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DISTRIBUTED NULL CONTROLLABILITY OF SOME 1D CASCADE
PARABOLIC SYSTEMS

FRANCK BOYER* AND MORGAN MORANCEY'

Abstract. We consider several coupled systems of one-dimensional linear parabolic equations
where only one equation is controlled with a distributed control. For these systems we study the
minimal null-control time that is the minimal time needed to drive any initial condition to zero.

In a previous work [Comptes Rendus. Mathématique, Tome 361 (2023)] we extended the block
moment method to obtain a complete characterization of the minimal null-control time in an abstract
setting encompassing such non-scalar controls. In this paper, we push forward the application of this
general approach to some classes of 1D parabolic systems with distributed controls whose analysis
is out of reach by the usual approaches in the literature like Carleman-based methods, fictitious
control and algebraic resolubility, or standard moment method. To achieve this goal, we need to
prove refined spectral estimates for Sturm-Liouville operators that have their own interest.

Key words. Control theory, parabolic partial differential equations, minimal null control time,
block moment method

AMS subject classifications. 93B05, 93C20, 35K40
1. Introduction.

1.1. Problems under study.

In the last 15 years different works exhibited that for some coupled systems of
parabolic partial differential equations (see for instance [3, 5, 16, 22, 23]) or degenerate
parabolic equations (see for instance [6, 8, 9, 7, 17, 2]) it might be needed to wait
for some positive minimal time for null controllability to hold even if, in a parabolic
context, the information propagates at infinite velocity.

This phenomenon, quite surprising at first sight since it is not related to any
constraint imposed on the state or on the control, is now better understood. It is
more related to the geometry of the high frequency eigenelements of the underlying
evolution operator relatively to the observation operator. For instance, it may occur
in the following (non exclusive) situations: if there is condensation of eigenvalues, if
the observation of eigenvectors is too small with respect to the parabolic dissipation
rate, or if the norm of suitably chosen generalized eigenvectors is asymptotically too
large.

In the previous works [10, 13], we developed the block moment method which is
well adapted to study the minimal null-control time for autonomous coupled linear
one-dimensional parabolic partial differential equations. Our goal in this paper is to
provide several applications of this approach to some classes of such systems whose
analysis is out of reach by using other techniques available in the literature. Based on
the general results obtained in [13] we first characterize the minimal null-control time
of such systems in terms of the asymptotic behavior of some explicit quantities based
on the eigenelements of the evolution operator. In a second step, an extra spectral
analysis is developed, extending the one given in [1], in order to obtain a tractable
expression of the involved quantities that can be computed for actual examples. With
this approach, we manage to compute the minimal null-control time for many systems,
extending the results in the literature.

*Institut de Mathématiques de Toulouse, UMR, 5219, Université de Toulouse, CNRS, UPS IMT,

F-31062 Toulouse Cedex 9, France (franck.boyer@math.univ-toulouse.fr).
 Aix Marseille Univ, CNRS, I2M, UMR 7373, Marseille, France (morgan.morancey@univ-amu.fr).

1

This manuscript is for review purposes only.


mailto:franck.boyer@math.univ-toulouse.fr
mailto:morgan.morancey@univ-amu.fr

46

N =

ot Ot gt Ot Ot

(S BTSNV

ot ot Lt
~

Y O s W N

To be more precise, the first class of control problems that will be studied in this
paper is the following one

A 0\  [(1,u(t,x)
8ty+ <q(x) A) Yy = ( 0 ) ) (t7l‘) € (O7T) X (Ov 1)5
1) y(t.0) = y(t,1) = 0, te (0,T),
y(O,x) = yo(l‘),

where
e A is the unbounded Sturm-Liouville operator defined in L?(0,1) by

(1.2) D(A) = H?*(0,1)n Hy(0,1), A= =0, (70ye) + co,

with ¢ € L*°(0,1), v € C1([0, 1]) satisfying ¢ > 0 and [ionlf]v > 0.

e the coupling function ¢ belongs to L*°(0,1)
e w C (0,1) is a non empty open set.
This system is well-posed in the sense that for every yo € X = (L?(0,1))?, for
every u € L2((0,T) x (0,1)) there exists a unique solution in C° ([0, 7]; X). The null
controllability property we shall study for this system is defined as follows.

DEFINITION 1.1. Let T > 0. The system (1.1) is said to be null controllable at
time T if for any yo € X, there exists a control u € L?((0,T) x (0,1)) such that the
associated solution of (1.1) satisfies y(T") = 0.

This problem is not straightforward since the control u is localized in space and
only acts in the first equation of the system; therefore controlling both components is
only possible through the action of the coupling term corresponding to the function
q in the second equation. It is now well known that such system may not be short-
time null-controllable and our goal is to go deeper into the understanding of this
phenomenon.

DEFINITION 1.2. The minimal null control time for system (1.1) in X is defined
as the unique value To(X) € [0, +00] such that
o for any T > To(X), system (1.1) is null controllable at time T ;
o for any 0 < T < Typ(X), system (1.1) is not null controllable at time T.
When no confusion is possible, we shall simply denote this minimal time as Tp.

It will be also useful to introduce, for any yo € X, the number Ty(yo) € [0, +0o0]
which is the minimal time that is necessary to drive the system to 0 starting from the
particular initial data yo. Notice that To(X) = sup,, < x To(yo)-

The question we address is thus the computation of the minimal null control time
(being possibly 0 or infinity) of system (1.1).

This question has already been answered in some particular geometric configu-
rations: when w intersects the support of the coupling function Supp(q), by means
of Carleman estimates or in the opposite setting when w is an interval disjoint from
the support of g, by solving the associated moment problem. We will discuss those
results more in details in Section 1.2.

Our goal in this article concerning (1.1) is twofold. First we prove that applying
directly the abstract results on block moment problems from [13] encompasses all
the previously known results for this problem even though they were proved with
completely different techniques. Then, improving the strategy developed in [1] to
study spectral quantities of interest in this problem, we are able to extend these
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results to any choice of coupling term ¢ and control domain w. We will emphasize the
role of the geometry (that is of the relative position of the connected components of w
with respect to the support of ¢) in the determination of the minimal null control time
for system (1.1). Moreover, contrary to the related results in the literature, our proof
does not rely on the explicit expression of the eigenfunctions of A so that it applies
for a general Sturm-Liouville operator (instead of the Dirichlet-Laplace operator that
was considered in [4, 5]). All these results are precisely stated in Section 1.3.

To point out even more the ability of our approach to determine the minimal null-
control time for such problems we propose the study of some other related systems.
To begin with, we obtain new results for a similar cascade problem in which coupling
terms in the second equation now contain first-order operators, as studied in [16].
More precisely, we consider the following control problem

A 0 _ (1,u(t, )
o (Q(w) + p(2)0s A) y= ( 0 ) (t,z) € (0,T) x (0,1),
y(t,0) =y(t,1) =0, te(0,T),
y(07$) = yo(x),

(1.3)

with ¢ € L>(0,1), p € W1>°(0,1). As a consequence of our analysis we will give an
example for which the system is not approximately controllable, even if the coupling
terms are active inside the control domain w.

Finally, we analyze the null-controllability of the following simultaneous control
problem which has not been studied in the literature so far

A 0 0 1,u(t, )
oy+ @) A 0|y= 0 . (t,z) €(0,T) x (0,1),

with ¢a, g3 € L*°(0,1). This problem can indeed be seen as a simultaneous control-
lability problem since we look for a single control u that simultaneously controls two
systems of the form (1.1): the one satisfied by (y1, y2) and the one satisfied by (y1, y3)-

The expression we obtain for the minimal simultaneous null control-time for (1.4)
shows that this time can be strictly larger than the two minimal null-control times
associated to the two subsystems. This kind of phenomenon was already observed,
for instance, in [22].

In the sequel of this introduction, we will set some notation and present the
results available in the literature concerning the analysis of the control problems we
are interested in that is (1.1), (1.3) and (1.4), then we will state precisely our main
results.

1.2. State of the art.

1.2.1. Notation.
e For any w C (0, 1), we set for convenience ||s||, = |[¢|z2(.) and the associated
inner product (e, )
e We denote by (v4)r>1 the increasing sequence of eigenvalues of the Sturm-
Liouville operator A defined in (1.2). Notice that the sign assumption we

3

This manuscript is for review purposes only.



122
123
124

129

131
132
133
134
135

136

137

138

139
140

make on c¢ ensures that for any & > 1, we have v > 0. The associated
normalized eigenvectors are denoted by (¢x)r>1; they form a Hilbert basis of
L?(0,1).

For any k > 1, we define ¢ as the unique solution of the Cauchy problem

(A—wvi)pr =0,
(1.5) ¢r(0) =1,
?,(0) =0.

We will also need to introduce v, 4, the unique solution of the boundary value
problem

(A= v)¥rq = (In(q) — q)¢r,
(1.6) VYr,q(0) = Pr4(1) =0,
(ks Yr,q), =0,

where It (q) is the integral defined by

(L.7) Ti(g) = / 4(2)¢? ().

Such a solution exists since, precisely by (1.7), the right-hand side of the
equation is orthogonal to ¢ and it is unique thanks to the choice of normal-
ization (px,¥r,q), = 0. This particular choice is possible thanks to the fact
that [|¢gl|, > 0 and it implies that vy 4 is, among all the solutions of the
underdetermined problem

(A —ve) = (Ix(q) — Q) ¢r; P(0) = (1) =0,

the one with minimal L?(w) norm. This will simplify some computations in
the paper since it ensures orthogonality between observations of (generalized)
eigenvectors.

Following [14], for any F € L?(0,1) and any € connected component of
(0,1)\w we define an element of R? as follows

F
Je Fion , if € touches the boundary of (0,1)
My (F,€) =
F
Je fk , otherwise,
fq: F‘pk

that we gather into a single collection defined by

(1.8) mk(Fvw) = (Mk(F7 e))ggc(m)’

where C(U) stands for the set of all connected components of any U C [0, 1].
We finally set

(1.9) My(F,w) = |9 (F,w)||o = sup{yMk(F, O ;cec ((o, 1)\w>} :
4
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1.2.2. About the cascade system (1.1).
e Approximate controllability:

By using the Fattorini-Hautus test (see [20]), it is proved in [14, Theorem
3.2] that, if Supp(q) Nw = &, approximate controllability of (1.1) holds if and
only if

(1.10) Mi(qpr,w) #0,  VEk>1.

Notice also that applying [14, Theorem 2.2] we obtain that
. If Supp(q) Nw # &, approximate controllability of (1.1) holds without
any other condition.
. If Supp(q) Nw = &, the necessary and sufficient condition (1.10) for
approximate controllability of (1.1) can be rewritten as

(1.11) M ((Ix(q) — @)k, w) # 0, Vk > 1,

where Ij;(q) is introduced in (1.7). Rewriting the approximate control-
lability condition as (1.11) is more coherent with the expression of the
minimal null control time that we obtain below (see Section 2.2). The
equivalence between conditions (1.10) and (1.11) is proved in Lemma 3.2
(choosing there p = 0).

Null controllability under a sign assumption:

If there exists wg C w such that ¢ has a strict sign inside wg then it follows

from [21] that null controllability holds in any arbitrary small time. The proof

is based on Carleman estimates.

Null controllability with disjoint control and coupling domains:

System (1.1) was then studied in the case where A = —0,, and w = (a,b) is

an interval such that Supp(¢) Nw = @.

First, it was proved in [4] that if Supp(¢q) C (b,1) then, approximate control-

lability holds if and only if

In(q) #0,  Vk>1.

This condition is just a rephrasing of (1.10). In this case the authors proved
that the minimal null-control time Ty , for this system is given by

—In |7
Tp.q = limsup M
k—+o00 Vi

Later on, it was proved in [5] that if Supp(g) is included in (0, a)U (b, 1), then
approximate controllability holds if and only if

k(@] + [L2k(@) #0,  VE=>1,

where

(112)  Liale) = / L@ @)de,  Toale) = / 9(x)p? (z)da.

In that situation, this condition is also a rephrasing of (1.10) and it was also
proved in [5] that the minimal null-control time is

(1'13) T07q — limsup _lnma’x{|‘[k(q)|7 |Il,k(Q)|, |127k(q)|} .

k— 400 Vi
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Moreover, it is proved that for any 79 € [0,400] there exists a coupling
function ¢ € L*°(0,1) such that the corresponding minimal time is actually
To,q = To. Let us underline that these results are the first results exhibiting a
positive minimal null control time for a system of coupled parabolic equations
with a distributed control.

The proofs of those results are based on the moment method since, due to
the assumption Supp(q) Nw = &, the strategy based on Carleman estimates
is inefficient.

