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ABSTRACT: Herein, an efficient and practical approach for dipolar modification of commercially available solid catalysts is 
reported. The solid catalysts HMS (hexagonal mesoporous silica)-DMSO decorated with organic dipolar layers are designed 
and synthesized by radiation technology under simple and accessible conditions. The dipolar catalysts can serve as plat-
forms to introduce various active sites, benefiting from the flexibility and diversity of the dipolar layer, which in turn allow 
them to achieve catalytic performance in relatively friendly systems. Specifically, the upgraded dipolar catalyst HMS-DMSO-
SO3H exhibits good performance in converting the oxidized lignin model compound of α-hydroxyacetophenone to 1,3-
dioxolane derivatives and dehydrating isomaltulose to glycosyloxymethyl-furfural (GMF). 

With the world energy crisis and total global energy con-
sumption increasing dramatically, it is essential to develop 
methods for the efficient use of renewable resources.1-3 
Biomass, as an attractive carbon-based source, has been 
widely used to produce value-added fine chemicals and 
fuels.4-8 The catalytic activation/cleavage of ubiquitous C–
C/C–O bonds in biomass is crucial through various meth-
ods, including oxygen removal processes and increasing 
the molecular weight via C–C coupling reactions.9-11 Effi-
cient regulation of the state of reaction intermediates de-
rived from C-C/C-O bond activation/cleavage to maximize 
the selectivity and yield of bio-based products is a key 
challenge. In this context, a valid strategy for this goal in 
heterogeneous catalysis is to enrich the dipolarity of the 
solid catalyst surface, allowing the reactants to participate 
in specific non-covalent interactions to stabilize or destabi-
lize the reaction intermediates, thereby enabling the trans-
formations to proceed smoothly.12-18 However, there is still 
a lack of universal methods to prepare dipolar catalysts.  

Despite these encountered challenges, with great efforts 
and contributions from many pioneers, various dipolar 

catalysts have been designed and synthesized successfully 
for the conversion of biomass.12, 19 For example, the organ-
ic–inorganic nanocomposite catalysts with dipolar micro-
environments were prepared, which exhibited excellent 
catalytic performance for the selective conversion of fruc-
tose to HMF in a mixed solvent of water and 
tetrahydrofuran.20 Xiao and co-workers developed the 
heterogeneous catalyst with strong dipolar moieties 
through constructing microenvironment to tune the per-
formance of active sites.21 The catalysts exhibit high yields 
of fructose to 5-hydroxymethylfurfural in THF. Parallelly, a 
dipolar and flexible linear polymer polyvinylpyrrolidone 
(PVP) was incorporated into the pores of the acidic COF 
material to facilitate the fructose dehydration reaction.22 
Recently, the HCP materials with a dipolar moiety have 
been developed as alternatives to DMF in the conversion of 
NaN3 to benzylic azides and triazoles.23 Although these 
strategies have been developed, complex designs, long 
synthesis periods and lack of clean processes lead to high 
costs of catalyst synthesis, which are the important factors 
that limiting their application in industry.24 From a catalyst 



 

design perspective, it is generally recommended to opti-
mize the already existing catalyst for a specific process, 
which mainly depends on the needs of the user, rather than 
to develop an entirely new catalyst material.25 Obviously, 
the development of general and eco-efficient methods for 
dipolar modification of readily available catalysts or sup-
ports is one of the important issues that chemists need to 
address urgently at present. 

Currently, electron beam irradiation (EBI) technology 
has been used as a green replacement method for tradi-
tional chemical processing, especially surface modification 
processes.26-30 The EBI process is a flow of energetic elec-
trons generated by an accelerator that directly injects en-
ergy to the materials, and then initiates a series of chemical 
reactions through free radicals to improve product quality 
by changing its chemical and physical properties. Com-
pared with other conventional methods, the EBI technolo-
gy is an efficient method of chemical modification because 
no catalysts or additives are required to initiate the reac-
tion, and the chemical reaction can be easily adjusted by 
varying the radiation conditions under simple operation, 

thus enabling large-scale production. The EBI technology 
thus offers a great opportunity for the production of dipo-
lar catalysts that are not easily accessible by chemical 
methods.  

