SynComs. Notably, data from Syn-
Coms with many strains largely overlapped, plateau-
ing at about 2000 producible metabolites and 400 core 
metabolites. Increasing SynCom to 193 strains resulted 
in increasingly fewer variations in SynComs, until the 
full community was reached with a PPM of 2 383 and 
a CPPM of 263. Interestingly, increasing the size of the 
SynComs rapidly returned numbers of PPM and CPPM 

close to the whole microbial collection (Fig. 3) likely due 
to metabolic redundancy. Roughly, SynComs composed 
of more than ~12 GEMs displayed numbers of PPM 
and CPPM closer to the values of the whole 193-mem-
ber community than the values of the smallest SynComs 
(Fig. 3).

Phylogenetic distance was positively correlated with Syn-
Coms PPM (polynomial coefficients=1.32 and −1.83, p < 

Fig. 3 Correlations between explanatory metrics (mean phylogenetic distance (A, B) and mean genome size (C, D)) and response metrics: number 
of PPM (A, C) and CPPM (B, D). These correlations were used for the quasi-Poisson GLM models. In each panel, the black dot corresponds to the 
value for the whole community (193 genomes). The number of PPM increased rapidly with SynCom size, mean phylogenetic distance, and mean 
genome size, then started plateauing slowly towards the whole community value (see also Figure S7, notably panels B1 to B4). The number of 
CPPM was negatively correlated with SynCom size and mean phylogenetic distance, and positively correlated with mean genome size
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0.001) and negatively correlated SynComs CPPM (poly-
nomial coefficients=−4.37 and 1.2, p < 0.001, Fig. 3A, B). 
However, PPM reached a peak at a phylogenetic distance 
of ~1.3 for small SynComs, then decreased (Figs.  3A and 
4A). This decrease turned into a plateau when SynCom 
increased in size (Fig.  3A). CPPM among GEMs first 
decreased, then reached a plateau. This highlighted increas-
ingly diverse metabolism and increasingly less shared 
metabolism among strains. Most SynComs, particularly big 
SynComs, were concentrated around this phylogenetic dis-
tance rather than spread equally along all possible distances 
(Fig. 3 and S4, A1 to A4). This corresponds to the values 
of most combinations of Proteobacteria and Actinobacteria 
(Figure S7 A to B) and is explained by the fact that these 
two phyla were the most frequent in the dataset.

Genome sizes were positively correlated with both 
PPM (coefficient=0.23, p < 0.001) and CPPM (coef-
ficient=0.46, p < 0.001, Fig. 3C, D). Thus, genome sizes 
compensated for the negative effect of phylogenetic dis-
tance on metabolic redundancy. At a fixed phylogenetic 
distance, SynComs with bigger genomes displayed both 
higher metabolic diversity and a bigger core metabolism 
than SynComs with smaller genomes (Figure S7 C1&C2). 
SynComs were also aggregated around an optimal value 
linked to the corresponding optimal phylogenetic dis-
tance and the taxonomic composition of SynComs.

Our results validated that GEM combination from phy-
logenetically distant strains promotes metabolic diversity, 
restricts metabolic redundancy, and confers additional met-
abolic capabilities than single-strain GEMs. Beyond these 
anticipated results, our results also demonstrated that most 
meta-GEMs were aggregated around the same mean phylo-
genetic distance, that a few GEMs were sufficient to approx-
imate whole community metabolism, and that big genomes 
increased both metabolic diversity and redundancy

Number and composition of PPM and TPPM are modulated 
by nutritional constraints
In this analysis, we predicted shifts in GEMs metabo-
lism depending on whether nutritional constraints were 
applied or not to the model (exemplified by the composi-
tion of the simulated growth media, Table 1, H3). “Poor 
media” refers to severe nutritonal constraints (i.e., with 
mainly mineral nutrients), while “rich media” refers to 
more permissive constraints (i.e., with more carbon 
sources, see the “Methods” section).

