DE LA RECHERCHE À L'INDUSTRIE

Interplay between magnetic braking and turbulent stress tensor regarding plasma flow

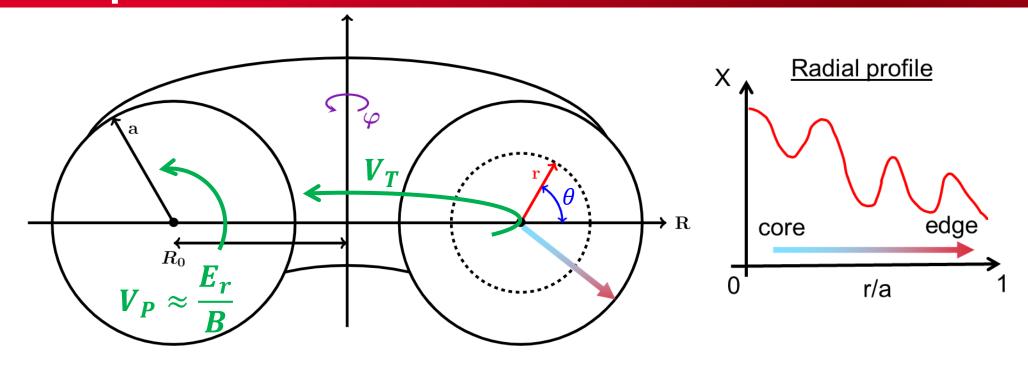
R. Varennes¹

Acknowledgments:

L. Vermare², X. Garbet¹, Y. Sarazin¹, V. Grandgirard¹, G. Dif-Pradalier¹, P. Gendrih¹, P. Donnel¹, M. Peret²

¹IRFM, CEA, 13108 Saint-Paul-lez-Durance, France ²LPP, CNRS, Ecole polytechnique, 91128 Palaiseau, France ³PIIM, CNRS, Aix-Marseille université, UMR7345 Marseille, France

A renewed interest for 3D magnetic perturbations



- Tokamak: magnetic configuration often considered axisymmetric
- Interest of 3D magnetic configuration: effect on the LH transition threshold, optimization of plasma stability and confinement, <u>impact on the rotation</u>

[J.-K. Park - PRL 2021] [M. Landreman - PRL 2022]

Plasma rotation -> competition between magnetic braking and turbulence

co-current

[C. Fenzi - NF 2011]

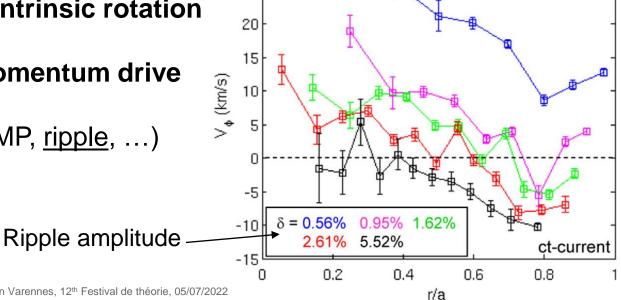
Rippled magnetic field lines

Plasma rotation in Tore Supra

without momentum input

Plasma toroidal rotation V_T :

- Plays a key role in confinement
- Challenging to control in reactor-sized tokamak (e.g. ITER)
- Flows rather governed by intrinsic rotation
- Governed by turbulent momentum drive and **magnetic braking** (RMP, <u>ripple</u>, ...)