1.2.3. About the system with a first-order coupling term.

Null controllability of system (1.3) with a coupling term of order one has been
studied in [11, 16, 18, 19]. Among other things, the author proves in [16] that, when
approximate controllability holds, the minimal null-control time Tp 4, of system (1.3)
when w = (a, b) is an interval and A is the Dirichlet Laplace operator is given by

To,q,p = limsup nmax {|I ()|, [I1r (")], 12k (7’)\}’
k—+o00 Vi

where r = q — %p’. Note that the value of T 4, only depends on r and is equal to
To,» as defined in (1.13). As proved in Section 3.4.1, this feature is specific to the case
where w is an interval since in general Tj 4, really depend on both ¢ and p, and not
only on r.

The proof given in [16] is also based on the moments method and follows that
of [5]. More precisely, the analysis in this reference is reduced, thanks to well-suited
manipulations, to the one of a scalar moment problem despite the fact that the control
space is, by nature, infinite dimensional. Those computations are thus specific to the
problem under study and makes use of the explicit formulas for the eigenfunctions of
the 1D Laplace operator, which is not the case of our proof.

In [18], the authors give a sufficient condition for null controllability for general
parabolic systems in any dimension with first-order coupling terms. They deal with
coeflicients depending both on space and time but their analysis does not apply when
p = 0 in w. In [19], the same authors study the influence of the position of the
control domain on controllability for one dimensional parabolic systems with first-
order coupling terms. Their result can hardly be compared with our study since the
two equations they consider are associated to different evolution operators.

1.2.4. About the simultaneous control problem.

To the best of our knowledge, the only available result in the literature concerning
the controllability of (1.4) is the necessary and sufficient condition for approximate
controllability given in [14, Theorem 3.2] that we recall now: approximate controlla-
bility for system (1.4) holds if and only if, for any & > 1,

(1.14) D . . : 2,¢((0,0\w)
. k(q20K, w) and My (g3¢pk,w) are linearly independent in (R*) ,
where the notation 9 is introduced in (1.8).

This gave rise to unexpected geometric control conditions for this problem. For
instance, if w is an interval that does not touch the boundary of (0, 1), approximate
controllability of system (1.4) never holds when Supp(g2) and Supp(gs) are located
in the same connected component of (0,1)\w. However, if there are located in two
distinct connected components then approximate controllability holds if and only if
the two subsystems are approximately controllable (see [14, Section 3.4]).

6
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1.3. Main results of this paper.
First, we obtain the following characterization of the minimal null-control time
for system (1.1).

THEOREM 1.1. Let w C (0,1) be a non empty open set and let ¢ € L>(0,1).
Assume that either Supp(q) Nw # & or that (1.11) holds. Then, the minimal null-
control time for system (1.1) is given by

—1In (I;(¢)? 2 4 2
o — oy~ @02+ Dal2).
k—+o0 2uy,

We recall that 1y, 4 is defined in (1.6) and Ix(g) is defined by (1.7).

This theorem is proved in Section 2.1. It is valid without any geometric assump-
tions on the control domain w nor on the support of the coupling term ¢. In this
respect, it unifies the different results obtained in the literature for the study of null
controllability of system (1.1) recalled in Section 1.2.2. For example, even if it is not
clear at first sight, we manage to prove, in Section 2.3, that the formula above reduces
to Tp,q = 0 when ¢ has a strict sign on wy C w as proved in [21].

Theorem 1.1 will be obtained as a consequence of [13, Theorems 11, 14 and 18]
where the minimal null control time issue is analyzed in an abstract general setting.
It relies on a careful estimate of the cost of resolution for block moment problems
associated to a general admissible control operator. With some additional work, based
on the method developed in [1] to obtain spectral estimates for the eigenelements of
A, we also obtain the following characterization of the minimal null control time in
the case where Supp(q) Nw = @.

THEOREM 1.2. Let w C (0,1) be a non empty open set with a finite number of
connected components. Let ¢ € L*(0,1) be such that Supp(q) Nw = &. Assume
that (1.11) holds. Then, the minimal null-control time for system (1.1) is given by

—In My ((Ii(a) — @)r,
To., = limsup — k(Tk(a) — @) on, w)

k— 400 Vi

where My, is defined by (1.9).

The proof is given in Section 2.2. Compared to the one in Theorem 1.1, the expression
for Ty 4 above is more convenient to deal with since it does not involve the function
Yy,q. As we shall prove in Section 2.3, this formula is a natural extension of the ones
obtained in the literature in some particular cases. However it holds true in more
general situations, so that we are able to compute T 4 in cases that were not covered
in the literature (see Proposition 2.5 as an example).

This theorem also extends the previous works in the field by considering for A a
general Sturm-Liouville operator (and not only the Dirichlet-Laplace operator) since
it does not make use of the explicit expressions of its eigenvalues and eigenfunctions.

REMARK 1.1. Notice that the assumption Supp(q) Nw = & is necessary for this
theorem to be true. For instance, if ¢ =1 and w is an interval then, from [21], null
controllability holds in any time T > 0 whereas we have I, (q) —q =0 for any k > 1.

However, this is not restrictive for our study since it is well-known that when
Supp(q) Nw # &, the system is indeed null-controllable at every time T > 0 (see for
instance [21]).

The tools used to prove Theorems 1.1 and 1.2 allow for a similar analysis for
system (1.3). The corresponding results are stated in Section 3.

7
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We now turn to the simultaneous controllability problem (1.4). For g¢o,q3 €
L>(0,1), we set g = (g2,¢3) and denote by Tj 4 the minimal null control time for
system (1.4) in (L?(0,1))3. Since simultaneous null controllability at a given time
implies null controllability at the same time for both subsystems (1.1) with ¢ = ¢
and ¢ = g3 it directly comes that

(115) TO,q > maX(TO,qzaTO#ZS)'

Actually, by linearity of the system, simultaneous null controllability at a given
time implies null controllability at the same time for system (1.1) with any ¢ in

Span(gz, ¢3)\{0} that is

(1.16) Toq > sup  Toq.
q€Span(g2,93)
q#0

We give below general characterizations of Tp 4 similar to those obtained in Theo-
rems 1.1 and 1.2 for system (1.1) and give, in Section 4.4, an explicit example of
system (1.4) for which the inequality in (1.16) is strict.

In order to state the results, it will be convenient to use some extra notation. For
any ¢ € L>(0,1), we set

(117) Ck,q = wk,q + Ik(q)gokv
where ¢y , was introduced in (1.6), and
(1.18) Orq = (I(9) — q) o

The formulas obtained in Theorems 1.1 and 1.2 for the minimal null-control time of
system (1.1) can now be rephrased respectively as follows

—1
TU,q = lim sup M
k—+o00 UV

and

—In My (9.4, w
Ty, = limsup k( k. ) .
k—4oc0 Vi

We shall generalize those expressions for system (1.4) as follows.

THEOREM 1.3. Let w C (0,1) be a non empty open set and let q2,q3 € L>°(0,1).
Assume that (1.14) holds. Then, the minimal null control time Ty q for system (1.4)
in (L?(0,1))3 is given by

2 2
o max (Ul ka2
Tp,q = limsup — In 5 5 5
k—4-o00 2vy, H<k742”w ”Ck,%”w - <<k,qvak,q3>w

This theorem is proved in Section 4.2. Though it is not obvious at first sight,
we will show in the proof of Proposition 4.3 that the approximate controllability
assumption (1.14) actually implies that

2 2 2
”Ck,quw ”Ck,qg”w - <Ck,qza<k,q3>w > 07 vk >1

and thus the formula defining Tj 4 is well-defined. Since for any k > 1 we clearly have

2 2 2 2 2
”Ck,qQ Hw ”Ckﬂs”w - <<k,qzaCk743>w < ||Ck742 ”w HCk7Q3||w ;

8
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we immediately see, by Theorem 1.1, that this formula is compatible with the expected
property (1.15).
Notice that, when (Supp(qg) U Supp(qg)) Nw = &, we have

Lig) = Y, /qusoi, vje{1,2}.
€€C((0,1)\w)

Hence, it comes that the approximate controllability condition (1.14) is equivalent in
that case to the condition

(1.19) M. (ﬁk,qw w) and 9, (ﬂk’qs,w) are linearly independent

where 0 4, and ¥y, 4, are defined by (1.18).

THEOREM 1.4. Let w C (0,1) be a non empty open set with a finite number of
connected components. Let qa,q3 € L>(0,1) be such that

(SUPP(QQ) U Supp(qg)) Nw=g.

Assume that (1.19) holds. Then, the minimal null control time for system (1.4) in
(L?(0,1))3 is given by

—In Join, M (9hq, w)

To,q = limsup
k— 400 Vi

where My, is defined by (1.9), Ox,q is defined by (1.18) and

Slq] = {q € Span(qz,g3), l¢llc = 1}.

This theorem is proved in Section 4.3. Notice that, by compactness of S[q]|, the
min appearing in this formula is actually achieved and moreover, since the approxi-
mate controllability condition (1.19) implies that

Mk(ﬁk,qa CU) # 07 Vq € S[q}a

we know that this min is positive. Thus, the formula for T 4 in the above theorem is
well defined.

This formulation is more convenient to deal with than the one of Theorem 1.3 on
actual systems. For instance, with this formulation, we prove that the minimal null
control time is not related to the minimal null control times of the subsystems. Indeed,
in Section 4.4, for any 79 € [0, +00], we design a couple of functions g = (g2, g3) such
that Ty q = 70 and

sup Tpq = sup Th,qa =0
q€S[q] g€Span(g2,93)
q7#0

which proves that the inequality in (1.16) can be strict.

1.4. Outline of the article.

Section 2 is dedicated to the proof of the two formulations of the minimal null
control time for system (1.1) stated in Theorems 1.1 and 1.2.

In Section 2.3, we give some applications of the obtained formulas: we prove that
they encompass previously known results and let us get precise results in more general
new configurations.
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Section 3 is dedicated to the analysis of system (1.3). We show that taking into
account first-order coupling terms in our methodology is relatively straightforward,
compared to the original proofs in [16].

In Section 4, we determine the minimal null control time for the simultaneous
controllability problem (1.4) as stated in Theorems 1.3 and 1.4.

Finally, we have gathered in Appendix A some spectral properties of Sturm-
Liouville operators that are used all along this article.

2. A system with a space varying zero order coupling term.

In this section we prove the characterizations of the minimal null control time
for system (1.1). We prove Theorem 1.1 in Section 2.1 as an application of the
results of [13]. Then, analyzing the behaviour of the spectral quantities arising in
Theorem 1.1, we prove Theorem 1.2 in Section 2.2.

2.1. A first formula for the minimal time.
First, let us check that our system (1.1) fits in the formalism of [13]. There, we
considered abstract control problems of the form

y'(t) + Ay(t) = Bu(t),
y(0) = vo-

Thus, for system (1.1), the evolution operator A is defined by

A=<21 2) D(A) = D(A)?

and the control operator B is defined by

B:uelU=IL20,1) (1g“>.

In [13] the results involve a Gelfand triple of Hilbert spaces X € X C X_, in
order to deal with possibly unbounded control operators. In the present article we
only consider distributed control operators which implies that there are no particular
subtleties on the functional framework and we shall set here X_, = X} = X =
L?(0,1;R)? (see [13, Section 2.1.1]). This implies the wellposedness of system (1.1)
in the sense of [13, Proposition 2].

Thus, to use the characterizations of the minimal null control time obtained in [13]
we shall prove that the operators A and B satisfy the assumption (H) defined in [13,
Section 2.1.2]. Roughly speaking this assumption states that the operator A* admits
a complete family of generalized eigenvectors which are observable (i.e. not in the
kernel of B*). Tt also requires that the associated family of eigenvalues, each of
them having finite geometric multiplicity and globally bounded algebraic multiplicity,
satisfies a weak-gap assumption (i.e. they can be gathered in well separated blocks of
bounded diameter and cardinality) and appropriate estimates on its counting function
(see (A.4) and (A.5)).

e Let us detail the spectral analysis of the operator A*.
Its spectrum is given by A = (vg)r>1. Recall that I(q) is defined by (1.7) and
Yy q is defined by (1.6). We distinguish the following cases.

10
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372
373
374
375
376
377
378
379

380

381
382
383
384
385

386

387

388

389
390
391
392

393

398

399
100

* If It (q) # 0 then vy is algebraically double and geometrically simple. A Jordan
chain is given by

L (4
2.1 0= ‘0’“), L= < ’“’>.
* If I.(g) = 0 then vy is geometrically double and a basis of eigenvectors is given
by

(2.2) ¢2,1 = ((%k) ) 6252,2 = (Qf:kq) .

e Properties of eigenvalues.

The eigenvalues of A* are real and, due to the assumption ¢ > 0 they satisfy
v > 0.

From (A.1), these eigenvalues satisfy a gap condition with parameter ¢ and thus
a grouping in the sense of [13, Proposition 6] is given by Gy, = {vx}.