At the scale of a single GEM, PPM under nutritional 
constraints were dramatically reduced compared to 
PPM of unconstrained GEMs (all p < 0.001 with Holm 
correction, Fig.  4A, right plot). PPM under poor media 
were significantly fewer in number than PPM under rich 
media (p < 0.001, Cliff ’s delta effect size = −0.8978 with-
out ARE and p < 0.001, Cliff ’s delta effect size = −0.5102 
with ARE, Fig.  4A). Supplementing media with com-
pounds that artificially mimicked the exudate composi-
tion of plant roots (ARE) was predicted to significantly 
increase the number of PPM compared to non-supple-
mented media (green vs. orange in Fig. 4A, Table 3, p < 
0.001). Notably, the composition of PPM was more simi-
lar (i.e., similar sets of producible compounds) across 
media containing ARE, irrespective of whether the origi-
nal media were poor or rich (Fig. 4B). Hence, the addition 
of ARE is predicted to unlock the production of the same 
metabolites across media. Most of the GEMs have the 
potential to produce most of the TPPM in the absence 
of nutritional constraints (27 out of 30 being producible 
by a single GEM in the full dataset) but cannot complete 
the entire pathways under most of the nutritional con-
straints, Fig. 4D). The supplementation of growth media 
with ARE was predicted to increase the number of TPPM 
producible by single GEM (Fig. 4D).

At the whole community scale (i.e., all 193 genomes), the 
added value provided by a metabolic exchange between 
all GEMs increased the number of community PPM to 
similar values regardless of the nutritional constraints 
(Fig. 4C). Depending on the type of medium (poor/rich) 
and the absence/presence of ARE, the community-added 
value increased the number of PPM from 22 to 140% 
(Fig. 4C) of the number of PPM of the community with-
out metabolic exchange. Thus, GEM functioning is lim-
ited by available nutrients that determine which reactions 
can be activated, but metabolic exchanges between all 
GEMs of a community can largely compensate for growth 
constraints, whether they are severe or not.

The simplest SynComs are predicted to produce TPPM 
through metabolic exchanges
After exploring the capacity of the whole community to 
compensate for nutritional constraints, we explored how 
smaller assemblages can avoid the same constraints. We 
used “Miscoto mincom” [59], an answer set programming 

(See figure on next page.)
Fig. 4 Effect of nutritional constraints on PPM and TPPM. A Boxplots of the number of PPM per GEM according to the growth medium, compared 
to no constraints. B Hierarchical clustering (“complete” method, Bray-Curtis distances) of growth media according to the composition of the PPM 
of the whole community (without community-added value). C Number of PPM of the complete community according to the growth media, with 
the value added by metabolic cross-feeding. D TPPM production per growth medium. Decimal numbers indicate the fraction of GEMs capable of 
producing the compound. Gray cells correspond to growth media already containing the TPPM, which are thus irrelevant. On all axes of the figures, 
poor media are labeled in black, rich media in red, ARE-enriched media in bold, and standard media in plain text
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solver designed to automatically find (under a simulated 
nutritional constraint) all the simplest (i.e., smallest) 
combinations of GEMs that complete the metabolic path-
ways to produce the 30 specified TPPM (H4). Combina-
tions of GEMs are considered as a meta-GEM when an 
incomplete pathway in a single GEM can be completed 
by another, thanks to exchange of intermediate products.

There were many possible—always small—combina-
tions of two or three GEMs sufficient to produce some of 
the the TPPM. The sets of combinations were also largely 
identical from one medium to another (Fig.  5A), sug-
gesting an important effect of identical nutrients among 
growth media and shared reactions among GEMs. The 
total number of GEMs involved in combinations varied 
depending on the TPPM included in the analysis. For 
example, 67 GEMs were returned when all TPPM were 
considered in poor media (11 in rich media), while the 
whole set of 193 GEMs (for a few media) was returned 
when only amino acids or vitamins were considered 
(Fig. 5A).