Out of all these considerations, in this work, without 
changing the specific preparation process of the original 
catalysts, an efficient and versatile method is reported for 
dipolar modification of commercially available solid cata-
lysts by EBI technology. The high-density dipolar moieties 
were anchored on the surface of catalyst via rapid thiol-ene 
reaction, which endows the catalyst with polar properties. 
Notably, the upgrade catalyst exhibits outstanding perfor-
mance in the conversion of lignin model compound to 
valuable 1,3-dioxolane derivatives and the dehydration of 
isomaltulose to glycosyloxymethyl-furfural (GMF). The 
successful implementation of this protocol not only brings 
innovation to the catalysts synthesis industry, but also 
significantly relieves the dependence on unfriendly polar 
aprotic solvents in the conversion process of biomass-
derived platform molecules.

Scheme 1. Schematic illustration of the preparation process of dipolar silica-based catalysts by electron beam 

irradiationa 

aReaction conditions: Step 1: HMS-SH (0.20 g, 0.43 mmol), 10.0 mmol of G1, 5.0 mL of CH3CN, N2 atmosphere, 2100 kGy, 5 s. Step 2: 
HMS-DMSO (0.50 g, 1.55 mmol), 4-vinylbenzenesulfonic acid sodium salt (1.03 g, 5.0 mmol), 2.0 mL of H2O, N2 atmosphere, 1800 
kGy, 5 s, treat with HCl (1 mol/L, 40 mL). 

In order to confirm the structures of the grafted moie-
ties, the prepared catalysts including HMS-DMSO and HMS-
DMSO-SO3H were characterized by various spectroscopic 
methods. The FTIR spectroscopy showed that the profiles 
of fresh and irradiated silica-based catalysts were quite 
similar, as shown in Figure 1a, indicating that the chemical 
structure of catalysts was not significantly changed 
through electron beam irradiation. The silica-based HMS-
SH catalysts showed weak characteristic peak appearing at 
about 2527 cm−1, which was assigned to the vibration of 
the HS group.31-32 Meanwhile, the bands at 2985 cm−1 and 
2934 cm−1 corresponded to the symmetric stretching vi-
brations and asymmetric stretching vibrations of the –CH2 
group.33 The disappearance of the S-H stretching band, 
while the peaks of catalysts with DMSO moieties, including 
HMS-DMSO and HMS-DMSO-SO3H, were significantly en-
hanced at these locations, indicating that the grafting of 
sulfolane onto the surface of silica-base was successful. 
Despite the fact that the broad area at 1250-1000 cm-1 may 

include many characteristic peaks, the emerging peaks at 
1188 cm-1 and 1132 cm-1 in HMS-DMSO-SO3H were related 
to stretching vibration of the S=O bonds of aromatic sul-
fonic acid.34-35 These results implied that the grafting of 
double bond-containing species onto the silica-based sur-
face via electron beam irradiation was successful. Besides, 
the characterization with 13C MAS NMR spectra also sug-
gested dipolar moieties and acid sites were successfully 
introduced, as demonstrated in Figure 1b. It was clearly 
observed that the chemical shifts of three catalysts varied 
with the grafted species. Compared with the starting mate-
rial of HMS-SH, the carbon peaks in HMS-DMSO around 
55.8, 51.9, 39.8 and 33.9 ppm were ascribed to sulfolane 
species. After treatment of acidification, the emerging 
peaks at 149.0, 147.1, 140.4, 126.7 ppm in HMS-DMSO-
SO3H were related to the aromatic sulfonic acid.36-37 In 
addition, with the increase of the strong electron-withdraw 
groups, the resonance-absorption peaks move to lower 



 

field, resulting in larger chemical shifts of HMS-DMSO-
SO3H. 

