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DISTRIBUTED NULL CONTROLLABILITY OF SOME 1D CASCADE1
PARABOLIC SYSTEMS2

FRANCK BOYER∗ AND MORGAN MORANCEY†3

Abstract. We consider several coupled systems of one-dimensional linear parabolic equations4
where only one equation is controlled with a distributed control. For these systems we study the5
minimal null-control time that is the minimal time needed to drive any initial condition to zero.6

In a previous work [Comptes Rendus. Mathématique, Tome 361 (2023)] we extended the block7
moment method to obtain a complete characterization of the minimal null-control time in an abstract8
setting encompassing such non-scalar controls. In this paper, we push forward the application of this9
general approach to some classes of 1D parabolic systems with distributed controls whose analysis10
is out of reach by the usual approaches in the literature like Carleman-based methods, fictitious11
control and algebraic resolubility, or standard moment method. To achieve this goal, we need to12
prove refined spectral estimates for Sturm-Liouville operators that have their own interest.13

Key words. Control theory, parabolic partial differential equations, minimal null control time,14
block moment method15

AMS subject classifications. 93B05, 93C20, 35K4016

1. Introduction.17

1.1. Problems under study.18
In the last 15 years different works exhibited that for some coupled systems of19

parabolic partial differential equations (see for instance [3, 5, 16, 22, 23]) or degenerate20
parabolic equations (see for instance [6, 8, 9, 7, 17, 2]) it might be needed to wait21
for some positive minimal time for null controllability to hold even if, in a parabolic22
context, the information propagates at infinite velocity.23

This phenomenon, quite surprising at first sight since it is not related to any24
constraint imposed on the state or on the control, is now better understood. It is25
more related to the geometry of the high frequency eigenelements of the underlying26
evolution operator relatively to the observation operator. For instance, it may occur27
in the following (non exclusive) situations: if there is condensation of eigenvalues, if28
the observation of eigenvectors is too small with respect to the parabolic dissipation29
rate, or if the norm of suitably chosen generalized eigenvectors is asymptotically too30
large.31

In the previous works [10, 13], we developed the block moment method which is32
well adapted to study the minimal null-control time for autonomous coupled linear33
one-dimensional parabolic partial differential equations. Our goal in this paper is to34
provide several applications of this approach to some classes of such systems whose35
analysis is out of reach by using other techniques available in the literature. Based on36
the general results obtained in [13] we first characterize the minimal null-control time37
of such systems in terms of the asymptotic behavior of some explicit quantities based38
on the eigenelements of the evolution operator. In a second step, an extra spectral39
analysis is developed, extending the one given in [1], in order to obtain a tractable40
expression of the involved quantities that can be computed for actual examples. With41
this approach, we manage to compute the minimal null-control time for many systems,42
extending the results in the literature.43
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To be more precise, the first class of control problems that will be studied in this44
paper is the following one45

(1.1)


∂ty +

(
A 0
q(x) A

)
y =

(
1ωu(t, x)

0

)
, (t, x) ∈ (0, T )× (0, 1),

y(t, 0) = y(t, 1) = 0, t ∈ (0, T ),

y(0, x) = y0(x),

46

where47
• A is the unbounded Sturm-Liouville operator defined in L2(0, 1) by48

(1.2) D(A) = H2(0, 1) ∩H1
0 (0, 1), A = −∂x

(
γ∂x•

)
+ c•,49

with c ∈ L∞(0, 1), γ ∈ C1([0, 1]) satisfying c ≥ 0 and inf
[0,1]

γ > 0.50

• the coupling function q belongs to L∞(0, 1)51
• ω ⊂ (0, 1) is a non empty open set.52

This system is well-posed in the sense that for every y0 ∈ X = (L2(0, 1))2, for53
every u ∈ L2((0, T )× (0, 1)) there exists a unique solution in C0 ([0, T ];X). The null54
controllability property we shall study for this system is defined as follows.55

Definition 1.1. Let T > 0. The system (1.1) is said to be null controllable at56
time T if for any y0 ∈ X, there exists a control u ∈ L2((0, T ) × (0, 1)) such that the57
associated solution of (1.1) satisfies y(T ) = 0.58

This problem is not straightforward since the control u is localized in space and59
only acts in the first equation of the system; therefore controlling both components is60
only possible through the action of the coupling term corresponding to the function61
q in the second equation. It is now well known that such system may not be short-62
time null-controllable and our goal is to go deeper into the understanding of this63
phenomenon.64

Definition 1.2. The minimal null control time for system (1.1) in X is defined65
as the unique value T0(X) ∈ [0,+∞] such that66

• for any T > T0(X), system (1.1) is null controllable at time T ;67
• for any 0 < T < T0(X), system (1.1) is not null controllable at time T .68

When no confusion is possible, we shall simply denote this minimal time as T0.69

It will be also useful to introduce, for any y0 ∈ X, the number T0(y0) ∈ [0,+∞]70
which is the minimal time that is necessary to drive the system to 0 starting from the71
particular initial data y0. Notice that T0(X) = supy0∈X T0(y0).72

The question we address is thus the computation of the minimal null control time73
(being possibly 0 or infinity) of system (1.1).74

This question has already been answered in some particular geometric configu-75
rations: when ω intersects the support of the coupling function Supp(q), by means76
of Carleman estimates or in the opposite setting when ω is an interval disjoint from77
the support of q, by solving the associated moment problem. We will discuss those78
results more in details in Section 1.2.79

Our goal in this article concerning (1.1) is twofold. First we prove that applying80
directly the abstract results on block moment problems from [13] encompasses all81
the previously known results for this problem even though they were proved with82
completely different techniques. Then, improving the strategy developed in [1] to83
study spectral quantities of interest in this problem, we are able to extend these84
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results to any choice of coupling term q and control domain ω. We will emphasize the85
role of the geometry (that is of the relative position of the connected components of ω86
with respect to the support of q) in the determination of the minimal null control time87
for system (1.1). Moreover, contrary to the related results in the literature, our proof88
does not rely on the explicit expression of the eigenfunctions of A so that it applies89
for a general Sturm-Liouville operator (instead of the Dirichlet-Laplace operator that90
was considered in [4, 5]). All these results are precisely stated in Section 1.3.91

To point out even more the ability of our approach to determine the minimal null-92
control time for such problems we propose the study of some other related systems.93
To begin with, we obtain new results for a similar cascade problem in which coupling94
terms in the second equation now contain first-order operators, as studied in [16].95
More precisely, we consider the following control problem96

(1.3)


∂ty +

(
A 0

q(x) + p(x)∂x A

)
y =

(
1ωu(t, x)

0

)
, (t, x) ∈ (0, T )× (0, 1),

y(t, 0) = y(t, 1) = 0, t ∈ (0, T ),

y(0, x) = y0(x),

97

with q ∈ L∞(0, 1), p ∈ W 1,∞(0, 1). As a consequence of our analysis we will give an98
example for which the system is not approximately controllable, even if the coupling99
terms are active inside the control domain ω.100

Finally, we analyze the null-controllability of the following simultaneous control101
problem which has not been studied in the literature so far102

(1.4)


∂ty +

 A 0 0
q2(x) A 0
q3(x) 0 A

 y =

1ωu(t, x)
0
0

 , (t, x) ∈ (0, T )× (0, 1),

y(t, 0) = y(t, 1) = 0, t ∈ (0, T ),

y(0, x) = y0(x),

103

with q2, q3 ∈ L∞(0, 1). This problem can indeed be seen as a simultaneous control-104
lability problem since we look for a single control u that simultaneously controls two105
systems of the form (1.1): the one satisfied by (y1, y2) and the one satisfied by (y1, y3).106

The expression we obtain for the minimal simultaneous null control-time for (1.4)107
shows that this time can be strictly larger than the two minimal null-control times108
associated to the two subsystems. This kind of phenomenon was already observed,109
for instance, in [22].110

In the sequel of this introduction, we will set some notation and present the111
results available in the literature concerning the analysis of the control problems we112
are interested in that is (1.1), (1.3) and (1.4), then we will state precisely our main113
results.114

1.2. State of the art.115

1.2.1. Notation.116
• For any ω ⊂ (0, 1), we set for convenience ‖•‖ω = ‖•‖L2(ω) and the associated117

inner product 〈•, •〉ω118
• We denote by (νk)k≥1 the increasing sequence of eigenvalues of the Sturm-119

Liouville operator A defined in (1.2). Notice that the sign assumption we120
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make on c ensures that for any k ≥ 1, we have νk > 0. The associated121
normalized eigenvectors are denoted by (ϕk)k≥1; they form a Hilbert basis of122
L2(0, 1).123

• For any k ≥ 1, we define ϕ̃k as the unique solution of the Cauchy problem124

(1.5)


(A− νk)ϕ̃k = 0,

ϕ̃k(0) = 1,

ϕ̃′
k(0) = 0.

125

• We will also need to introduce ψk,q, the unique solution of the boundary value126
problem127

(1.6)


(A− νk)ψk,q =

(
Ik(q)− q

)
ϕk,

ψk,q(0) = ψk,q(1) = 0,

〈ϕk, ψk,q〉ω = 0,

128

where Ik(q) is the integral defined by129

(1.7) Ik(q) =

∫ 1

0

q(x)ϕ2
k(x)dx.130

Such a solution exists since, precisely by (1.7), the right-hand side of the
equation is orthogonal to ϕk and it is unique thanks to the choice of normal-
ization 〈ϕk, ψk,q〉ω = 0. This particular choice is possible thanks to the fact
that ‖ϕk‖ω > 0 and it implies that ψk,q is, among all the solutions of the
underdetermined problem

(A− νk)ψ = (Ik(q)− q)ϕk, ψ(0) = ψ(1) = 0,

the one with minimal L2(ω) norm. This will simplify some computations in131
the paper since it ensures orthogonality between observations of (generalized)132
eigenvectors.133

• Following [14], for any F ∈ L2(0, 1) and any C connected component of134
(0, 1)\ω we define an element of R2 as follows135

Mk(F,C) =



(∫
C
Fϕk

0

)
, if C touches the boundary of (0, 1)(∫

C
Fϕk∫

C
Fϕ̃k

)
, otherwise,

136

that we gather into a single collection defined by137

(1.8) Mk(F, ω) =
(
Mk(F,C)

)
C∈C

(
(0,1)\ω

),138

where C(U) stands for the set of all connected components of any U ⊂ [0, 1].139
We finally set140

(1.9) Mk(F, ω) = ‖Mk(F, ω)‖∞ = sup
{∣∣Mk(F,C)

∣∣
∞ ; C ∈ C

(
(0, 1)\ω

)}
.141
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1.2.2. About the cascade system (1.1).142
• Approximate controllability:143

By using the Fattorini-Hautus test (see [20]), it is proved in [14, Theorem144
3.2] that, if Supp(q)∩ω = ∅, approximate controllability of (1.1) holds if and145
only if146

(1.10) Mk(qϕk, ω) 6= 0, ∀k ≥ 1.147

Notice also that applying [14, Theorem 2.2] we obtain that148
� If Supp(q) ∩ ω 6= ∅, approximate controllability of (1.1) holds without149

any other condition.150
� If Supp(q) ∩ ω = ∅, the necessary and sufficient condition (1.10) for151

approximate controllability of (1.1) can be rewritten as152

(1.11) Mk ((Ik(q)− q)ϕk, ω) 6= 0, ∀k ≥ 1,153

where Ik(q) is introduced in (1.7). Rewriting the approximate control-154
lability condition as (1.11) is more coherent with the expression of the155
minimal null control time that we obtain below (see Section 2.2). The156
equivalence between conditions (1.10) and (1.11) is proved in Lemma 3.2157
(choosing there p = 0).158

• Null controllability under a sign assumption:159
If there exists ω0 ⊂ ω such that q has a strict sign inside ω0 then it follows160
from [21] that null controllability holds in any arbitrary small time. The proof161
is based on Carleman estimates.162

• Null controllability with disjoint control and coupling domains:163
System (1.1) was then studied in the case where A = −∂xx and ω = (a, b) is164
an interval such that Supp(q) ∩ ω = ∅.165
First, it was proved in [4] that if Supp(q) ⊂ (b, 1) then, approximate control-166
lability holds if and only if167

Ik(q) 6= 0, ∀k ≥ 1.168

This condition is just a rephrasing of (1.10). In this case the authors proved169
that the minimal null-control time T0,q for this system is given by170

T0,q = lim sup
k→+∞

− ln |Ik(q)|
νk

.171

Later on, it was proved in [5] that if Supp(q) is included in (0, a)∪ (b, 1), then172
approximate controllability holds if and only if173

|I1,k(q)|+ |I2,k(q)| 6= 0, ∀k ≥ 1,174

where175

(1.12) I1,k(q) =

∫ a

0

q(x)ϕ2
k(x)dx, I2,k(q) =

∫ 1

b

q(x)ϕ2
k(x)dx.176

In that situation, this condition is also a rephrasing of (1.10) and it was also177
proved in [5] that the minimal null-control time is178

(1.13) T0,q = lim sup
k→+∞

− lnmax {|Ik(q)|, |I1,k(q)|, |I2,k(q)|}
νk

.179
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Moreover, it is proved that for any τ0 ∈ [0,+∞] there exists a coupling180
function q ∈ L∞(0, 1) such that the corresponding minimal time is actually181
T0,q = τ0. Let us underline that these results are the first results exhibiting a182
positive minimal null control time for a system of coupled parabolic equations183
with a distributed control.184
The proofs of those results are based on the moment method since, due to185
the assumption Supp(q) ∩ ω = ∅, the strategy based on Carleman estimates186
is inefficient.187

1.2.3. About the system with a first-order coupling term.188
Null controllability of system (1.3) with a coupling term of order one has been189

studied in [11, 16, 18, 19]. Among other things, the author proves in [16] that, when190
approximate controllability holds, the minimal null-control time T0,q,p of system (1.3)191
when ω = (a, b) is an interval and A is the Dirichlet Laplace operator is given by192

T0,q,p = lim sup
k→+∞

− lnmax {|Ik (r)| , |I1,k (r)| , |I2,k (r)|}
νk

,193

where r = q − 1
2p

′. Note that the value of T0,q,p only depends on r and is equal to194
T0,r as defined in (1.13). As proved in Section 3.4.1, this feature is specific to the case195
where ω is an interval since in general T0,q,p really depend on both q and p, and not196
only on r.197

The proof given in [16] is also based on the moments method and follows that198
of [5]. More precisely, the analysis in this reference is reduced, thanks to well-suited199
manipulations, to the one of a scalar moment problem despite the fact that the control200
space is, by nature, infinite dimensional. Those computations are thus specific to the201
problem under study and makes use of the explicit formulas for the eigenfunctions of202
the 1D Laplace operator, which is not the case of our proof.203

In [18], the authors give a sufficient condition for null controllability for general204
parabolic systems in any dimension with first-order coupling terms. They deal with205
coefficients depending both on space and time but their analysis does not apply when206
p = 0 in ω. In [19], the same authors study the influence of the position of the207
control domain on controllability for one dimensional parabolic systems with first-208
order coupling terms. Their result can hardly be compared with our study since the209
two equations they consider are associated to different evolution operators.210

1.2.4. About the simultaneous control problem.211
To the best of our knowledge, the only available result in the literature concerning212

the controllability of (1.4) is the necessary and sufficient condition for approximate213
controllability given in [14, Theorem 3.2] that we recall now: approximate controlla-214
bility for system (1.4) holds if and only if, for any k ≥ 1,215

(1.14) Mk(q2ϕk, ω) and Mk(q3ϕk, ω) are linearly independent in (R2)
C
(
(0,1)\ω

)
,216

where the notation Mk is introduced in (1.8).217
This gave rise to unexpected geometric control conditions for this problem. For218

instance, if ω is an interval that does not touch the boundary of (0, 1), approximate219
controllability of system (1.4) never holds when Supp(q2) and Supp(q3) are located220
in the same connected component of (0, 1)\ω. However, if there are located in two221
distinct connected components then approximate controllability holds if and only if222
the two subsystems are approximately controllable (see [14, Section 3.4]).223

6
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1.3. Main results of this paper.224
First, we obtain the following characterization of the minimal null-control time225

for system (1.1).226

theorem 1.1. Let ω ⊂ (0, 1) be a non empty open set and let q ∈ L∞(0, 1).227
Assume that either Supp(q) ∩ ω 6= ∅ or that (1.11) holds. Then, the minimal null-228
control time for system (1.1) is given by229