The associated counting function N satisfies (A.4) and (A.5).

Gathering all these properties, we have that the sequence of eigenvalues of A*

satisfies
1
Ae ‘Cw <1a Qa07 27K/>

as defined in [13, Section 2.1.2].

e Properties of eigenvectors.

The eigenvalue vy, is either geometrically simple and algebraically double or semi-
simple with geometric multiplicity 2. Due to the expressions (2.1) and (2.2) we obtain
that the family of (generalized) eigenvectors of A* forms a complete family in X.

As stated in Section 1.2, the approximate controllability assumption

Ker(A* — X\) N Ker B* = {0}, YA eA

follows from (1.11) and [14, Theorem 2.2].
Thus, the operators A and B satisfy the assumption (H) stated in [13, Section
2.1.2].

Proof (of Theorem 1.1). From [13, Theorem 11], for any yo € X the minimal null
control time from yq is given by

IntC(G@
T, q(yo) = limsup w
k—+o00 Vg

where In* s = max(0, In s), for any s > 0 and the cost of the k-th block is given by
C(Gryyo) = inf { [|2°]7 + 2], 5 2°,0" € U with (2%, B*60),, = (0, 00
and (0, B6L),, + (2 B0, = (0, 0k) « }
if I;,(q) # 0 and
C(Gr o) = inf{ I 5 2 € U with (2,860 ), = (yo, 6%}, forj {1,2}}

11
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101 if I (q) = 0.

402 To compute C(Gy,yo) we distinguish the two cases.
403 * Assume that I;(¢) # 0. Then, from [13, Theorem 14], it comes that
404 C(Grryo) = (MT€,6)
105 where
106 M = Gram(B*¢), B*¢;) + Gram (0, B*¢}) = ikl ) 01 2)
0" rll? + s lhnall2
407 and .
408 ¢ = <<y0’¢11c>x>
<y07 ¢k>X
409  Thus,

1 QD 2 1 ’ll) 2
410 C(Gp,yo) = —— , k>> + < ’ ( k,q)> )
(Gr10) = 1o <y (0 o L@ T A Ln ) )

411 * Assume that I;(g) = 0. Then, from [13, Theorem 18], it comes that

412 C(Gr o) = (M€, €)
113 where
114 M = Gram (B¢} |, B*¢0 ) = (cpklli 0 2)
Tk 0 [¥rqlls
415 and
<y0a d)k: 1>X)
416 = ’ .
) ¢ <<yo, r2) x
417 Thus,
1 or)\” 1 Y ?

118 C(Gk,yo) TR <y07 ( >> + — <y07 ( $q)> .

lexll2 0/ /x  1¥ralls Pr )/ x
419 Finally, in both cases, the cost corresponding to the group Gy is given by

| L (e (%)) 1 (e (%)),
120 (2.3) C(Gg,yo) = ——= , + , a )
23) ClGrw) =10 <y(0 o L@ TE T A U ) )

421 We now evaluate the different contributions of the terms in the right-hand side of
422 (2.3).

423 Recall that [ox|o 1) = 1, that (¢yq)x is bounded thanks to Lemma A.2, and
424 that, from (A.3), we have

425 lekllw > C >0, Yk > 1.
426 Thus, getting back to (2.3), we obtain that

1

(@2 llerll2 + ll9r.qllZ
12

21 G < Clull (14 7 ). vhz1vmex
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428

429

430
131

433
134
135

436

437

438

439

440

442

444
445

446
447

160

which proves that

—In (I 2 2 + 2
To,q(y0) < limsup n (T (@)’ llooxlIZ ”wk,q”w).

k—+o00 2uy,

This estimate holds for every o, which gives the upper bound for Tj 4.
To prove the converse inequality let us choose

_ 1 0>
w=3 0 (a)

which is indeed a converging series in X. From (2.3) we obtain that for this particular
choice of yq,

1 1
C(Gr,y0) = — , Vk>1.
Vi Te(@)?ll eIz + 1vonqll2
Thus,
. —In (I (@)l l2 + l1vm,ql12
o Tog(a) = imaup 2@l Wiall)
k—+4o0 Vi
This ends the proof of Theorem 1.1. ]

2.2. A second formula for the minimal time with disjoint control and
coupling domains.

The minimal null control time has been characterized in Theorem 1.1. Thus, the
proof of Theorem 1.2 consists in comparing the asymptotic behaviors of

M ((Ik(q) — Q) pr, w)

and
I(@)?[lerll + llr,qll2-

To do so we will use the following result whose proof is postponed to the end of the
section, to improve the readability.

PROPOSITION 2.1. Let w C (0,1) be a non empty open set with a finite number of
connected components.
i. There exists K € N* and C > 0 such that for any k > K, any F € L?*(0,1)
and any u satisfying the differential equation

(A—vk)u=F,
we have
Mi(Fw) < O(vindlulle + vor (u(O)] + [u@)]) + 1]l ).
ii. There exists K € N* and C > 0 such that for any k > K and any F € L?(0,1)
such that /01 F(z)pr(z)dz = 0, there exists u satisfying the boundary value

problem

as well as the estimate

Villulle < C(Mp(F,w) + [[Fllw) -
13
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462

463

464
465

471
172
473
474
AT5

476

478

479

480

488

489

490

491
192

©

We now turn to the proof of Theorem 1.2.
Proof (of Theorem 1.2). Recall that, from Theorem 1.1,

—In (Ix(q)? 2 4 2
Ty, = lim sup (In(@)* el ||¢k,q||w).
k—+o0o 2uy,

By (1.6), we can apply point i. of Proposition 2.1 to u = ¢ q and F = (Ix(q) — q)px
to get, for k > K,

My, ((Ii(q) = Q)i w)” < C (il
< Oy (

12+ (T (q) — q)xll?)
2+ In(@)?lleell?)

since Supp(¢) Nw = @. Thus,

—In M. ((I B ,
Ty,q < limsup n M ((Ie(9) — a)w w)‘

k—4o00 Vi

We now prove the converse inequality. For k large enough, let v be the function given
by the point ii. of Proposition 2.1 with F = (Ik(q) - q)apk (which, by definition of

I1.(q), satisfies fol F(z)ek(z) de = 0). We observe that there exists a € R such that we
can write u = 1y 4 + apy. Recall that we have imposed in (1.6), that (ox,¥r,q), = 0,
so that we have ||[¢g 4llw < |Jullw. Thus, using the estimate given by point ii. of
Proposition 2.1 and the assumption Supp(¢) Nw = &, we obtain that, for any k > K,

(24)  wlltnglly < C(Mi(F,w)? + [FIZ) < C (Mi(F,w)? + Iu(a)*lexl2) -

We denote by €4,..., &y the connected components of (0,1)\w. As Supp(¢)Nw = &,
notice that

Z/ r)pr(z)dr = Ii(q Z/ i (@ dfo/

= Ii(q) (1 = llekl2) — Tk(q)
= —Ii(q)lex |2

Thus, from (A.3) we deduce that
k(D] okl < CME(F, w).
Plugging this inequality into (2.4) we obtain
1m,qllE + Tk (@) oxllZ < CMu(F,w).
This implies that

—In My ((Ix(q) — ’
Tp,q > limsup n M ((I(q) — D, w)
k—+o0 Vg

and ends the proof of Theorem 1.2. 0

To conclude this section, it remains to prove Proposition 2.1. To do so, we start
with the following result that comes from Lemma A.1.

14
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495

496

497

498

499
500
501

(SN, G, B, |
VI )

(=3}

507

510

LEMMA 2.2. Let A be the Sturm-Liouville operator defined by (1.2) and let Ao > 0.
There exists C > 0 depending on ~y, ¢ and Ay such that, for any A > Ao, for any
F € L?(0,1), for any 0 < a < b < 1, for any u satisfying

(A=XNu=F on]a,b],
and for any = € [a,b], we have

1 (b—a)

))nmb+c T,

Proof. Let xo € C*°(R;R) be a cut-off function such that 0 < xo < 1 and
e xo(z) =1 for every x € [1/4,3/4],
e xo(z) =0 for every x ¢ (0,1).

'V\/e lhen Set
(m) wl I
X XO

in such a way that, if we set « = a + I’TT“ and 8 =0b— bfT“, we have
e x(z) =1 for every = € [a, 5],
e x(z) =0 for every = & (a,b).
Let C7 > 0 be the constant given by Lemma A.1 and assume that A > Ag.
Let € [a,b]. We apply Lemma A.1 to obtain for any y € (a,b)
() 7(y) b
(10 + X2 w@r) < (luwp + 2w wp + )
Integrating in the variable y € (a, 8) gives
b—a o V@), e 2 (b—a)? 2
5 <|U(96)| + @) ) =G ||U||<a,b> + o 1l
&

5 (y)IU’(y)IQdy-

, C
)+ XD el < ;5 (14 5

(2.5)

Then integrating by parts, using (A — A)u = 0 and Cauchy-Schwarz inequality yield

b
/\/ y)PPdy < i/a X ()l (y)]*dy
1 b
=-3 X () (vu') (y)u(y)dy + )\/ () |uly )|2dy

17 s /Al
S‘J?fcgﬂﬁwmmwmm

b
c
+ 3|1 2t ay
! bl Ui,
< [ —=IIv7]la L= Y T |
< (Frvawtan ) (P
el o
# (1 19

15

This manuscript is for review purposes only.



518

519

ot
N DD

ut
)
N

wt
)
w

ot
)
=

(S
[\e}
ot

526

539
540

541

Thus, for any C > 0,

L LS el InAE= X7 ) e
- < —
s [ P < <1+ loe | I e ) o,
C
Gy
f’lug)ging it into estimate (2.5) and using that ||[X'[| ;o = [Ix0ll L« (b—a)~", we obtain
2.6
b—a () lellz= | IVAE= IxpllE= 1
2 (1w + 22 waye) < o (24 14y Wl Rilee 1Yy,
Cl(bfa)Z Clé
+ GOy, + DA 12,

Applying again Lemma A.1 gives that, for any y € (a,b),

7(y) V(x) b—a
Dt < (P + L0 @) + 21 Ry
Integrating in the variable y € (a,b) and setting C' = ﬁ, we obtain
1

C1C — v(x) ciC
TH\ﬁUlH%a,b) < CiC(b—a) (u(x)|2 + T\Ul(m)\Q + ;\ (b— a’)QHF”%a,b)
b—a 2, &) 1(b—a)? 2
<22 (1@ + X2 p) + 1S5 R,
Plugging it into (2.6) ends the proof of Lemma 2.2. |
We now have all the ingredients to prove Proposition 2.1.
Proof (of Proposition 2.1). We denote by ws,...,wxn the connected components

of w labeled such that
supw; < infwjiq, Vjie[l,N —1].

Let
1

2.7 Ao = T
2.7) 07 el |w;|?

and, let K > 0 be such that

We start with the proof of item i.
Let € = [a,b] be a connected component of (0,1)\w. Integrating by parts we
obtain

/@ F(@)en(@)da = — (v or)(b) + (vl o) (@) + (urgl) () — (wrgl) ().

Recall that from (A.6),

1
lon (@) + ﬁ\%(ﬂs)l <0, Vee(0,1),Vk=1

16
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546

561

562

563

564

566

Similarly, applying Lemma A.1 with y = 0 we obtain

~ 1
|on (@) + ﬁ\%(aﬁ)l <€, Vee(0,1),Vk=1

| Fayorta)da

<c <|u<a> g \}V({‘)w(an) e <|u<b>| + L) |u'<b>|> .

o If €N {0,1} = @, then there exists j € [2, N] such that a € w;—7 and b € w;.

Applying twice Lemma 2.2 (recall that A is defined by (2.7)) we obtain

'Y(a) / 1
el + T (@) < € (s + =P ).
and
v(0b), 1
b+ 280 < € (e, + =111, )

where C' now also depends on w. This implies

< C(Vullullo + 1 Fllw) -

/ F(x)pi(x)da
¢

The same computations hold for UQ F(z)pk (x)dx’

e Now, if a = 0, taking into account the boundary condition ¢x(a) = 0, the

same computations yields

1 v(b), ,
NS /QF(x)sok(:v)dx < Clu(0)| +C (u(b)l + W\u (b)|> :

As b € w, applying Lemma 2.2 (recall that \g is defined by (2.7)) we obtain

(), 1
e+ 8w < ¢ (1l + =171 )

where C' now also depends on w. This implies

/@ F(a)or(x)dz| < C(Villulls + voRu(0)] + | Fll.).

e Similarly, if b = 1, we prove that

/ F(a)gr (o) de
¢

< C(Voellulls + vorlu()] + [ Fll)-

Gathering these results proves item i.