As representative samples, X-ray photoelectron spec-
troscopy (XPS) of HMS-DMSO-SO3H was shown in Figure 
1, while the detailed characterization results of other sam-
ples are provided in the ESI (Figures S6-S7). As expected, 
all the essential elements were observed (Figure S8), and 
the conspicuous signal of C 1s appeared at 284.79 eV was 
assigned to the C-C bond (Figure 1d).38 The two peaks 
were located at 285.80 and 286.45 eV, which were as-
signed to the C-S and C-O bands, respectively.39 The O 1s 
clearly evidenced the presence of three chemical environ-
ments for the oxygen atoms (Figure 1e). The predominant 

peak at 532.71 eV was characteristic of the HMS backbone, 
while the peak at 533.68 corresponds to the C–O groups.40 

Notably, in the O 1s XPS spectra of HMS-DMSO-SO3H, the 
existence of S–O band was evidenced by the peak appear-
ing at 531.80 eV. Indeed, the S–O bands were also found in 
the O 1s XPS spectrum of HMS-DMSO, and the content of 
surface elements increased significantly after sulfonation. 
Correspondingly, it was clearly showed that in the S 2p 
region (Figure 1f), the characteristic peaks at 168.12 eV 
and the peaks area ratio were about 2:1, which can be 
attributed to the S-O bond.41-42 The pattern of the S 2p 
region showed peaks located at around 163.47 eV, which is 
attributed to the presence of C–S groups on the surface of 
HMS-DMSO-SO3H (Tables S2-S3). These results indicated 
that the grafting of dipolar moieties and –SO3H groups onto 

the surface was successful.

Figure 1. a) The FT-IR spectra of HMS-SH, HMS-DMSO, and HMS-DMSO-HSO3H; b) solid-state 13C NMR spectra of different dipolar 
catalysts; c) fluorescence emission spectra of Nile red adsorbed in three catalysts; XPS spectra of HMS-DMSO-SO3H, including mag-
nifications of the C 1s (d), O 1s (e), S 2p region (f), the data of HMS-SH and HMS-DMSO are shown in figure S6-S7.

The morphologies of the obtained catalysts were inves-
tigated by emission scanning electron microscopy (FE-
SEM), and the changes of the three catalysts were shown in 
Figure 2. With the increase of monomer G1, a large num-
ber of particles are generated on the surface of the smooth 
massive solid (Figure 2a), forming unique spatial struc-
tures (Figure 2b). After treatment of sulfonic modification, 
the structures were more compact (Figure 2c), which was 
consistent with the above description. The energy-
dispersive spectroscopy (EDX) analysis indicated that all 
the expected elements were present and uniformly distrib-
uted in the HMS-DMSO-SO3H (Figure 2d-2f) catalyst as 
well as HMS-DMSO (Figure S9). Furthermore, the effect of 

electron beam energy on the catalyst preparation process 
is evaluated by means of the Monte Carlo code FLUKA.  
Electron beam energy is one of the most vital parameters 
in the process of electron irradiation, which affects the 
absorbed dose distribution in catalysts and determines the 
quality of the product.43-44 The results show that the EBI 
technology is amenable for the role of surface modification 
due to its strong penetrating ability and uniform distribu-
tion (Figures S12-S15). In addition, the prepared materi-
als including HMS-SH, HMS-DMSO and HMS-DMSO-SO3H 
were also submitted to elemental analysis to confirm the 
amount of grafted DMSO or –SO3H fragment on silica-based 
composite. Compared with the raw material of HMS-SH, 



 

the sulfur content of HMS-DMSO increased significantly 
after treating HMS-SH with 3-sulfolene, indicating the oc-
currence of grafting. By attributing the increase in sulfur 
content to the anchoring of monomer G1 onto HMS-SH, the 
amount of grafted DMSO moieties was approximately 1.1 

mmol/g. Indeed, HMS-SH exhibits a better ability to graft 
monomer G1 due to its high loading of thiol groups (2.21 
mmol/g).45 To facilitate the subsequent introduction of 
active sites to maximize the catalytic ability, an excess 
amount of aromatic sulfonic acid was used.

The concentration of the grafted -SO3H fragment on the 
HMS-DMSO is approximately 0.88 mmol/g (Table S1). 

