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Abstract. Given two permutations, a pattern σ and a text π, Parity
Permutation Pattern Matching asks whether there exists a parity
and order preserving embedding of σ into π. While it is known that
Permutation Pattern Matching is in FPT, we show that adding the
parity constraint to the problem makes it W[1]-hard, even for alternating
permutations or for 4321-avoiding patterns. However, it remains in FPT
if the text avoids a fixed permutation, thanks to a recent meta-theorem
on twin-width. On the other hand, as for the classical version, Parity
Permutation Pattern Matching remains polynomial-time solvable
when both permutations are separable, or if both are 321-avoiding, but
NP-hard if the pattern is 321-avoiding and the text is 4321-avoiding.

Keywords: Permutation Pattern Matching · Fixed Parameter Tractabil-
ity · Parameterized hardness · NP-hardness

1 Introduction

Permutations are one of the most fundamental objects in discrete mathematics,
and in concrete, deciding if a permutation contains another permutation as a
pattern is one of the most natural decision problems related to them. More pre-
cisely, in the well-known problem Permutation Pattern Matching (PPM),
given two permutations σ and π, the task is to determine if σ is a pattern of π,
or equivalently, if π contains a subsequence which is order-isomorphic to σ. For
example, if π = 31542, it contains σ = 231, as 3 5 2 is a subsequence of π with
the same relative order as σ, but π does not contain σ = 123, as there are no
3 increasing elements in π. In the latter case, we say that π avoids 123. The
notion of avoidance allows to define classes of permutations as sets of permu-
tations that avoid certain patterns, for example, 321-avoiding permutations, or
(2413,3142)-avoiding permutations, which are known as separable permutations.

PPM was proven to be NP-complete by Bose, Buss, and Lubiw in 1998 [6].
This motivated the search for exact exponential time algorithms [1,4,13,8]. How-
ever, some special cases, such as Longest Increasing Subequence, or the
cases where both σ and π are separable or 321-avoiding, are known to be poly-
nomial time solvable [10,6,16,2]. In fact, it was shown in [17] that PPM is
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always polynomial-time solvable if the pattern avoids any fixed permutation
τ ∈ {1,12,21,132,231,312,213}, and NP-complete otherwise. This result was
then extended in [18].

Its parameterized complexity was open for a long time, with a series of partial
results, but a breakthrough result of Guillemot and Marx showed that it is fixed
parameter tractable when parameterized by the size of the pattern σ, using a
new width measure structure theory of permutations [15]. They showed that

the problem can be solved in time 2O(k
2 logk)n, and later on, Fox improved the

running time of the algorithm by removing a factor log k from the exponent [12].
This led to the question of whether a graph-theoretic generalization of their

permutation parameter could exist, that was answered positively in [5], by intro-
ducing the notion of twin-width, which has proven huge success recently. They
showed that graphs of bounded twin-width define a very natural class with re-
spect to computational complexity, as FO model checking becomes linear in
them.

Pattern matching for permutations, together with its many variants, has
been widely studied in the literature (the best general reference is [19], see
also [7]).Here we introduce a natural variation of PPM, which we call Par-
ity Permutation Pattern Matching, and that incorporates the additional
constraint that the elements of σ have to map to elements of π with the same
parity, i.e., even (resp. odd) elements of σ have to be mapped to even (resp. odd)
elements of π. For one thing, pattern avoidance with additional constraints [3,9],
including parity restrictions [20,14], has emerged as a promising research area.
For another, Parity Permutation Pattern Matching aims at providing
concrete use cases of the 2-colored extension of PPM introduced in [16]. We
show that, surprisingly, it does not fit into the twin-width framework, and this
increases the complexity of the problem, as it becomes W[1]-hard parameterized
by the length of the pattern.

In fact, the approach used by Guillemot and Marx [15] to prove that PPM
is FPT is based on a result that states that given a permutation π, there exists
a polynomial time algorithm that either finds an r × r-grid of π or determines
that the permutation has bounded width (and returns the merge sequence of
the decomposition, which is used to solve the PPM problem in FPT time). This
win-win approach works because, if π contains an r × r-grid, it’s not hard to see
that it contains every possible pattern σ. However, this cannot be generalized
to Parity PPM, as here we have no information on the parity of the elements
of the grid, and thus, it is not guaranteed that every pattern maps via a parity
respecting embedding into the grid.