17
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We now turn to the proof of item ii.
e We start designing u a solution of

(A—vi)u=F,
u(0) = u(l) =0,

such that

Vi), c _
(2.9)  Ju(x)| + \/EIu(x)ISM(Mk(F,wHIIFHwI), Vr € Wy

To this end let us take any solution u of

(14 - Vk)iz = F,
(0) = w(1) = 0.

Such a solution exists since fol F(z)pg(z)dz = 0.
If 0 € @y we set b = inf w; whereas if 0 € Wy we set b € w;. Notice that in
both cases

b
/0 F(x)er(x)dz =(b)y(b) e (b) — y(b)T (b)ex ().

Applying Lemma A.1 with y = b, integrating with respect to the variable
x € (0,1) and using [[¢x|[(0,1) = 1 we obtain that there exists C' > 0 such

that
7(b)
N

— If | (b)| > &, we set u=1 — fk(—é’g)wk.

Thus, we have u(b) = 0 which implies

0w (0)] + |0k (b)] = C.

Thus,
b
(2.10) uwﬁ-gfu%nsﬁ%AFuMMMx

— Otherwise, we have %}V(?ho%(bﬂ > £ Setting u = u — Z;;((’;))) ¢k, the

same computations also imply (2.10).

We now prove that (2.10) implies (2.9).
As b € wy, applying Lemma A.1 and (2.10) we obtain for any x € Wy,

(), , 1
NS |u (b)I+MIFIIw1>

+ ”F”un) :

fulz)| + %?mmm<comm+

IA

b
/memm
0

.
N

18
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599
600
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608
609

610

611

612

613

614

615
616

617

— Assume first that 0 ¢ @y and recall that b = infw;. Then, by definition
of My (F,w) (see (1.9)), we have

b
/ F(2)gu(a)de
0

Thus, for any = € wry,

'Y() /
W| u'(z)] < \F( k(F,w) + [ Flwy )-

— Otherwise, 0 € w7 and we have set b € wy. Then, since (0,b) C wy and
lxll(0,1) = 1, we have

S ./\/lk(F,w).

|u(x)] +

< ey -

b
/ F(2)gu(a)de
0

Thus, for any = € wry,

()
N
Gathering these two cases proves (2.9).

We prove by induction that the function u designed at the previous step
satisfies

|u(e)| +

()| < ﬁ\\Fllwl-

(@), c _
N o/ ()] < ﬁ(Mk(F,w) +HIFl), Yo ew;.

The case j = 1 is exactly (2.9) that was proved in the previous step. Let
j € [2, N] be such that

v(x)
VVk Vi

Let a; = supw;_1 and b; = infw;. Integrating by parts we obtain

(2.11)  |u(x)| +

u(z)| + o/ (z)] < (Mk(F W) +1Flle),  Voem.

o B (b)) y(by)u' (by) ‘
)dz = u(b;) \/% N or (b))
v(a;)py(ay) N v(aj)u'(a;)

N7 N

The same computations hold replacing ¢, by @r. Using the notation in
Appendix A, this can be rewritten in matrix form as

u(b;) - fa () (x)dz
Wi (b;) (v(bnuq(b») (ﬁ ! 1
N [ P(@)@k(x)de

u(a;)
+ Wi(a;) (v(aﬂuﬁa;)) .
NG

N /: F(z)pp(x

— u(ay) or(aj).

(2.12)

19
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634
635
636
637
638
639
640
641
642
643
644
645

Using Lemma A.3 and the definition of M (F,w) (see (1.9)), we deduce that

7<bj)| /( )‘
N M

As a; € w;—7 the induction hypothesis imply

Mu(Frw) + Cluay)] + 0 Y% i a).

[u(by)] + N

7(aj) / C
Whﬁ (aj)] < 7(Mk(F w) +[|Flw)

N
and thus we conclude that

'Y(bj)| /( )|
N v

As b; € wj, applying Lemma A.1 we obtain for any = € w;

u(az)] +

|u(bs)] + (M (F,w) + (| Fllw) -

v(b;)
N

< f(Mk( w) + [|Fllw)-

fu(z)| + “”mmms0<M@n+

)| 4+
o |u’(b5)] + ||F||wj>

N

This proves (2.11).
e Conclusion : from (2.11) we obtain

u(z)] < (Mi(F,w) + [|Fllu), Vo €w;, Vi€ [1,N].

31

This leads to

C )
Jufl,; < ﬁ(Mk(F,w) +Fllw),  Vie[l,N]

with a new value of C' and ends the proof of item ii. 0

2.3. Application of the minimal null control time formulas.

In this section we apply the characterizations of the minimal null control time
obtained in Theorems 1.1 and 1.2 to different specific configurations.

In Section 2.3.1, we recover previous characterizations of the minimal null control
time proved in [4, 5] when w is an interval. Note however that in the above references,
explicit computations of eigenelements when A is the Laplace Dirichlet operator are
used. Our analysis does not make use of such computations and thus extend those
results to any Sturm-Liouville operator as defined in (1.2).

In Section 2.3.2, we recover null controllability in arbitrary time when ¢ has a
strict sign on a part of w as proved in [21].

Finally, in Section 2.3.3 we prove a new null controllability result for an explicit
¢ when w is the union of two intervals.
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2.3.1. Unification of previous formulas for the minimal null control
time.

Let us prove that the obtained results unifies previous characterizations given in
the literature and stated in Section 1.2.

e Let us consider the setting studied in [4] i.e., w = (a,b) and Supp(q) C (b, 1).
In this case, (0,1)\w has at most two connected components both touching the
boundary of (0,1). Thus, setting

F = (I(q) — @)¥x

we obtain

)

My(Fyw) = max{ /b (@) on (@)

/ " Fle)on(@)de
0

b

Using the assumption Supp(q) C (b, 1) we get

/a F(x)p(z)dx
0

L) /0 2 (2)de,
and

1 1 b
| e = i [ wi(x)dx—fkm)\:uk(q) | e

This gives ,
M(F.) = 1@ [ hla)d.
Recall that from (A.3) \
nf /0 ¢r(z)dz > 0.
This implies that approximate controllability holds if and only if
L) £0,  Vk>1,

and in this case that

—1In|I
Ty,q = lim sup 711' k<q)|.
k—-+o0 Vi
Thus we have extended the result proved in [4] for the Dirichlet-Laplace operator to
a general Sturm-Liouville operator.

e Let us now consider the setting studied in [5] i.e., w = (a, b) and Supp(q)Nw = @.
Again, setting
F=(I(q) — a)r

we obtain

b

My (Fw) = max{ /bl F(z)pg(z)dz

/a F(z)pg(z)dz
0

b

Using the notations introduced in (1.12) we have

(2.13) /Oa F(z)pk(x)dz = Ix(q) /Oa @i (z)dz — I (q)
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and

(2.14) /b F(@)pi(z)dz = L(q) /b G2 (@)dz — I x(q).

Thus,
My (Frw) < 2max {|Ii(q)], [11,16(a)], [T2,x(@)]} -

Conversely, using (2.13) and (2.14) we have
a 1
/ F(x)p(z)dz +/ F(x)p(z)dz
0 b
= 50) ([ pt@n s [ i) - (o) + Faalo)
b
= _Ik(Q)/ i (r)*de

where we have used that Ij(q) = I1 1(¢) + I2.x(q). Thus, from (A.3) we get
1i(q)| < CMi(Fw).
Using (2.13) or (2.14) and the previous inequality we obtain
11k(q)| < CMy(F,w), vj e {1,2}.

Thus,
max {|1x(q)], |11,k (9)], | T2,k (q) |} £ CMy(F,w).

This implies that approximate controllability holds if and only if

max {1 (q)|; [ 11k ()], L2k (@)} #0,  VE>1

and in this case

—1 1 I I
Ty, = lim sup nmax {|7x(q)], [11,1(@)], [ 12,1 (@)]}
k—+o00 Vi

Thus we have extended the result proved in [5] for the Dirichlet-Laplace operator to
a general Sturm-Liouville operator.

2.3.2. Null controllability in arbitrary time with intersecting control
and coupling regions.
Let us here consider the setting studied in [21].

PROPOSITION 2.3. Assume that there exists an open set wg C w and qg > 0 such
that

infqg>qg or supg< —qo,
wo

wo
then, system (1.1) is null controllable in any time T > 0.

Even though this result is already known from [21], we provide here a proof without
Carleman estimates.
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Proof. We assume that inf,, ¢ > ¢o since the other case is similar.
consider the minimal time characterization given by Theorem 1.1 and we shall prove
that I (¢)?[| ok |2 + ||¥k,q]|2 does not tend to zero exponentially fast, with respect to
vk, as k goes to infinity.

We split vy 4 into two parts ©i g = VYk,q1 + VYk,q2 Where 1 1 is the unique
solution of the Cauchy problem

(2.15)

(A —vi)Yr,g.1 = In(q)er,
P1,q,1(0) =0,
w;c,q,l(o) =0.

Here we

From Lemma A.1, there exists C' > 0 depending only on « and ¢ such that

C
19k,q,11l Lo (0,1) < ﬁ|fk(Q)\-

Then, from (A.3), we deduce that, when v > 1,

||¢k,q,2

12 < 2(ller.qll2 + ||¢k,q71||2L<x>(0,1))
c
<2 (gl + Sl

< C (I[vnalll + 1Tk (@Pllexls) -

Thus, in order to prove the result, it is enough to find some explicit lower bound
rr > 0 such that

(2.16)

—Inr
Yk g2l =7 with  limsup k.

k— 400 Vi

As we seek for a lower bound for 1y, 42 on w, and thanks to our assumption on g,
we can restrict w to an interval (a, b) such that g(z) > go > 0 for almost every x € w.
Taking some ¢ > 0 small enough to be determined later (see (2.19)), we introduce the
following subsets of w:
«wy = (a,a+0);
wa = (b—4,b);
w= w1 U W23
o= 2 oo, a2 1 boa)
C=la+¢b—1.

2

Q:() Q::[G,—'—E,b—f]

0 aa—+/?

b—tb 1 @=(a,a+€)U(b—L0b)

Fic. 1. Splitting of w = (a,b)

This configuration is pictured in Figure 1. Notice that @ is a subset of w and thus
for any k£ > 1,

[¥n,q.2012 > lltbk,q,2l3

From (A.3), there exists «; > 0 depending on v, ¢ and €, such that

(2.17)

/ o2 (z)dz > o, Yk > 1.
<o
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Following closely the proof of item i of Proposition 2.1 with a careful tracking of
the dependency with respect to ¢ we can obtain the following lemma whose proof is
postponed at the end of the section.

LEMMA 2.4. There exists iy > 0 depending on y and ¢ such that for any £ < =%
any k > 1 such that vy > 1, any F € L?(0,1;R) and any u satisfying the differential
equation

(A—vp)u=F,

we have

(2.18)

< oV <1+ ) ||UHQ+OJQEHF||§

F(x x)dx
/ z)pk( NS
It is important to notice that the norms in the right-hand side of (2.18) are taken on
the small set @ whereas the left-hand side is an integral on the large set € = w \ @.
Hence, this inequality can be understood as an estimate of cancellations that occur
in this integral.

Let as > 0 be the constant given in the above lemma and assume in all what
follows that ¢ > 0 is fixed such that

(2.19) Vi<mind 220 w .
3 20sllqllL(o,1)

There exists K € N* such that
1
672’

In the rest of the proof, we assume that k > K.
Thanks to the equations (1.6) and (2.15) satisfied respectively by 1y, ¢ and ¢y ¢1,
we see that iy, 4 2 solves

(A = vp)r,q2 = —qpr, in (0,1).

Applying Lemma 2.4, with u = ¢y, 4.2 and F' = —qyj, we obtain

Vi /E 4(2) 93 (2)da

Ast < ZFT“ we have €5 C € and thus

/Q 4(2)pl(2)d

Notice also that, since [|pg/(0,1) = 1, we have

> vk > K.

< 200Uk ||Yk,q,

5+ axlllqporlz

> CIo/ or(z)dz > goou.
<o

llavrllz < llallze=(0,1)-

Gathering these estimates and using (2.19) we obtain the lower bound

2 Til|Ynazlls > Vi \ / 2)da| — astlagnls
@]
> Ve (QOOél - 042\[HQ||L°°(0,1)> >\ q02 .

which leads to (2.16) and ends the proof of Proposition 2.3. d
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It remains to prove the lemma.

Proof (of Lemma 2.4). From (A.6), there exists C' > 0 depending on « and ¢ such
that

1
(2.20) okl Lo o,1) + 7Tk||<ﬁ§c||Loo(o,1) <C, Vk > 1.
Integrating by parts, we obtain
b—e
[F@entate= [ (4= nu@ienis
¢ a+/t

=— (vor) (b= 0) + (vu'ox) (a + 0)
+ (wyl) (b = 0) = (urel) (a+ 0).