The N2 sorption isotherms were collected and the N2 iso-
therms corresponded to type-IV isotherm, which was typi-
cal for mesoporous materials (Figures S10). Analysis of 
pore-size distribution evaluated shows that pore-sizes 
were predominantly distributed at 4.0 nm. The Brunauer–
Emmett–Teller (BET) surface areas of all the obtained 
materials were also calculated. The SBET of the dipolar cata-
lysts decreased from 1351 m2 g-1 of HMS-SH to 979 m2 g-1 
of HMS-DMSO, mainly contributed by the increase of G1 
content. After treatment of sulfonation, the catalysts still 
exhibited high surface areas (768 m2 g-1) and no significant 
change in surface area was observed. The thermal stability 
of the obtained catalysts was inspected by 
thermogravimetric analysis (TGA) (Figure S11). Although 
the organic components in HMS-DMSO or HMS-DMSO-
SO3H were significantly higher than that in HMS-SH, it was 
observed from the TGA curves that all the catalysts were 
quite stable below 240 oC. When the temperature was 
elevated to around 270 oC, the weight loss was clearly ob-
served in HMS-DMSO-SO3H. The TGA results implied that 
the obtained catalysts have an excellent thermostability, it 

is feasible to use them in harsh conditions. 

Figure 2. FSEM image characterizations of different dipolar 
catalysts, a) HMS-SH; b) HMS-DMSO; c) HMS-DMSO-SO3H; d-f) 
elemental mapping of HMS-DMSO-SO3H for C (d), O (e) and S 
(f), the data of HMS-SH and HMS-DMSO are shown in figure S8. 

The fluorescence emission spectra were also analyzed, 
as shown in Figure 1c. To the best of our knowledge, Nile 
red was a sensitive probe, which was considered the best 
choice to determine the local polarity of some media in a 
variety of heterogeneous systems because the 
photophysical properties of Nile red vary with the polarity 
of the solvent.46-48 Upon photo- excitation at 400 nm, the 
fluorescence intensity of Nile red adsorbed in HMS-DMSO 
and HMS-DMSO-SO3H almost disappeared with the in-
crease content of sulfone group, while the obvious peak at 
649 nm was maintained after treatment with HMS-SH (see 
ESI for details). Significant decrease or even disappearance 

in intensity has been attributed to a formation of the twist-
ed intramolecular charge transfer (TICT) state.49 The re-
sults demonstrated that the polarity of HMS-DMSO and 
HMS-DMSO-SO3H significantly enhanced by decoration of 
polar moieties. 

To verify the applicability of dipolar catalysts as reaction 
medium, lignin model compound50 (1a) and formaldehyde 
(2a) were employed as reaction substrates to synthesize 
1,3-dioxolane derivative 3a, which is useful intermediates 
in the synthesis of pharmaceuticals and fine chemicals.51-53 
In the presence of HMS-DMSO-SO3H, various solvents were 
screened (Table 1, entries 1-4). EtOH and 2-
methyltetrahydrofuran (2-Me-THF) were not suitable for 
this reaction (entries 1 and 2). Although 1a didn’t com-
pletely converted (entry 3), the result indicated that the 
dipolar catalyst is promising for achieving a good result. A 
moderate yield of 3a was obtained in cyclopentyl methyl 
ether (CPME, entry 3). When the reaction was performed 
in isopropyl acetate (iPrOAc), 3a was obtained in 95% of 
yield (entry 4). Under the identical conditions, the reac-
tions over p-toluenesulfonic, Amberlyst-15 and HMS-SO3H 
gave only moderate yields (entries 5–7). HMS-DMSO has 
no acidic site, but contains G1 fragment in the solid surface, 
has no catalytic acitivity for the synthesis of 3a (entry 8). 
When HMS-DMSO was used along with TsOH, 3a can be 
isolated with 56% yield (entry 9). To evaluate the effect of 
acid content, the catalysts with different ratios were pre-
pared and the results were described in Table S4. Fur-
thermore, the reference catalyst PSS-DMSO-SO3H21 with 
dipolar moieties also exhibits good catalytic performance, 
affording the desired product in 62% yield (entry 10). 
These results demonstrate that the presence of dipolar 
components is indeed effective in enhancing the activity of 
the catalyst. The reactions over the analogous dipolar cata-
lysts that were prepared through the conventional chemi-
cal grafting with free radical initiators proceeded sluggish-
ly (entries 11 and 12). These results implied that the use of 
EBI is a key for ensuring the dipolar catalyst to have a good 
catalytic performance. It should be noted that the catalyst 
is also recyclable (Figure S23) and still maintains good 
catalytic activity after 5 cycles. Finally, a possible mecha-
nism is illustrated, as depicted in Figure S16- S21. 