T0,q = lim sup
k→+∞

− ln
(
Ik(q)

2‖ϕk‖2ω + ‖ψk,q‖2ω
)

2νk
.230

We recall that ψk,q is defined in (1.6) and Ik(q) is defined by (1.7).231
This theorem is proved in Section 2.1. It is valid without any geometric assump-232

tions on the control domain ω nor on the support of the coupling term q. In this233
respect, it unifies the different results obtained in the literature for the study of null234
controllability of system (1.1) recalled in Section 1.2.2. For example, even if it is not235
clear at first sight, we manage to prove, in Section 2.3, that the formula above reduces236
to T0,q = 0 when q has a strict sign on ω0 ⊂ ω as proved in [21].237

Theorem 1.1 will be obtained as a consequence of [13, Theorems 11, 14 and 18]238
where the minimal null control time issue is analyzed in an abstract general setting.239
It relies on a careful estimate of the cost of resolution for block moment problems240
associated to a general admissible control operator. With some additional work, based241
on the method developed in [1] to obtain spectral estimates for the eigenelements of242
A, we also obtain the following characterization of the minimal null control time in243
the case where Supp(q) ∩ ω = ∅.244

theorem 1.2. Let ω ⊂ (0, 1) be a non empty open set with a finite number of245
connected components. Let q ∈ L∞(0, 1) be such that Supp(q) ∩ ω = ∅. Assume246
that (1.11) holds. Then, the minimal null-control time for system (1.1) is given by247

T0,q = lim sup
k→+∞

− lnMk

(
(Ik(q)− q)ϕk, ω

)
νk

248

where Mk is defined by (1.9).249

The proof is given in Section 2.2. Compared to the one in Theorem 1.1, the expression250
for T0,q above is more convenient to deal with since it does not involve the function251
ψk,q. As we shall prove in Section 2.3, this formula is a natural extension of the ones252
obtained in the literature in some particular cases. However it holds true in more253
general situations, so that we are able to compute T0,q in cases that were not covered254
in the literature (see Proposition 2.5 as an example).255

This theorem also extends the previous works in the field by considering for A a256
general Sturm-Liouville operator (and not only the Dirichlet-Laplace operator) since257
it does not make use of the explicit expressions of its eigenvalues and eigenfunctions.258

Remark 1.1. Notice that the assumption Supp(q) ∩ ω = ∅ is necessary for this259
theorem to be true. For instance, if q = 1 and ω is an interval then, from [21], null260
controllability holds in any time T > 0 whereas we have Ik(q)− q = 0 for any k ≥ 1.261

However, this is not restrictive for our study since it is well-known that when262
Supp(q) ∩ ω 6= ∅, the system is indeed null-controllable at every time T > 0 (see for263
instance [21]).264

The tools used to prove Theorems 1.1 and 1.2 allow for a similar analysis for265
system (1.3). The corresponding results are stated in Section 3.266

7
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We now turn to the simultaneous controllability problem (1.4). For q2, q3 ∈267
L∞(0, 1), we set q = (q2, q3) and denote by T0,q the minimal null control time for268
system (1.4) in (L2(0, 1))3. Since simultaneous null controllability at a given time269
implies null controllability at the same time for both subsystems (1.1) with q = q2270
and q = q3 it directly comes that271

(1.15) T0,q ≥ max(T0,q2 , T0,q3).272

Actually, by linearity of the system, simultaneous null controllability at a given273
time implies null controllability at the same time for system (1.1) with any q in274
Span(q2, q3)\{0} that is275

(1.16) T0,q ≥ sup
q∈Span(q2,q3)

q 6=0

T0,q.276

We give below general characterizations of T0,q similar to those obtained in Theo-277
rems 1.1 and 1.2 for system (1.1) and give, in Section 4.4, an explicit example of278
system (1.4) for which the inequality in (1.16) is strict.279

In order to state the results, it will be convenient to use some extra notation. For280
any q ∈ L∞(0, 1), we set281

(1.17) ζk,q = ψk,q + Ik(q)ϕk,282

where ψk,q was introduced in (1.6), and283

(1.18) ϑk,q =
(
Ik(q)− q

)
ϕk.284

The formulas obtained in Theorems 1.1 and 1.2 for the minimal null-control time of285
system (1.1) can now be rephrased respectively as follows286

T0,q = lim sup
k→+∞

− ln ‖ζk,q‖ω
νk

287

and288

T0,q = lim sup
k→+∞

− lnMk

(
ϑk,q, ω

)
νk

.289

We shall generalize those expressions for system (1.4) as follows.290

theorem 1.3. Let ω ⊂ (0, 1) be a non empty open set and let q2, q3 ∈ L∞(0, 1).291
Assume that (1.14) holds. Then, the minimal null control time T0,q for system (1.4)292
in (L2(0, 1))3 is given by293

T0,q = lim sup
k→+∞

1

2νk
ln

max
(
‖ζk,q2‖

2
ω , ‖ζk,q3‖

2
ω

)
‖ζk,q2‖

2
ω ‖ζk,q3‖

2
ω − 〈ζk,q2 , ζk,q3〉

2
ω

.294

This theorem is proved in Section 4.2. Though it is not obvious at first sight,295
we will show in the proof of Proposition 4.3 that the approximate controllability296
assumption (1.14) actually implies that297

‖ζk,q2‖
2
ω ‖ζk,q3‖

2
ω − 〈ζk,q2 , ζk,q3〉

2
ω > 0, ∀k ≥ 1298

and thus the formula defining T0,q is well-defined. Since for any k ≥ 1 we clearly have299

‖ζk,q2‖
2
ω ‖ζk,q3‖

2
ω − 〈ζk,q2 , ζk,q3〉

2
ω ≤ ‖ζk,q2‖

2
ω ‖ζk,q3‖

2
ω ,300

8
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we immediately see, by Theorem 1.1, that this formula is compatible with the expected301
property (1.15).302

Notice that, when
(
Supp(q2) ∪ Supp(q3)

)
∩ ω = ∅, we have303

Ik(qj) =
∑

C∈C
(
(0,1)\ω

)
∫
C

qjϕ
2
k, ∀j ∈ {1, 2}.304

Hence, it comes that the approximate controllability condition (1.14) is equivalent in305
that case to the condition306

(1.19) Mk

(
ϑk,q2 , ω

)
and Mk

(
ϑk,q3 , ω

)
are linearly independent307

where ϑk,q2 and ϑk,q3 are defined by (1.18).308

theorem 1.4. Let ω ⊂ (0, 1) be a non empty open set with a finite number of309
connected components. Let q2, q3 ∈ L∞(0, 1) be such that310 (

Supp(q2) ∪ Supp(q3)
)
∩ ω = ∅.311

Assume that (1.19) holds. Then, the minimal null control time for system (1.4) in312
(L2(0, 1))3 is given by313

T0,q = lim sup
k→+∞

− ln min
q∈S[q]

Mk

(
ϑk,q, ω

)
νk

314

where Mk is defined by (1.9), ϑk,q is defined by (1.18) and

S[q] = {q ∈ Span(q2, q3), ‖q‖∞ = 1} .

This theorem is proved in Section 4.3. Notice that, by compactness of S[q], the315
min appearing in this formula is actually achieved and moreover, since the approxi-316
mate controllability condition (1.19) implies that317

Mk

(
ϑk,q, ω

)
6= 0, ∀q ∈ S[q],318

we know that this min is positive. Thus, the formula for T0,q in the above theorem is319
well defined.320

This formulation is more convenient to deal with than the one of Theorem 1.3 on
actual systems. For instance, with this formulation, we prove that the minimal null
control time is not related to the minimal null control times of the subsystems. Indeed,
in Section 4.4, for any τ0 ∈ [0,+∞], we design a couple of functions q = (q2, q3) such
that T0,q = τ0 and

sup
q∈S[q]

T0,q = sup
q∈Span(q2,q3)

q 6=0

T0,q = 0

which proves that the inequality in (1.16) can be strict.321

1.4. Outline of the article.322
Section 2 is dedicated to the proof of the two formulations of the minimal null323

control time for system (1.1) stated in Theorems 1.1 and 1.2.324
In Section 2.3, we give some applications of the obtained formulas: we prove that325

they encompass previously known results and let us get precise results in more general326
new configurations.327
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Section 3 is dedicated to the analysis of system (1.3). We show that taking into328
account first-order coupling terms in our methodology is relatively straightforward,329
compared to the original proofs in [16].330

In Section 4, we determine the minimal null control time for the simultaneous331
controllability problem (1.4) as stated in Theorems 1.3 and 1.4.332

Finally, we have gathered in Appendix A some spectral properties of Sturm-333
Liouville operators that are used all along this article.334

2. A system with a space varying zero order coupling term.335
In this section we prove the characterizations of the minimal null control time336

for system (1.1). We prove Theorem 1.1 in Section 2.1 as an application of the337
results of [13]. Then, analyzing the behaviour of the spectral quantities arising in338
Theorem 1.1, we prove Theorem 1.2 in Section 2.2.339

2.1. A first formula for the minimal time.340
First, let us check that our system (1.1) fits in the formalism of [13]. There, we341

considered abstract control problems of the form342 {
y′(t) +Ay(t) = Bu(t),
y(0) = y0.

343

Thus, for system (1.1), the evolution operator A is defined by344

A =

(
A 0
q A

)
, D(A) = D(A)2345

and the control operator B is defined by346

B : u ∈ U = L2(0, 1) 7→
(
1ωu
0

)
.347

In [13] the results involve a Gelfand triple of Hilbert spaces X∗
� ⊂ X ⊂ X−� in348

order to deal with possibly unbounded control operators. In the present article we349
only consider distributed control operators which implies that there are no particular350
subtleties on the functional framework and we shall set here X−� = X∗

� = X =351
L2(0, 1;R)2 (see [13, Section 2.1.1]). This implies the wellposedness of system (1.1)352
in the sense of [13, Proposition 2].353

Thus, to use the characterizations of the minimal null control time obtained in [13]354
we shall prove that the operators A and B satisfy the assumption (H) defined in [13,355
Section 2.1.2]. Roughly speaking this assumption states that the operator A∗ admits356
a complete family of generalized eigenvectors which are observable (i.e. not in the357
kernel of B∗). It also requires that the associated family of eigenvalues, each of358
them having finite geometric multiplicity and globally bounded algebraic multiplicity,359
satisfies a weak-gap assumption (i.e. they can be gathered in well separated blocks of360
bounded diameter and cardinality) and appropriate estimates on its counting function361
(see (A.4) and (A.5)).362

• Let us detail the spectral analysis of the operator A∗.363
Its spectrum is given by Λ = (νk)k≥1. Recall that Ik(q) is defined by (1.7) and364

ψk,q is defined by (1.6). We distinguish the following cases.365
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? If Ik(q) 6= 0 then νk is algebraically double and geometrically simple. A Jordan366
chain is given by367

(2.1) φ0k =

(
ϕk

0

)
, φ1k =

1

Ik(q)

(
ψk,q

ϕk

)
.368

? If Ik(q) = 0 then νk is geometrically double and a basis of eigenvectors is given369
by370

(2.2) φ0k,1 =

(
ϕk

0

)
, φ0k,2 =

(
ψk,q

ϕk

)
.371

• Properties of eigenvalues.372
The eigenvalues of A∗ are real and, due to the assumption c ≥ 0 they satisfy373

νk > 0.374
From (A.1), these eigenvalues satisfy a gap condition with parameter % and thus375

a grouping in the sense of [13, Proposition 6] is given by Gk = {νk}.376
The associated counting function N satisfies (A.4) and (A.5).377
Gathering all these properties, we have that the sequence of eigenvalues of A∗378

satisfies379

Λ ∈ Lw

(
1, %, 0,

1

2
, κ

)
380

as defined in [13, Section 2.1.2].381

• Properties of eigenvectors.382
The eigenvalue νk is either geometrically simple and algebraically double or semi-383

simple with geometric multiplicity 2. Due to the expressions (2.1) and (2.2) we obtain384
that the family of (generalized) eigenvectors of A∗ forms a complete family in X.385

As stated in Section 1.2, the approximate controllability assumption386

Ker(A∗ − λ) ∩KerB∗ = {0}, ∀λ ∈ Λ387

follows from (1.11) and [14, Theorem 2.2].388
Thus, the operators A and B satisfy the assumption (H) stated in [13, Section389

2.1.2].390

Proof (of Theorem 1.1). From [13, Theorem 11], for any y0 ∈ X the minimal null391
control time from y0 is given by392

T0,q(y0) = lim sup
k→+∞

ln+ C(Gk, y0)

2νk
393

where ln+ s = max(0, ln s), for any s ≥ 0 and the cost of the k-th block is given by394

C(Gk, y0) = inf
{∥∥Ω0

∥∥2
U
+
∥∥Ω1

∥∥2
U

; Ω0,Ω1 ∈ U with
〈
Ω0,B∗φ0k

〉
U
=
〈
y0, φ

0
k

〉
X

395

and
〈
Ω0,B∗φ1k

〉
U
+
〈
Ω1,B∗φ0k

〉
U
=
〈
y0, φ

1
k

〉
X

}
396
397

if Ik(q) 6= 0 and398

C(Gk, y0) = inf
{
‖Ω‖2U ; Ω ∈ U with

〈
Ω,B∗φ0k,j

〉
U
=
〈
y0, φ

0
k,j

〉
X

for j ∈ {1, 2}
}

399
400
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if Ik(q) = 0.401
To compute C(Gk, y0) we distinguish the two cases.402
? Assume that Ik(q) 6= 0. Then, from [13, Theorem 14], it comes that403

C(Gk, y0) =
〈
M−1ξ, ξ

〉
404

where405

M = Gram
(
B∗φ0k,B∗φ1k

)
+Gram

(
0,B∗φ0k

)
=

(
‖ϕk‖2ω 0

0 ‖ϕk‖2ω + 1
Ik(q)2

‖ψk,q‖2ω

)
406

and407

ξ =

(〈
y0, φ

0
k

〉
X〈

y0, φ
1
k

〉
X

)
.408

Thus,409

C(Gk, y0) =
1

‖ϕk‖2ω

〈
y0,

(
ϕk

0

)〉2

X

+
1

Ik(q)2‖ϕk‖2ω + ‖ψk,q‖2ω

〈
y0,

(
ψk,q

ϕk

)〉2

X

.410

? Assume that Ik(q) = 0. Then, from [13, Theorem 18], it comes that411

C(Gk, y0) =
〈
M−1ξ, ξ

〉
412

where413

M = Gram
(
B∗φ0k,1,B∗φ0k,2

)
=

(
‖ϕk‖2ω 0

0 ‖ψk,q‖2ω

)
414

and415

ξ =

(
〈y0, φk,1〉X
〈y0, φk,2〉X

)
.416

Thus,417

C(Gk, y0) =
1

‖ϕk‖2ω

〈
y0,

(
ϕk

0

)〉2

X

+
1

‖ψk,q‖2ω

〈
y0,

(
ψk,q

ϕk

)〉2

X

.418

Finally, in both cases, the cost corresponding to the group Gk is given by419

(2.3) C(Gk, y0) =
1

‖ϕk‖2ω

〈
y0,

(
ϕk

0

)〉2

X

+
1

Ik(q)2‖ϕk‖2ω + ‖ψk,q‖2ω

〈
y0,

(
ψk,q

ϕk

)〉2

X

.420

We now evaluate the different contributions of the terms in the right-hand side of421
(2.3).422

Recall that ‖ϕk‖(0,1) = 1, that (ψk,q)k is bounded thanks to Lemma A.2, and423
that, from (A.3), we have424

‖ϕk‖ω ≥ C > 0, ∀k ≥ 1.425

Thus, getting back to (2.3), we obtain that426

C(Gk, y0) ≤ C ‖y0‖2X

(
1 +

1

Ik(q)2‖ϕk‖2ω + ‖ψk,q‖2ω

)
, ∀k ≥ 1, ∀y0 ∈ X,427
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which proves that428

T0,q(y0) ≤ lim sup
k→+∞

− ln
(
Ik(q)

2‖ϕk‖2ω + ‖ψk,q‖2ω
)

2νk
.429

This estimate holds for every y0, which gives the upper bound for T0,q.430
To prove the converse inequality let us choose431

y0 =
∑
k≥1

1

νk

(
0
ϕk

)
,432

which is indeed a converging series in X. From (2.3) we obtain that for this particular433
choice of y0,434