Globally, rich media (amino-acid and phytohormone 
TPPM) produced very few combinations, meaning they 
allow more GEMs to produce TPPM without predict-
able mandatory metabolic dependencies or cooperation 
(Fig. 5A). For example, there were less than 10 minimal 
combinations of two different GEMs predicted to pro-
duce 12 amino acids under rich media, while simula-
tions using poor media returned dozens to thousands of 

combinations of two or three GEMs. The addition of ARE 
also reduced the number of simplest combinations (for 
example from 2288 to 82 for rich media with vitamins as 
TPPM), except for the situation “all TPPM + poor media” 
(Fig. 5A, first row). In such a situation, the ARE-enriched 
poor media contained more combinations (724 for ARE-
enriched poor media, 448 for standard poor media, for 
14 producible TPPM).

The combinations of GEMs increased the number of 
TPPM compared to single-GEM capacities under several 
growth constraints (Fig. 5B). In poor media, six to seven 
supplemental amino acids were predicted to be produc-
ible by thousands of combinations of two or three GEMs 
compared to individual GEMs (often six amino acids). 
Interestingly, for rich media, each amino acid was pre-
dicted to be producible by at least one GEM, but no GEM 
could produce by itself all the 17 targeted amino acids, 
resulting in a few combinations of strains predicted to 
exchange end products instead of intermediate metabo-
lites (Fig. 5B). Among vitamins and phytohormones, only 
nicotinic acid (vitamin B3) and salicylic acid pathways 
were predicted as complete, with metabolic exchanges 
required between two GEMs under severe nutritional 
constraints.

The frequency of GEMs in the solutions was highly var-
ied with a few GEMs occurring in several hundred solu-
tions (Fig. 6A). The other GEMs were much less frequent 
with only a few occurrences. Thus, for all TPPM, most 
solutions can be aggregated with a set of seven GEMs 
(Supplementary Table S1, seven first rows), belonging 
to strains of the phyla Proteobacteria and, surprisingly, 
Firmicutes (despite being very underrepresented in the 
dataset). When TPPM are split according to the category, 
the majority of solutions can be aggregated with a set of 
15 GEMs (Supplementary Table S1). We found no clear 
correlations between the frequency of a GEM in the solu-
tions and the size of its corresponding genome (Fig. 6B). 
In fact, the high frequency of these particular GEMs was 
driven by their strong contribution to the production of 
a few particular TPPM (Fig. 6A), notably with the case of 
salicylic acid (Figure S8). In MetaCyc, the bacterial salic 
ylic acid pathw ay is composed of two reactions depend-
ing on the availability of chorismate (which has a longer 
pathway), but other reactions that take place outside 

Table 3 Wilcoxon rank-sum tests on the effect of ARE on the 
number of PPM

Media (with and without ARE 
comparison)

Mann-Whitney p 
value

Effect size 
(Cliffs’ 
delta)

M63 p < 0.001* −0.9786

M9 p < 0.001* −0.9787

Mineral medium p < 0.001* −0.9788

Hydrogen oxidizing p < 0.001* −0.9787

MBM p < 0.001* −0.9788

Basal p < 0.001* −0.9723

phb_pyruvate p < 0.001* −0.785

MMJS p < 0.001* −0.7081

LB lennox enriched p < 0.001* −0.523

Fig. 5 Minimal combinations of GEMs needed to produce TPPM. A Summary of the number of combinations of GEMs able to produce TPPM, for 
all TPPM together, amino acids only, vitamins only, and phytohormones only. B Details of producible and unproducible TPPM with single GEM 
capacities (red) and added values of combinations with metabolic completions (green). TPPM and nutritional constraints are ordered in the same 
way as in panel A. Results are given for each nutritional constraint (black: poor, red: rich), without (plain) or with (bold) ARE. The list of nutritional 
constraints varies depending on the TPPM considered, in accordance with the no-TPPM-in-media condition (i.e., growth media containing TPPM 
in their composition were excluded when necessary). On all axes in all the figures, poor media are labeled in black, rich media in red, ARE-enriched 
media in bold, and standard media in plain text