Structure of the paper The paper is organized as follows. Section 2 briefly in-
troduces the necessary concepts and definitions. In Section 3, we study the pa-
rameterized complexity of Parity PPM, showing that it is harder than PPM
in general, but that it remains in FPT for some cases, namely when the twin-
width of the host permutation is bounded. Finally, in Section 4, we show that
concerning the classical P vs NP questions, Parity PPM is similar to PPM. A
summary of the complexity of the problems is given in Table 1.
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PPM Parity PPM

General case NP-hard, FPT W[1]-hard
Separable permutations P P
321-av σ and 321-av π P P
321-av σ and 4321-av π NP-hard NP-hard
4321-av σ FPT W[1]-hard
Alternating π and σ FPT W[1]-hard
π is fixed pattern avoiding FPT FPT

Table 1. Summary of known results (for PPM) and our results (for Parity PPM).

Due to space constraints, some proofs (marked with (⋆)) are deferred to the
full version of this paper.

2 Preliminaries

Let [n] = {1, . . . , n}. A permutation of length n is a bijection f ∶ [n] Ð→ [n].
Given two permutations σ ∈ Sk and π ∈ Sn, we say that π (the text, or the host)
contains σ (the pattern) if there is an embedding from σ into π, i.e., an injective
function f such that for every pair of elements x and y of σ, their images f(x)
and f(y) of π are in the same relative order as x and y. Otherwise, we say that
π avoids σ. If π contains σ, we write σ ⪯ π.

A permutation class is a set C of permutations such that for every permuta-
tion π ∈ C, every pattern of π is also contained in C. Every permutation class can
be defined by the minimal set of permutations that do not lie inside it, and we
define this as C = Av(B), where B is the minimal set of avoided permutations.

In this manner, we can define the class Av(4321), which is the set of permu-
tations that avoid 4321, Av(321), which is the set of permutations that avoid
321, and Av(2413,3142), i.e., the class of permutations that avoid both 2413
and 3142. As we mentioned in the introduction, the latter is known as the class
of separable permutations, and it can also be characterized as the set of permu-
tations that have a separating tree. In other words, a permutation is separable
if there exists an ordered binary tree T in which the elements of the permuta-
tion appear in the leaves and such that the descendants of a tree node form a
contiguous subset of these elements.

Furthermore, we define the set of alternating permutations as the set of per-
mutations σ ∈ Sn such that σ1 > σ2 < σ3 > . . . .

The problem of determining whether a fixed pattern is contained in a per-
mutation has been well studied in the literature, and it is referred to as Per-
mutation Pattern Matching. Here, we study a natural variation of PPM,
Parity Permutation Pattern Matching, which we define formally below.

Definition 1. Given two permutations, a pattern σ ∈ Sk and a text π ∈ Sn, the
problem Permutation Pattern Matching asks whether π contains σ.
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Definition 2. An injective function f from σ to π is a parity respecting embed-
ding if for all elements x and y of σ, f(x) and f(y) are in the same relative
order as x and y, and for every element x of σ, f(x) has the same parity as x.

We say that an occurrence of a pattern σ in a permutation π respects parity
if there is a parity respecting embedding of σ into π. Furthermore, if there is an
occurrence of σ in π which respects parity, we say that π parity contains σ, and
we write σ ⪯P π. Otherwise, we say that π parity avoids σ.

Definition 3. Parity PPM is the problem of determining whether given a
pattern σ and a text π, there exists a parity respecting embedding of σ into π.

As a remark, note that if instead of considering the problem PPM with
the constraint that even (resp. odd) elements have to map to even (resp. odd)
elements, we require that elements in even (resp. odd) indices (positions) map to
elements in even (resp. odd) indices, the problem is equivalent. Indeed, σ parity
avoids π if and only if σ−1 parity index avoids π−1.

For example, the parity+order preserving embedding of σ = 2413 into π =
4276315 yields the parity-index+order-preserving embedding of σ−1 = 3142
into π−1 = 6251743 (occurrences are depicted with bold integers).

To see this, assume that there is a parity respecting embedding of σ into
π. Denote by Pσ(i) the position in σ of the element with value i and by f the
parity respecting injective map between σ and π associated to the embedding.
Since σ−1 = Pσ(1) ... Pσ(k), and f respects parity, if f(i) = j, both i and j have
the same parity, and thus, the indices in the inverses will also have the same
parity (by definition, odd elements are placed in odd indices in the inverses, and
vice versa). Furthermore, since f is an an embedding, for i < j, σi < σj if and
only if f(σi) < f(σj). Thus, P (σi) is to the left of P (σj) in both σ−1 and π−1,
and by assumption, we also have i < j, so f induces a parity index respecting
embedding between the inverses.

