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Context of the study
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P/T Boundary-Smithian interval (~1,5 ma) in the Sonoma Foreland Basin (western US)

= Basin formed due to Golconda Allochton emplacement around the PTB (Sonoma Orogeny, ~252 Ma)
= Excellent fossil and sedimentary record of the aftermath of the PTB-crisis
—> Paleogeography of the region still poorly constrained



Context of the study
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Empiric observations => Sedimentary record varies in the basin:
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- Transgressive trends recorded in the basin with marine incursions from the North

- Different facies associations: from terrigenous and dolomitic red beds, to mixed bioclastic limestones and

terrigenous sediments
- Variation in sedimentary thickness
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Aim of this work

What is the nature of the main controlling factor(s) over the sedimentation in the Sonoma
Foreland Basin during the PTU-Smithian interval?

Role of the foreland nature of the basin in the aforementioned sedimentary distribution?



Methods

o Present-day
Wyoming salient

Database:

- 43 selected sections after literature and field work

- Study of the PTU-Smithian interval

- Biostratigraphic framework (after Brayard et al., 2013)
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Results: thickness variations in the basin

Isopach map of the PTU-Smithian interval
—> Spatial distribution of sedimentary thickness

2 different parts in the basin:

- Northern high thicknesses zone (>300 up to ~550m thick)

- Southern low thicknesses zone (~10 up to 250m thick)
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Results: thickness variations in the basin

East-West pattern:
- Thickening trend towards West
- Lower thicknesses in westernmost parts

—> Coherent with Foreland Basin System
(sensu DeCelles & Giles, 1996)
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Results: thickness variations in the basin

Sedimentary accumulation caused by foreland flexuration

2 different parts in the basin(N-S pattern):

- Northern high thicknesses zone (>300 up to ~550m thick)

- Southern low thicknesses zone (~10 up to 250m thick)

—> Why 2 different zones in this single basin as the result of
Golconda Allochton emplacement?
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Results: terranes map of the basin

Composition of the basement of the basin?

—> Construction of a new terrane map from:
- U/Pb dating (literature data)
- Bouguer gravity anomaly map (Kucks, 1999)

Five terranes identified, with different ages:

- Archean Wyoming Terrane

- Archean Grouse Creek Block

- Paleoproterozoic Mojave Terrane

- Mesoproterozoic Yavapai Terrane

- Mesoproterozoic Farmington Terrane
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Results: terranes map of the basin

= Lithospheric nature is key control to rheological behavior

Oldest lithospheres are colder, more rigid, and show weaker

density

—> Strong lithospheres

Wyoming Terrane (Archean)
Grouse Creek Block (Archean)
Mojave Terrane (Paleoproterozoic)

Conversely, juvenile lithospheres show lesser rigidity
— Weak uplifted lithosphere

Yavapai Terrane (Mesoproterozoic) with positive
relief due to ARM orogeny

— Weak attenuated lithosphere

Farmington Terrane (Mesoproterozoic Mobile
Belt)
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Discussion
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Perspectives: depositional settings

Depositional settings distributions
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Conclusion

e Sonoma Basin acts as a foreland system during the P/T Boundary-Smithian interval (~1,5ma)

* The main controlling factor over sedimentary accumulation and thus depositional settings
distribution is of lithospheric origin

Thank you for paying attention!






Supplements

Loose line Pin line

WL Meade Thrust Crawford Thrust Absaroka Thrust Hogsback Thrust I E
Retrodeformed configuration S0 km
Tectonic transport ~140km
Crawford Thrust Hogsback Thrust
. MeadeThrust
Loose line
="~ Thrusting w E

e [riassic series

Present-day configuration

50 km

Retrodeformation method

Canyon Range Thrust Pahvant Thrust Future Pahvant Duplex

W’7_¢\ O Looseh’ne/ Pin line TE
+0

o
=)

%
|
\
|
}
|
|
\
|
|
I
i
Depth (km)

Retrodeformed configuration —0

Tectonic transport ~60km

Canyon Range Thrust  PahvantThrust Paxton Thrust Gunnison Thrust
w Pin line BE

: o
5 &
=
10 &
v
a

Present-day configuration —k

Caravaca et al., in prep.



Supplements

Oldest lithospheres are: ]
- Thicker and colder than juvenile counterparts (due to R* 100 -]
elements depletion -g, ]
- More buoyant (d°<d°’ juvenile lithos.) g - ]
= More rigid and resistant to flexuration £
&
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Fig. 2. Lithospheric thermal thickness versus geologic age of the
continental lithosphere. The Archean lithosphere has bimodal
thickness distribution centered at ~ 350 and ~ 220 km. Gray
area shows the lithospheric thickness estimates derived from
thermal data (Artemieva and Mooney, 2001). Key: Ar—Archean;
ePt, mPt, 1Pt—early, middle and late Proterozoic, respectively; Pz—
Paleozoic; Cz—Cenozoic.

Artemieva & Mooney, 2001
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Carpathians
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Fig. 11. (a) Badenian (16.4—-12.5 Ma) and (b) Sarmatian (12.5-10.5 Ma) isopach maps of the Romanian East Carpathian Foreland—Foesani
Deespression. (c) cmss sections. Section A (after Matenco et al., submitted for publication)) crosses the Focsani Depression. Note the lame thickness of
post orogenic sediments, bevond the scope of this paper. Section B (after section All from Stefanescu et al; Matenco and Bertotti, 20007,

Leever et al., 2006



Supplements

Magallanes basin

A) CONTIMENTAL FORELAND BASING
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Figure 12. Conceptual cross sections depicting the major structural and stratigraphic differences betwesan foreland basin
systems that develop atop (a) continental and cratonal lithosphere (modified from Horton and DeCelles [1997 ) and (b)
attenuated rift and badk-arc basin lithosphere in successor retroarc foreland basins (this study; with as pects from Romans
et al. [2011]L In particular, topographic loading from a mafic thrust belt, a lateral gradient in flexural rigidity, and sediment
loading of the foredeep promote a broad and deep region of subsidence.

Fosdick et al., 2014
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