(See figure on next page.)

https://metacyc.org/META/NEW-IMAGE?type=PATHWAY&object=PWY-6406
https://metacyc.org/META/NEW-IMAGE?type=PATHWAY&object=PWY-6406
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this pathway are also recorded in the database. The first 
reaction is encoded into five GEMs only, which are part 
of the aforementioned seven main GEMs. The second 
reaction is encoded into 47 GEMs. Most of the combina-
tions for the completion of this pathway of salicylic acid 
are then built with these GEMs. We noted that 47 GEMs 
differ from the total of 74 GEMs returned by the solver, 
which highlights the production of salicylic acid by other 
means than the pathways described above (as described 
in Lefevere et  al. [68] in plants and Mishra and Baek 
[69] in plants and bacteria). One GEM was remarkable 
in that it was the only one predicted to encode the com-
plete salicylic acid pathway: the Pseudomonas identified 
as “Root569” and could putatively produce salicylic acid 
when growth conditions are optimal.

Hence, the answer set programming solver predicts 
that many small combinations of GEMs could compen-
sate for diverse nutritional constraints by exchanging 
metabolites, unlocking the production of several TPPM 
inaccessible by a single GEM.

Discussion
Fundamental niche signature in GEMs
The analysis of the PPM of the 193 GEMs of the A. 
thaliana culture collection demonstrated that phylo-
genetically related bacterial species share more similar 
metabolism than distant species. Our first hypothesis 
(H1) was thus validated in line with the literature [70]. 
Previous research attempted to predict ecological traits 
from genomic and metabolic information [33, 71], high-
lighting differentiation between taxonomic groups and 
hierarchical conservation within groups [72]. However, 
finding fundamental niche signatures in GEMs remains 
a challenging task [28], and complementary trait-based 
approaches were used to determine ecological attributes 
or correlate overlapping niches with phylogeny [71, 73].

Phylogenetic distance, similarity and complementarity, 
antagonism, and cooperation in SynComs
SynComs allowed more diverse metabolism when they 
contain phylogenetically distant strains, our second 
hypothesis (H2) was thus validated, along with many 
unpredicted results (discussed below). Several studies 
used metrics similar to ours and obtained comparable 
results [17, 74–76], highlighting a correlation between 
metabolic similarity/dissimilarity and phylogenetic 

distance. Phylogenetically distant bacteria can be pre-
dicted to have less metabolic resource overlap and a 
higher potential to cooperate [76] , while phylogeneti-
cally closer taxa are expected to compete [17] . Based on 
phylogenetic similarity and dissimilarity, other studies 
attempted to go further and interpret whether niche 
differentiation or habitat filtering was at play. Results 
are conflicting and research is currently far from a con-
sensus. For example, some authors found that species in 
the gut microbiome tend to co-occur more frequently 
with their competitors, thus highlighting habitat fil-
tering [18] , while others showed that increased phy-
logenetic relatedness was correlated with competitive 
exclusion among bacterivorous protist species [77] , 
thus favoring niche differentiation.