(a)

25

Cea Talk outline

1) Reduced model for the intrinsic rotation

2) Validation with gyrokinetic simulations

3) Synergy between turbulent drive and magnetic braking

Cea Talk outline

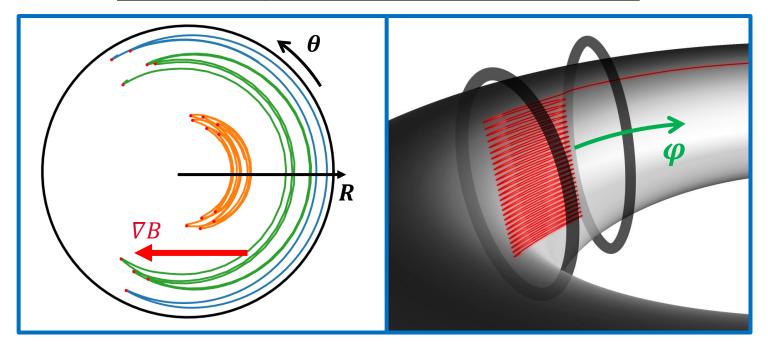
1) Reduced model for the intrinsic rotation

2) Validation with gyrokinetic simulations

3) Synergy between turbulent drive and magnetic braking

Collisionnal processes lead to magnetic braking

<u>Trapped trajectories in presence of ripple</u>



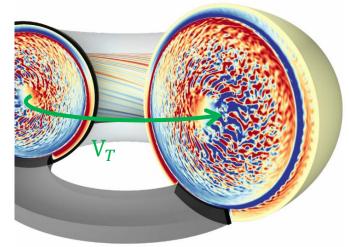
[J. W. Connor - NF 1973] [K. C. Shaing - PoF 1986] [P.N. Yushmanov - NF 1983] [L. M. Kovrizhnykh - NF 1984] [X. Garbet - PoP 2010]

Turbulence is a source of intrinsinc rotation

Turbulence:

- Small-scale fluctuations of the electric potential leading to macroscopic transport
- Turbulence forces rotation to finite value via wave/particle momentum transfer
- Expression of the exerted force: $-\nabla \cdot \Pi$

Turbulent structures in a tokamak

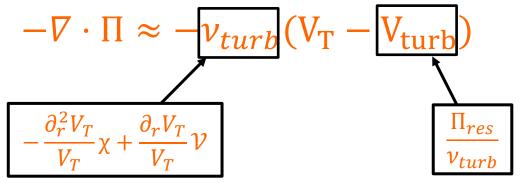


[O. Gürcan - PRL 2008] [T. S. Hahm - PoP 2007] [P.H. Diamond - NF 2009] [A. Peeters - PRL 2007/ NF 2011] [B. Chouli - PPCF 2015]

$$\begin{array}{c} \underline{\text{Toroidal Reynolds stress:}} & \Pi = \langle \widetilde{v_r} \widetilde{v_{\varphi}} \rangle = -\chi \partial_r V_T + \mathcal{V} V_T + \Pi_{\text{res}} \\ & \uparrow & \uparrow \\ & \text{Turbulent viscosity} & \text{Pinch} & \text{Residual stress} \rightarrow \text{Sets} \\ & \text{the equilibrium velocity} \end{array}$$

A simplified expression for the turbulent drive

$$\Pi = -\chi \partial_{\rm r} V_{\rm T} + \mathcal{V} V_{\rm T} + \Pi_{\rm res}$$



"Effective" turbulent friction

Equilibrium velocity

A critical ripple amplitude rules the toroidal rotation

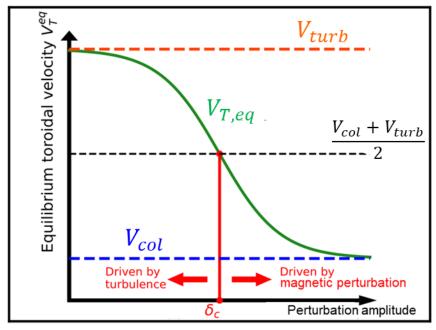
Turbulence and ripple:

Theoretical model: $\partial_t V_T = m - \nabla \cdot \Pi$

$$\partial_t V_T = -(v_{col} + v_{turb})V_T + v_{col}V_{col} + v_{turb}V_{turb}$$

