Safety factor impact on the radial electric field in gyrokinetic simulations
R Varennes, M Peret, L. Vermare, X Garbet, Y Sarazin, V Grandgirard, G Dif-Pradalier, P Gendrih, P Donnel

To cite this version:
R Varennes, M Peret, L. Vermare, X Garbet, Y Sarazin, et al.. Safety factor impact on the radial electric field in gyrokinetic simulations. TSVV1 Progress Workshop 2022 - Theory, Simulation, Validation, Verification - Physics of the L-H Transition and Pedestals Progress workshop, Sep 2022, Garching, Germany. hal-03923022

HAL Id: hal-03923022
https://hal.science/hal-03923022
Submitted on 4 Jan 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Safety factor impact on the radial electric field in gyrokinetic simulations

R. Varennes

Acknowledgments:

L. Vermare, X. Garbet, Y. Sarazin, V. Grandgirard, G. Dif-Pradalier, P. Gendrih, P. Donnel, M. Peret

IRFM, CEA, 13108 Saint-Paul-lez-Durance, France
LPP, CNRS, Ecole polytechnique, 91128 Palaiseau, France
<table>
<thead>
<tr>
<th>D2.5</th>
<th>Report including statements on the relative impact of some separate ingredients playing a role in the radial electric field formation (orbit losses, ripple, turbulence, neutrals, limiter...)</th>
<th>report or paper submitted, conference contribution</th>
<th>X. Garbet, R. Varennes, L. Vermare, G. Falchetto, P. Donnel</th>
<th>12/2022</th>
</tr>
</thead>
</table>

[R. Varennes – PRL 2022]
[R. Varennes – PPCF in resubmission]
+ presented in 8 conferences

| M2.9 | Study the development of a radial electric field in response to key parameters such as injected power, collisionality and safety factor, using the GYSELA and ORB5 codes including simplified limiter/SOL - comparison with fluid code results | L. Vermare, X. Garbet, R. Varennes, P. Donnel | 06/2022 |
Strong impact of plasma current on edge radial electric field in experiment

- Plasma current I_P scan performed in WEST discharges
- $I_P \propto 1/q$
- $|E_r|$ ↗ at the edge when I_P ↗ (observed in Tore Supra and MAST)
- Effect more significant in USN compared with LSN

What are the mechanisms at play?

Robin Varennes, TSVV Workshop, 27-28 September 2022
GYSELA as a tool to assess the safety factor effect

GYSELA: kinetic code solving

Fokker-Planck: \[\frac{dF}{dt} = C(F) \]

Poisson: \[\varepsilon_R \nabla^2 \phi = - \sum_{\text{species}} e \int F d^3 v \]

Does GYSELA contain enough physical ingredients to retrieve the deepening of \(E_r \) when \(q \) decreases?

[V. Grandgirard – CPC 2016]
Simulations to isolate the effect of the safety factor

- Reference simulation $q_{1.0}$ close to Tore Supra #45511 discharge
- Supplementary simulations $q_{0.5}$ / $q_{1.5}$ to isolate only the effect of the safety factor
- As in WEST experiments, same magnetic shear in all simulations
Same trend as the experiment retrieved on the radial electric field

- Simulations run for ~ 150 000 ω_c^{-1}
 - in a saturated turbulent state
- Thermodynamical gradients similar for each case
- $|E_r|$ observed to increase with I_P near the edge qualitatively similar to experiment

Radial electric field E_r profiles

Robin Varennes, TSVV Workshop, 27-28 September 2022
The turbulence intensity increases with the safety factor.

- Turbulent intensity \uparrow with q
 - Expected from theory/experiment
 - $[T.\ Dannert – PoP 2005]$
 - $[C.C \ Petty – PoP 2004]$

- Non linear evolution \rightarrow saturation
 - $[R.E. \ Waltz – PoP 1997]$

- Effect of turbulence less important in low q case ?
 - \rightarrow Neoclassical effect prevails ?