Rather than favoring niche differentiation or habitat fil-
tering, SynComs unconstrained metabolism question the 
aggregation of most SynComs around a putative optimal 
phylogenetic distance, along with a metabolic diversity 
peak for smaller SynComs (Fig.  3A). The peak is prob-
ably due to the taxonomic composition of SynComs with 
a high phylogenetic distance. These SynComs all incor-
porate a Firmicutes or a Bacteroidetes (Figure S7 A&B), 
which both display lower metabolic capacities than the 
other phyla, causing an inevitable decrease in PPM com-
pared to other combinations. However, the aggregation 
of SynComs around the same phylogenetic distance is 
more interesting. Closely related bacteria have similar 
needs and hence face strong competition for resources 
[15] despite many cross-feeding opportunities. Con-
versely, very distant bacteria avoid competition, i.e., are 
adapted to colonize different niches, and their needs only 
overlap to a limited extent. The observed optimal phy-
logenetic distance in our results could be driven by the 
taxonomic composition of the dataset (mostly composed 
of Proteobacteria and Actinobacteria), and the composi-
tion is itself partially determined by the host plant [78, 
79]. More importantly, this optimum can be interpreted 
as a trade-off between metabolic similarity and dissimi-
larity. Optimum niche overlap would limit competition 
for resources among closely related species while being 
sufficient to promote exchanges of metabolites. However, 
the existence of microbial communities at both ends of 
the competitive-cooperation spectrum has also been 
highlighted, mostly dependent on the environment (soil, 
free-living, or host-associated environments) [80].

(See figure on next page.)
Fig. 6 Frequencies of GEMs in minimal combinations needed to produce TPPM. A The 20 most frequently occurring GEMs in all possible minimal 
combinations for all TPPM, for amino acids only, for vitamins only, and for phytohormones only. B Occurrences of GEMs in minimal combinations as 
a function of the size of their genome. Text-annotated dots indicate the most frequently occurring GEMs. No relation was found between the size of 
a genome and its frequency in the combinations
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Metabolism is nutritional-constraint dependent
Sets of constraints were modeled using growth media 
with different compositions. Our third working hypoth-
esis (H3) stating that the available nutrients have a sig-
nificant impact on the metabolism of bacteria was thus 
validated.

GEMs displayed low metabolic capabilities under 
severe growth constraints, alleviated by ARE in line with 
the nature of the genome collection used, i.e., isolated 
from A. thaliana roots. This result suggests that exu-
dates from plant roots are important determinants of the 
range of producible metabolites in the root microbiome. 
The effect of ARE was particularly visible for TPPM: the 
same set of TPPM was produced with the addition of 
ARE, regardless of the growth medium. This could either 
reflect the fact that our TPPM are core compounds on 
which most bacteria rely and are expected to metabolize. 
TPPM are hypothesized to create similar metabolic pat-
terns among GEMs, activated by ARE.

These findings highlight the importance of nutrient 
availability for the metabolic profile of the bacterial com-
munity [81]. However, there is currently no consensus 
on the effects of all nutrients on microbial communities. 
For example, despite nitrogen being a strong predictor of 
metabolism, its enrichment has different impacts on the 
diversity and composition of soil microbiota [82]. Root 
exudates are known to modify microbial communities, 
but only the effect of a few compounds was recently elu-
cidated [83–85].

The marked difference between unconstrained and 
constrained metabolism could also be due to the diffi-
culty to correctly model an environment using simulated 
nutritional constraints. Indeed, some TPPM were impos-
sible to reproduce in any medium, despite full comple-
tion rates within several GEMs (such as auxin and B12 
vitamin). However, it could also reflect the fact that most 
growth media are not adapted to all organisms, many 
of which are known to be difficult to grow in vitro [86]. 
Hence, metabolic cooperation would be especially rel-
evant with such microorganisms. Reverse ecology has 
been attempted to avoid in  vitro culture problems, for 
example, by computing the set of nutrients required by 
a metabolic network to produce biomass [64, 75, 76, 87]. 
Such approaches allowed the computation of overlapped 
and differentiated growth requirements of several organ-
isms, thereby advancing our knowledge of the ecological 
niche and metabolic interactions.

Metabolic dependencies are predicted to be major drivers 
of microbial community structure
Metabolic exchanges were found to be essential to 
improve the metabolic capacities of GEMs, both at 

the scale of the whole community and at the scale of a 
combination of a few GEMs, thus validating our fourth 
hypothesis (H4). However, we did not expect such big 
differences between poor and rich media, nor the coun-
terintuitive effect of ARE on very poor media with many 
TPPM.