Dominating drive depends on a critical ripple amplitude δ_c such that

$$v_{\rm col}(\delta_{\rm c}) = v_{\rm turb}$$



[R. Varennes - PRL 2022]

Ion Larmor radius Coils number
Rule of thumb: $\delta_c \sim \frac{\rho_i}{R_0} \sqrt{N_c} \left(\frac{R}{L_T}\right)^{-3/2}$

Temperature gradient length

Application at r/a = 0.8:

- Tore Supra typical discharge $\rightarrow \delta_c \approx 0.4\%$
- Same with ITER geometry $\rightarrow \delta_c \approx 0.15\%$

Cea Talk outline

1) Reduced model for the intrinsic rotation

2) Validation with gyrokinetic simulations

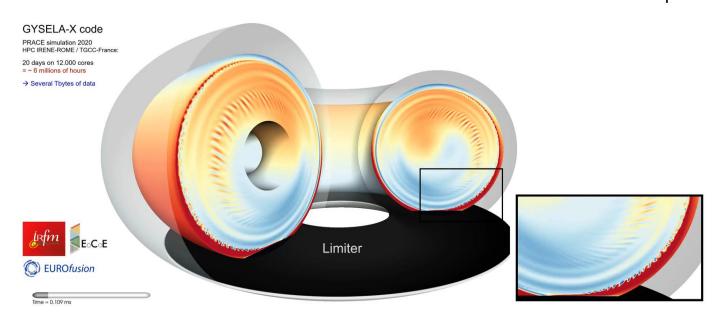
3) Synergy between turbulent drive and magnetic braking

Validating the model requires gyrokinetic simulations

GYSELA: kinetic code solving

Fokker-Planck:
$$\frac{dF}{dt} = \mathcal{C}(F)$$

Poisson:
$$\varepsilon_R \nabla^2 \phi = -\sum_{\text{species}} F d^3 v$$



$$v_{\rm col}(\delta_{\rm c}) \approx v_{\rm turb}$$

[V. Grandgirard - CPC 2016]

Requires 3D magnetic perturbation to be implemented

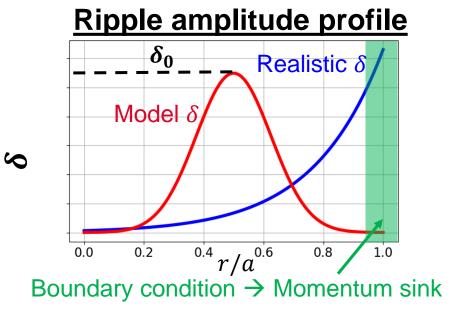
Determined for one turbulence

Using a simplified ripple amplitude shape

- Boundary conditions (realistic/simulated)
- → momentum sink not included in the model

Solution: radially gaussian ripple

amplitude



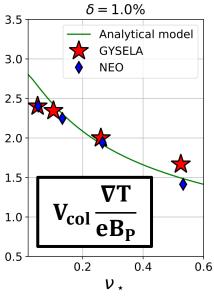
Thorough benchmark of the ripple implementation

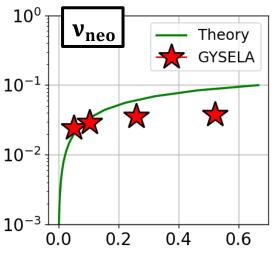
$$m = -\mathbf{v_{col}}(\mathbf{V_T} - \mathbf{V_{col}})$$

Depend on the collisionality ν_{\star} and ripple amplitude δ

- Toroidal momentum is conserved
- V_{col} → good agreement GYSELA / NEO
- Collisional friction v_{col} → good

agreement between GYSELA and the theory





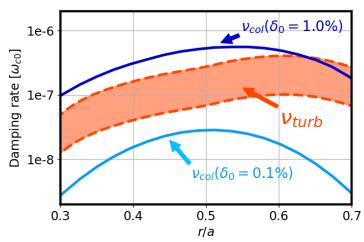
[R. Varennes - Submitted to PPCF]