Using (2.20) we obtain

< CllyAle <|u<a Lo+ @W(a . e)l)

T Ol <|u<b o+ YO0 e>|> .

Vi

e

/ F(2)pu(a)de
[

1
VVk

Let A\p =1 and let K € N* be such that
k>K — uvp> ).

Assume that k > K. As a+ ¢ € w7 the application of Lemma 2.2 (recall that Ay = 1)
yields

Vy(a+2£)

, C 1 (Vi
a0+ L Do v 0y < & (1+ m) il + S0P

As b — £ € w3 the application of Lemma 2.2 yields

wp—on - YOO e C (1 LY a1 EVE
=01+ Y=o - 0 < (14 7= ) e + SZ I,

which concludes the proof. 0

2.3.3. Dealing with new geometric configurations.

We now illustrate that the minimal time formula obtained in Theorem 1.2 can be
successfully exploited to give an explicit value of this minimal time in more general
geometric configurations than the one available in the literature, for example when
w is not an interval and Supp(¢) Nw = &. We provide below an example inspired
by [14].

PROPOSITION 2.5. Let A be the Dirichlet Laplace operator (i.e., vy =1 andc=0)
and let

1
q:x € (0,1) = <LE—2> 1(%)%)(1‘).

i. If w C (%, 1), then approzimate controllability for system (1.1) does not hold.
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i. If w= (0, 1)U (3,1), then system (1.1) is null controllable from X in any
time T > 0.

Proof. In this case, we have for any k > 1,

v, = k2, o) = V2sin(kme), P = cos(kme).

The proof of item i can be found in [14, Section 3.3.1] and relies on explicit com-
putations: due to symmetry it comes that I;(¢) = 0 for any k& > 1. This implies
that

inf(w)
/0 4(@)or(@)pr(@)de = Ii(q) = 0.

Let € be any other connected component of (0, 1)\w than [0, inf(w)]. Then € C (2,1).
This means that ¢ = 0 on € which gives

/@q(x)wk(w)Wk(w)dw = /@q(x)sok(at)@(x)dx = 0.

Thus,
M (qpr,w) =0, vk > 1.

We now turn to item ii. In this case (0,1)\w has only one connected component
which is E, %] but the key point is that it does not touch the boundary of (0,1).
Approximate controllability in this case was also studied in [14, Section 3.3.1]. Again
for symmetry reasons we have

[ i@e@entaae =0, vz

4

but
k—1
1=
] 2(\@)%2 if & is odd,
[ d@a@p(a)e - ",
i =Dz
74\& E if k£ is even.
T
This implies that for any k£ > 1,
_ if k is odd
ifkiso
2v/272k2’ ’
Mu((1u(0) = Dpu) = { 2V
ok’ if k is even.
7r

Thus, from Theorem 1.2, we get

—In My ((T(q) — @), w)

Ty,q = limsup =0,
k—s+00 Vk
which means that null-controllability holds at any time 7" > 0. ]
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825 3. Cascade system with a first order coupling term.

826 In this section we describe how the analysis conducted in Section 2 can be directly
827 extended to system (1.3) that is when the coupling between the two equations operates
828 through a zero order term and a first order term. This is for instance the setting
829 studied in [16] and that we complete here.

830 3.1. Setting and spectral analysis.
831 To fit in the formalism of [13], we define
832 e the evolution operator A by
A 0
833 = D(A) = D(A)?
834 and the control operator B by
- 2 l,u
835 B:ueU=L0,1) — 0 )
836 It will be convenient to separate the symmetric and skew-symmetric parts of
837 the coupling terms in A. In order to do so, we define a function r and an
838 operator S, as follows
o 1, 1,
839 (3.1) r=q-5r, and S, = P + po,.
840 We observe that S, is skew-symmetric in D(A) and that we can write
A 0
841 A_<r+Sp A)'
842 e The adjoint operator of A is given by
. s _ (A q—0u(pe)) _ (A =5 - _
sas a=( TG =3 L) pao o
844 Recall that Ij(r) is defined by (1.7). In this section, vy, denotes the unique

845 solution of

(A - Vk)wk,r,p = (Ik(’l") - ’I“)QO]C + SPSO'I“
846 (32) wk,r,p(o) = wk,r,p(l) = Ou
<90k7 wk,r,p>w = 0.

847  This system has indeed a unique solution since, due to the definition of Ij(r) and the
848 fact that S}, is skew-symmetric, the right-hand side of this equation is orthogonal to
849 (g

850 Let us detail the spectral analysis of the operator A*: its spectrum is given by A =
851 (vg)k>1 and we can distinguish the following cases.

852 o If I1(r) # 0 then vy is algebraically double and geometrically simple. An
853 associated Jordan chain is given by
L (v
8514 (3.3 0 _ ¥k 1 & (Vkrp)
S ( ) ¢k} < 0 ) (Z)k Ik (7") O
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o If I;:(r) = 0 then vy is geometrically double and an associated basis of eigen-
vectors is given by

(3.4) o= (“‘5’“) o= (@;p).

Except from the definition of ¢y, , ,,, the spectral analysis is the same as for system (1.1)
(see Section 2.1). Thus, for the operators A4 and B to satisfy the assumption (H) stated
in [13, Section 2.1.2] it only remains to study the approximate controllability condition

Ker(A* — X\) N Ker B* = {0}, VA €A
This is the goal of the following section.

3.2. Approximate controllability.
From the Fattorini-Hautus test, we obtain the following characterization for ap-
proximate controllability of system (1.3).

PROPOSITION 3.1. Let w C (0,1) be a non empty set and let ¢ € L>(0,1) and
p € WH>(0,1). Approzimate controllability of system (1.3) holds if and only if

(3.5) Mk(rcpk — Spapk7w) #0, Vk > 1 such that ro, — Spr =0 in w.

The proof follows directly from [14, Theorems 2.1 and 2.2].
Notice that, for approximate controllability to hold, we have two very different
situations.
e When (Supp(q) USupp(p)) Nw = & condition (3.5) has to be checked for any
k> 1.
e Whereas, when (Supp(q)USupp(p)) Nw # @ condition (3.5) has to be checked
for at a most a single k£ > 1.

REMARK 3.1. The question of approzimate controllability for system (1.3) was
already studied in [16, Theorems 1.1 and 1.2]. There it is stated that, if

(Supp(p) U Supp(q)) # 2,

approximate controllability holds in any time. In fact, this result is not correct since
there can exist k > 1 such that

ror —Sppr=0inw and ./\/lk(rgok — Spgok,w) =0.

Such a counter-example was constructed by A. Dupouy in her Master Thesis [15],
under the supervision of the first author.
We set ¢ = 0, which implies that r — S, = —0,(pe). For a given k > 1, the

idea is to select an interval w = (a,b) such that o # 0 on @, which is possible since

i has only finitely many zeros in (0,1). Then, we choose p = ﬁ in w so that, by

construction roy — Sppr = —05(pex) = 0 in w. Finally, it is possible to extend p
outside w with appropriate reqularity such that

1

/ " or(2)0 (pgi) (z)dz = | e @ = o
0 b

i.e., Mk(rcpk — Spcpk,w) =0.
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Due to the analysis conducted in Section 3.1, under the assumption (3.5), the
operators A and B satisfy the assumption (H) stated in [13, Section 2.1.2].

For more coherence with the expression of the minimal null control time obtained
in Theorem 3.5 below, instead of the approximate controllability condition (3.5), we
use the following characterization.

LEMMA 3.2. Let w C (0,1) be a non empty set and let ¢ € L*°(0,1) and p €
Wtee(0,1). Assume that (Supp(q) U Supp(p)) Nw = @. Then, for any k > 1,

Mk(ﬂpk — Spwk, OJ) =0 <~ Mk((fk(T‘) — r)gok + Spcpk, w) =0.
Thus, approximate controllability of system (1.3) holds if and only if
(3.6) My ((Ii(r) = r)or + Sppr,w) # 0, Vk > 1 such that rop — Sper =0 in w.

Proof. Let k > 1. First of all notice that for any connected component € of
(0,1)\w we have

(3.7) S0 =0

Indeed, for any a,b € [0, 1] such that p(a) = p(b) = 0, integrating by parts we obtain

b b
[ St = [ (3000 + o) el
b b
= [ p@oa@a@ie + [ e
=0.

Thus, the assumption Supp(p) Nw = & proves (3.7).

Now assume that My (ror — Sper, w) = 0. Then, using (3.7), for any connected

component € of (0,1)\w we have

/7'@)‘%’%(33)(11” = /(Spwk)(it)gﬁk(x)dx =0.
¢

¢
Since Supp(r) Nw = &, this gives
= Y [r@eerd=o
CGC((O,l)\w> ¢
which proves that My ((Ix(r) — 7)ok + Sper, w) = 0.

Finally assume that M ((Ix(r) — r)¢r + Sper, w) = 0. Then, using (3.7), for
any connected component € of (0,1)\w we have

Ik(r)/ecpk(:c)de:/Gr(x)gak(x)zdx.
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Since Supp(r) Nw = &, this gives

L) (1-lal2) = 1) Y [enteras
eec(m) ¢

- Y [r@a@rs
— \Je
cec((m)\w)
= Ik(’l”)
Using (A.3) we obtain I;(r) = 0 and thus M, (ror — Sy, w) = 0. O

3.3. Minimal null control time.
We now turn to the determination of the minimal null control time. For this
system, we have a result which is similar to Theorem 1.1 and that reads as follows.

THEOREM 3.3. Let w C (0,1) be a non empty open set and let ¢ € L*°(0,1) and
p € WH(0,1). Assume that (3.5) holds. Then, the minimal null control time Ty 4
for system (1.3) is given by

—1In (I (r)? 2 4 olI2
Tp.qp = limsup (Ix(r) ||<p2k||w 1 pl)
k—+oo Vg
where Yirp is given by (3.2).

The proof follows exactly the proof of Theorem 1.1 and is left to the reader. The only
difference is that, due to the change of definition of 9y ., one cannot use Lemma A.2
but shall instead use the following lemma.

LEMMA 3.4. There exists C' > 0 such that
[krpllor <C, Vk>1

where Yy ., 15 given by (3.2).
The proof follows the proof of Lemma A.2 with the use of the estimate

1 1
/ B (pioi) ()2 < 22 +2 / p(2)%5(2)2de < O,
0 0

due to (A.2).
Then, as in Theorem 1.2, we can simplify the formula in the case where the
coupling terms are not active in the control domain.

THEOREM 3.5. Let w C (0,1) be a non empty open set with a finite number of
connected components. Let ¢ € L°°(0,1) and p € W>°(0,1) be such that

(Supp(g) U Supp(p)) Nw = 2.

Assume that (3.6) holds. Then, the minimal null control time for system (1.1) is given
by
. —In My (I (r) — 7)pr + Spepn, w)
To,q,p = limsup
k—+4o00 Vi
where My, is defined by (1.9).

The proof follows exactly the proof of Theorem 1.2 and is left to the reader.
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3.4. Applications of the minimal null control time formulas.

3.4.1. When the coupling is not active in the control region. In this
section, we assume that

(3.8)

(Supp(p) U Supp(q)) Nw = @.

e Assume first that w = (a,b) is an interval.

In that case, and when A is the Dirichlet-Laplace operator, it is proved in [16,
Theorem 1.4] that, under the condition (3.8), when approximate controllabil-
ity holds, the minimal null control time is given by

-1 I I I
69 Ty — sy~ U )] 1D ()] s ()

k—+oo Vi

where I ;, and I, are defined in (1.12).

Let us show that the formulation given in Theorem 3.5 allows to recover this
result, for a general diffusion operator A.

Since w is an interval, setting

F = (Ix(r)ex — m¢r) + Sper,

we have

My(F,w) = max{ , | /b ' F()on (o)

| rayaas

0

b

Due to the assumption Supp(p) Nw = & we can use (3.7) to get

a 1
/ (SI)‘Pk)SOkdi = / (Sp(pk)(ﬁkdx =0.
0 b

Thus, it follows that

/a F(x)pr(x)de = I (r) /Oa o (z)dx — I (1)

0

and ) )
/ F(x)pp(z)de = Ik(r)/ @i(z)dz — I k(7).
b b

The rest of the proof follows that of Section 2.3.1, by using Theorem 3.5.

In the previous point it appears that the minimal control time given in (3.9)
only depends on the quantity r. We will show now that when the control
domain w is not an interval, this may not be true any more. More precisely, we
shall design an example such that » = 0, but nevertheless null controllability
holds for any time 7" > 0.