C(Gk, y0) =
1

ν2k

1

Ik(q)2‖ϕk‖2ω + ‖ψk,q‖2ω
, ∀k ≥ 1.435

Thus,436

T0,q ≥ T0,q(y0) = lim sup
k→+∞

− ln
(
Ik(q)

2‖ϕk‖2ω + ‖ψk,q‖2ω
)

2νk
.437

This ends the proof of Theorem 1.1.438

2.2. A second formula for the minimal time with disjoint control and439
coupling domains.440

The minimal null control time has been characterized in Theorem 1.1. Thus, the441
proof of Theorem 1.2 consists in comparing the asymptotic behaviors of442

Mk

(
(Ik(q)− q)ϕk, ω

)
443

and444
Ik(q)

2‖ϕk‖2ω + ‖ψk,q‖2ω.445

To do so we will use the following result whose proof is postponed to the end of the446
section, to improve the readability.447

proposition 2.1. Let ω ⊂ (0, 1) be a non empty open set with a finite number of448
connected components.449

i. There exists K ∈ N∗ and C > 0 such that for any k ≥ K, any F ∈ L2(0, 1)450
and any u satisfying the differential equation451

(A− νk)u = F,452

we have453

Mk(F, ω) ≤ C
(√

νk‖u‖ω +
√
νk (|u(0)|+ |u(1)|) + ‖F‖ω

)
.454

ii. There exists K ∈ N∗ and C > 0 such that for any k ≥ K and any F ∈ L2(0, 1)455

such that
∫ 1

0

F (x)ϕk(x)dx = 0, there exists u satisfying the boundary value456

problem457 {
(A− νk)u = F,

u(0) = u(1) = 0,
458

as well as the estimate459
√
νk‖u‖ω ≤ C (Mk(F, ω) + ‖F‖ω) .460
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We now turn to the proof of Theorem 1.2.461

Proof (of Theorem 1.2). Recall that, from Theorem 1.1,462

T0,q = lim sup
k→+∞

− ln
(
Ik(q)

2‖ϕk‖2ω + ‖ψk,q‖2ω
)

2νk
.463

By (1.6), we can apply point i. of Proposition 2.1 to u = ψk,q and F = (Ik(q)− q)ϕk464
to get, for k ≥ K,465

Mk ((Ik(q)− q)ϕk, ω)
2 ≤ C

(
νk‖ψk,q‖2ω + ‖(Ik(q)− q)ϕk‖2ω

)
466

≤ Cνk
(
‖ψk,q‖2ω + Ik(q)

2‖ϕk‖2ω
)
,467468

since Supp(q) ∩ ω = ∅. Thus,469

T0,q ≤ lim sup
k→+∞

− lnMk

(
(Ik(q)− q)ϕk, ω

)
νk

.470

We now prove the converse inequality. For k large enough, let u be the function given471
by the point ii. of Proposition 2.1 with F =

(
Ik(q) − q

)
ϕk (which, by definition of472

Ik(q), satisfies
∫ 1

0
F (x)ϕk(x) dx = 0). We observe that there exists α ∈ R such that we473

can write u = ψk,q +αϕk. Recall that we have imposed in (1.6), that 〈ϕk, ψk,q〉ω = 0,474
so that we have ‖ψk,q‖ω ≤ ‖u‖ω. Thus, using the estimate given by point ii. of475
Proposition 2.1 and the assumption Supp(q)∩ω = ∅, we obtain that, for any k ≥ K,476

(2.4) νk‖ψk,q‖2ω ≤ C
(
Mk(F, ω)

2 + ‖F‖2ω
)
≤ C

(
Mk(F, ω)

2 + Ik(q)
2‖ϕk‖2ω

)
.477

We denote by C1, . . . ,CN the connected components of (0, 1)\ω. As Supp(q)∩ω = ∅,478
notice that479

N∑
j=1

∫
Cj

F (x)ϕk(x)dx = Ik(q)

N∑
j=1

∫
Cj

ϕ2
k(x)dx−

N∑
j=1

∫
Cj

q(x)ϕ2
k(x)dx480

= Ik(q)
(
1− ‖ϕk‖2ω

)
− Ik(q)481

= −Ik(q)‖ϕk‖2ω.482483

Thus, from (A.3) we deduce that484

|Ik(q)| ‖ϕk‖ω ≤ CMk(F, ω).485

Plugging this inequality into (2.4) we obtain486

‖ψk,q‖2ω + Ik(q)
2‖ϕk‖2ω ≤ CMk(F, ω)

2.487

This implies that488

T0,q ≥ lim sup
k→+∞

− lnMk

(
(Ik(q)− q)ϕk, ω

)
νk

489

and ends the proof of Theorem 1.2.490

To conclude this section, it remains to prove Proposition 2.1. To do so, we start491
with the following result that comes from Lemma A.1.492
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Lemma 2.2. Let A be the Sturm-Liouville operator defined by (1.2) and let λ0 > 0.493
There exists C > 0 depending on γ, c and λ0 such that, for any λ ≥ λ0, for any494
F ∈ L2(0, 1), for any 0 < a < b < 1, for any u satisfying495

(A− λ)u = F on [a, b],496

and for any x ∈ [a, b], we have497

|u(x)|2 + γ(x)

λ
|u′(x)|2 ≤ C

b− a

(
1 +

1

λ(b− a)2

)
‖u‖2(a,b) + C

(b− a)

λ
‖F‖2(a,b).498

Proof. Let χ0 ∈ C∞(R;R) be a cut-off function such that 0 ≤ χ0 ≤ 1 and499
• χ0(x) = 1 for every x ∈ [1/4, 3/4],500
• χ0(x) = 0 for every x 6∈ (0, 1).501

We then set

χ(x) = χ0

(
x− a

b− a

)
,

in such a way that, if we set α = a+ b−a
4 and β = b− b−a

4 , we have502
• χ(x) = 1 for every x ∈ [α, β],503
• χ(x) = 0 for every x 6∈ (a, b).504

Let C1 > 0 be the constant given by Lemma A.1 and assume that λ ≥ λ0.505
Let x ∈ [a, b]. We apply Lemma A.1 to obtain for any y ∈ (a, b)506 (

|u(x)|2 + γ(x)

λ
|u′(x)|2

)
≤ C1

(
|u(y)|2 + γ(y)

λ
|u′(y)|2 + b− a

λ
‖F‖2(a,b)

)
.507

Integrating in the variable y ∈ (α, β) gives508

(2.5)

b− a

2

(
|u(x)|2 + γ(x)

λ
|u′(x)|2

)
≤ C1

(
‖u‖2(a,b) +

(b− a)2

2λ
‖F‖2(a,b)

)
+
C1

λ

∫ β

α

γ(y)|u′(y)|2dy.
509

Then integrating by parts, using (A− λ)u = 0 and Cauchy-Schwarz inequality yield510

1

λ

∫ β

α

γ(y)|u′(y)|2dy ≤ 1

λ

∫ b

a

χ(y)γ(y)|u′(y)|2dy511

= − 1

λ

∫ b

a

χ′(y)(γu′)(y)u(y)dy +
1

λ

∫ b

a

χ(y) (λ− c(y)) |u(y)|2dy512

≤
‖χ′‖L∞ ‖√γ‖L∞

λ
‖√γu′‖(a,b)‖u‖(a,b)513

+

∫ b

a

χ(y)

∣∣∣∣1− c(y)

λ

∣∣∣∣ |u(y)|2dy514

≤
(

1√
λ
‖√γu′‖(a,b)

)(
‖χ′‖L∞ ‖√γ‖L∞

√
λ

‖u‖(a,b)
)

515

+

(
1 +

‖c‖L∞

λ0

)
‖u‖2(a,b).516

517

15

This manuscript is for review purposes only.



Thus, for any C > 0,518

1

λ

∫ β

α

γ(y)|u′(y)|2dy ≤

(
1 +

‖c‖L∞

λ0
+

‖√γ‖2L∞

4C

‖χ′‖2L∞

λ

)
‖u‖2(a,b)519

+
C

λ
‖√γu′‖2(a,b).520

521

Plugging it into estimate (2.5) and using that ‖χ′‖L∞ = ‖χ′
0‖L∞ (b− a)−1, we obtain522

(2.6)
b− a

2

(
|u(x)|2 + γ(x)

λ
|u′(x)|2

)
≤ C1

(
2 +

‖c‖L∞

λ0
+

‖√γ‖2L∞ ‖χ′
0‖

2
L∞

4C

1

λ(b− a)2

)
‖u‖2(a,b)

+
C1(b− a)2

2λ
‖F‖2(a,b) +

C1C

λ
‖√γu′‖2(a,b).

523

Applying again Lemma A.1 gives that, for any y ∈ (a, b),524

γ(y)

λ
|u′(y)|2 ≤ C1

(
|u(x)|2 + γ(x)

λ
|u′(x)|2

)
+ C1

b− a

λ
‖F‖2(a,b).525

Integrating in the variable y ∈ (a, b) and setting C = 1
4C2

1
, we obtain526

C1C

λ
‖√γu′‖2(a,b) ≤ C2

1C(b− a)

(
|u(x)|2 + γ(x)

λ
|u′(x)|2

)
+
C2

1C

λ
(b− a)2‖F‖2(a,b)527

≤ b− a

4

(
|u(x)|2 + γ(x)

λ
|u′(x)|2

)
+

1

4

(b− a)2

λ
‖F‖2(a,b).528

529

Plugging it into (2.6) ends the proof of Lemma 2.2.530

We now have all the ingredients to prove Proposition 2.1.531

Proof (of Proposition 2.1). We denote by ω1, . . . , ωN the connected components532
of ω labeled such that533

supωj ≤ inf ωj+1, ∀j ∈ J1, N − 1K.534

Let535

(2.7) λ0 = max
j∈J1,NK

1

|ωj |2
536

and, let K > 0 be such that537

k ≥ K =⇒ νk ≥ λ0.538

We start with the proof of item i.539
Let C = [a, b] be a connected component of (0, 1)\ω. Integrating by parts we540

obtain541 ∫
C

F (x)ϕk(x)dx = −(γu′ϕk)(b) + (γu′ϕk)(a) + (uγϕ′
k)(b)− (uγϕ′

k)(a).542

Recall that from (A.6),543

|ϕk(x)|+
1

√
νk

|ϕ′
k(x)| ≤ C, ∀x ∈ (0, 1), ∀k ≥ 1.544
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Similarly, applying Lemma A.1 with y = 0 we obtain545

(2.8) |ϕ̃k(x)|+
1

√
νk

|ϕ̃′
k(x)| ≤ C, ∀x ∈ (0, 1), ∀k ≥ 1.546

Thus,547

1
√
νk

∣∣∣∣∫
C

F (x)ϕk(x)dx

∣∣∣∣ ≤ C

(
|u(a)|+

√
γ(a)
√
νk

|u′(a)|

)
+ C

(
|u(b)|+

√
γ(b)

√
νk

|u′(b)|

)
.548

• If C∩ {0, 1} = ∅, then there exists j ∈ J2, NK such that a ∈ ωj−1 and b ∈ ωj .549
Applying twice Lemma 2.2 (recall that λ0 is defined by (2.7)) we obtain550

|u(a)|+
√
γ(a)
√
νk

|u′(a)| ≤ C

(
‖u‖ωj−1

+
1

√
νk

‖F‖ωj−1

)
,551

and552

|u(b)|+
√
γ(b)

√
νk

|u′(b)| ≤ C

(
‖u‖ωj +

1
√
νk

‖F‖ωj

)
553

where C now also depends on ω. This implies554 ∣∣∣∣∫
C

F (x)ϕk(x)dx

∣∣∣∣ ≤ C (
√
νk‖u‖ω + ‖F‖ω) .555

The same computations hold for
∣∣∫

C
F (x)ϕ̃k(x)dx

∣∣.556
• Now, if a = 0, taking into account the boundary condition ϕk(a) = 0, the557

same computations yields558

1
√
νk

∣∣∣∣∫
C

F (x)ϕk(x)dx

∣∣∣∣ ≤ C|u(0)|+ C

(
|u(b)|+

√
γ(b)

√
νk

|u′(b)|

)
.559

As b ∈ ω, applying Lemma 2.2 (recall that λ0 is defined by (2.7)) we obtain560

|u(b)|+
√
γ(b)

√
νk

|u′(b)| ≤ C

(
‖u‖ω +

1
√
νk

‖F‖ω
)

561

where C now also depends on ω. This implies562 ∣∣∣∣∫
C

F (x)ϕk(x)dx

∣∣∣∣ ≤ C
(√
νk‖u‖ω +

√
νk|u(0)|+ ‖F‖ω

)
.563

• Similarly, if b = 1, we prove that564 ∣∣∣∣∫
C

F (x)ϕk(x)dx

∣∣∣∣ ≤ C
(√
νk‖u‖ω +

√
νk|u(1)|+ ‖F‖ω

)
.565

Gathering these results proves item i.566
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We now turn to the proof of item ii.567
• We start designing u a solution of568 {

(A− νk)u = F,

u(0) = u(1) = 0,
569

such that570

(2.9) |u(x)|+
√
γ(x)
√
νk

|u′(x)| ≤ C
√
νk

(Mk(F, ω) + ‖F‖ω1) , ∀x ∈ ω1.571

To this end let us take any solution u of572 {
(A− νk)u = F,

u(0) = u(1) = 0.
573

Such a solution exists since
∫ 1

0
F (x)ϕk(x)dx = 0.574

If 0 6∈ ω1 we set b = inf ω1 whereas if 0 ∈ ω1 we set b ∈ ω1. Notice that in575
both cases576 ∫ b

0

F (x)ϕk(x)dx = u(b)γ(b)ϕ′
k(b)− γ(b)u′(b)ϕk(b).577

Applying Lemma A.1 with y = b, integrating with respect to the variable578
x ∈ (0, 1) and using ‖ϕk‖(0,1) = 1 we obtain that there exists C > 0 such579
that580

|ϕk(b)|+
√
γ(b)

√
νk

|ϕ′
k(b)| ≥ C.581

– If |ϕk(b)| ≥ C
2 , we set u = u− u(b)

ϕk(b)
ϕk.582

Thus, we have u(b) = 0 which implies583

√
γ(b)u′(b) =

−1√
γ(b)ϕk(b)

∫ b

0

F (x)ϕk(x)dx.584

Thus,585

(2.10) |u(b)|+
√
γ(b)

√
νk

|u′(b)| ≤ C
√
νk

∣∣∣∣∣
∫ b

0

F (x)ϕk(x)dx

∣∣∣∣∣ .586

– Otherwise, we have
√

γ(b)√
νk

|ϕ′
k(b)| ≥ C

2 . Setting u = u − u′(b)
ϕ′

k(b)
ϕk, the587

same computations also imply (2.10).588

We now prove that (2.10) implies (2.9).589
As b ∈ ω1, applying Lemma A.1 and (2.10) we obtain for any x ∈ ω1,590

|u(x)|+
√
γ(x)
√
νk

|u′(x)| ≤ C

(
|u(b)|+

√
γ(b)

√
νk

|u′(b)|+ 1
√
νk

‖F‖ω1

)
591

≤ C
√
νk

(∣∣∣∣∣
∫ b

0

F (x)ϕk(x)dx

∣∣∣∣∣+ ‖F‖ω1

)
.592

593
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– Assume first that 0 6∈ ω1 and recall that b = inf ω1. Then, by definition594
of Mk(F, ω) (see (1.9)), we have595 ∣∣∣∣∣

∫ b

0

F (x)ϕk(x)dx

∣∣∣∣∣ ≤ Mk(F, ω).596

Thus, for any x ∈ ω1,597

|u(x)|+
√
γ(x)
√
νk

|u′(x)| ≤ C
√
νk

(
Mk(F, ω) + ‖F‖ω1

)
.598

– Otherwise, 0 ∈ ω1 and we have set b ∈ ω1. Then, since (0, b) ⊂ ω1 and599
‖ϕk‖(0,1) = 1, we have600 ∣∣∣∣∣

∫ b

0

F (x)ϕk(x)dx

∣∣∣∣∣ ≤ ‖F‖ω1 .601

Thus, for any x ∈ ω1,602

|u(x)|+
√
γ(x)
√
νk

|u′(x)| ≤ C
√
νk

‖F‖ω1
.603

Gathering these two cases proves (2.9).604
• We prove by induction that the function u designed at the previous step605

satisfies606

(2.11) |u(x)|+
√
γ(x)
√
νk

|u′(x)| ≤ C
√
νk

(
Mk(F, ω) + ‖F‖ω

)
, ∀x ∈ ωj .607

The case j = 1 is exactly (2.9) that was proved in the previous step. Let608
j ∈ J2, NK be such that609

|u(x)|+
√
γ(x)
√
νk

|u′(x)| ≤ C
√
νk

(
Mk(F, ω) + ‖F‖ω

)
, ∀x ∈ ωj−1.610

Let aj = supωj−1 and bj = inf ωj . Integrating by parts we obtain611

1
√
νk

∫ bj

aj

F (x)ϕk(x)dx = u(bj)
γ(bj)ϕ

′
k(bj)√
νk

− γ(bj)u
′(bj)√
νk

ϕk(bj)612

− u(aj)
γ(aj)ϕ

′
k(aj)√
νk

+
γ(aj)u

′(aj)√
νk

ϕk(aj).613
614

The same computations hold replacing ϕk by ϕ̃k. Using the notation in615
Appendix A, this can be rewritten in matrix form as616

(2.12)
Wk(bj)

(
u(bj)

γ(bj)u
′(bj)√

νk

)
=

(
1√
νk

∫ bj
aj
F (x)ϕk(x)dx

1√
νk

∫ bj
aj
F (x)ϕ̃k(x)dx

)

+Wk(aj)

(
u(aj)

γ(aj)u
′(aj)√

νk

)
.