The estimated critical ripple amplitude validated through simulations

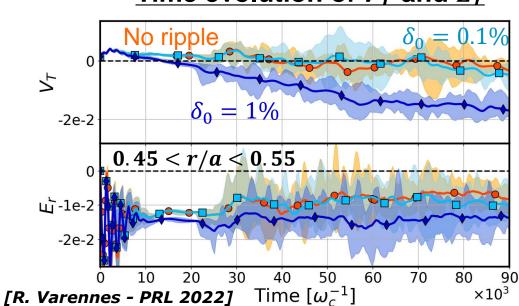
- \sim Cases with $\delta \gg \delta_{\rm c}$ and $\delta \ll \delta_{\rm c}$
- No significant difference between $\delta \ll \delta_c$ case and the no ripple case
- $\delta \gg \delta_c$ case dominated by magnetic braking \rightarrow similar in some experiments (TS, JET and JT60)

[H. Urano - NF 2011] [M.F.F Nave - PRL 2010] [C. Fenzi - NF 2011]

Radial profiles of ν_{φ} and χ



Time evolution of V_T and E_r



Cea Talk outline

1) Reduced model for the intrinsic rotation

2) Validation with gyrokinetic simulations

3) Synergy between turbulent drive and magnetic braking

A step further: the magnetic braking impact on toroidal Reynold stress

Synergy observed in simulations:

Possible synergy mechanisms:

Up-down asymmetry of magnetic surfaces

X [Y. Camenen - PRL 2009]

Stochasticity of magnetic field lines

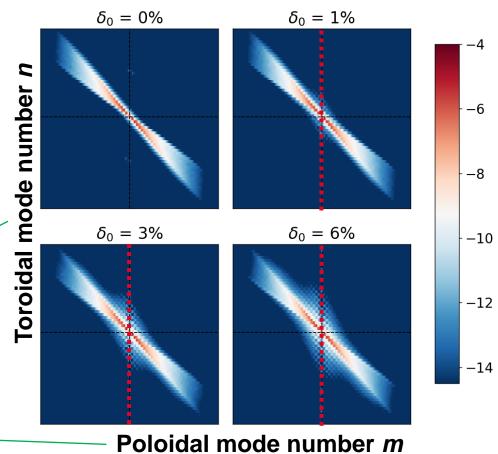
- X [C.-C Chen PoP 2021]
- Modification of the turbulent intensity radial shear $\sqrt{[o. Gürcan PRL 2008]}$

Modification of the E_r radial shear

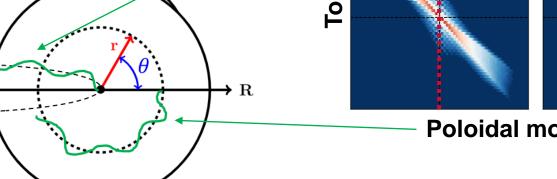
[P.H. Diamond - IAEA Vienna 1994]

Ripple changes turbulence intensity through mode-coupling

- Turbulent intensity defined as $I = \frac{e\widetilde{\phi}}{T}$
- Ripple $\rightarrow \cos(N_c \varphi)$ perturbation magnetic field \rightarrow reflects on electric potential φ
- With turbulence, mode-coupling modifies the turbulent spectra