Metabolic exchanges depend on nutritional constraints 
and compensate for severe growth constraints
Rich growth media and ARE unlocked more PPM and 
TPPM for single GEMs, with little metabolic coopera-
tion required (Fig.  5). Indeed, growth constraints are 
likely weaker in rich media since most nutrients are 
available, thereby unlocking many reactions and their 
associated metabolic pathways. Reciprocally under poor 
media, i.e., severe growth constraints, single GEMs were 
not self-sufficient and more metabolic exchanges were 
required to produce some TPPM. This was reflected by 
the marked difference in the number of possible combi-
nations of GEMs able to produce TPPM. However, when 
considering all TPPM at once in very poor media (M9, 
M63, mineral medium), supplementation with ARE had 
a different effect and increased the number of predicted 
combinations of GEMs (Fig. 5A), which was surprising as 
they are supposed to improve single GEM autonomy. We 
concluded that under very severe nutritional constraints, 
an extremely small subset of GEMs can produce interme-
diate products and cooperate. In this case, ARE unlocked 
enough chemical reactions in other GEMs to compen-
sate for the constraints, making several of them self-
sufficient for some TPPM. Hence, there was no need for 
cross-feeding of intermediate compounds, but no GEM 
was self-sufficient for all the TPPM, suggesting a possi-
ble exchange of finished products (hence more combina-
tions). The combined effect of the availability of nutrients 
in the soil and nutrients secreted by the host might then 
be a powerful driver of metabolic interactions. In sup-
port of this hypothesis, Klitgord and Segré [88] found 
that there is always a way to predict a growth medium 
inducing metabolic interactions between pairs of seven 
species. However, they failed to predict a viable medium 
for individual species, again highlighting the importance 
of cooperation. Finally, at the scale of the whole commu-
nity, the major compensation predicted by cooperation 
between all GEMs (Fig.  4C) also underlines the impor-
tance of metabolic cooperation to counter strong nutri-
tional constraints.

Minimal combinations of GEMs reflect functional 
redundancy for the targeted compounds
The results allowed us to predict putative cooperation 
between GEMs able to produce relevant TPPM of the 
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root microbiome (amino acids, vitamins, phytohor-
mones). In most TPPM categories, a number of putative 
combinations were returned when strong nutritive con-
straints and were applied with or without ARE. These 
results are in agreement with those obtained by Frioux 
et al. [59] and Thommes et al. [89]. The number of solu-
tions predicted echoed recent research which predicted 
a wide range of metabolites that can be secreted without 
cost, generating countless cross-feeding opportunities 
[90]. Even if these results are tightly linked to the TPPM 
and constraints considered, combinations of bacteria are 
predicted to be able to co-metabolize to complete core, 
ubiquitous metabolic pathways. This observation can be 
interpreted as community-level functional redundancy 
[59] and as an insurance of the completion of metabolic 
processes for nutrition or interaction with host plants 
under a range of environmental constraints [91]. These 
putative redundancies in metabolic completions could 
play a key role in maintaining stability under variable 
environmental constraints. Beyond these core metabolic 
functions, it would be interesting to extend the analy-
sis of minimal communities to secondary, more specific 
metabolism.

The software used, “Miscoto mincom” [59], worked in 
a way such that only the most parsimonious solutions 
are calculated, the simplest combinations of GEMs that 
fit the applied constraints. However, these putative solu-
tions do not mean more complex combinations do not 
exist to produce the TPPM. Finally, we did not explore 
all possible solutions to distinguish mutualistic and uni-
directional cross-feeding. One strain could be the final 
producer of a TPPM by taking advantage of the secre-
tion of another strain, i.e., with no mutualistic exchange, 
or alternatively, several exchanges may be required. Both 
interacting behaviors likely coexist, even at the level of 
a single bacterium, depending on the other bacteria. To 
date, knowledge is lacking on these behaviors among 
co-existing bacteria. Other hypotheses concerning the 
bacterial secretomes may better explain what actually 
happens in living systems.