617
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Using Lemma A.3 and the definition of Mk(F, ω) (see (1.9)), we deduce that618

|u(bj)|+
√
γ(bj)√
νk

|u′(bj)| ≤
C

√
νk

Mk(F, ω) + C|u(aj)|+ C

√
γ(aj)√
νk

|u′(aj)|.619

As aj ∈ ωj−1 the induction hypothesis imply620

|u(aj)|+
√
γ(aj)√
νk

|u′(aj)| ≤
C

√
νk

(
Mk(F, ω) + ‖F‖ω

)
621

and thus we conclude that622

|u(bj)|+
√
γ(bj)√
νk

|u′(bj)| ≤
C

√
νk

(Mk(F, ω) + ‖F‖ω) .623

As bj ∈ ωj , applying Lemma A.1 we obtain for any x ∈ ωj624

|u(x)|+
√
γ(x)
√
νk

|u′(x)| ≤ C

(
|u(bj)|+

√
γ(bj)√
νk

|u′(bj)|+
1

√
νk

‖F‖ωj

)
625

≤ C
√
νk

(
Mk(F, ω) + ‖F‖ω

)
.626

627

This proves (2.11).628
• Conclusion : from (2.11) we obtain629

|u(x)| ≤ C
√
νk

(
Mk(F, ω) + ‖F‖ω

)
, ∀x ∈ ωj , ∀j ∈ J1, NK.630

This leads to631

‖u‖ωj ≤ C
√
νk

(
Mk(F, ω) + ‖F‖ω

)
, ∀j ∈ J1, NK632

with a new value of C and ends the proof of item ii.633

2.3. Application of the minimal null control time formulas.634
In this section we apply the characterizations of the minimal null control time635

obtained in Theorems 1.1 and 1.2 to different specific configurations.636
In Section 2.3.1, we recover previous characterizations of the minimal null control637

time proved in [4, 5] when ω is an interval. Note however that in the above references,638
explicit computations of eigenelements when A is the Laplace Dirichlet operator are639
used. Our analysis does not make use of such computations and thus extend those640
results to any Sturm-Liouville operator as defined in (1.2).641

In Section 2.3.2, we recover null controllability in arbitrary time when q has a642
strict sign on a part of ω as proved in [21].643

Finally, in Section 2.3.3 we prove a new null controllability result for an explicit644
q when ω is the union of two intervals.645
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2.3.1. Unification of previous formulas for the minimal null control646
time.647

Let us prove that the obtained results unifies previous characterizations given in648
the literature and stated in Section 1.2.649

• Let us consider the setting studied in [4] i.e., ω = (a, b) and Supp(q) ⊂ (b, 1).650
In this case, (0, 1)\ω has at most two connected components both touching the651

boundary of (0, 1). Thus, setting652

F = (Ik(q)− q)ϕk653

we obtain654

Mk

(
F, ω

)
= max

{∣∣∣∣∫ a

0

F (x)ϕk(x)dx

∣∣∣∣ , ∣∣∣∣∫ 1

b

F (x)ϕk(x)dx

∣∣∣∣} .655

Using the assumption Supp(q) ⊂ (b, 1) we get656 ∣∣∣∣∫ a

0

F (x)ϕk(x)dx

∣∣∣∣ = |Ik(q)|
∫ a

0

ϕ2
k(x)dx,657

and658 ∣∣∣∣∫ 1

b

F (x)ϕk(x)dx

∣∣∣∣ = ∣∣∣∣Ik(q)∫ 1

b

ϕ2
k(x)dx− Ik(q)

∣∣∣∣ = |Ik(q)|
∫ b

0

ϕ2
k(x)dx.659

660

This gives661

Mk

(
F, ω

)
= |Ik(q)|

∫ b

0

ϕ2
k(x)dx.662

Recall that from (A.3)663

inf
k≥1

∫ b

0

ϕ2
k(x)dx > 0.664

This implies that approximate controllability holds if and only if665

Ik(q) 6= 0, ∀k ≥ 1,666

and in this case that667

T0,q = lim sup
k→+∞

− ln |Ik(q)|
νk

.668

Thus we have extended the result proved in [4] for the Dirichlet-Laplace operator to669
a general Sturm-Liouville operator.670

• Let us now consider the setting studied in [5] i.e., ω = (a, b) and Supp(q)∩ω = ∅.671
Again, setting672

F = (Ik(q)− q)ϕk673

we obtain674

Mk

(
F, ω

)
= max

{∣∣∣∣∫ a

0

F (x)ϕk(x)dx

∣∣∣∣ , ∣∣∣∣∫ 1

b

F (x)ϕk(x)dx

∣∣∣∣} .675

Using the notations introduced in (1.12) we have676

(2.13)
∫ a

0

F (x)ϕk(x)dx = Ik(q)

∫ a

0

ϕ2
k(x)dx− I1,k(q)677
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and678

(2.14)
∫ 1

b

F (x)ϕk(x)dx = Ik(q)

∫ 1

b

ϕ2
k(x)dx− I2,k(q).679

Thus,680
Mk

(
F, ω

)
≤ 2max {|Ik(q)|, |I1,k(q)|, |I2,k(q)|} .681

Conversely, using (2.13) and (2.14) we have682 ∫ a

0

F (x)ϕk(x)dx+

∫ 1

b

F (x)ϕk(x)dx683

= Ik(q)

(∫ a

0

ϕ2
k(x)dx+

∫ 1

b

ϕ2
k(x)dx

)
− (I1,k(q) + I2,k(q))684

= −Ik(q)
∫ b

a

ϕk(x)
2dx685

686

where we have used that Ik(q) = I1,k(q) + I2,k(q). Thus, from (A.3) we get687

|Ik(q)| ≤ CMk

(
F, ω

)
.688

Using (2.13) or (2.14) and the previous inequality we obtain689

|Ij,k(q)| ≤ CMk

(
F, ω

)
, ∀j ∈ {1, 2}.690

Thus,691
max {|Ik(q)|, |I1,k(q)|, |I2,k(q)|} ≤ CMk

(
F, ω

)
.692

This implies that approximate controllability holds if and only if693

max {|Ik(q)|, |I1,k(q)|, |I2,k(q)|} 6= 0, ∀k ≥ 1694

and in this case695

T0,q = lim sup
k→+∞

− lnmax {|Ik(q)|, |I1,k(q)|, |I2,k(q)|}
νk

.696

Thus we have extended the result proved in [5] for the Dirichlet-Laplace operator to697
a general Sturm-Liouville operator.698

2.3.2. Null controllability in arbitrary time with intersecting control699
and coupling regions.700

Let us here consider the setting studied in [21].701

proposition 2.3. Assume that there exists an open set ω0 ⊂ ω and q0 > 0 such
that

inf
ω0

q ≥ q0 or sup
ω0

q ≤ −q0,

then, system (1.1) is null controllable in any time T > 0.702

Even though this result is already known from [21], we provide here a proof without703
Carleman estimates.704
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Proof. We assume that infω0
q ≥ q0 since the other case is similar. Here we705

consider the minimal time characterization given by Theorem 1.1 and we shall prove706
that Ik(q)2‖ϕk‖2ω + ‖ψk,q‖2ω does not tend to zero exponentially fast, with respect to707
νk, as k goes to infinity.708

We split ψk,q into two parts ψk,q = ψk,q,1 + ψk,q,2 where ψk,q,1 is the unique709
solution of the Cauchy problem710

(2.15)


(A− νk)ψk,q,1 = Ik(q)ϕk,

ψk,q,1(0) = 0,

ψ′
k,q,1(0) = 0.

711

From Lemma A.1, there exists C > 0 depending only on γ and c such that712

‖ψk,q,1‖L∞(0,1) ≤
C

√
νk

|Ik(q)|.713

Then, from (A.3), we deduce that, when νk ≥ 1,714

‖ψk,q,2‖2ω ≤ 2
(
‖ψk,q‖2ω + ‖ψk,q,1‖2L∞(0,1)

)
715

≤ 2

(
‖ψk,q‖2ω +

C

νk
|Ik(q)|2

)
716

≤ C
(
‖ψk,q‖2ω + |Ik(q)|2‖ϕk‖2ω

)
.717718

Thus, in order to prove the result, it is enough to find some explicit lower bound719
rk > 0 such that720

(2.16) ‖ψk,q,2‖ω ≥ rk with lim sup
k→+∞

− ln rk
νk

= 0.721

As we seek for a lower bound for ψk,q,2 on ω, and thanks to our assumption on q,722
we can restrict ω to an interval (a, b) such that q(x) ≥ q0 > 0 for almost every x ∈ ω.723
Taking some ` > 0 small enough to be determined later (see (2.19)), we introduce the724
following subsets of ω:725

� ω1 = (a, a+ `);726
� ω2 = (b− `, b);727
� ω̃ = ω1 ∪ ω2;728
� C0 =

[
a+b
2 − b−a

6 , a+b
2 + b−a

6

]
;729

� C = [a+ `, b− `].730

Fig. 1. Splitting of ω = (a, b)

This configuration is pictured in Figure 1. Notice that ω̃ is a subset of ω and thus731
for any k ≥ 1,732

‖ψk,q,2‖2ω ≥ ‖ψk,q,2‖2ω̃.733

From (A.3), there exists α1 > 0 depending on γ, c and C0 such that734

(2.17)
∫
C0

ϕ2
k(x)dx ≥ α1, ∀k ≥ 1.735
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Following closely the proof of item i of Proposition 2.1 with a careful tracking of736
the dependency with respect to ` we can obtain the following lemma whose proof is737
postponed at the end of the section.738

Lemma 2.4. There exists α2 > 0 depending on γ and c such that for any ` < b−a
3 ,739

any k ≥ 1 such that νk ≥ 1, any F ∈ L2(0, 1;R) and any u satisfying the differential740
equation741

(A− νk)u = F,742

we have743

(2.18)
√
`

∣∣∣∣∫
C

F (x)ϕk(x)dx

∣∣∣∣ ≤ α2
√
νk

(
1 +

1

`
√
νk

)
‖u‖ω̃ + α2`‖F‖ω̃.744

It is important to notice that the norms in the right-hand side of (2.18) are taken on745
the small set ω̃ whereas the left-hand side is an integral on the large set C = ω \ ω̃.746
Hence, this inequality can be understood as an estimate of cancellations that occur747
in this integral.748

Let α2 > 0 be the constant given in the above lemma and assume in all what749
follows that ` > 0 is fixed such that750

(2.19)
√
` < min

{√
b− a

3
,

q0α1

2α2‖q‖L∞(0,1)

}
.751

There exists K ∈ N∗ such that752

νk ≥ 1

`2
, ∀k ≥ K.753

In the rest of the proof, we assume that k ≥ K.754
Thanks to the equations (1.6) and (2.15) satisfied respectively by ψk,q and ψk,q,1,755

we see that ψk,q,2 solves756

(A− νk)ψk,q,2 = −qϕk, in (0, 1).757

Applying Lemma 2.4, with u = ψk,q,2 and F = −qϕk we obtain758

√
`

∣∣∣∣∫
C

q(x)ϕ2
k(x)dx

∣∣∣∣ ≤ 2α2
√
νk‖ψk,q,2‖ω̃ + α2`‖qϕk‖ω̃.759

As ` < b−a
3 we have C0 ⊂ C and thus760 ∣∣∣∣∫

C

q(x)ϕ2
k(x)dx

∣∣∣∣ ≥ q0

∫
C0

ϕ2
k(x)dx ≥ q0α1.761

Notice also that, since ‖ϕk‖(0,1) = 1, we have762

‖qϕk‖ω̃ ≤ ‖q‖L∞(0,1).763

Gathering these estimates and using (2.19) we obtain the lower bound764

2α2
√
νk‖ψk,q,2‖ω̃ ≥

√
`

∣∣∣∣∫
C

q(x)ϕ2
k(x)dx

∣∣∣∣− α2`‖qϕk‖ω̃765

≥
√
`
(
q0α1 − α2

√
`‖q‖L∞(0,1)

)
≥

√
`
q0α1

2
766
767

which leads to (2.16) and ends the proof of Proposition 2.3.768
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It remains to prove the lemma.769

Proof (of Lemma 2.4). From (A.6), there exists C > 0 depending on γ and c such770
that771

(2.20) ‖ϕk‖L∞(0,1) +
1

√
νk

‖ϕ′
k‖L∞(0,1) ≤ C, ∀k ≥ 1.772

Integrating by parts, we obtain773 ∫
C

F (x)ϕk(x)dx =

∫ b−`

a+`

(A− νk)u(x)ϕk(x)dx774

=−
(
γu′ϕk

)
(b− `) +

(
γu′ϕk

)
(a+ `)775

+
(
uγϕ′

k

)
(b− `)−

(
uγϕ′

k

)
(a+ `).776777

Using (2.20) we obtain778

1
√
νk

∣∣∣∣∫
C

F (x)ϕk(x)dx

∣∣∣∣ ≤ C‖√γ‖L∞

(
|u(a+ `)|+

√
γ(a+ `)
√
νk

|u′(a+ `)|

)
779

+ C‖√γ‖L∞

(
|u(b− `)|+

√
γ(b− `)
√
νk

|u′(b− `)|

)
.780

781

Let λ0 = 1 and let K ∈ N∗ be such that782

k ≥ K =⇒ νk ≥ λ0.783

Assume that k ≥ K. As a+ ` ∈ ω1 the application of Lemma 2.2 (recall that λ0 = 1)784
yields785

|u(a+ `)|+
√
γ(a+ `)
√
νk

|u′(a+ `)| ≤ C√
`

(
1 +

1

`
√
νk

)
‖u‖ω1

+
C
√
`

√
νk

‖F‖ω1
.786

As b− ` ∈ ω2 the application of Lemma 2.2 yields787

|u(b− `)|+
√
γ(b− `)
√
νk

|u′(b− `)| ≤ C√
`

(
1 +

1

`
√
νk

)
‖u‖ω2

+
C
√
`

√
νk

‖F‖ω2
788

which concludes the proof.789

2.3.3. Dealing with new geometric configurations.790
We now illustrate that the minimal time formula obtained in Theorem 1.2 can be791

successfully exploited to give an explicit value of this minimal time in more general792
geometric configurations than the one available in the literature, for example when793
ω is not an interval and Supp(q) ∩ ω = ∅. We provide below an example inspired794
by [14].795

proposition 2.5. Let A be the Dirichlet Laplace operator ( i.e., γ = 1 and c = 0)796
and let797

q : x ∈ (0, 1) 7→
(
x− 1

2

)
1(

1
4 ,

3
4

)(x).798

i. If ω ⊂
(
3
4 , 1
)
, then approximate controllability for system (1.1) does not hold.799
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ii. If ω =
(
0, 14
)
∪
(
3
4 , 1
)
, then system (1.1) is null controllable from X in any800

time T > 0.801

Proof. In this case, we have for any k ≥ 1,802

νk = k2π2, ϕk =
√
2 sin(kπ•), ϕ̃k = cos(kπ•).803

The proof of item i can be found in [14, Section 3.3.1] and relies on explicit com-804
putations: due to symmetry it comes that Ik(q) = 0 for any k ≥ 1. This implies805
that806 ∫ inf(ω)