Assume that w = (0,a) U (b,1) with 0 < @ < b < 1. The main difference
with the previous situation comes from the fact that (0,1)\w has a (unique)
connected component that does not touch the boundary of the domain, which
makes an important difference in the definition of the quantities 9y, see
Section 1.2.1.
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We build our example as follows. We first choose a smooth function p sup-
ported in (a,b) and such that

b
p(x)
3.10 / —~dx #0.
(3.10) o ()
We now set ¢ = % in such a way that » = ¢ — %p’ = 0. Moreover, by

assumption on p, the condition (3.8) holds.
For any k, since r and p are supported outside w, we immediately have that

ror — Sppr =0, inw,
and, by (1.8) and (3.7), we get

b
Mic((Ie(r) = )i + Spipn, w) = / (Sp00) (@) P ()

By definition of S, we can integrate by parts, using that p(a) = p(b) = 0, to
find . .
~ 1 p(x)
Sy ok x(pkxdx:f/ —Wy(z)dz,
[ Se@aiar = 5 [ Eam)

where Wi, = (v}, )Pk — ¢r(v9)) is the Wronskian of ¢ and @y. Since gy
and @y, solve the same second order linear ODE, this Wronskian is constant
and we get

b / -
/Q(Sp@k)(x)@k(x)dx: V(O);Pk(o)/a p( )d

Thanks to the assumption (3.10) we see that this quantity is not zero, which
proves the approximate controllability condition (3.6). In addition, by using
Theorem 3.5 and the asymptotics (A.2), it follows that the minimal null
control time for our system is simply given by

—1Inl¢’ (0
To,q,p = limsup L 2\ |s0k( )

k— 400 Vi

=0.

In this case, despite the fact that » = 0, we get that the system is null-
controllable at any time 7" > 0.

Observe that if the control domain is restricted to w = (0,a) (or w = (b, 1))
then this particular system is not even approximately controllable.

3.4.2. When the coupling is active in the control region. We now use the
formulation given in Theorem 3.3 and the computations done in Section 2.3.2 to get
the following sufficient condition for null controllability in arbitrary small time.

PROPOSITION 3.6. Assume that the coefficients defining the Sturm-Liouville oper-
ator A in (1.2) are sufficiently regular, i.e., v € C?([0,1]) and c € C°([0,1]). Assume
that there exists an open set wg C w and ro > 0 such that

(3.11) infr>rg or supr<-—-rg

wo wo

and that the approximate controllability condition (3.5) holds. Then, system (1.3) is
null controllable at any time T > 0.
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We observe that the approximate controllability condition is crucial in this result.
For instance, the example shown in Remark 3.1 is not approximately controllable even

!
if we have r = —1 (d)—lk) which clearly satisfies (3.11).

Proof. The proof follows closely the one in Section 2.3.2 but needs to be adapted to
handle some boundary terms coming from integration by parts in integrals involving
the first order coupling terms. We assume that inf,,, r > 79, the other case being
similar.

From Theorem 3.3, it is sufficient to prove that the quantity Ij(r) ||<Plc||i +
||’(/Jk’7,,p||i does not tend exponentially fast to zero with respect to the eigenvalue
V.

The contribution of Ij(r) is dealt with as in Section 2.3.2 by writting ¥, =
Yhrp1 + Yk rp2 With ¥y -, 1 solving the Cauchy problem

(A = vi)¥rrp1 = Ik(r) ek,
7/’16,7"711,1(0) =0,
’(/);c,r,p,l(o) =0.

It is thus sufficient to obtain a lower bound of the following form

—InR
(3.12) [Wkrpal® > Ri with limsup ———% =0,
k——+oco Vg

where 9y, . p 2 satisfies the equation

(A — vi)Ykrp2 = =70k + Sppr.

As we seek for a lower bound it is sufficient to assume that w = (a, b) is an interval
and that r(x) > ro for almost every x € w.

Due to Sturm oscillation theorem (see for instance [12, Corollary A.4.33]), there
exists £y € (0,1) and K € N* depending on 7, ¢ and b — a, such that for any k > K
there exists ¢, dy € (a,b) satisfying

er(cr) = pr(di) =0,

3 .
(3.13) . — el = 7lb—al and  min([b—di], |ex —al) = Lo,
2
For every k > K, we now set
1
(3.14) b = et vk > 1.
k

To mimic the proof of Section 2.3.2, we introduce a, and by such that ay + £ = cx
and by — ¢ = di. By the last point of (3.13) we see that £; < %EO so that we have
(ak, bk) C (a, b)
We now operate a splitting of the interval (ay, b) similar to that of Section 2.3.2

that is we set

« W = (ak, ar + ) U (b — Lk, br),

« @ = [ag + lr, by — L]

. and €y = [‘%b*@,‘ib+b_7“]

6 2
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Notice that, by construction, we have €, C &€ for every k& > 1.
From (A.3), there exists @3 > 0 depending on +, ¢ and €; such that

(3.15) / o2 (x)dz > o, Yk > 1.
<o

Applying Lemma 2.4, with u = ¥ p 2 and F = —ryy + Sy, we obtain

1
Vi < qoyTE (1 n ) I rpllan + ot Flls,.

Li\/Vi

Using (A.6) we obtain the existence of C' > 0 depending on 7, ¢, ¢ and p such that

/ F(2)pu(a)de
(%

1
2

1 P
||Fak§2( / r<x>2sok<x>2+p’<x>%k<x>2+p<x)2w;<x>2dx) <Cym.
Thus,

Vi

Since €y C €, we have

/Ck F(z)pr(x)de = — /Gk r(x)gok(x)de,

F(x)pr(z)dz
Ch

1 _
< a1k <1 + W) 1k rp2llz, + 2Cli/vk.

because the contribution of S,y in this integral is zero, by integration by parts using
the first point in (3.13). This integration by parts is the reason of the adjustments
needed compared to Section 2.3.2. Thus,

F(z)pp(r)dx

> ro/ wi(x)da: > roo.
Ck CO

Gathering these estimates we obtain

1 _
> —_ )
a+/Vk <1 + fk\/ﬁ) n.rp2lloe = Vi <r0a1 apC/ gk\/Vk)

Using the definition of ¢, in (3.14), it follows

kel > — sz (roor = %2 )
k,r,p,2||lor = 001 — .
e agyz/z(l +V2/2) VVk
This proves (3.12) and ends the proof of Proposition 3.6. d

4. Simultaneous controllability of systems with a space varying zero
order coupling term.

This section is dedicated to the analysis of the minimal null control time for the
simultaneous null controllability problem stated in (1.4). In Section 4.1 we detail the
spectral analysis of the underlying evolution operator. Section 4.2 is dedicated to the
proof of the first formulation for the minimal null control time given in Theorem 1.3.
Using the computations done in Section 2.2, we then deduce in Section 4.3 the second
formulation given in Theorem 1.4. Finally an example is considered in Section 4.4.
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4.1. Spectral analysis.
To fit again in the formalism of [13], we define the evolution operator A in the
state space X = (L%(0,1))3 by

A 0 0
A=|@ A 0|, D(A) =D(A)>
3 0 A

and the control operator B by

B:ueU=L*0,1)+ | 0
0

The spectrum of A* is given by A = {vg; k> 1} and thus, as proved in Sec-
tion 2.1,

1
Ae L, <1,Q,0,2,l€>

as defined in [13, Section 2.1.2].
In any case,
Pk
¢2,1 = 0
0
is an eigenvector of A* associated to the eigenvalue vi. Recall that, for any ¢ €
L>(0,1), the function 9y 4 is defined by (1.6).
x Case i. If It(q2) = Ix(g3) = 0 then v is geometrically triple. A basis of
associated eigenvectors of A* is given by

0 0 @bkaQQ 0 @bk’Q3
(4.1) ¢k,17 ¢k,2 = Pk ) ¢k,3 = 0
0 Ok

* Case i a). If I(g2) = 0 and Ix(g3) # 0 then vy is geometrically double and
algebraically double. A basis of the generalized eigenspace of A* is given by

0 0 @bk7Q2 _ 1 1Dk,q3
(4~2) ¢k,1a ¢k,2 = Pk s ¢k,1 ~ T(ad) (q )
0 A3 ©k

where ¢2 ; and qﬁg 5 are eigenvectors and the generalized eigenvector qﬁ,lg , satisfies

(A* - Vk)¢11€,1 = ¢2,1~

* Case i1 b). If Iy (q2) # 0 and Ix(g3) = 0 then vy is geometrically double and
algebraically double. A basis of the generalized eigenspace of A* is given by

13 0 0 1/’18% L 1 ka,qz
( . ) ¢k,1a ¢k,2 = ) ¢k,1 T (*) Pk
Ok k\q2 0

where (b% ; and qﬁg o are eigenvectors and the generalized eigenvector ¢,1€ , satisfies

(A* - Vk)(bllg,l = ¢2,1-
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1100
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1111

1112

1113
1114
1115
1116

1117

* Case iii. If Ix(g2) # 0 and Ir(g3) # O then vy is geometrically double and
algebraically double. A basis of the generalized eigenspace of A* is given by

0 0 ¢k7q2 ’lr/)k,% | 1 wkﬂ]z
(4.4) ¢k,1a ¢k,2 = I1(g3) or | —1Ik(g2) 0 ) ¢k,1 = To(a) Pk
0 O k(q2) 0

where ¢? | and ¢9 , are eigenvectors and the generalized eigenvector ¢} | satisfies

(A* - Vk)¢11c,1 = ¢2,1-

Thus, using (4.1)-(4.4), we obtain that the family of (generalized) eigenvectors
forms a complete family in X.
From [14, Theorem 3.2], the approximate controllability assumption

Ker(A* — A\)NKerB* = {0}, VA€ A

is equivalent to (1.14).
Thus, the operators A and B satisfy the assumption (H) stated in [13, Section
2.1.2).

4.2. Characterization of the minimal null control time.
This section is devoted to the proof of Theorem 1.3.

4.2.1. An abstract characterization of the minimal null control time.

Since the operators A and B satisfy the assumption (H) stated in [13, Section
2.1.2] it comes from [13, Theorem 11] that, for any yo € X, the minimal null control
time for system (1.4) from yq is given by

1 +
(4.5) To.q(yo) = limsup & Bk, Yo) C(G,40)
k——+o0 2Vk:

where InT s = max(0,1n s), for any s > 0 and the cost of the k-th block is given by
e in case 1

C(Groyo) = it { 7 s €U

(4.6) _ o . '
with <Q,B ¢’w’>U = <y0’¢’w‘>x for j € {1,2,3}}

e and in cases # a), it b) and iii
C(Gryo) = inf { |07 + [, s 9°,0' e U
(4.7) with (Q°,B°¢) ;) = (yo, 815  for j € {1,2}

and (Q°,B'6L,),, + (2 B001),, = (vo, 0k ) -
The proof of Theorem 1.3 consists in computing the quantity C(Gy, yo) and evaluating
its asymptotic behaviour.

From [13, Theorem 18], in case 4, an explicit expression of the cost C(Gy,yo) of
the block is given by

(48) C(GkayO) = <M71€7£>
36

This manuscript is for review purposes only.



1118

1119

1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130

1131
1132

1133
1134
133
1137

1138

1139
1140

1141
1142
1143

1144

1145
1146
1147
1148
1149

where

<y0’¢2’1>x
E= | (wdha) | and M =Gramy (B9, 560,50 1)
<y0’¢2’3>x
[ 0 0
= o kgl (kg Prgs)e,

2
0 <wk,Q2’¢k7%>w ||¢k7(J3| w
Since cases i a), % b) and i involve algebraic and geometric multiplicities occuring
simultaneously inside the same block, we cannot apply [13, Theorem 14] nor [13,
Theorem 18] to get a similar expression. We compute such an explicit expression in
the next subsection.

4.2.2. An intermediate optimization argument.

As detailed in [13, Section 5.4], when both algebraic and geometric multiplicities
appear in the same group, one can repeat the arguments developed there to obtain
an explicit expression of the cost of the block. This is what we do in the following
proposition.

PROPOSITION 4.1. Let U be a real Hilbert space. Let b),09,b1 € U be such that b9
and b are linearly independent. Then, for any w9, w$,wi € R,

inf { |20+ |27, ; 2°.9" e U

with <Qo,b2>U = w;) for j € {1,2} and <Qo,b}>U + <Ql,b(1)>U = w%}

= (M7'¢,¢)
where
w
M = Gramy (b?,bg,b%) + Gramy (0,076(1)) and &= [w)
1
w1

Proof. First of all, notice that by projection the infimum can be computed for
0%, Q! € Span (b?,b%b%) .