 $log_{10}(|\phi_{m,n}|^2)$

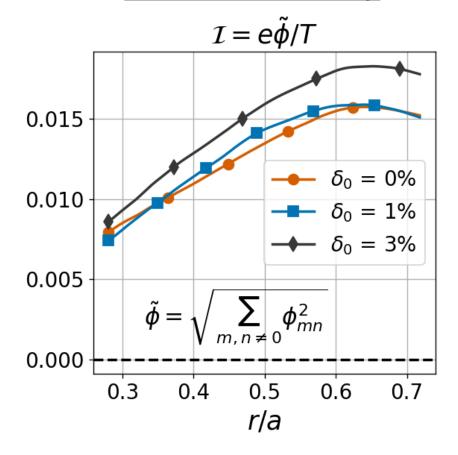


Turbulence intensity weakly impacted by ripple

Spectral coupling → well described by the simulation code

However, weak effect of the ripple on the turbulent intensity

Coarse-grained turbulent intensity

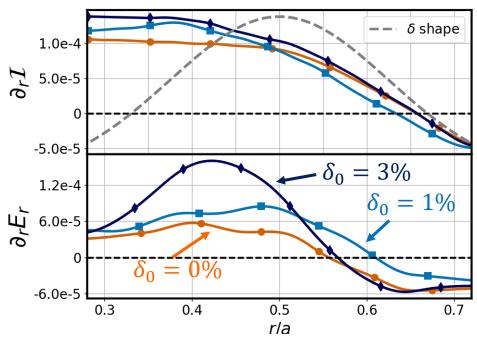


Radial shear of E_r correlated with Π

$\partial_r E_r$ expected to impact Π

- Ripple $\rightarrow E_r$ enhancement through collisional processes
- Increasing of Π associated with an increase in $\partial_r E_r$ in simulations

Coarse-grained profiles



[R. Varennes - PRL 2022]

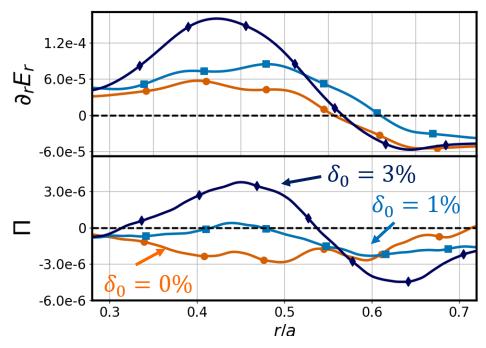
Radial shear of E_r correlated with Π

\rightarrow $\partial_r E_r$ expected to impact Π

Ripple $\rightarrow E_r$ enhancement through collisional processes

Increasing of Π associated with an increase in $\partial_r E_r$ in simulations

Coarse-grained profiles



[R. Varennes - PRL 2022]

Conclusion

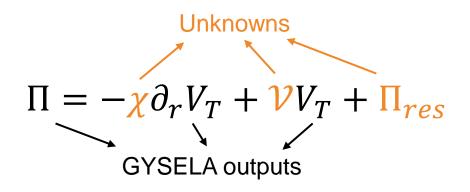
- Plasma rotation → driven by a competition between turbulence and magnetic braking
- Magnetic braking overcomes turbulence above a critical amplitude of magnetic ripple
- Toroidal Reynold stress → strongly impacted by ripple
- Synergy mechanism \rightarrow Enhancement of $\partial_r E_r$ due to ripple which in turn modifies Π

[R. Varennes - PRL 2022]

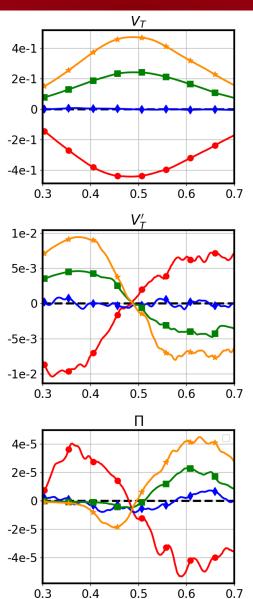
[R. Varennes - Submitted to PPCF]

Backup slides

Evalutating the turbulent viscosity with gyrokinetic code



- \triangleright Simulations of ITG turbulence with different initial V_T
- Enough equation to deconvolve χ , $\mathcal V$ and Π_{res}
- Pinch V found negligible



r/a

A simple expression for the critical ripple amplitude

$$\delta_{\rm c}$$
 defined by $\nu_{\phi}(\delta_{\rm c}) = |\lambda_{\rm v}| \left(\chi + \frac{\kappa_{\rm v}}{\lambda_{\rm v}} \mathcal{V}\right)$