Table 1. Condition optimization of the reaction lignin 
model compound and 2a. 



 

 
Various substituents patterns and diverse functional 

groups in the aryl ring were used as viable substrates to 
react with 2a (Scheme 2). A series of compounds bearing 
electron-donating groups (3b, 3g, 3h) can also be success-
fully converted to the desired products with excellent 
yields. Di-substituted electron-rich -
hydroxyacetophenones (3c, 3i) can react smoothly with 
2a, affording the desired products in good yields. Various 
electron-withdraw groups, varying from halogen to cyano 
group (3k-3n), were also able to efficiently offer the corre-
sponding products with the yields ranging from 83% to 
59%. Lignin model compounds contained 
large steric hindrance groups (3d-3e, 3j) was also well-
tolerated in this reaction. Notably, the substituent bearing 
phenyl group reacted smoothly in the presence of HMS-
DMSO-SO3H, and the desired product 3f was obtained in 
74%, which has been reported by using HCl as a catalyst in 
HOAc at 110 oC for 24 h.54 Interestingly, the heteroaromatic 
substrates could also be easily delivered uneventfully into 
the target product in moderate to good yields (3o-3q). 
These results indicated that the dipolar solid acids pre-
pared with the aid of EBI were indeed efficient catalysts for 
the transformations of lignin model compounds to 1,3-
dioxolane derivatives. 

Scheme 2. The substrate scope of lignin model com-
pounds to 1,3-dioxolane derivatives. 

 

The conversion of isomaltulose to 
glucosyloxymethylfurfural (GMF) was also evaluated. GMF 
is an interesting analog of 5-hydroxymethylfurfural (HMF) 
with a glucosyl moiety that has several applications and is 
highly sensitive to the dipolar environment.55-57 As shown 
in Table 2, the reaction proceeded smoothly in -
valerolactone (GVL), but hardly proceeded in THF and 
CPME (entries 1-3). Gratifyingly, when HMS-DMSO-SO3H 
was used as the catalyst, the conversion of isomaltulose 
proceed smoothly in iPrOAc, providing the desired product 
5a in 63% yield (entry 4). Given that 5a can be effectively 
separated in a low boiling solvent, the results are accepta-
ble (see the NMR spectra of the product in ESI), despite the 
fact that the yields obtained are not as good as those al-
ready reported for the method performed in DMSO. When 
TsOH and Amberlyst-15 were used as catalysts, the yield 
obtained is inferior to the former catalysts of HMS-DMSO-
SO3H (entries 5 and 6). In addition, HMS-DMSO and HMS-
SO3H proved to be unsuitable for this reaction (entries 7 
and 8). When TsOH was introduced into the reaction sys-
tem of HMS-DMSO, only 17% of the desired product was 
obtained (entry 9). Besides, when the grafting rate of 
sulfolene was decreased, the yield of the product also de-
creased significantly (entry 12). Furthermore, the desired 
product can be obtained in 25%, when the reference cata-
lyst PSS-DMSO-SO3H was used (entry 10). These observa-
tions imply the cooperative effect between the dipolar 
moieties and the acid groups are important factors in pro-
moting chemical reactions (the mechanism see Figure S22 
for details). The catalyst of HMS-DMSO-SO3H prepared by 
free radical initiators did not display the expected catalytic 
performance (entry 11). These results further demonstrate 
that the dipolar catalysts modified by EBI techniques are 
indeed necessary to enhance the catalytic capacity in the 
process of transformation, especially the transformation of 
biomass-derived platform molecules. 

Table 2. Catalytic reaction in the dehydration of 
isomaltulose to GMF. 



 

 
In summary, the EBI technology provides an efficient and 

general method for dipolarization based on existing cata-
lysts. Compared with traditional chemical methods, it has 
the advantages of simple steps, high efficiency, no initiator 
and easy engineering production. The use of the dipolar 
catalysts, not only enables successfully conversion of the 
biomass platform molecules, but also facilitated the separa-
tion of products in low boiling point solvent. Considering 
the economy and high efficiency of this method, this work 
opens up an avenue for the design, synthesis, and applica-
tion of catalysts. 
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