Thus, we are solving a finite dimensional optimization problem with a quadratic
coercive functional and linear constraints. It admits a unique solution characterized
by the existence of multipliers m{, m9, m} € R such that

(Q°,H%), +(Q" H"), =m] (H°,b)), +m3 (H,b3),

(4.9)
+mb (0 01), + (00, )
for any H°, H' € U.
Using the constraints (Q°, b9>U = wJO- for j € {1,2} and (Q°, b%>U—|—<Ql, b(1)>U = wi}

and choosing successively

o H =10 and H! =0,

o H* =109 and H' =0,
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1160

1161

1162

1163
1164
1165

1166

1167

1168
1169
1170
1171
1172

o HY =b} and H! =)

yields
wy my
(4.10) wl | =M [ m
wi mi
with

M = Gramy (b3, b9, b1) + Gramy (0,0,59).
We now prove that M is invertible. Let = € R be such that Mx = 0. Then,
2 2
0= (Mz,z) = Hxlb(l) + 29b9 + xng’U + a3 Hb(l)HU'
This implies x3 = 0. Then, since b) and b9 are assumed to be linearly independent,
we obtain z; = x9 = 0. Getting back to (4.10), this gives

0
mi

my | = M~¢
my
Finally, choosing H° = Q° and H' = Q! in (4.9) yields that the seeked infimum is

0

2 2 !
el + 1 = () ) = e
my
which ends the proof of Proposition 4.1. ]

4.2.3. Spectral characterization of the minimal null control time.
To prove Theorem 1.3 we now give a more explicit expression for the quantity

C(Grs o).
LEMMA 4.2. For any k > 1, let C(Gg, yo) be defined by (4.6)-(4.7). Then,

2
Pk
<y03 0 >
0

C(Glmyo) = 2 X
) el 2
¢k,q2 q/}/ﬁqs
<y0, Ok > Chygs — <yo7 0 > Chygo
0 X Pk X w

2 2 2
HCIWMHW ”Ck,flus - <Ck,q27 Ck#]3>w

where Ci.o s defined in (1.17).

Proof. The explicit expression of C(Gy,yo) is given either by (4.8) or by Proposi-
tion 4.1.
In all cases, we have

C(Gka yO) = <M71€7 £>
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1176

1177

1178

1179
1180

1181

1182

1183

1184

1185

1186

1187
1188

1189

1190

1191

where, due to the choice of normalization (¥ q;, %), = 0, the matrix M has the
form
mi 0 0
M = 0 Mmoo Ma3
0 ma3 ma3

Thus, explicit computations yields

-1 _ 1 2 1
(M66) = e+

5— (m3,363 — 2ma2 3&28s + mo2&3) .
m22M33 — M3 3

We now distinguish the different cases.

e Case 1.
We have
0
XN loxll 0 0
E=|(vodha) | and M={ 0 [rnld  (Wra il
(0. 605 0 (Wha¥hade  Iball
’ X

where qﬁ%l, (;5272 and ¢>273 are defined in (4.1). Thus,

2 2
Pk ¢k,q2 wkm
Yo, 0 Yo, Pk 7#’%% —\ Yo, 0 d)k,(p
0 0 Pk
<M71£, £> _ X X X w
lpkllZ ka0 2 10,05 12 = (ks Vg )

Notice that, due to the approximate controllability assumption
Ker(A* — X) NnKer B* = {0}, VA e R,

2 2 2
we have ||¢k7Q2 Hw ||wk7QB”w - <¢k,Q2a ¢k7(13>w > 0.

e Case ii a).

We have
<y07¢%’1>x
5 = <y0,¢2,2>x
<y07¢k71>x
and
2
el 0 0
M= 0 ”djk,quw m <wk,QQa¢k743>w
2 2
0 b (W Ukl 7y 02+ el
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1192 where ¢ |, ¢} , and ¢y | are defined in (4.2). Thus,

2 2
Pk 1pk,q2 9
Yo, | O Ii(g3)* ( yo, | #x ekl
0

1193 (M7'€,¢) = X ! X
| el 2 (lonl+ 1 E :
Prlle Nbkgo 12, (11%0k,qs I, + Tr(a3) lorlls, ) — (ks Yrgs ),
2
djk,qz wk,%
Yo, | ¥ Vkgs —{ Yo, | O Vk.qs
0 Pk
1194 X X Y

2 2’
a2 (IWraa 12+ TeCas) Hol2) = (s Vaa)

1195

1196  Using the normalization condition <1/’k,qj ) Sﬁk>w = 0, this can be rewritten as

2 2
Pk wk#}? ¢k,qa
Yo, | O Yo, [ ¥w Chygs — { Yo, | O Uk gs
0 0
wor gy = -\ L a Ao )iy
||§0k||w ||wk7Q2 Hw ||Ck7q3||w - <¢k,Q2v<k7QB>w

1198  Notice that, from Cauchy-Schwarz inequality,

2 2 2 2 2 2
1199 a3 G012, = (s Gt = a1 (11 + Zi(0)® o)
1200 - <wk,qw wk,q3>i
2 2
1363 >1i(g8)* Vk0a, 1ol -

1203  Then, due to the approximate controllability assumption
1204 Ker(A* — X) NnKer B* = {0}, VA e R,

- 2 2 2
1205 we have [[¢x g, |, [1Cr.gs ey = (Vk.gs Chogs )y > 0

1206 o Case it b).
1207 This case is exactly case ¢ a) when exchanging the roles of g2 and ¢3. Thus,

2
Pk wk,qz Qz/}k,%
yO, 0 yo; QOk- 7/)k,q3 - y07 0 Ck,qg
0 X 0 X Pk X

2 2 2 2

llerll, (G 1es 190005 1oy = (Caga s Vs

2

w

1208 (M7 €)=

2 2 2
9 and ”C’%qz ||w Hwkﬂ?,”w - <Ck,q2>wk,q3>w > 0.

1210 o Case 7ii.
1211 Recall that the eigenvectors are defined in (4.4). To preserve symmetry, we consider
1212 here the generalized eigenvector given by

12(

1 Vg2 1 Pk g5
1213 1= ox | + =——
' P20 (g) 0 21k (g3) On
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1214

1215

1216

1217

1218
1219
1220

1221

1222

We have

<y0’¢2’1>x 00 0
= <y0,¢2,2>x and M=M+[0 0 H oH2
i), 0 0

with

1 1
M, = Gramy (‘Pk s I (g3) Vg0 — 11(02) Yk g5 2Ik(q2)¢k,q2 + 21k(q3)1/)k,q3> .

As in the previous cases, straightforward computations (which are left to the reader)

give
2
Pk
<2107 0 >
0
(M7 ¢ =———F X
el
wkaQQ wk7q3 ?
<yo7 Pk >¢k,q3—<yo, 0 >1/Jk,q2
0 Pk x w

2
176 (43)Wk,as — Ti(a2) Wm0 |12 110117 + 119000 12 19000 12— (koo Yhgs)

2 2

1/% »q2 ¢k,q3 2

Yo, + Ii(g2)* ( o, [ O lenll,
Pk

X X

2 2 2 2 2"
12k (q3)¥r,q0 — Ik(él2)1/)k,q3||w lorlly, + Nn.go Iy, 1¥k.asll = (Pkoga> Vhogs )y

Using the normalization condition <1/’k,qj ) Sﬁk>w = 0, this can be rewritten as

2
Pk
<y07 0 >
0

(Mg, 6) = >
lloxlls,
2
wkﬂ'z wk#ls
Yo, Pk Ck,q:;_ Yo, 0 Ckﬂz
0 X Pk X w

2 2 2 2 2
11(23)Vk .02 = Tk (92) ¥k 51, [0kl + 10k, 00 1 1Vh.05 1l = (Vh.g2 Pregs),
Using again the normalization condition <1/Jk7qj,<pk>w = 0, we obtain

2 2 2
G2 16 1o 12, — (G Cruas) s = 1(a@3) Wm0 — T (a2) s 12, okl
2 2

19,02 10, 19000 12 = (Vg Vg

Thus, from Cauchy-Schwarz inequality and the approximate controllability condition

Ker(A* — X) NnKer B* = {0}, VA e R,
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I 2 2 2
1236 it comes that ||k g, [, [1Ch.gs [l = (Choazs Crugs )y > 0 and

2 2
Pk Vk,qs kg
Yo, | O Yo, Pk Croas — { Yo, 0 Chqz
B 0 0 o
1237 (M7€,6) = — 5 2 o -
el 1Ch.2 1y ISk 12y = (Shgzr Cegs)
1238 Notice that the last formula obtained in case 7ii degenerates as expected when
1239 Ir(g2) = 0 and / or Iy(g3) = 0. Thus, gathering all cases proves (4.11) and ends the
1240  proof of Lemma 4.2. ]
1241 We now have all the ingredients to prove Theorem 1.3.
1242 Proof (of Theorem 1.3). Recall that from (4.5) we have
In*C(G
1243 Ty q(30) = lim sup ————£-202 (G o)
k—+o00 2ug,
1244  where, due to Lemma 4.2, we have for any k£ > 1,
2 2
Pk Vk,qs kg
Yo, | O Yo, | ¥ Crgs = (Yo, | 0 Ch,go
0 " 0 ¥ Pk

1245 C(Gr,0) = X w

2 2 2 2
ekl [1Ch.ao Ml W Choas Ml = (Chogz Chgs oo

1246 We now estimate the previous right-hand side. As we will see in Section 2.1, we have

1247 ||7/}k,qz“(o,1) + ||7/1k,q3‘|(0,1) <C, Vk > 1.
1248 Thus,
2
7/1k,q2 "/’k,qs 9 9 9
20 (oo | vk | ) G (w0 | O | ) G| < Clivolli max (1Gkal ka2
0 X Pk X w

1250 Recall that ¢y, satisfies (A.3). This implies that

2 2
max (eI 5 11Ge.as 2
1+ 2 2 2
1G22 1Ck a5 12 — (Craz s Chugs

1251 C(Gr,y0) < C||y0||§(

1252 for any k > 1 and any yo € X which gives

2 2
max (11Ge.ga % <k 2

1253 Tp,q < limsup — In 5 5 5
k=00 2k Hgk,qz”w ||<k,qa||w - <Ck7Q27Q€aQS>w
1254 We now prove the converse inequality. We define for all £ > 1
. o Lif HC’WZz”w > ”Ck,lhllw
1255 € — .
0 otherwise
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1258

1260

1261

1262

1263

1264

1265
1266

1267

1268

1269

1270

1273

and we choose the particular initial condition

1 0 0
Yo = Z e €k 0 + (1 — Ek) Pk
k>1 Vk 0

From the expression (4.11) we obtain

2 2
o max (Gl 1k )

C(Gr,0) = — 2 2 7
Vi ”Ck#Iz Hw ”Ck,%”w - <Ck,qzvck7%>w

This gives that

2 2
s T e (a6 )
0,g = £0,g\Yo) = 1M Sup == In 2 p) 2
k=too 2V ([Crga 5, ISk ,as 11y, = (Chogzs Choa ),

which ends the proof of Theorem 1.3. ]

4.3. A second characterization of the minimal null control time.

The goal of this section is to prove Theorem 1.4.

We first notice that, by (1.19), we have that ¢ and g3 are linearly independent
and thus there exists C,C > 0 such that

(4.12) C(laz| + |az]) < llasge + azgsllee < Claz| + |ag|), Vas,az € R.

Proof. From Theorem 1.3 we now estimate, for any k > 1,

2 2
[1Ck,02 1l [ Cregs Il
max 2 2 2 2 2 2 |-
”Ck,(hHw ”Ckﬂlsnw - <Ck,qza Ck,q3>w ”Ckﬂh ”w HCk,%”w - <<k7¢12vck7%>w

Let k > 1 and assume that [|Cr g, , > [[Ck.q21l,- Notice that

2

2 (Chogz> Choga) 2 2 2

”Ckﬂhllw Ck,qz - WC&QS = ”Ck,QSHw ||Ck,q2 Hw - <C’€,Q2’ Ck,QS>w .
k,qs llw w
Thus,
2 2
max (e |2+ 1Gr.as 2 |
2 2 7 = 2
Hck,qznw HCk,quw - <<k,q27 <k,q3>w Cocn — <Ck,q27Ck,q23>w G
(4.13) 2 [I1<k.as 2, s w
1

. 2
E_nel]g ||Ck,q2 - TCk,qe, ”w
By linearity we have, for any 7 € R,

<k7<Z2 - TC’W]S = CkJD—TQS'

We proved in Section 2.2 that there exists K € N*, C7,Cy > 0 such that, for any
k> K and any g € L°(0,1) such that Supp(q) Nw = &, we have

2
(4.14) CulGkalls < Mu(9hgrw) < Covi Gl
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1279
1280
1281

1282

1283

1284

1285

1286

1287

1288

1289
1290

1291

1292

1293
1294
1295

1296

1297
1298

1299

1300

1301
1302

1303
1304
1305

1306
1307
1308
1309
1310

where 9 4 is defined by (1.18). The analysis is the same in the symmetric case

1Ch,a2 Ml > Nhoas .-
Thus, from Theorem 1.3, (4.13) and (4.14), it comes that

— Inmin < min My (9% g, —rg., W), min My (9 g.— w
+ER k( k,q2—7q3> )’TGR k( k,q3—Tq2> )

(4.15) Tp,q = limsup
k—+oo Vi

To conclude the proof of Theorem 1.4, let us prove that the quantity

min {min My (19167(12_7(13, w) , Elel]{{} My, (ﬂk7q3_7q2, w) }

TER
appearing in the formula above has the same asymptotic behaviour as

i 9 .
qrélgl[rtll] My ( ha w)

Notice that, for any 7 € R, the function ¢, = —2="%2— belongs to S[g] and thus

" laz—7asll

M’f(ﬁkﬂz—ﬂlsa w) = ||Q2 - TQ3||OOMk (ﬂkﬂlr’ w)
> C min /\/lk(ﬁk,q, w),
q€Slq]

where we have used (4.12). It follows that

i Dk go— >C mi 0
I_;_ﬂelllng( k,q2—T7q3» LU) _iqrélgl[r;]Mk}( k,q>» bu')
and the exact same computation holds for g3 — 7¢o.
Conversely, let ¢ = asqgs + aszqs € S[g]. If |aa| > |as|, then by (4.12), we have
|| > % and thus

My (Pr g ) = ol M (9 gy 25,0 )

1 .
Z ﬁggﬂg}Mk(ﬁk,qz—Tqa’ w)'

Otherwise, we have |ag| > |az| and a symmetric analysis gives
Mk(’ﬂk)q, w) > ;min./\/lk(’ls‘k)q?’_qu, w).
2C T€R

Finally, from the expression of the minimal null control time given in (4.15), the
claim of Theorem 1.4 is proved. 0

4.4. An explicit example.

In this section we consider A to be the Dirichlet Laplace operator (i.e., v = 1 and
¢=0in (1.2)) and w = (0,7) U (3,1).