Toroidal harmonic of the perturbation \ Thermal velocity

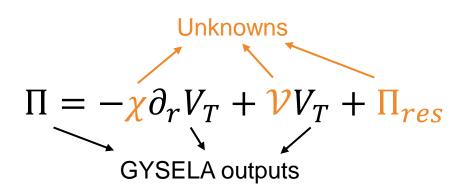
- Ripple-plateau regime (relevant for most tokamaks): $v_{\phi} \sim \frac{N_c V_{th}}{D} \delta^2$ (robust)
- Ion Larmor radius Gyrobohm scaling: $\chi_{eff} \sim \chi_{GB} = \frac{\rho_i^2 V_{th}}{L_T}$ (debatable, but verified in our simulations)

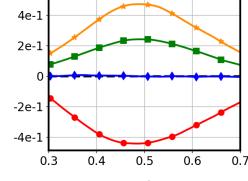
 Temperature gradient length
- $\lambda_{\rm V} = -\frac{({\rm r}\chi V_{\rm Teq})'}{{\rm r}\nu V_{\rm Teq}} \sim L_{\rm T}^{-2} \ ({\rm ok\ in\ order\ of\ magnitude})$

$$\Rightarrow \ \delta_c \sim \frac{\rho_i}{R} \sqrt{N_c} \left(\frac{R}{L_T}\right)^{-3/2} \qquad \frac{\text{Application with magnetic ripple at } r/a = 0.8:}{\text{- Tore Supra typical discharge} \rightarrow \delta_c \approx 0.4\%}$$

- Same with ITER geometry $\rightarrow \delta_c \approx 0.15\%$

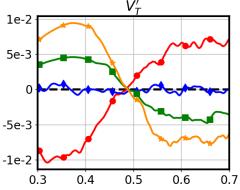
Evalutating the turbulent viscosity with gyrokinetic code



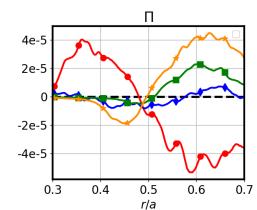


 \rightarrow Simulations with different initial $V_T \rightarrow$ get enough equation

to deconvolve χ , $\mathcal V$ and Π_{res}



- ITG turbulence with adiabatic e⁻
- Pinch V found negligible → already observed adiabatic e⁻
 [A. Peeters NF 2011]



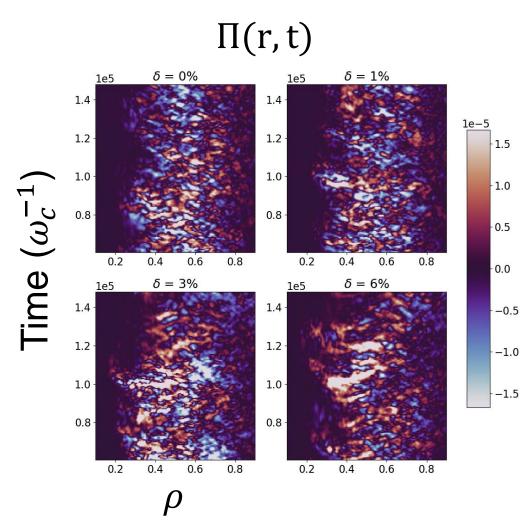
A step further: the ripple impact on toroidal Reynold stress

Synergy between ripple and turbulence:

- Turbulence impact on magnetic braking found negligible (not tested with RMPs)
- However magnetic braking strongly modifies Π

Mechanisms considered:

- 1) Modification of the turbulent intensity shear
- > 2) Modification of the $E \times B$ shear



Neoclassical theory gives access to fluxes and forces

- Toroidal symmetry \rightarrow degeneracy on E_r and V_T (linked by force balance)
- Ripple → toroidal magnetic braking / friction

Depends on $\begin{cases} \delta : \text{ ripple amplitude} \\ \varepsilon : \nabla B \text{ amplitude} \\ \nu^* : \text{ collisionnality} \end{cases}$ (Also valid for RMPs !)