In this paper, we focus mainly on the parameterized complexity of the above-
mentioned problem. Parameterized complexity allows the classification of NP-
hard problems on a finer scale than in the classical setting. Fixed parameter
tractable (FPT) algorithms are those with running time O(f(k) ⋅poly(n)), where
n is the size of the input and f is a computable function that depends only on
some well-chosen parameter k. On the other hand, problems for which we believe
that there does not exist an algorithm with that running time belong to the W-
hierarchy. We refer to [11] for more background on the topic.

3 Parameterized complexity

We already saw in the introduction that PPM is in FPT in general, and why the
win-win approach of Guillemot and Marx for the parameterized algorithm for
PPM doesn’t work for Parity PPM. We show that this intuition is indeed true,
proving that the problem is W[1]-hard. In fact, we prove something stronger,
which is that Parity PPM is W[1]-hard even when restricted to alternating
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permutations or when the pattern is 4321-avoiding. Note that both results are
independent from each other, as alternating permutations and 4321-avoiding
permutations are not comparable, but they both imply the W[1]-hardness of
the general case.

However, the twin-width framework (on which the parameterized algorithm
of Guillemot and Marx is an initial step) will be useful to prove that Parity
PPM remains in FPT when the text avoids a fixed pattern.

3.1 Parameterized hardness for alternating permutations

Theorem 4. Parity PPM is W[1]-hard parameterized by the length k of the
pattern, even for alternating permutations σ and π.

Proof. We reduce from k-Clique in general graphs, which is known to be W[1]-
hard parameterized by the size of the clique k [11]. Given as input a graph G
and a parameter k, k-Clique asks whether G contains a clique of size k. For our
reduction, given a graph G = (V,E), with ∣V ∣ = n and ∣E∣ =m, and a parameter
k, we construct a permutation σ that depends only on the parameter k, and a
permutation π, that depends on G, such that there exists a clique of size k in
the graph G if and only if there is a parity respecting embedding of σ into π.

Construction We explain the construction of π for a general graph G. The high-
level idea is to construct different gadgets to represent the vertices and the edges
of the graph, and to somehow link each edge gadget to the corresponding vertex
gadgets, that is, we link the gadget associated to edge (u, v) with the gadgets
associated to vertices u and v by placing elements of value greater than the
minimum element of each vertex gadget and smaller than the maximum element
of each vertex gadget between the elements of the edge gadget.

We define the following gadgets (see also Figure 1):

– A vertex gadget π[V ], which is a direct sum of n decreasing permutations,
all order-isomorphic to 21 and composed of odd elements. It contains 2n
elements and starts at element 8m + 3.

– An edge gadget π[E], which is a direct sum of m permutations, all order-
isomorphic to 435261 and formed by odd elements. It contains 6m elements
and starts at element 3.

– The separator gadget is composed of the four even integers 4(n + 3m) + 4,
8m + 2, 4(n + 3m) + 2 and 2 (and hence is order-isomorphic to 4231). The
separator gadget lies between the vertex gadget and the edge gadget.

– Let Even be the 2(n + 3m) − 2 even integers between 4 and 4(n + 3m) that
do not appear in the vertex gadget, the separator gadget or the edge gadget.
The even garbage gadget is the alternating sequence composed of the even
integers of Even. It is constructed recursively from left to right as follows:
place (and remove from Even) the maximum of Even, place (and remove
from Even) the minimum of Even and recurse. It is placed to the right of
the edge gadget.
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Fig. 1. Illustration of the construction introduced in the proof of Theorem 4. The
permutation in the figure corresponds to a clique of size 3 with vertices v1, v2, v3 and
edges (v1, v2), (v1, v3), (v2, v3). The odd elements are represented in black while even
elements are colored in red. Furthermore, blue lines delimit the vertex boxes.

– Let Odd be the two odd elements 4(n+ 3m)+ 3 and 1 that do not appear in
the vertex gadget, the separator gadget or the edge gadget. The odd garbage
gadget is the decreasing sequence composed of the two odd integers of Odd.
It is constructed as the even garbage gadget and placed directly to its right.

