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Introduction
Plasma rotation plays a key role in plasma 

confinement;

Control of plasma rotation in reactor-sized 
tokamak is challenging; 

Intrinsic bulk plasma rotation is driven by 
turbulence and magnetic braking due to ripple

Critical ripple amplitude

NTV controls the plasma rotation above a critical
ripple amplitude 𝛿𝑐

Complete model gives the relation:

Conclusion
Ripple  responsible for a collisional friction that 

causes magnetic braking;

Turbulence  source of intrinsic rotation;

Evolution of mean toroidal flow ruled by competing 
turbulent stress and ripple drag forces;

Magnetic braking overcomes turbulent drive above 
a critical ripple amplitude 𝛿𝑐

Analytical prediction of 𝛿𝑐, and simplified 
expression, are derived and validated numerically

Main synergy comes from neoclassical effect on 𝐸𝑟
′

in presence of ripple, in turn modifying Π

FIG.1 – Kinetic effects induced by ripple : drift of banana bounce 
points (a) and toroidal trapping between coils (b). Neoclassical 
friction 𝜈𝜑 comes from the collisions between trapped particles.

FIG.2 – Snapshot of the turbulent structures seen
through a colormap on the electric potential. From
rest, 𝑉𝑇 grows due to wave-particle interactions.
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= Magnetic braking + Turbulent torque

Ripple constrains particle trajectories 
and collisional processes

Turbulence constrains 𝑉𝑇 through wave-particle interactions

A reduced model [1] based on the mean toroidal velocity 𝑉𝑇 reads :

Turbulence / Ripple competition

Magnetic braking 𝓂 imposes a finite velocity 𝑉𝑛𝑒𝑜 [2,3]

Turbulence, through toroidal Reynold stress Π, also imposes a finite velocity 𝑉𝑡𝑢𝑟𝑏 [4,5] 

due to particle-waves interactions: Π = −𝜒
𝜕𝑉𝑇
𝜕𝑟

+ 𝒱𝑉𝑇 + Π𝑟𝑒𝑠

Viscosity Pinch Residual

Turbulence / Ripple synergy

𝓂 = −𝝂𝝋 𝑉𝑇 − 𝑉𝑛𝑒𝑜

FIG.4 – Time evolution of 𝑉𝑇 and 𝐸𝑟 for different 
ripple amplitudes.

FIG.3 – Sketch of the modelled ripple/turbulence competition
on the equilibrium toroidal velocity.

𝜈𝜑 𝛿𝑐 ≃ 𝜒𝑒𝑓𝑓/𝐿𝑇
2

With 𝜒𝑒𝑓𝑓 ≃ 𝜒 + 𝐿𝑇𝒱

A simplified equation can be devised considering

• the gyroBohm scaling for 𝜒𝑒𝑓𝑓
• The ripple-plateau scaling for 𝜈𝜑

𝛿𝑐 ∼ 𝑁𝑐
𝑅
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Competing forces 𝜕𝑡𝑉𝑇 = 𝓂− 𝑟−1 𝑟Π ′

Turbulence

FIG.4 – Radial profiles of turbulent intensity shear, 
𝐸𝑟 shear, residual stress and its divergence. These 
profiles are coarse-grained as detailed in [1].

 Only possible mechanism: mode coupling on the 
electric potential
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 However, ripple only impacts non-resonant modes 
of the electric potential

 Strong impact of ripple on Π in simulation

 Π expected to vary with turbulent intensity shear 
𝐼′ and radial electric field shear 𝐸𝑟

′

 In simulations, ripple weakly impacts 𝐼 through 
mode-coupling of the electric potential

 Ripple changes 𝐸𝑟 through collisional effects 
strong correlation with Π
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