[J. Abiteboul 2011]

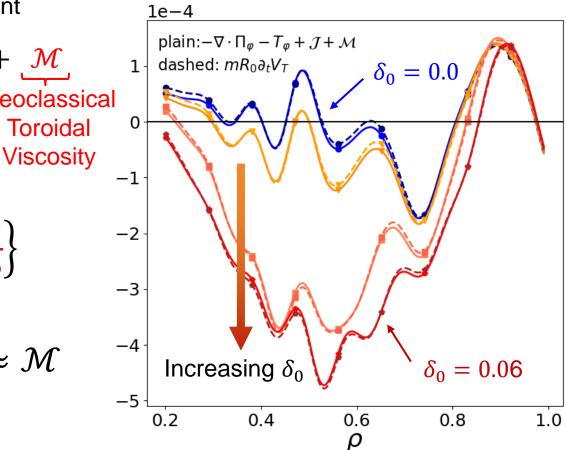
Magnetic braking force dominates the toroidal force balance

Neoclassical non-axisymmetric toroidal momentum conservation :

$$NmR_0 \frac{\partial V_T}{\partial t} = -\overline{V} \cdot \Pi_{turb} - T_{\varphi} + \overline{J} + \underline{\mathcal{M}}$$
 Polarization Neoclassical Toroidal

$$\mathcal{M} = -\int \frac{d\theta d\varphi}{4\pi^2} \int d\mathbf{v} F \left\{ \mu \frac{\partial \tilde{B}}{\partial \varphi} \right\}$$

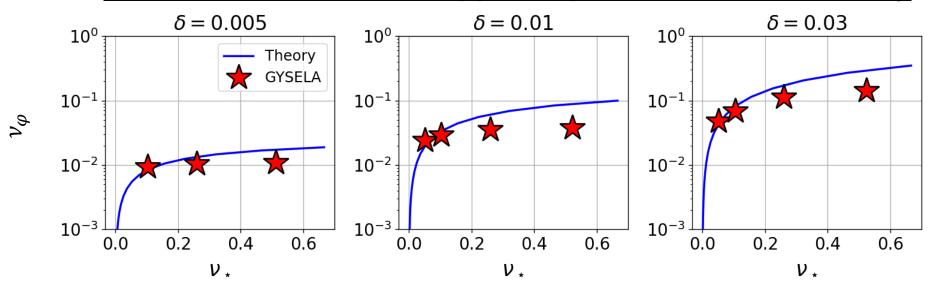
Radial profile of the LHS and RHS of the conservation of L



GYSELA recovers neoclassical predictions

- Toroidal momentum with magnetic braking is conserved
- Neoclassical target velocity V_{neo} in good agreement between GYSELA and NEO
- Neoclassical friction v_{φ} in good agreement between GYSELA and the theory

Neoclassical friction vs ripple amplitude and collisionality



Magnetic braking is induced by 3D magnetic perturbations

Magnetic braking:

Resulting force coming from B inhomogeneity on particle magnetic moments μ

- Magnetic braking force expression: $m=-\int d^3 v \, \left(\mu \frac{\partial B}{\partial \varphi} F\right)$
- > 3D magnetic perturbations in tokamaks -> external, magnetic ripple
- Constrains the particle trajectories \rightarrow results in finite plasma toroidal velocity V_T

Structure of the residual stress

$$\Pi_{\mathrm{res}} = \sum_{k} k_{\parallel} k_{ heta} \left| \frac{e \phi_k}{T} \right|^2 \tau_k$$