The effect of genome size remains unclear
Bacteria with big genomes are usually considered as gen-
eralist species with wider niches [92]. They indeed have 
a higher unconstrained metabolism (higher PPM) thus 
likely a higher probability to possess uncommon, impor-
tant reactions involved in the production of the chosen 
TPPM. Antagonistic bacteria are also more likely to 
have larger genomes, linking antagonistic, and generalist 
strategies [74]. Conversely, bacteria with small genomes 
are more likely to be involved in metabolic interactions 
due to their reduced set of reactions [93, 94]. Our results 
showed that bacteria with larger genomes exhibited both 

higher metabolic similarity and complementarity than 
others (Figure S7 C1&C2), pointing to a putative reser-
voir of functions which compensated for low phyloge-
netic distances, but without providing many clues about 
their orientation towards cooperation or antagonism. 
The absence of any correlation between GEMs’ corre-
sponding genome size and their frequencies in putative 
metabolic interactions also prevented us from establish-
ing a link between generalist/specialist behavior and 
cooperation or auxotrophies provider.

Only a few strains are needed to reach the community 
potential
As the size of SynComs increased, their metabolism 
quickly became similar (Fig.  3 and S4). According to 
these results, the whole community’s unconstrained 
metabolism can be approximated using only a few dozen 
GEMs (linked with H2). In addition, most combinations 
for the production of TPPM involved a reduced set of 
GEMs, recalling previous studies which identified core 
microbiota composed of a reduced pool of species [5] to 
perform and/or optimize a biological function [95], ana-
lyze the impact of core strains on the whole microbiome 
[91, 96], or to study host colonization processes [41]. Our 
results suggest the existence of core functions, echoing 
other studies reported that the functional stability of the 
microbiota is maintained regardless of the strains chosen, 
as long as each functional group is chosen [97].

Conclusions and prospects
Metabolic diversity and similarity were detected accord-
ing to the genome taxonomy. The multi-genome meta-
bolic modeling analyses we performed enabled us to 
predict functional inter-dependencies and revealed a 
long-lasting ecological paradigm, a trade-off between 
competition and cooperation. We also found that puta-
tive metabolic interactions are common and con-
straint-dependent, thereby revealing community-level 
interlinkages and cooperation that make it possible 
to buffer nutritional constraints. The large number of 
interactions underlines the importance of richness and 
diversity in microbial communities for community-level 
functioning. Taken together, these results provide clues 
to the best way to decipher microbial interactions in a 
microbiota beyond the limits of the set of genomes used 
in the present study.

In this perspective, deeper and more realistic genome-
based modeling approaches based on the cost of 
exchanges, flux analysis, and the use of continuous nutri-
ent depletion over time could provide a closer look at 
the community-level genomic toolbox used to respond 
to constraints and to decipher evolutionary and behav-
ioral responses to these constraints in either fluctuating 
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or constant environments. All approaches leading to 
putative responses will need to be tested experimen-
tally. With this aim in view, multi-omics data, including 
secretome [25], a current research frontier, could be used 
to overcome the challenges to data interoperability. For 
instance, single isolates could be cultivated on various 
growth media, and analysis of their secretome would be 
a way to test the predictions on PPM. A deeper analysis 
could involve co-cultures of synthetic communities made 
of two (or more) isolates, predicted to compete or to be 
metabolically interdependent by the exchange of com-
pounds. Also, cultures of isolates on a minimal medium 
enriched with the secretome of other isolates would be 
an interesting way to study the dependency of an isolate 
on another while limiting any other interaction, such as 
competition.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s40168- 022- 01383-z.