Robin Varennes, TSVV Workshop, 27-28 September 2022
Neoclassical effects alone seem negligible

- Same simulations performed with artificially killing all turbulent modes
- No significant effect of q on these neoclassical simulations

Temporal evolution of the flux-averaged electric potential ϕ_{00}

Average between $0.75 < r/a < 0.85$

Non-turbulent simulations

Robin Varennes, TSVV Workshop, 27-28 September 2022
However, synergy between neoclassic and turbulent effect may still matter

- Neoclassical effects can modify the turbulent drive

\[\partial_t V_P = -\nabla \cdot \Pi_{r\theta} - \nu_{\theta} (V_P - V_{\text{neo}}) \implies V_{P,eq} = \frac{-\nabla \cdot \Pi_{r\theta}}{\nu_{\theta}} + V_{\text{neo}} \sim E_r/B \]

[T.A. Giannakon – PoP 2002]
The flow structure generated by turbulence observed to depend on I_P

- Observed in simulations:
 - At low q: static zonal structures
 - At high q: high frequency events

Spatio-temporal evolution of E_r
Turbulence feeds Zonal Flows and GAMs differently depending on q

- Zonal Flows are quasi-static poloidal flows generated by turbulence
- GAMs \rightarrow oscillations of ϕ due to toroidal curvature … that can be driven by turbulence

Average between $0.75 < r/a < 0.85$

[Angelino – PPCF 2006]
[Miyato – PoP 2004]
[Conway – NF 2022]
- E_r frequency spectra in the range $0.75 < r/a < 0.85$

- Same “available” energy in each simulation

- GAMs \rightarrow strongly driven by turbulence in the high q case

- Low q: weak turbulent intensity & weak GAM drive \rightarrow energy has to aliment ZF?

Robin Varennes, TSVV Workshop, 27-28 September 2022
The location of zonal flow source coincide with the E_r well

- $\nabla \cdot \Pi_{r\theta} \rightarrow$ Turbulent source
- Zonal Flows and GAMs \rightarrow with $\nabla \cdot \Pi_{r\theta}$
- Low $q \rightarrow$ Turbulence feeds ZF
 - ZF responsible for internal transport barriers that reduce turbulence
- High $q \rightarrow$ Turbulence feeds GAMs
 - GAMs less efficient to quench turbulence

[K. Miki – NF 2011]
Conclusion

- Experiments on WEST show that edge E_r when $I_p \uparrow$ so when $q \downarrow$

- This effect is retrieved qualitatively with gyrokinetic simulations

- Neoclassical processes are negligible regarding the E_r well formation

- Main effect seems to be the **turbulent energy transfer** that favor either the **zonal flows** or the **GAMs** depending on the safety factor value

- Further study → ‘advanced’ signal processing tools (bicoherence…)

The work in ongoing …
0D model for the q scaling of energy transfer

- 0D model from Miki & Diamond → energy transfer between turbulence/GAMs/ZF
 [K. Miki – NF 2011]
- Exploratory model → simplified version … but with main q dependences
- Lot of unknown parameters set ah-hoc → not for precise quantification

\[
\begin{align*}
\text{Turbulent energy:} & \quad \partial_t I &= I I_L - I^2 - C_0 I \varepsilon_0 - C_G I \varepsilon_G \\
\text{ZF energy:} & \quad a_0 \partial_t \varepsilon_0 &= \varepsilon_0 I - \varepsilon_0 I_0 - \varepsilon_0^2 \\
\text{GAM energy:} & \quad a_G \partial_t \varepsilon_G &= \varepsilon_G I - \varepsilon_G I_G - \varepsilon_G^2
\end{align*}
\]
Multiple equilibriums allowed

- 4 types of stationnary solutions
 - No flows $I \neq 0$, $\mathcal{E}_0 = \mathcal{E}_G = 0$
 - ZF only $I \neq 0$, $\mathcal{E}_0 \neq 0$, $\mathcal{E}_G = 0$
 - GAMs only $I \neq 0$, $\mathcal{E}_0 \neq 0$, $\mathcal{E}_G = 0$
 - Mixed ZF/GAM $I \neq 0$, $\mathcal{E}_0 \neq 0$, $\mathcal{E}_G \neq 0$

- Only accounted dependence with safety factor
 - Normalized growth rate $I_L = \bar{I}_L \sqrt{q}$ (Observed in simulations)
 - ZF damping rate $I_0 = \bar{I}_0 q$ (Neoclassical friction)
 - GAMs damping rate $I_G = \bar{I}_G q^5 \exp \left(-\frac{11}{4} q^2\right)$ (Collisionless prediction)

Work in progress
Reasonable q-scaling of energies

- With the scaling $I_0 \ll I_L \ll I_G$, the simulations behavior is retrieved.
- Lot of assumptions in the model … but still encouraging

/!/ Work in progress /!

ZF energy

GAM energy

Turbulent energy
Transition zones

\[I_L = I_G + C_0(I_G - I_0) \]

- \(I_L \)
- \(I_0 \)
- \(I_G \)

Normalized growth/damping rates vs. Safety factor \(q \)

- ZF only
- Mixed
- GAMs only

Robin Varennes, TSVV Workshop, 27-28 September 2022