0

q(x)ϕk(x)ϕk(x)dx = Ik(q) = 0.807

Let C be any other connected component of (0, 1)\ω than [0, inf(ω)]. Then C ⊂
(
3
4 , 1
)
.808

This means that q = 0 on C which gives809 ∫
C

q(x)ϕk(x)ϕk(x)dx =

∫
C

q(x)ϕk(x)ϕ̃k(x)dx = 0.810

Thus,811
Mk(qϕk, ω) = 0, ∀k ≥ 1.812

We now turn to item ii. In this case (0, 1)\ω has only one connected component813
which is

[
1
4 ,

3
4

]
but the key point is that it does not touch the boundary of (0, 1).814

Approximate controllability in this case was also studied in [14, Section 3.3.1]. Again815
for symmetry reasons we have816 ∫ 3

4

1
4

q(x)ϕk(x)ϕk(x)dx = 0, ∀k ≥ 1,817

but818

∫ 3
4

1
4

q(x)ϕk(x)ϕ̃k(x)dx =


− (−1)

k−1
2

2
√
2π2k2

, if k is odd,

− (−1)
k
2

4
√
2πk

, if k is even.
819

This implies that for any k ≥ 1,820

Mk

(
(Ik(q)− q)ϕk, ω

)
=


1

2
√
2π2k2

, if k is odd,

1

4
√
2πk

, if k is even.
821

Thus, from Theorem 1.2, we get822

T0,q = lim sup
k→+∞

− lnMk

(
(Ik(q)− q)ϕk, ω

)
νk

= 0,823

which means that null-controllability holds at any time T > 0.824
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3. Cascade system with a first order coupling term.825
In this section we describe how the analysis conducted in Section 2 can be directly826

extended to system (1.3) that is when the coupling between the two equations operates827
through a zero order term and a first order term. This is for instance the setting828
studied in [16] and that we complete here.829

3.1. Setting and spectral analysis.830
To fit in the formalism of [13], we define831
• the evolution operator A by832

A =

(
A 0

q + p∂x A

)
, D(A) = D(A)2,833

and the control operator B by834

B : u ∈ U = L2(0, 1) 7→
(
1ωu
0

)
.835

It will be convenient to separate the symmetric and skew-symmetric parts of836
the coupling terms in A. In order to do so, we define a function r and an837
operator Sp as follows838

(3.1) r = q − 1

2
p′, and Sp =

1

2
p′ + p∂x.839

We observe that Sp is skew-symmetric in D(A) and that we can write840

A =

(
A 0

r + Sp A

)
.841

• The adjoint operator of A is given by842

A∗ =

(
A q − ∂x(p•)
0 A

)
=

(
A r − Sp

0 A

)
, D(A∗) = D(A).843

Recall that Ik(r) is defined by (1.7). In this section, ψk,r,p denotes the unique844
solution of845

(3.2)


(A− νk)ψk,r,p =

(
Ik(r)− r

)
ϕk + Spϕk,

ψk,r,p(0) = ψk,r,p(1) = 0,

〈ϕk, ψk,r,p〉ω = 0.

846

This system has indeed a unique solution since, due to the definition of Ik(r) and the847
fact that Sp is skew-symmetric, the right-hand side of this equation is orthogonal to848
ϕk.849

Let us detail the spectral analysis of the operator A∗: its spectrum is given by Λ =850
(νk)k≥1 and we can distinguish the following cases.851

• If Ik(r) 6= 0 then νk is algebraically double and geometrically simple. An852
associated Jordan chain is given by853

(3.3) φ0k =

(
ϕk

0

)
, φ1k =

1

Ik(r)

(
ψk,r,p

ϕk

)
.854
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• If Ik(r) = 0 then νk is geometrically double and an associated basis of eigen-855
vectors is given by856

(3.4) φ0k,1 =

(
ϕk

0

)
, φ0k,2 =

(
ψk,r,p

ϕk

)
.857

Except from the definition of ψk,r,p, the spectral analysis is the same as for system (1.1)858
(see Section 2.1). Thus, for the operators A and B to satisfy the assumption (H) stated859
in [13, Section 2.1.2] it only remains to study the approximate controllability condition860

Ker(A∗ − λ) ∩KerB∗ = {0}, ∀λ ∈ Λ.861

This is the goal of the following section.862

3.2. Approximate controllability.863
From the Fattorini-Hautus test, we obtain the following characterization for ap-864

proximate controllability of system (1.3).865

proposition 3.1. Let ω ⊂ (0, 1) be a non empty set and let q ∈ L∞(0, 1) and866
p ∈W 1,∞(0, 1). Approximate controllability of system (1.3) holds if and only if867

(3.5) Mk

(
rϕk − Spϕk, ω

)
6= 0, ∀k ≥ 1 such that rϕk − Spϕk = 0 in ω.868

The proof follows directly from [14, Theorems 2.1 and 2.2].869
Notice that, for approximate controllability to hold, we have two very different870

situations.871
• When

(
Supp(q)∪Supp(p)

)
∩ω = ∅ condition (3.5) has to be checked for any872

k ≥ 1.873
• Whereas, when

(
Supp(q)∪Supp(p)

)
∩ω 6= ∅ condition (3.5) has to be checked874

for at a most a single k ≥ 1.875

Remark 3.1. The question of approximate controllability for system (1.3) was876
already studied in [16, Theorems 1.1 and 1.2]. There it is stated that, if877

(Supp(p) ∪ Supp(q)) 6= ∅,878

approximate controllability holds in any time. In fact, this result is not correct since879
there can exist k ≥ 1 such that880

rϕk − Spϕk = 0 in ω and Mk

(
rϕk − Spϕk, ω

)
= 0.881

Such a counter-example was constructed by A. Dupouy in her Master Thesis [15],882
under the supervision of the first author.883

We set q = 0, which implies that r − Sp = −∂x(p•). For a given k ≥ 1, the884
idea is to select an interval ω = (a, b) such that ϕk 6= 0 on ω, which is possible since885
ϕk has only finitely many zeros in (0, 1). Then, we choose p = 1

ϕk
in ω so that, by886

construction rϕk − Spϕk = −∂x(pϕk) = 0 in ω. Finally, it is possible to extend p887
outside ω with appropriate regularity such that888 ∫ a

0

ϕk(x)∂x(pϕk)(x)dx =

∫ 1

b

ϕk(x)∂x(pϕk)(x)dx = 0,889

i.e., Mk

(
rϕk − Spϕk, ω

)
= 0.890
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Due to the analysis conducted in Section 3.1, under the assumption (3.5), the891
operators A and B satisfy the assumption (H) stated in [13, Section 2.1.2].892

For more coherence with the expression of the minimal null control time obtained893
in Theorem 3.5 below, instead of the approximate controllability condition (3.5), we894
use the following characterization.895

Lemma 3.2. Let ω ⊂ (0, 1) be a non empty set and let q ∈ L∞(0, 1) and p ∈896
W 1,∞(0, 1). Assume that

(
Supp(q) ∪ Supp(p)

)
∩ ω = ∅. Then, for any k ≥ 1,897

Mk

(
rϕk − Spϕk, ω

)
= 0 ⇐⇒ Mk

(
(Ik(r)− r)ϕk + Spϕk, ω

)
= 0.898

Thus, approximate controllability of system (1.3) holds if and only if899

(3.6) Mk

(
(Ik(r)− r)ϕk +Spϕk, ω

)
6= 0, ∀k ≥ 1 such that rϕk −Spϕk = 0 in ω.900

Proof. Let k ≥ 1. First of all notice that for any connected component C of901
(0, 1)\ω we have902

(3.7)
∫
C

(Spϕk)(x)ϕk(x)dx = 0.903

Indeed, for any a, b ∈ [0, 1] such that p(a) = p(b) = 0, integrating by parts we obtain904 ∫ b

a

(Spϕk)(x)ϕk(x)dx =

∫ b

a

(
1

2
∂xp(x)ϕk(x) + p(x)∂xϕk(x)

)
ϕk(x)dx905

= −
∫ b

a

p(x)∂xϕk(x)ϕk(x)dx+

∫ b

a

p(x)∂xϕk(x)ϕk(x)dx906

= 0.907908

Thus, the assumption Supp(p) ∩ ω = ∅ proves (3.7).909

Now assume that Mk

(
rϕk − Spϕk, ω

)
= 0. Then, using (3.7), for any connected910

component C of (0, 1)\ω we have911 ∫
C

r(x)ϕ2
k(x)dx =

∫
C

(Spϕk)(x)ϕk(x)dx = 0.912

Since Supp(r) ∩ ω = ∅, this gives913

Ik(r) =
∑

C∈C
(
(0,1)\ω

)
∫
C

r(x)ϕk(x)
2dx = 0914

which proves that Mk

(
(Ik(r)− r)ϕk + Spϕk, ω

)
= 0.915

Finally assume that Mk

(
(Ik(r) − r)ϕk + Spϕk, ω

)
= 0. Then, using (3.7), for916

any connected component C of (0, 1)\ω we have917

Ik(r)

∫
C

ϕk(x)
2dx =

∫
C

r(x)ϕk(x)
2dx.918
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Since Supp(r) ∩ ω = ∅, this gives919

Ik(r)
(
1− ‖ϕk‖2ω

)
= Ik(r)

∑
C∈C

(
(0,1)\ω

)
∫
C

ϕk(x)
2dx920

=
∑

C∈C
(
(0,1)\ω

)
∫
C

r(x)ϕk(x)
2dx921

= Ik(r).922923

Using (A.3) we obtain Ik(r) = 0 and thus Mk

(
rϕk − Spϕk, ω

)
= 0.924

3.3. Minimal null control time.925
We now turn to the determination of the minimal null control time. For this926

system, we have a result which is similar to Theorem 1.1 and that reads as follows.927

theorem 3.3. Let ω ⊂ (0, 1) be a non empty open set and let q ∈ L∞(0, 1) and928
p ∈ W 1,∞(0, 1). Assume that (3.5) holds. Then, the minimal null control time T0,q,p929
for system (1.3) is given by930

T0,q,p = lim sup
k→+∞

− ln
(
Ik(r)

2‖ϕk‖2ω + ‖ψk,r,p‖2ω
)

2νk
931

where ψk,r,p is given by (3.2).932

The proof follows exactly the proof of Theorem 1.1 and is left to the reader. The only933
difference is that, due to the change of definition of ψk,r,p one cannot use Lemma A.2934
but shall instead use the following lemma.935

Lemma 3.4. There exists C > 0 such that936

‖ψk,r,p‖(0,1) ≤ C, ∀k ≥ 1937

where ψk,r,p is given by (3.2).938

The proof follows the proof of Lemma A.2 with the use of the estimate939 ∫ 1

0

∂x(pϕk)(x)
2dx ≤ 2‖p′‖2∞ + 2

∫ 1

0

p(x)2ϕ′
k(x)

2dx ≤ Cνk940

due to (A.2).941
Then, as in Theorem 1.2, we can simplify the formula in the case where the942

coupling terms are not active in the control domain.943

theorem 3.5. Let ω ⊂ (0, 1) be a non empty open set with a finite number of944
connected components. Let q ∈ L∞(0, 1) and p ∈W 1,∞(0, 1) be such that945 (

Supp(q) ∪ Supp(p)
)
∩ ω = ∅.946

Assume that (3.6) holds. Then, the minimal null control time for system (1.1) is given947
by948

T0,q,p = lim sup
k→+∞

− lnMk

(
(Ik(r)− r)ϕk + Spϕk, ω

)
νk

949

where Mk is defined by (1.9).950

The proof follows exactly the proof of Theorem 1.2 and is left to the reader.951
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3.4. Applications of the minimal null control time formulas.952

3.4.1. When the coupling is not active in the control region. In this953
section, we assume that954

(3.8)
(
Supp(p) ∪ Supp(q)

)
∩ ω = ∅.955

• Assume first that ω = (a, b) is an interval.956
In that case, and when A is the Dirichlet-Laplace operator, it is proved in [16,957
Theorem 1.4] that, under the condition (3.8), when approximate controllabil-958
ity holds, the minimal null control time is given by959

(3.9) T0,q,p = lim sup
k→+∞

− lnmax {|Ik (r)| , |I1,k (r)| , |I2,k (r)|}
νk

,960

where I1,k and I2,k are defined in (1.12).961
Let us show that the formulation given in Theorem 3.5 allows to recover this962
result, for a general diffusion operator A.963
Since ω is an interval, setting964

F = (Ik(r)ϕk − rϕk) + Spϕk,965

we have966

Mk

(
F, ω

)
= max

{∣∣∣∣∫ a

0

F (x)ϕk(x)dx

∣∣∣∣ , ∣∣∣∣∫ 1

b

F (x)ϕk(x)dx

∣∣∣∣} .967

Due to the assumption Supp(p) ∩ ω = ∅ we can use (3.7) to get∫ a

0

(Spϕk)ϕkdx =

∫ 1

b

(Spϕk)ϕkdx = 0.

Thus, it follows that968 ∫ a

0

F (x)ϕk(x)dx = Ik(r)

∫ a

0

ϕ2
k(x)dx− I1,k(r)969

and970 ∫ 1

b

F (x)ϕk(x)dx = Ik(r)

∫ 1

b

ϕ2
k(x)dx− I2,k(r).971

The rest of the proof follows that of Section 2.3.1, by using Theorem 3.5.972
• In the previous point it appears that the minimal control time given in (3.9)973

only depends on the quantity r. We will show now that when the control974
domain ω is not an interval, this may not be true any more. More precisely, we975
shall design an example such that r = 0, but nevertheless null controllability976
holds for any time T > 0.977
Assume that ω = (0, a) ∪ (b, 1) with 0 < a < b < 1. The main difference978
with the previous situation comes from the fact that (0, 1)\ω has a (unique)979
connected component that does not touch the boundary of the domain, which980
makes an important difference in the definition of the quantities Mk, see981
Section 1.2.1.982
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We build our example as follows. We first choose a smooth function p sup-983
ported in (a, b) and such that984

(3.10)
∫ b

a

p(x)

γ(x)
dx 6= 0.985

We now set q = p′

2 in such a way that r = q − 1
2p

′ = 0. Moreover, by986
assumption on p, the condition (3.8) holds.987
For any k, since r and p are supported outside ω, we immediately have that

rϕk − Spϕk = 0, in ω,

and, by (1.8) and (3.7), we get

Mk

(
(Ik(r)− r)ϕk + Spϕk, ω

)
=

∣∣∣∣∣
∫ b

a

(Spϕk)(x)ϕ̃k(x)dx

∣∣∣∣∣ .
By definition of Sp we can integrate by parts, using that p(a) = p(b) = 0, to
find ∫ b

a

(Spϕk)(x)ϕ̃k(x)dx =
1

2

∫ b

a

p(x)

γ(x)
Wk(x)dx,

where Wk = (γϕ′
k)ϕ̃k − ϕk(γϕ̃

′
k) is the Wronskian of ϕk and ϕ̃k. Since ϕk

and ϕ̃k solve the same second order linear ODE, this Wronskian is constant
and we get ∫ b

a

(Spϕk)(x)ϕ̃k(x)dx =
γ(0)ϕ′

k(0)

2

∫ b

a

p(x)

γ(x)
dx.

Thanks to the assumption (3.10) we see that this quantity is not zero, which
proves the approximate controllability condition (3.6). In addition, by using
Theorem 3.5 and the asymptotics (A.2), it follows that the minimal null
control time for our system is simply given by

T0,q,p = lim sup
k→+∞

− ln |ϕ′
k(0)|

νk
= 0.