Formally, define,

∀vi ∈ V, π[vi] = 8m + 2 + 2∑j<i(deg(vj) + 2) + 2∑i(deg(vi)) + 3

8m + 2 + 2∑j<i(deg(vj) + 2) + 1 (1)
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∀ek = (i, j) ∈ E, π[ek] = 6k + 1 6k − 1 8m + 2 + 2∑j′<i(deg(v′j) + 2) + 2∑(i,j′)/j′<j(1) + 3

6k − 3 8m + 2 + 2∑j′<j(deg(v′j) + 2) + 2∑(i′,j)/i′<i(1) + 3 6k − 5 (2)

π = π[v1] . . . π[vn] 4(n + 3m) + 4 4(n + 3m) + 2 8m + 2 2

π[e1] , . . . π[em] , EVEN ODD (3)

(boxes are used for readability purposes only).
The permutation σ is constructed as the permutation π but considering Kk

as the graph G.
Clearly, this construction can be carried out in polynomial time and σ de-

pends only on the parameter k, i.e., the new parameter ∣σ∣ is a function of k.
Furthermore, both σ and π are alternating permutations. We claim that there
exists a clique of size k in the graph G if and only if there is a parity respecting
embedding of σ into π.

Notation Before proving this reduction, we need to define some notation for the
elements of the permutations.

Let us denote by wi and w′i (i ∈ {1,2,3,4}) the four even elements of the
separator gadget, placed in between the vertex gadget and the edge gadget of σ
and π, respectively.

For each vertex vi, with i ∈ {1, . . . , n}, we will refer to the decreasing sub-
sequence of length two associated to it, σ[vi], as the vertex box associated to
vi.

For each edge ei, with i ∈ {1, . . . ,m}, we will refer to the decreasing subse-
quence of length four associated to it (i.e., the elements of σ[ei] which correspond
to 4321 in the permutation 435261) as the edge box of ei.

We will denote the elements of the vertex box associated to vertex vi as vi,1
and vi,2, from left to right (i.e., vi,1 > vi,2), and the elements of the edge box
associated to edge ei as ei,1, ei,2, ei,3 and ei,4, again from left to right. On the
other hand, for each edge, we denote the two elements placed in between ei,2 and
ei,3, and between ei,3 and ei,4, as hi,1 and hi,2, respectively, where here hi,1 < hi,2

(these are the elements that correspond to the subsequence 56 in σ[ei]).
Finally, the even elements to the right of the edge gadget placed below w2

are referred to as wi,1, wi,2, wi,3 and wi,4, for every edge i ∈ {1, . . . ,m}, where
wi,1 is the element ei,4 +1, wi,2 is ei,3 +1, wi,3 is ei,2 +1, and wi,4 is ei,1 +1. Note
that wi,4 is not defined for the last edge. On the other hand, the even elements
to the right of the edge gadget placed above w2 are denoted as xi,t, for every
vertex i ∈ {1, ..., n} and every edge incident to vi, t ∈ {1, ...,mi} (xi,t = hx,y + 1
for some pair x, y).

Furthermore, we denote by xi,0 and xi,mi+1 the even elements in the extremes
such that xi,0 = vi,2 + 1 and xi,mi+1 = vi,1 + 1. Again, note that xn,mn+1 is not
defined.

For the elements of π, we follow an analogous notation denoting the elements
by v′i,1, e

′

i,1, etc.
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Direct Implication

Claim 5. (⋆)If there exists a clique of size k in the graph G, then there is a
parity respecting embedding of σ into π.

Reverse implication Suppose now that there exists a parity respecting embedding
between σ and π and let f be the associated injective mapping. We want to show
that we have enough structure in the permutations to infer that there must be
a clique of size k in the graph G. In order to do so, we will prove the following
sequence of claims that will restrict the map f .

Claim 6. Any parity respecting embedding f from σ to π must map wi to w′i,
for i ∈ {1,2,3,4}.

Proof of claim. Since the pattern matching needs to respect parity, f must
map the wi’s to even elements of π. Towards a contradiction, assume first that
f(wi) ≠ w′j , i, j ∈ {1,2,3,4}. That means that f(wi) = w′i′,j or x′i′,t, for some
indices i′, j or i′, t. But then, the odd elements to the right of wi in σ cannot
map to elements to the right of f(wi) in π (as there would be at most 2 odd
elements to the right of f(wi) and there are strictly more than 2 odd elements
to the right of wi), so f cannot be an embedding of σ into π. Finally, since
both the wi’s and the w′i’s form 4231 subsequences, it is clear that there exists
a unique way to embed the wi’s into the w′i’s, which is mapping each wi to its
corresponding w′i, for every i ∈ {1,2,3,4}. Thus, if f(wi) ≠ w′i, f cannot be an
embedding. ◁

Claim 7. All the elements to the left (resp. to the right) of the wi’s in σ map
to elements to the left (resp. to the right) of w′i’s in π. Similarly, the elements
above (resp. below) w2 in σ map to elements above (resp. below) w′2 in π.