PROPOSITION 4.3. Let A and w be defined as above. Let 79 € [0,+00]. There
exists qa,q3 € L>(0,1) such that

i) approximate controllability of system (1.4) holds,
ii) for any (ao,a3) € R2\{0}, the minimal null control time for system (1.1)
with ¢ = aaqa + azqs is Ty,q = 0. In particular Ty 4, = To,q, = 0.
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1311 iii) the minimal null control time for system (1.4) is Ty q = To.

1312 Proof. For j € {2,3}, we set ¢; = 1o, with

1 1
1313 Oy = (2—52,2+52> and (932(773—(5377]3-‘1-(53),

1314  where 73, 02 and §3 are chosen such that
1315 (4.16) Supp(g2) Nw =& and  Supp(gs) Nw = 2.

1316 The approximate controllability of system (1.4) with these coupling functions has
1317 been studied in [14, Section 3.4.2]. Tt is proved that approximate controllability holds
1318 if and only if

1319 (4.17) ns ¢ Q and 3 ¢ Q.

1320 Using for instance [5, Lemma 7.1], we can find 73 ¢ Q and d2, 5 ¢ Q such that 2ns
1321 and 2J9 are irrational algebraic numbers of degree 2 and

— In |sin(2kmd3)|

1322 (4.18 limsu = T0.
( ) ka+o<l? k22 0
1323 These choices prove 7).
1324 Let us now focus on i) that is the determination of the minimal null control time

1325 for system (1.1). Under the considered assumptions, we have explicit formulas for ¢y,
1326 and @y as follows:

1327 or = V2sin(kme) and @y = cos(kme).
1328 From Theorem 1.2, for any g € L*°(0,1), we have

—In My ((Ix() — a)n, )

1329 To.q = limsup
4 k—4o00 k22
1330 Since (0,1) \ w has only one connected component € = [1, 2] it comes that

i

1331 My ((Ie(g)—q) ok, w) = max{

/@ (Iu(q) - q(x))pr(x)*dx

/@ (Tu(g) — 4(2))ow () B ()

b

1332 Then, for j € {2, 3}, since Supp(g;) C €, we have

p . 2 2 2
1333 / (Tu(a5) = a5 (@)en(@)?dw = Lias) (1= lewlZ) = Tulay) = = lonlld, llenll? -
1334  where we have used
1335 Ii(g;) = /(9 op(z)?de = ||80k||?9]. .

J

1336 From (A.3) it comes that there exists C' > 0 such that for any k¥ > 1 and any j € {2, 3},

1337 (4.19) C<

/Q(Ik(qj) - qj(x))wk(xﬁdx
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1338
1339

1340

1341

1342

1343

1360

1361

1362

1363

This already implies that 704, = To,4, = 0. Let (a2, a3) € R?\{0} and ¢ = asqs +
as3qs. We prove that

(4.20) limsup k2 [T (q)| > 0

k——+o00

which implies Ty ; = 0 since

2
= |I(@)] llorll, -

/Q(Ik(q) — q(x))pr(x)dx

Explicit computations yield

Ix(q) = ag/ sin2(k7m:)dx+oz3/ sin?(krz)dx
02 03

(—1)k+1a2

= ay0 1)
Q202 + 303 + Dy

sin(2kmda) — QO[TS cos(2kmns) sin(2kmds).
7r

If aado + agds # 0, the property (4.20) follows directly. Otherwise, we necessarily
have ag # 0 and since 202 is an irrational algebraic number of degree 2 we have (see
for instance [5, Lemma 7.1])

inf k |sin(2k7d2)| > 0.
k>1

Together with the choice of 63 in (4.18) this proves (4.20) and thus gives Ty , = 0.

We now turn to i) that is the determination of the minimal null control time for
system (1.4). From Theorem 1.4 we have that the minimal null control time is given
by

—In Jnin, M (Vpq, w)

(4.21) To,q = limsup
k—+o0 Vi

Let k£ > 1. Since € is symmetric with respect to %, we have

/ or(2)Pk(x)dr = \/5/4 sin(knx) cos(kmx)dx = 0.
¢ i
Thus, for j € {2,3}, we have

(€)= (_p lll

Again a symmetry argument shows that

/ @2 (2)pr(2)Pr(x)dz = V2 [ sin(kmz) cos(kmz)dz = 0.
< (@P)

It follows that for any ¢ = aage + a3qs € S[q], we have

( —Ii(a) llxlIZ )
a3 fo, or(@)Pr()de
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1364

1365

1368

1369

1370
1371

1372

1373

1374

1375

1376

1377

1378

and thus

M5 (91 0) = o { @) e 2

b

/ ok (@) P () dz
O3

Let us now prove that (4.21) reduces to

—In ‘ Jo, g@k(x)@k(x)dx‘ |

Tp,q = limsup
k—+o00 Vi

e We set

ak
1k lloo

in such a way that I;(g,) = 0 and ||g;]|lcc = 1. By (4.22) and (4.12), we get

ar = Ie(a3)a2 — Ik(q2)as, @i =

1 ~
_ <
My (Ph0) < G | [ ortr)eiaaa
so that
1
4.24 i ) < — D dz|.
(4.24) min Ml ) < & | [ ou)putaaa

Recall that C is the constant appearing in (4.12).
We now prove that, for some C' > 0 that does not depend on &, we have

(4.25) min My, (9p.q, w) > C /(9 o (2)Pk(z)dz| .

q€8|q]

If it were not the case, we would have, up to a subsequence, the inequality

min My (01 0) <o | [ pu(e)Buloda).
q€Slq] O3

for some g, — 0.
In particular, from (4.22), it would exist for each k, a function g = ag g2 +
a3 kqs € S[g], such that

(4.26) @ el < e | [ ou@)Pu(o)dal.
and
(4.27) g ol / o () (2)d| < 2 /O o (2)Bn (2)da|

From (4.27), we deduce first that |ag k| < ek, and in particular asy — 0.

Since ||gk|lco = 1, it follows that | x| — m, from which we deduce that
~ 1 O
lim |Ix(qr)| = —— lim |[Ix(q2)| = > 0.
R e S T

By using (A.3), we obtain a contradiction with (4.26).
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1383
1384
1385

1386

1387
1388
1389
1390

1391

1392

1393

1394

1395

1396
1397
1398

1399

1400

1403
1404
140:
1406
1407

1408

1409

1410

Using (4.24) and (4.25) in (4.21) exactly proves (4.23).
Finally, explicit computations yield

in(2k in(2kmo
/ i () ok (x)da :/ sin(kmx) cos(krz)dx = sin(2kmns) sin(2k 3).
O3 O3 2k7T

Since 275 is an irrational algebraic number of degree 2 we have (see for instance [5,
Lemma 7.1])

érzlfl k |sin(2kmns)| > 0.

Together with the choice of d3 in (4.18) this ends the proof of Proposition 4.3. ]

Appendix A. Spectral properties of the Sturm-Liouville operator.

Let A be the Sturm-Liouville operator defined by (1.2). We recall here some
spectral properties that will be used in our study.

From [1, Theorem 1.1 and Remark 2.1], there exist ¢ > 0 and C > 0 such that

(Al) 0 < Vg1 — Vg, Vk > 1,
1
(A.2) 5@ <|pip(z)] < Cyvg, Yre{0,1}, Vk>1,

and, for any non-empty open set w C (0, 1),

A3 inf > 0.

(A.3) Inf {lox

Let N be the counting function associated with the sequence of eigenvalues (vg)r>1

i.e.,
N:re(0,+00) — f{vk; vp <r}.

Using [12, Theorem IV.1.3], this counting function satisfies for some « > 0,
(A.4) N(r) < ryr, Vr >0,

and
(A.5) IN(r) — N(s)| < & (1 /= 5|> . Vs> 0.

To estimate various quantities, we will make an intensive use of the following lemma
proved in [1, Lemma 2.3].

LEMMA A.1. Let A be the Sturm-Liouville operator defined by (1.2) and let Ay > 0.
There exists C' > 0 depending on v, ¢ and Ao such that, for any X > Ao, for any
F € L?(0,1), for any z,y € [0,1], for any u satisfying

(A= Nu=F in]0,1],
we have

(@)
A

wuﬁ<0<u@ﬁ+ﬂﬁ
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1411 Applying Lemma A.1 with u = ¢, F' = 0, A\ = v; and integrating with respect to
1412 the variable y € (0,1) we obtain

1 1 [t
11 Jer(@)? + 7k|90§c(96)|2 <C <1 + ;k/o v(y)lwk(y)IQdy) ; Vz € (0,1),Vk > 1.

1414 Integrating by parts leads to

s [ ik = [ o o) awa <+l

1416 which yields the existence of C' > 0 such that

17 (A6) low ()2 + %|g0§€(x)|2 <C, Vee(0,1),Vk>1.

1418 We shall also use this lemma to estimate v, 4 (defined in (1.6)) as follows:

LEMMA A.2. There exists C > 0 such that

[rallry <C VE> 1

1419 Proof. The function ik,q defined by
~ V1.4(0)
1420 Vhg = Vhig — —F Pk,
! A

1421  satisfies

(A— Vk)i;k,q = (Ix(q) — q) ek

1422 J,c,q(o) = qzk,q(l) =0,
V1,4(0) = 0.
1423 From Lemma A.1 with y = 0 it comes that
~ 2 ~ 2 O
1424 )wk,q(x)‘ + @ ‘w;v,q(a:)‘ <2, Vee(01), vk 1.
k k

1425 which yields

1426 H{/;vqu : <C, Vk > 1.

(0,1

1427 Notice that, by definition of ¢y, 4, we have (k4 — ¥r.q) € Rpg. Then, multiplying by
1128y, integrating over w and recalling that (¢ 4, @), = 0, we obtain that

),
1429 Vg = Vk,q — Wapk.
1430  This implies that
1431 [¥k.qll 0,1y < HquH <1 + 1) . Vk>1.
(0.1) 1kl
1432 Then, estimate (A.3) ends the proof of Lemma A.2. d
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1433
1434
1435

1436

1437

1438
1439
1440
1441

1442

1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475

By definition, ¢ and @ are solutions of the same linear second order ODE
(A—vp)er = (A —vk)pr = 0. It is therefore natural to introduce the associated
Wronskian matrix

y(@)e(x)
Wi(x) = oy Pr(z)
Y(@)Pp(x)  ~ (z) )
ok Pk

for which we can prove the following estimate.

LEMMA A.3. There exists C > 0 such that
[Wi(2)]| + [[Wi(z) | < C, Vze[0,1],Vk > 1.

Proof. Let us fix a k > 1. Applying Lemma A.1 to u = ¢ and y = 0, we obtain

- 1
|r(2)* + le@%(x)IZ <€ Vee(0,1),Vk =1

Together with (A.6), this shows the uniform estimate on ||[Wj(x)]|.

Moreover, the determinant of Wy (z) does not depend on z and is thus equal to
the determinant of W(0) that is to —v(0)¢}(0)/\/Vk. By (A.2), we know that this
quantity is uniformly bounded from below. The bound for Wy, (z)~! follows. O
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