In this case, despite the fact that r = 0, we get that the system is null-988
controllable at any time T > 0.989
Observe that if the control domain is restricted to ω = (0, a) (or ω = (b, 1))990
then this particular system is not even approximately controllable.991

3.4.2. When the coupling is active in the control region. We now use the992
formulation given in Theorem 3.3 and the computations done in Section 2.3.2 to get993
the following sufficient condition for null controllability in arbitrary small time.994

proposition 3.6. Assume that the coefficients defining the Sturm-Liouville oper-995
ator A in (1.2) are sufficiently regular, i.e., γ ∈ C2([0, 1]) and c ∈ C0([0, 1]). Assume996
that there exists an open set ω0 ⊂ ω and r0 > 0 such that997

(3.11) inf
ω0

r ≥ r0 or sup
ω0

r ≤ −r0998

and that the approximate controllability condition (3.5) holds. Then, system (1.3) is999
null controllable at any time T > 0.1000
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We observe that the approximate controllability condition is crucial in this result.1001
For instance, the example shown in Remark 3.1 is not approximately controllable even1002

if we have r = − 1
2

(
1
φk

)′
which clearly satisfies (3.11).1003

Proof. The proof follows closely the one in Section 2.3.2 but needs to be adapted to1004
handle some boundary terms coming from integration by parts in integrals involving1005
the first order coupling terms. We assume that infω0

r ≥ r0, the other case being1006
similar.1007

From Theorem 3.3, it is sufficient to prove that the quantity Ik(r) ‖ϕk‖2ω +1008
‖ψk,r,p‖2ω does not tend exponentially fast to zero with respect to the eigenvalue1009
νk.1010

The contribution of Ik(r) is dealt with as in Section 2.3.2 by writting ψk,r,p =1011
ψk,r,p,1 + ψk,r,p,2 with ψk,r,p,1 solving the Cauchy problem1012 

(A− νk)ψk,r,p,1 = Ik(r)ϕk,

ψk,r,p,1(0) = 0,

ψ′
k,r,p,1(0) = 0.

1013

It is thus sufficient to obtain a lower bound of the following form1014

(3.12) ‖ψk,r,p,2‖2ω ≥ Rk with lim sup
k→+∞

− lnRk

νk
= 0,1015

where ψk,r,p,2 satisfies the equation1016

(A− νk)ψk,r,p,2 = −rϕk + Spϕk.1017

As we seek for a lower bound it is sufficient to assume that ω = (a, b) is an interval1018
and that r(x) ≥ r0 for almost every x ∈ ω.1019

Due to Sturm oscillation theorem (see for instance [12, Corollary A.4.33]), there1020
exists `0 ∈ (0, 1) and K ∈ N∗ depending on γ, c and b − a, such that for any k ≥ K1021
there exists ck, dk ∈ (a, b) satisfying1022

(3.13)


ϕk(ck) = ϕk(dk) = 0,

|dk − ck| ≥
3

4
|b− a| and min (|b− dk|, |ck − a|) ≥ `0,

ν2k ≥ 2

`0
.

1023

For every k ≥ K, we now set1024

(3.14) `k =
1

ν2k
, ∀k ≥ 1.1025

To mimic the proof of Section 2.3.2, we introduce ak and bk such that ak + `k = ck1026
and bk − `k = dk. By the last point of (3.13) we see that `k ≤ 1

2`0 so that we have1027
(ak, bk) ⊂ (a, b).1028

We now operate a splitting of the interval (ak, bk) similar to that of Section 2.3.21029
that is we set1030

� ω̃k = (ak, ak + `k) ∪ (bk − `k, bk),1031
� Ck = [ak + `k, bk − `k]1032
� and C0 =

[
a+b
2 − b−a

6 , a+b
2 + b−a

6

]
.1033
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Notice that, by construction, we have C0 ⊂ Ck for every k ≥ 1.1034
From (A.3), there exists α1 > 0 depending on γ, c and C0 such that1035

(3.15)
∫
C0

ϕ2
k(x)dx ≥ α1, ∀k ≥ 1.1036

Applying Lemma 2.4, with u = ψk,r,p,2 and F = −rϕk + Spϕk we obtain1037 √
`k

∣∣∣∣∫
Ck

F (x)ϕk(x)dx

∣∣∣∣ ≤ α2
√
νk

(
1 +

1

`k
√
νk

)
‖ψk,r,p,2‖ω̃k

+ α2`k‖F‖ω̃k
.1038

Using (A.6) we obtain the existence of C > 0 depending on γ, c, q and p such that1039

‖F‖ω̃k
≤ 2

(∫ 1

0

r(x)2ϕk(x)
2 + p′(x)2ϕk(x)

2 + p(x)2ϕ′
k(x)

2dx

) 1
2

≤ C
√
νk.1040

Thus,1041 √
`k

∣∣∣∣∫
Ck

F (x)ϕk(x)dx

∣∣∣∣ ≤ α2
√
νk

(
1 +

1

`k
√
νk

)
‖ψk,r,p,2‖ω̃k

+ α2C`k
√
νk.1042

Since C0 ⊂ Ck we have1043 ∫
Ck

F (x)ϕk(x)dx = −
∫
Ck

r(x)ϕk(x)
2dx,1044

because the contribution of Spϕk in this integral is zero, by integration by parts using1045
the first point in (3.13). This integration by parts is the reason of the adjustments1046
needed compared to Section 2.3.2. Thus,1047 ∣∣∣∣∫

Ck

F (x)ϕk(x)dx

∣∣∣∣ ≥ r0

∫
C0

ϕ2
k(x)dx ≥ r0α1.1048

Gathering these estimates we obtain1049

α2
√
νk

(
1 +

1

`k
√
νk

)
‖ψk,r,p,2‖ω̃k

≥
√
`k

(
r0α1 − α2C

√
`k
√
νk

)
.1050

Using the definition of `k in (3.14), it follows1051

‖ψk,r,p,2‖ω̃k
≥ 1

α2ν
3/2
k (1 + ν

3/2
k )

(
r0α1 −

α2C√
νk

)
.1052

This proves (3.12) and ends the proof of Proposition 3.6.1053

4. Simultaneous controllability of systems with a space varying zero1054
order coupling term.1055

This section is dedicated to the analysis of the minimal null control time for the1056
simultaneous null controllability problem stated in (1.4). In Section 4.1 we detail the1057
spectral analysis of the underlying evolution operator. Section 4.2 is dedicated to the1058
proof of the first formulation for the minimal null control time given in Theorem 1.3.1059
Using the computations done in Section 2.2, we then deduce in Section 4.3 the second1060
formulation given in Theorem 1.4. Finally an example is considered in Section 4.4.1061
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4.1. Spectral analysis.1062
To fit again in the formalism of [13], we define the evolution operator A in the1063

state space X = (L2(0, 1))3 by1064

A =

A 0 0
q2 A 0
q3 0 A

 , D(A) = D(A)31065

and the control operator B by1066

B : u ∈ U = L2(0, 1) 7→

1ωu
0
0

 .1067

The spectrum of A∗ is given by Λ = {νk ; k ≥ 1} and thus, as proved in Sec-1068
tion 2.1,1069

Λ ∈ Lw

(
1, %, 0,

1

2
, κ

)
1070

as defined in [13, Section 2.1.2].1071
In any case,1072

φ0k,1 =

ϕk

0
0

1073

is an eigenvector of A∗ associated to the eigenvalue νk. Recall that, for any q ∈1074
L∞(0, 1), the function ψk,q is defined by (1.6).1075

? Case i. If Ik(q2) = Ik(q3) = 0 then νk is geometrically triple. A basis of1076
associated eigenvectors of A∗ is given by1077

(4.1) φ0k,1, φ0k,2 =

ψk,q2

ϕk

0

 , φ0k,3 =

ψk,q3

0
ϕk

 .1078

? Case ii a). If Ik(q2) = 0 and Ik(q3) 6= 0 then νk is geometrically double and1079
algebraically double. A basis of the generalized eigenspace of A∗ is given by1080

(4.2) φ0k,1, φ0k,2 =

ψk,q2

ϕk

0

 , φ1k,1 =
1

Ik(q3)

ψk,q3

0
ϕk

1081

where φ0k,1 and φ0k,2 are eigenvectors and the generalized eigenvector φ1k,1 satisfies1082

(A∗ − νk)φ
1
k,1 = φ0k,1.1083

? Case ii b). If Ik(q2) 6= 0 and Ik(q3) = 0 then νk is geometrically double and1084
algebraically double. A basis of the generalized eigenspace of A∗ is given by1085

(4.3) φ0k,1, φ0k,2 =

ψk,q3

0
ϕk

 , φ1k,1 =
1

Ik(q2)

ψk,q2

ϕk

0

1086

where φ0k,1 and φ0k,2 are eigenvectors and the generalized eigenvector φ1k,1 satisfies1087

(A∗ − νk)φ
1
k,1 = φ0k,1.1088
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? Case iii. If Ik(q2) 6= 0 and Ik(q3) 6= 0 then νk is geometrically double and1089
algebraically double. A basis of the generalized eigenspace of A∗ is given by1090

(4.4) φ0k,1, φ0k,2 = Ik(q3)

ψk,q2

ϕk

0

−Ik(q2)

ψk,q3

0
ϕk

 , φ1k,1 =
1

Ik(q2)

ψk,q2

ϕk

0

1091

where φ0k,1 and φ0k,2 are eigenvectors and the generalized eigenvector φ1k,1 satisfies1092

(A∗ − νk)φ
1
k,1 = φ0k,1.1093

Thus, using (4.1)-(4.4), we obtain that the family of (generalized) eigenvectors1094
forms a complete family in X.1095

From [14, Theorem 3.2], the approximate controllability assumption1096

Ker(A∗ − λ) ∩KerB∗ = {0}, ∀λ ∈ Λ1097

is equivalent to (1.14).1098
Thus, the operators A and B satisfy the assumption (H) stated in [13, Section1099

2.1.2].1100

4.2. Characterization of the minimal null control time.1101
This section is devoted to the proof of Theorem 1.3.1102

4.2.1. An abstract characterization of the minimal null control time.1103
Since the operators A and B satisfy the assumption (H) stated in [13, Section1104

2.1.2] it comes from [13, Theorem 11] that, for any y0 ∈ X, the minimal null control1105
time for system (1.4) from y0 is given by1106

(4.5) T0,q(y0) = lim sup
k→+∞

ln+ C(Gk, y0)

2νk
1107

where ln+ s = max(0, ln s), for any s ≥ 0 and the cost of the k-th block is given by1108
• in case i1109

(4.6)
C(Gk, y0) = inf

{
‖Ω‖2U ; Ω ∈ U

with
〈
Ω,B∗φ0k,j

〉
U
=
〈
y0, φ

0
k,j

〉
X

for j ∈ {1, 2, 3}
}1110

• and in cases ii a), ii b) and iii1111

(4.7)

C(Gk, y0) = inf
{∥∥Ω0

∥∥2
U
+
∥∥Ω1

∥∥2
U

; Ω0,Ω1 ∈ U

with
〈
Ω0,B∗φ0k,j

〉
U
=
〈
y0, φ

0
k,j

〉
X

for j ∈ {1, 2}

and
〈
Ω0,B∗φ1k,1

〉
U
+
〈
Ω1,B∗φ0k,1

〉
U
=
〈
y0, φ

1
k,1

〉
X

}
.

1112

The proof of Theorem 1.3 consists in computing the quantity C(Gk, y0) and evaluating1113
its asymptotic behaviour.1114

From [13, Theorem 18], in case i, an explicit expression of the cost C(Gk, y0) of1115
the block is given by1116

(4.8) C(Gk, y0) =
〈
M−1ξ, ξ

〉
1117
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where1118

ξ =


〈
y0, φ

0
k,1

〉
X〈

y0, φ
0
k,2

〉
X〈

y0, φ
0
k,3

〉
X

 and M = GramU

(
B∗φ0k,1,B∗φ0k,2,B∗φ0k,3

)
1119

=

‖ϕk‖2ω 0 0

0 ‖ψk,q2‖
2
ω 〈ψk,q2 , ψk,q3〉ω

0 〈ψk,q2 , ψk,q3〉ω ‖ψk,q3‖
2
ω

 .1120

1121

Since cases ii a), ii b) and iii involve algebraic and geometric multiplicities occuring1122
simultaneously inside the same block, we cannot apply [13, Theorem 14] nor [13,1123
Theorem 18] to get a similar expression. We compute such an explicit expression in1124
the next subsection.1125

4.2.2. An intermediate optimization argument.1126
As detailed in [13, Section 5.4], when both algebraic and geometric multiplicities1127

appear in the same group, one can repeat the arguments developed there to obtain1128
an explicit expression of the cost of the block. This is what we do in the following1129
proposition.1130

proposition 4.1. Let U be a real Hilbert space. Let b01, b02, b11 ∈ U be such that b011131
and b02 are linearly independent. Then, for any ω0

1 , ω
0
2 , ω

1
1 ∈ R,1132

inf
{∥∥Ω0

∥∥2
U
+
∥∥Ω1

∥∥2
U

; Ω0,Ω1 ∈ U1133

with
〈
Ω0, b0j

〉
U
= ω0

j for j ∈ {1, 2} and
〈
Ω0, b11

〉
U
+
〈
Ω1, b01

〉
U
= ω1

1

}
1134

=
〈
M−1ξ, ξ

〉
11351136

where1137

M = GramU

(
b01, b

0
2, b

1
1

)
+GramU

(
0, 0, b01

)
and ξ =

ω0
1

ω0
2

ω1
1

 .1138

Proof. First of all, notice that by projection the infimum can be computed for1139

Ω0,Ω1 ∈ Span
(
b01, b

0
2, b

1
1

)
.1140

Thus, we are solving a finite dimensional optimization problem with a quadratic1141
coercive functional and linear constraints. It admits a unique solution characterized1142
by the existence of multipliers m0

1,m
0
2,m

1
1 ∈ R such that1143

(4.9)

〈
Ω0,H0

〉
U
+
〈
Ω1,H1

〉
U
=m0

1

〈
H0, b01

〉
U
+m0

2

〈
H0, b02

〉
U

+m1
1

( 〈
H0, b11

〉
U
+
〈
H1, b01

〉
U

)1144

for any H0,H1 ∈ U .1145
Using the constraints

〈
Ω0, b0j

〉
U
= ω0

j for j ∈ {1, 2} and
〈
Ω0, b11

〉
U
+
〈
Ω1, b01

〉
U
= ω1

11146
and choosing successively1147

• H0 = b01 and H1 = 0,1148
• H0 = b02 and H1 = 0,1149
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• H0 = b11 and H1 = b011150
yields1151

(4.10)

ω0
1

ω0
2

ω1
1

 =M

m0
1

m0
2

m1
1

1152

with1153
M = GramU

(
b01, b

0
2, b

1
1

)
+GramU

(
0, 0, b01

)
.1154

We now prove that M is invertible. Let x ∈ R3 be such that Mx = 0. Then,1155

0 = 〈Mx, x〉 =
∥∥x1b01 + x2b

0
2 + x3b

1
1

∥∥2
U
+ x23

∥∥b01∥∥2U .1156

This implies x3 = 0. Then, since b01 and b02 are assumed to be linearly independent,1157
we obtain x1 = x2 = 0. Getting back to (4.10), this gives1158 m0

1

m0
2

m1
1

 =M−1ξ.1159

Finally, choosing H0 = Ω0 and H1 = Ω1 in (4.9) yields that the seeked infimum is1160

∥∥Ω0
∥∥2
U
+
∥∥Ω1

∥∥2
U
=

〈m0
1

m0
2

m1
1

 , ξ

〉
=
〈
M−1ξ, ξ

〉
1161

which ends the proof of Proposition 4.1.1162

4.2.3. Spectral characterization of the minimal null control time.1163
To prove Theorem 1.3 we now give a more explicit expression for the quantity1164

C(Gk, y0).1165

Lemma 4.2. For any k ≥ 1, let C(Gk, y0) be defined by (4.6)-(4.7). Then,1166

(4.11)
C(Gk, y0) =

〈
y0,

ϕk

0
0

〉2

X

‖ϕk‖2ω

+

∥∥∥∥∥∥
〈
y0,

ψk,q2

ϕk

0

〉
X

ζk,q3 −

〈
y0,

ψk,q3

0
ϕk

〉
X

ζk,q2

∥∥∥∥∥∥
2

ω

‖ζk,q2‖
2
ω ‖ζk,q3‖

2
ω − 〈ζk,q2 , ζk,q3〉

2
ω

1167

where ζk,• is defined in (1.17).1168

Proof. The explicit expression of C(Gk, y0) is given either by (4.8) or by Proposi-1169
tion 4.1.1170

In all cases, we have1171
C(Gk, y0) =

〈
M−1ξ, ξ

〉
1172
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where, due to the choice of normalization
〈
ψk,qj , ϕk