Additional file 1: Figure S1. General information about genomic data 
and genomes annotations of the culture collection used. (A) Distribu-
tion of the ratios of N50 over genome length. N50 cannot be directly 
compared because genomes have various length. Using such a ratio 
allows a comparison between N50. The closer to 1, the lesser small contigs 
are needed to cover 50% of the genome. Most genomes have a N50 of 
approximately 10% of the total genome length, and a few genomes have 
very high N50. (B) Distribution of the number of contigs in the genomes 
assemblies. (C) Distribution of the annotation completeness of Busco’s 
core genes. The closer to 100, the more all core genes in Buco’s database 
are present in the annotation. Figure S2. In order to fix the maximum 
Syncom size to inject into Poisson GLMs, we compared every (s, s+1) pair 
of SynComs’ PPM and CPPM, s being a SynCom size in  [2, 20]. For each (s, 
s+1) pair, 200 pairs of random subsets of size n=50 SynComs were taken, 
and their PPM and CPPM were tested with Wilcoxon, Mann & Whitney 
tests. Boxplots of the 200 p values are displayed for all size comparisons 
and for PPMs (top) and CPPMs (bottom). Red lines are p=0.05 and green 
crosses are 1st quantiles. SynComs of 12 strains were chosen as a limit 
because it was the minimum size at which less than 10% of the p values 
were under 0.05 for PPM and CPPM. Figure S3. Description of the 193 
genomes collected from A. thaliana root microbiota (A) Phylogenetic 
tree (maximum likelihood on a multi-alignment of AMPHORA genes). 
(B) Boxplots displaying the quantitative effect of class on genome sizes 
and PPM distributions. (C) Plots of the producible metabolites or TPPM 
as a function of genome sizes. (D) PCoA displaying the qualitative effect 
of phyla on metabolite production (i.e. which compounds are produced 
by which taxa). Colours match classes of strains. Figure S4. Details of 
the correlations between explanatory metrics and response metrics for 
SynComs with two strains only. (A-B) Patterns of SynComs taxonomic 
composition in the correlation between PPM and CPPM and phylogenetic 
distance. Proteobacteria and Actinobacteria combinations are responsible 
for the PPM peak. (C-D) there is also a taxonomic signal among the PPM 
and CPPM responses to genome size. (E-F) Effect of genome sizes on 
SynComs’ PPM and CPPM. SynComs with a bigger average genome size 
have both bigger PPMs and CPPMs than SynComs with a smaller average 
genomes size. For each plot, only SynComs with 2 strains are shown. 
Figure S5. Density plots show that for each SynCom size, most values are 
concentrated around a narrow range. (B1 to B4) Boxplots showing the 
reach of a plateau (in terms of values and/or variances) for each metric. 
Only data for SynComs’ size below the plateaus were kept in the regres-
sion models (size 2 to 12 strains). (C1 to C4) distributions of the different 
metrics, split by SynCom size. (D) phylogenetic distance and genome size 
are not correlated, making their use as independent variables valid in the 

quasi-Poisson regression. Figure S6. Diagnostic plots of the quasi-poisson 
GLM modelling the response of PPM in SynComs. Figure S7. Diagnostic 
plots of the quasi-poisson GLM modelling the response of the CPPM in 
SynComs. Figure S8. A schematic view of the salicylic acid biosynthesis 
pathway. There are only two reactions, possessed respectively by 47 and 6 
GEMs, Root569 being the only GEM with a complete pathway. Under not 
constraining growth media, Root569 has the capacity to produce salicylic 
acid by itself but lost this ability under severe nutritional constraints. In 
such cases, the set of strains has to exchange intermediate metabolites to 
produce salicylic acid. A possible hypothesis is that Root569 is incapable 
of producing chorismate under severe growth constraints, whereas other 
strains are. Table S1. Taxonomy of the most frequently occurring GEMs in 
the putative combinations of GEMs permitting TPPM production through 
metabolic exchanges. The TPPM categories in which each GEM is the most 
involved are mentioned.
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