〉
ω
= 0, the matrix M has the1173

form1174

M =

m1,1 0 0
0 m2,2 m2,3

0 m2,3 m3,3

 .1175

Thus, explicit computations yields1176

〈
M−1ξ, ξ

〉
=

1

m1,1
ξ21 +

1

m2,2m3,3 −m2
2,3

(
m3,3ξ

2
2 − 2m2,3ξ2ξ3 +m2,2ξ

2
3

)
.1177

We now distinguish the different cases.1178

• Case i.1179
We have1180

ξ =


〈
y0, φ

0
k,1

〉
X〈

y0, φ
0
k,2

〉
X〈

y0, φ
0
k,3

〉
X

 and M =

‖ϕk‖2ω 0 0

0 ‖ψk,q2‖
2
ω 〈ψk,q2 , ψk,q3〉ω

0 〈ψk,q2 , ψk,q3〉ω ‖ψk,q3‖
2
ω

1181

where φ0k,1, φ0k,2 and φ0k,3 are defined in (4.1). Thus,1182

〈
M−1ξ, ξ

〉
=

〈
y0,

ϕk

0
0

〉2

X

‖ϕk‖2ω
+

∥∥∥∥∥∥
〈
y0,

ψk,q2

ϕk

0

〉
X

ψk,q3 −

〈
y0,

ψk,q3

0
ϕk

〉
X

ψk,q2

∥∥∥∥∥∥
2

ω

‖ψk,q2‖
2
ω ‖ψk,q3‖

2
ω − 〈ψk,q2 , ψk,q3〉

2
ω

1183

Notice that, due to the approximate controllability assumption1184

Ker(A∗ − λ) ∩KerB∗ = {0}, ∀λ ∈ R,1185

we have ‖ψk,q2‖
2
ω ‖ψk,q3‖

2
ω − 〈ψk,q2 , ψk,q3〉

2
ω > 0.1186

• Case ii a).1187
We have1188

ξ =


〈
y0, φ

0
k,1

〉
X〈

y0, φ
0
k,2

〉
X〈

y0, φ
1
k,1

〉
X

1189

and1190

M =

‖ϕk‖2ω 0 0

0 ‖ψk,q2‖
2
ω

1
Ik(q3)

〈ψk,q2 , ψk,q3〉ω
0 1

Ik(q3)
〈ψk,q2 , ψk,q3〉ω

1
Ik(q3)2

‖ψk,q3‖
2
ω + ‖ϕk‖2ω

1191
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where φ0k,1, φ0k,2 and φ1k,1 are defined in (4.2). Thus,1192

〈
M−1ξ, ξ

〉
=

〈
y0,

ϕk

0
0

〉2

X

‖ϕk‖2ω
+

Ik(q3)
2

〈
y0,

ψk,q2

ϕk

0

〉2

X

‖ϕk‖2ω

‖ψk,q2‖
2
ω

(
‖ψk,q3‖

2
ω + Ik(q3) ‖ϕk‖2ω

)
− 〈ψk,q2 , ψk,q3〉

2
ω

1193

+

∥∥∥∥∥∥
〈
y0,

ψk,q2

ϕk

0

〉
X

ψk,q3 −

〈
y0,

ψk,q3

0
ϕk

〉
X

ψk,q2

∥∥∥∥∥∥
2

ω

‖ψk,q2‖
2
ω

(
‖ψk,q3‖

2
ω + Ik(q3) ‖ϕk‖2ω

)
− 〈ψk,q2 , ψk,q3〉

2
ω

.1194

1195

Using the normalization condition
〈
ψk,qj , ϕk

〉
ω
= 0, this can be rewritten as1196

〈
M−1ξ, ξ

〉
=

〈
y0,

ϕk

0
0

〉2

X

‖ϕk‖2ω
+

∥∥∥∥∥∥
〈
y0,

ψk,q2

ϕk

0

〉
X

ζk,q3 −

〈
y0,

ψk,q3

0
ϕk

〉
X

ψk,q2

∥∥∥∥∥∥
2

ω

‖ψk,q2‖
2
ω ‖ζk,q3‖

2
ω − 〈ψk,q2 , ζk,q3〉

2
ω

.1197

Notice that, from Cauchy-Schwarz inequality,1198

‖ψk,q2‖
2
ω ‖ζk,q3‖

2
ω − 〈ψk,q2 , ζk,q3〉

2
ω = ‖ψk,q2‖

2
ω

(
‖ψk,q3‖

2
ω + Ik(q3)

2 ‖ϕk‖2ω
)

1199

− 〈ψk,q2 , ψk,q3〉
2
ω1200

≥Ik(q3)2 ‖ψk,q2‖
2
ω ‖ϕk‖2ω .12011202

Then, due to the approximate controllability assumption1203

Ker(A∗ − λ) ∩KerB∗ = {0}, ∀λ ∈ R,1204

we have ‖ψk,q2‖
2
ω ‖ζk,q3‖

2
ω − 〈ψk,q2 , ζk,q3〉

2
ω > 0.1205

• Case ii b).1206
This case is exactly case ii a) when exchanging the roles of q2 and q3. Thus,1207

〈
M−1ξ, ξ

〉
=

〈
y0,

ϕk

0
0

〉2

X

‖ϕk‖2ω
+

∥∥∥∥∥∥
〈
y0,

ψk,q2

ϕk

0

〉
X

ψk,q3 −

〈
y0,

ψk,q3

0
ϕk

〉
X

ζk,q2

∥∥∥∥∥∥
2

ω

‖ζk,q2‖
2
ω ‖ψk,q3‖

2
ω − 〈ζk,q2 , ψk,q3〉

2
ω

1208

and ‖ζk,q2‖
2
ω ‖ψk,q3‖

2
ω − 〈ζk,q2 , ψk,q3〉

2
ω > 0.1209

• Case iii.1210
Recall that the eigenvectors are defined in (4.4). To preserve symmetry, we consider1211
here the generalized eigenvector given by1212

φ1k,1 =
1

2Ik(q2)

ψk,q2

ϕk

0

+
1

2Ik(q3)

ψk,q3

0
ϕk

 .1213
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We have1214

ξ =


〈
y0, φ

0
k,1

〉
X〈

y0, φ
0
k,2

〉
X〈

y0, φ
1
k,1

〉
X

 and M =M1 +

0 0 0
0 0 0

0 0 ‖ϕk‖2ω

1215

with1216

M1 = GramU

(
ϕk , Ik(q3)ψk,q2 − Ik(q2)ψk,q3 ,

1

2Ik(q2)
ψk,q2 +

1

2Ik(q3)
ψk,q3

)
.1217

As in the previous cases, straightforward computations (which are left to the reader)1218
give1219

1220

〈
M−1ξ, ξ

〉
=

〈
y0,

ϕk

0
0

〉2

X

‖ϕk‖2ω
1221

+

∥∥∥∥∥∥
〈
y0,

ψk,q2

ϕk

0

〉
X

ψk,q3 −

〈
y0,

ψk,q3

0
ϕk

〉
X

ψk,q2

∥∥∥∥∥∥
2

ω

‖Ik(q3)ψk,q2 − Ik(q2)ψk,q3‖
2
ω ‖ϕk‖2ω + ‖ψk,q2‖

2
ω ‖ψk,q3‖

2
ω − 〈ψk,q2 , ψk,q3〉

2
ω

1222

+

Ik(q3)2〈y0,
ψk,q2

ϕk

0

〉2

X

+ Ik(q2)
2

〈
y0,

ψk,q3

0
ϕk

〉2

X

 ‖ϕk‖2ω

‖Ik(q3)ψk,q2 − Ik(q2)ψk,q3‖
2
ω ‖ϕk‖2ω + ‖ψk,q2‖

2
ω ‖ψk,q3‖

2
ω − 〈ψk,q2 , ψk,q3〉

2
ω

.1223
1224

Using the normalization condition
〈
ψk,qj , ϕk

〉
ω
= 0, this can be rewritten as1225

1226

〈
M−1ξ, ξ

〉
=

〈
y0,

ϕk

0
0

〉2

X

‖ϕk‖2ω
1227

+

∥∥∥∥∥∥
〈
y0,

ψk,q2

ϕk

0

〉
X

ζk,q3 −

〈
y0,

ψk,q3

0
ϕk

〉
X

ζk,q2

∥∥∥∥∥∥
2

ω

‖Ik(q3)ψk,q2 − Ik(q2)ψk,q3‖
2
ω ‖ϕk‖2ω + ‖ψk,q2‖

2
ω ‖ψk,q3‖

2
ω − 〈ψk,q2 , ψk,q3〉

2
ω

.1228
1229

Using again the normalization condition
〈
ψk,qj , ϕk

〉
ω
= 0, we obtain1230

‖ζk,q2‖
2
ω ‖ζk,q3‖

2
ω − 〈ζk,q2 , ζk,q3〉

2
ω = ‖Ik(q3)ψk,q2 − Ik(q2)ψk,q3‖

2
ω ‖ϕk‖2ω1231

+ ‖ψk,q2‖
2
ω ‖ψk,q3‖

2
ω − 〈ψk,q2 , ψk,q3〉

2
ω .12321233

Thus, from Cauchy-Schwarz inequality and the approximate controllability condition1234

Ker(A∗ − λ) ∩KerB∗ = {0}, ∀λ ∈ R,1235
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it comes that ‖ζk,q2‖
2
ω ‖ζk,q3‖

2
ω − 〈ζk,q2 , ζk,q3〉

2
ω > 0 and1236

〈
M−1ξ, ξ

〉
=

〈
y0,

ϕk

0
0

〉2

X

‖ϕk‖2ω
+

∥∥∥∥∥∥
〈
y0,

ψk,q2

ϕk

0

〉
X

ζk,q3 −

〈
y0,

ψk,q3

0
ϕk

〉
X

ζk,q2

∥∥∥∥∥∥
2

ω

‖ζk,q2‖
2
ω ‖ζk,q3‖

2
ω − 〈ζk,q2 , ζk,q3〉

2
ω

.1237

Notice that the last formula obtained in case iii degenerates as expected when1238
Ik(q2) = 0 and / or Ik(q3) = 0. Thus, gathering all cases proves (4.11) and ends the1239
proof of Lemma 4.2.1240

We now have all the ingredients to prove Theorem 1.3.1241

Proof (of Theorem 1.3). Recall that from (4.5) we have1242

T0,q(y0) = lim sup
k→+∞

ln+ C(Gk, y0)

2νk
1243

where, due to Lemma 4.2, we have for any k ≥ 1,1244

C(Gk, y0) =

〈
y0,

ϕk

0
0

〉2

X

‖ϕk‖2ω
+

∥∥∥∥∥∥
〈
y0,

ψk,q2

ϕk

0

〉
X

ζk,q3 −

〈
y0,

ψk,q3

0
ϕk

〉
X

ζk,q2

∥∥∥∥∥∥
2

ω

‖ζk,q2‖
2
ω ‖ζk,q3‖

2
ω − 〈ζk,q2 , ζk,q3〉

2
ω

.1245

We now estimate the previous right-hand side. As we will see in Section 2.1, we have1246

‖ψk,q2‖(0,1) + ‖ψk,q3‖(0,1) ≤ C, ∀k ≥ 1.1247

Thus,1248 ∥∥∥∥∥∥
〈
y0,

ψk,q2

ϕk

0

〉
X

ζk,q3 −

〈
y0,

ψk,q3

0
ϕk

〉
X

ζk,q2

∥∥∥∥∥∥
2

ω

≤ C ‖y0‖2X max
(
‖ζk,q2‖

2
ω , ‖ζk,q3‖

2
ω

)
.1249

Recall that ϕk satisfies (A.3). This implies that1250

C(Gk, y0) ≤ C ‖y0‖2X

1 +
max

(
‖ζk,q2‖

2
ω , ‖ζk,q3‖

2
ω

)
‖ζk,q2‖

2
ω ‖ζk,q3‖

2
ω − 〈ζk,q2 , ζk,q3〉

2
ω

1251

for any k ≥ 1 and any y0 ∈ X which gives1252

T0,q ≤ lim sup
k→+∞

1

2νk
ln

max
(
‖ζk,q2‖

2
ω , ‖ζk,q3‖

2
ω

)
‖ζk,q2‖

2
ω ‖ζk,q3‖

2
ω − 〈ζk,q2 , ζk,q3〉

2
ω

.1253

We now prove the converse inequality. We define for all k ≥ 11254

εk =

{
1 if ‖ζk,q2‖ω > ‖ζk,q3‖ω
0 otherwise

1255
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and we choose the particular initial condition1256

y0 =
∑
k≥1

1

νk

εk
 0

0
ϕk

+ (1− εk)

 0
ϕk

0

 .1257

From the expression (4.11) we obtain1258

C(Gk, y0) =
1

ν2k

max
(
‖ζk,q2‖

2
ω , ‖ζk,q3‖

2
ω

)
‖ζk,q2‖

2
ω ‖ζk,q3‖

2
ω − 〈ζk,q2 , ζk,q3〉

2
ω

.1259

This gives that1260

T0,q ≥ T0,q(y0) = lim sup
k→+∞

1

2νk
ln

max
(
‖ζk,q2‖

2
ω , ‖ζk,q3‖

2
ω

)
‖ζk,q2‖

2
ω ‖ζk,q3‖

2
ω − 〈ζk,q2 , ζk,q3〉

2
ω

1261

which ends the proof of Theorem 1.3.1262

4.3. A second characterization of the minimal null control time.1263
The goal of this section is to prove Theorem 1.4.1264
We first notice that, by (1.19), we have that q2 and q3 are linearly independent1265

and thus there exists C,C > 0 such that1266

(4.12) C(|α2|+ |α3|) ≤ ‖α2q2 + α3q3‖∞ ≤ C(|α2|+ |α3|), ∀α2, α3 ∈ R.1267

Proof. From Theorem 1.3 we now estimate, for any k ≥ 1,1268

max

(
‖ζk,q2‖

2
ω

‖ζk,q2‖
2
ω ‖ζk,q3‖

2
ω − 〈ζk,q2 , ζk,q3〉

2
ω

,
‖ζk,q3‖

2
ω

‖ζk,q2‖
2
ω ‖ζk,q3‖

2
ω − 〈ζk,q2 , ζk,q3〉

2
ω

)
.1269

Let k ≥ 1 and assume that ‖ζk,q3‖ω > ‖ζk,q2‖ω. Notice that1270

‖ζk,q3‖
2
ω

∥∥∥∥∥ζk,q2 − 〈ζk,q2 , ζk,q3〉ω
‖ζk,q3‖

2
ω

ζk,q3

∥∥∥∥∥
2

ω

= ‖ζk,q3‖
2
ω ‖ζk,q2‖

2
ω − 〈ζk,q2 , ζk,q3〉

2
ω .1271

Thus,1272

(4.13)

max
(
‖ζk,q2‖

2
ω , ‖ζk,q3‖

2
ω

)
‖ζk,q2‖

2
ω ‖ζk,q3‖

2
ω − 〈ζk,q2 , ζk,q3〉

2
ω

=
1∥∥∥∥ζk,q2 − 〈

ζk,q2
,ζk,q3

〉
ω∥∥ζk,q3

∥∥2

ω

ζk,q3

∥∥∥∥2
ω

=
1

min
τ∈R

‖ζk,q2 − τζk,q3‖
2
ω

.

1273

By linearity we have, for any τ ∈ R,1274

ζk,q2 − τζk,q3 = ζk,q2−τq3 .1275

We proved in Section 2.2 that there exists K ∈ N∗, C1, C2 > 0 such that, for any1276
k ≥ K and any q ∈ L∞(0, 1) such that Supp(q) ∩ ω = ∅, we have1277

(4.14) C1 ‖ζk,q‖2ω ≤ Mk

(
ϑk,q, ω

)2
≤ C2νk ‖ζk,q‖2ω .1278
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where ϑk,q is defined by (1.18). The analysis is the same in the symmetric case1279
‖ζk,q2‖ω > ‖ζk,q3‖ω.1280

Thus, from Theorem 1.3, (4.13) and (4.14), it comes that1281

(4.15) T0,q = lim sup
k→+∞

− lnmin

{
min
τ∈R

Mk

(
ϑk,q2−τq3 , ω

)
,min
τ∈R

Mk

(
ϑk,q3−τq2 , ω

)}
νk

.1282

To conclude the proof of Theorem 1.4, let us prove that the quantity1283

min

{
min
τ∈R

Mk

(
ϑk,q2−τq3 , ω

)
,min
τ∈R

Mk

(
ϑk,q3−τq2 , ω

)}
1284

appearing in the formula above has the same asymptotic behaviour as1285

min
q∈S[q]

Mk

(
ϑk,q, ω

)
.1286

Notice that, for any τ ∈ R, the function qτ = q2−τq3
‖q2−τq3‖∞

belongs to S[q] and thus1287

Mk

(
ϑk,q2−τq3 , ω

)
= ‖q2 − τq3‖∞Mk (ϑk,qτ , ω)1288

≥ C min
q∈S[q]

Mk

(
ϑk,q, ω

)
,1289

1290

where we have used (4.12). It follows that1291

min
τ∈R

Mk

(
ϑk,q2−τq3 , ω

)
≥ C min

q∈S[q]
Mk

(
ϑk,q, ω

)
1292

and the exact same computation holds for q3 − τq2.1293
Conversely, let q = α2q2 + α3q3 ∈ S[q]. If |α2| ≥ |α3|, then by (4.12), we have1294

|α2| ≥ 1
2C

and thus1295

Mk

(
ϑk,q, ω

)
= |α2|Mk

(
ϑk,q2+α3

α2
q3 , ω

)
1296

≥ 1

2C
min
τ∈R

Mk

(
ϑk,q2−τq3 , ω

)
.1297

1298

Otherwise, we have |α3| > |α2| and a symmetric analysis gives1299

Mk

(
ϑk,q, ω

)
≥ 1

2C
min
τ∈R

Mk

(
ϑk,q3−τq2 , ω

)
.1300

Finally, from the expression of the minimal null control time given in (4.15), the1301
claim of Theorem 1.4 is proved.1302

4.4. An explicit example.1303
In this section we consider A to be the Dirichlet Laplace operator (i.e., γ = 1 and1304

c = 0 in (1.2)) and ω =
(
0, 14
)
∪
(
3
4 , 1
)
.1305

proposition 4.3. Let A and ω be defined as above. Let τ0 ∈ [0,+∞]. There1306
exists q2, q3 ∈ L∞(0, 1) such that1307

i) approximate controllability of system (1.4) holds,1308
ii) for any (α2, α3) ∈ R2\{0}, the minimal null control time for system (1.1)1309

with q = α2q2 + α3q3 is T0,q = 0. In particular T0,q2 = T0,q3 = 0.1310
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iii) the minimal null control time for system (1.4) is T0,q = τ0.1311

Proof. For j ∈ {2, 3}, we set qj = 1Oj
with1312

O2 =

(
1

2
− δ2,

1

2
+ δ2

)
and O3 = (η3 − δ3, η3 + δ3) ,1313

where η3, δ2 and δ3 are chosen such that1314

(4.16) Supp(q2) ∩ ω = ∅ and Supp(q3) ∩ ω = ∅.1315

The approximate controllability of system (1.4) with these coupling functions has1316
been studied in [14, Section 3.4.2]. It is proved that approximate controllability holds1317
if and only if1318

(4.17) η3 6∈ Q and δ3 6∈ Q.1319

Using for instance [5, Lemma 7.1], we can find η3 /∈ Q and δ2, δ3 /∈ Q such that 2η31320
and 2δ2 are irrational algebraic numbers of degree 2 and1321

(4.18) lim sup
k→+∞

− ln |sin(2kπδ3)|
k2π2

= τ0.1322

These choices prove i).1323

Let us now focus on ii) that is the determination of the minimal null control time1324
for system (1.1). Under the considered assumptions, we have explicit formulas for ϕk1325
and ϕ̃k as follows:1326

ϕk =
√
2 sin(kπ•) and ϕ̃k = cos(kπ•).1327

From Theorem 1.2, for any q ∈ L∞(0, 1), we have1328

T0,q = lim sup
k→+∞

− lnMk

(
(Ik(q)− q)ϕk, ω

)
k2π2

.1329

Since (0, 1) \ ω has only one connected component C =
[
1
4 ,

3
4

]
it comes that1330

Mk

(
(Ik(q)−q)ϕk, ω

)
= max

{∣∣∣∣∫
C

(Ik(q)− q(x))ϕk(x)
2dx

∣∣∣∣ , ∣∣∣∣∫
C

(Ik(q)− q(x))ϕk(x)ϕ̃k(x)dx

∣∣∣∣} .1331

Then, for j ∈ {2, 3}, since Supp(qj) ⊂ C, we have1332 ∫
C

(Ik(qj)− qj(x))ϕk(x)
2dx = Ik(qj)

(
1− ‖ϕk‖2ω

)
− Ik(qj) = −‖ϕk‖2Oj

‖ϕk‖2ω .1333

where we have used1334

Ik(qj) =

∫
Oj

ϕk(x)
2dx = ‖ϕk‖2Oj

.1335

From (A.3) it comes that there exists C > 0 such that for any k ≥ 1 and any j ∈ {2, 3},1336

(4.19) C ≤
∣∣∣∣∫

C

(Ik(qj)− qj(x))ϕk(x)
2dx

∣∣∣∣ = ‖ϕk‖2Oj
‖ϕk‖2ω ≤ 1.1337
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This already implies that T0,q2 = T0,q3 = 0. Let (α2, α3) ∈ R2\{0} and q = α2q2 +1338
α3q3. We prove that1339

(4.20) lim sup
k→+∞

k2 |Ik(q)| > 01340

which implies T0,q = 0 since1341 ∣∣∣∣∫
C

(Ik(q)− q(x))ϕk(x)
2dx

∣∣∣∣ = |Ik(q)| ‖ϕk‖2ω .1342

Explicit computations yield1343

Ik(q) = α2

∫
O2

sin2(kπx)dx+ α3

∫
O3

sin2(kπx)dx1344

= α2δ2 + α3δ3 +
(−1)k+1α2

2kπ
sin(2kπδ2)−

α3

2kπ
cos(2kπη3) sin(2kπδ3).1345

1346

If α2δ2 + α3δ3 6= 0, the property (4.20) follows directly. Otherwise, we necessarily1347
have α2 6= 0 and since 2δ2 is an irrational algebraic number of degree 2 we have (see1348
for instance [5, Lemma 7.1])1349

inf
k≥1

k |sin(2kπδ2)| > 0.1350

Together with the choice of δ3 in (4.18) this proves (4.20) and thus gives T0,q = 0.1351

We now turn to iii) that is the determination of the minimal null control time for1352
system (1.4). From Theorem 1.4 we have that the minimal null control time is given1353
by1354

(4.21) T0,q = lim sup
k→+∞

− ln min
q∈S[q]

Mk

(
ϑk,q, ω

)
νk

.1355

Let k ≥ 1. Since C is symmetric with respect to 1
2 , we have1356 ∫

C

ϕk(x)ϕ̃k(x)dx =
√
2

∫ 3
4

1
4

sin(kπx) cos(kπx)dx = 0.1357

Thus, for j ∈ {2, 3}, we have1358

Mk

(
ϑk,qj ,C

)
=

(
−Ik(qj) ‖ϕk‖2ω

−
∫
C
qj(x)ϕk(x)ϕ̃k(x)dx

)
.1359

Again a symmetry argument shows that1360 ∫
C

q2(x)ϕk(x)ϕ̃k(x)dx =
√
2

∫
O2

sin(kπx) cos(kπx)dx = 0.1361

It follows that for any q = α2q2 + α3q3 ∈ S[q], we have1362

Mk

(
ϑk,q,C

)
=

(
−Ik(q) ‖ϕk‖2ω

−α3

∫
O3
ϕk(x)ϕ̃k(x)dx

)
1363
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and thus1364

(4.22) Mk

(
ϑk,q, ω

)
= max

{
|Ik(q)| ‖ϕk‖2ω , |α3|

∣∣∣∣∫
O3

ϕk(x)ϕ̃k(x)dx

∣∣∣∣} .1365

Let us now prove that (4.21) reduces to1366

(4.23) T0,q = lim sup
k→+∞

− ln
∣∣∣∫O3

ϕk(x)ϕ̃k(x)dx
∣∣∣

νk
.1367

• We set
q̃k = Ik(q3)q2 − Ik(q2)q3, qk =

q̃k
‖q̃k‖∞

in such a way that Ik(qk) = 0 and ‖qk‖∞ = 1. By (4.22) and (4.12), we get

Mk

(
ϑk,qk , ω

)
≤ 1

C

∣∣∣∣∫
O3

ϕk(x)ϕ̃k(x)dx

∣∣∣∣ ,
so that1368

(4.24) min
q∈S[q]

Mk

(
ϑk,q, ω

)
≤ 1

C

∣∣∣∣∫
O3

ϕk(x)ϕ̃k(x)dx

∣∣∣∣ .1369

Recall that C is the constant appearing in (4.12).1370
• We now prove that, for some C > 0 that does not depend on k, we have1371

(4.25) min
q∈S[q]

Mk

(
ϑk,q, ω

)
≥ C

∣∣∣∣∫
O3

ϕk(x)ϕ̃k(x)dx

∣∣∣∣ .1372

If it were not the case, we would have, up to a subsequence, the inequality

min
q∈S[q]

Mk

(
ϑk,q, ω

)
≤ εk

∣∣∣∣∫
O3

ϕk(x)ϕ̃k(x)dx

∣∣∣∣ ,
for some εk → 0.1373
In particular, from (4.22), it would exist for each k, a function q̃k = α2,kq2 +1374
α3,kq3 ∈ S[q], such that1375

(4.26) |Ik(q̃k)| ‖ϕk‖2ω ≤ εk

∣∣∣∣∫
O3

ϕk(x)ϕ̃k(x)dx

∣∣∣∣ ,1376

and1377

(4.27) |α3,k|
∣∣∣∣∫

O3

ϕk(x)ϕ̃k(x)dx

∣∣∣∣ ≤ εk

∣∣∣∣∫
O3

ϕk(x)ϕ̃k(x)dx

∣∣∣∣ .1378

From (4.27), we deduce first that |α3,k| ≤ εk, and in particular α3,k → 0.
Since ‖q̃k‖∞ = 1, it follows that |α2,k| → 1

‖q2‖∞
, from which we deduce that

lim
k→∞

|Ik(q̃k)| =
1

‖q2‖∞
lim
k→∞

|Ik(q2)| =
|O2|
‖q2‖∞

> 0.

By using (A.3), we obtain a contradiction with (4.26).1379
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Using (4.24) and (4.25) in (4.21) exactly proves (4.23).1380
Finally, explicit computations yield1381 ∫

O3

ϕk(x)ϕ̃k(x)dx =

∫
O3

sin(kπx) cos(kπx)dx =
sin(2kπη3) sin(2kπδ3)

2kπ
.1382

Since 2η3 is an irrational algebraic number of degree 2 we have (see for instance [5,1383
Lemma 7.1])1384

inf
k≥1

k |sin(2kπη3)| > 0.1385

Together with the choice of δ3 in (4.18) this ends the proof of Proposition 4.3.1386

Appendix A. Spectral properties of the Sturm-Liouville operator.1387
Let A be the Sturm-Liouville operator defined by (1.2). We recall here some1388

spectral properties that will be used in our study.1389
From [1, Theorem 1.1 and Remark 2.1], there exist % > 0 and C > 0 such that1390

(A.1) % < νk+1 − νk, ∀k ≥ 1,1391
1392

(A.2) 1

C

√
νk ≤ |ϕ′

k(x)| ≤ C
√
νk, ∀x ∈ {0, 1}, ∀k ≥ 1,1393

and, for any non-empty open set ω ⊂ (0, 1),1394

(A.3) inf
k≥1

‖ϕk‖ω > 0.1395

Let N be the counting function associated with the sequence of eigenvalues (νk)k≥11396
i.e.,1397

N : r ∈ (0,+∞) 7→ ] {νk ; νk ≤ r} .1398

Using [12, Theorem IV.1.3], this counting function satisfies for some κ > 0,1399

(A.4) N(r) ≤ κ
√
r, ∀r > 0,1400

and1401

(A.5) |N(r)−N(s)| ≤ κ
(
1 +

√
|r − s|

)
, ∀r, s > 0.1402

To estimate various quantities, we will make an intensive use of the following lemma1403
proved in [1, Lemma 2.3].1404

Lemma A.1. Let A be the Sturm-Liouville operator defined by (1.2) and let λ0 > 0.1405
There exists C > 0 depending on γ, c and λ0 such that, for any λ ≥ λ0, for any1406
F ∈ L2(0, 1), for any x, y ∈ [0, 1], for any u satisfying1407

(A− λ)u = F in [0, 1],1408

we have1409

|u(x)|2 + γ(x)

λ
|u′(x)|2 ≤ C

(
|u(y)|2 + γ(y)

λ
|u′(y)|2 + 1

λ

∣∣∣∣∫ y

x

|F (s)|ds
∣∣∣∣2
)
.1410
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Applying Lemma A.1 with u = ϕk, F = 0, λ = νk and integrating with respect to1411
the variable y ∈ (0, 1) we obtain1412

|ϕk(x)|2 +
1

νk
|ϕ′

k(x)|2 ≤ C

(
1 +

1

νk

∫ 1

0

γ(y)|ϕ′
k(y)|2dy

)
, ∀x ∈ (0, 1),∀k ≥ 1.1413

Integrating by parts leads to1414 ∫ 1

0

γ(y)|ϕ′
k(y)|2dy =

∫ 1

0

(νk − c(y))ϕk(y)
2dy ≤ νk + ‖c‖∞1415

which yields the existence of C > 0 such that1416

(A.6) |ϕk(x)|2 +
1

νk
|ϕ′

k(x)|2 ≤ C, ∀x ∈ (0, 1),∀k ≥ 1.1417

We shall also use this lemma to estimate ψk,q (defined in (1.6)) as follows:1418

Lemma A.2. There exists C > 0 such that

‖ψk,q‖(0,1) ≤ C, ∀k ≥ 1.

Proof. The function ψ̃k,q defined by1419

ψ̃k,q := ψk,q −
ψ′
k,q(0)

ϕ′
k(0)

ϕk,1420

satisfies1421 
(A− νk)ψ̃k,q =

(
Ik(q)− q

)
ϕk,

ψ̃k,q(0) = ψ̃k,q(1) = 0,

ψ̃′
k,q(0) = 0.

1422

From Lemma A.1 with y = 0 it comes that1423 ∣∣∣ψ̃k,q(x)
∣∣∣2 + γ(x)

νk

∣∣∣ψ̃′
k,q(x)

∣∣∣2 ≤ C

νk
, ∀x ∈ (0, 1), ∀k ≥ 1.1424

which yields1425 ∥∥∥ψ̃k,q

∥∥∥
(0,1)

≤ C, ∀k ≥ 1.1426

Notice that, by definition of ψ̃k,q, we have
(
ψk,q − ψ̃k,q

)
∈ Rϕk. Then, multiplying by1427

ϕk, integrating over ω and recalling that 〈ψk,q, ϕk〉ω = 0, we obtain that1428

ψk,q = ψ̃k,q −

〈
ψ̃k,q, ϕk

〉
ω

‖ϕk‖2ω
ϕk.1429

This implies that1430

‖ψk,q‖(0,1) ≤
∥∥∥ψ̃k,q

∥∥∥
(0,1)

(
1 +

1

‖ϕk‖ω

)
, ∀k ≥ 1.1431

Then, estimate (A.3) ends the proof of Lemma A.2.1432
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By definition, ϕk and ϕ̃k are solutions of the same linear second order ODE1433
(A − νk)ϕk = (A − νk)ϕ̃k = 0. It is therefore natural to introduce the associated1434
Wronskian matrix1435

Wk(x) =

(
γ(x)ϕ′

k(x)√
νk

−ϕk(x)
γ(x)ϕ̃′

k(x)√
νk

−ϕ̃k(x)

)
,1436

for which we can prove the following estimate.1437

Lemma A.3. There exists C > 0 such that

‖Wk(x)‖+ ‖Wk(x)
−1‖ ≤ C, ∀x ∈ [0, 1],∀k ≥ 1.

Proof. Let us fix a k ≥ 1. Applying Lemma A.1 to u = ϕ̃k and y = 0, we obtain

|ϕ̃k(x)|2 +
1

νk
|ϕ̃′

k(x)|2 ≤ C, ∀x ∈ (0, 1),∀k ≥ 1.

Together with (A.6), this shows the uniform estimate on ‖Wk(x)‖.1438
Moreover, the determinant of Wk(x) does not depend on x and is thus equal to1439

the determinant of Wk(0) that is to −γ(0)ϕ′
k(0)/

√
νk. By (A.2), we know that this1440

quantity is uniformly bounded from below. The bound for Wk(x)
−1 follows.1441
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