Proof of claim. This is a direct corollary of Claim 6. ◁

Claim 8. Any parity respecting embedding f from σ to π must map vertex blocks
of σ to vertex blocks of π.

Proof of claim. By Claim 7, since elements to the left of w2 in σ map to
elements to the left of w′2 in π, we have that f(vi,j) = v′i′,j′ , for i ∈ {1, ..., k}, i′ ∈
{1, ..., n} and j, j′ ∈ {1,2}. Assume that f(vi,1) = v′i′,j′ and f(vi,2) = v′i′′,j′′ , with
i′ ≠ i′′. Since vi,1 is to the left of vi,2, it means that f must map vi,2 to an
element placed to the right of f(vi,1) = v′i′,j′ . But vi,1 > vi,2 and every element
which is to the right of v′i′,j′ and which does not belong to the vertex block of
v′i′ , is greater than v′i′,j′ . Thus, if i

′′ ≠ i′, then f would not be an embedding. ◁

Claim 9. Any parity respecting embedding f from σ to π must map edge blocks
of σ to edge blocks of π.

Proof of claim. Again, we have that f(ei,j) = e′i′,j′ for some pair i′, j′, and
since the structure of the gadget has the same properties as the vertex gadget,
we can use the same argument as in the proof of Claim 8. ◁
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Claim 10. Any parity respecting embedding f from σ to π must map hi,j to
h′i′,j, where e′i′ is the edge associated to the edge block where ei,1 maps to.

Proof of claim. By Claim 7, we have that necessarily, f(ei,j) = e′i′,j , for i ∈
{1, ..., l}, i′ ∈ {1, ...,m} and j ∈ {1,2,3,4}.

First, since f(ei,2) = e′i′,2 and f(ei,3) = e′i′,3, and f is an embedding, the
fact that hi,1 is in between ei,2 and ei,3 implies that it must map to an element
between e′i′,2 and e′i′,3. Similarly, hi,2 must map to an element in between e′i′,3
and e′i′,4. Since edge blocks map to edge blocks, there is at most one element
that satisfies each of these conditions. And these elements are h′i′,1 and h′i′,2,
respectively. ◁

Claim 11. All the even elements to the right of the edge gadgets in σ must map
to even elements to the right of the edge gadgets in π.

Proof of claim. This follows from Claim 6. Since f(wi) = w′i for i ∈ {1,2,3,4}
and f has to respect parity, the rest of the even elements cannot map anywhere
else. ◁

Now, suppose that there is a parity respecting embedding f of σ into π and
assume, towards a contradiction, that G does not contain a clique of size k. Since
there is no clique of size k, it means that we cannot have l = (k

2
) edges between

the k vertices of G which are in the image of f (that is, the vertices associated
to the images of the k vertex boxes of σ).

We know that the k vertex blocks of σ map to k vertex blocks in π and the
(k
2
) edge blocks of σ map to (k

2
) edge blocks of π. Since G does not contain a

clique, one of the k vertices corresponding to the k vertex blocks in the image
of f will have degree strictly smaller than k − 1 when we restrict G to the k
selected vertices. Let i′ be the vertex with degree strictly smaller than k − 1
and suppose it is the image of vertex block i in σ. Then, there are two possible
cases. The first case is that in the image of f , between the values f(vi,1) and
f(vi,2), there are less than k odd elements (these elements are necessarily of the
form h′i,j). Since in between vi,1 and vi,2 in σ there are k odd elements of the
form hi,j , this would imply that f cannot be a parity respecting embedding. The
second possibility is that in between the values f(vi,1) and f(vi,2) there are k
odd elements (which again are necessarily of the form h′i,j) but one of them is
not in between f(el,2) and f(el,3), or f(el,3) and f(el,4), for some l ∈ {1, . . . ,m}.
This would also contradict the fact that f is a parity respecting isomorphism, as
all the hi,j in σ are between some pair el,2, el,3, or el,3, el,4 (with respect to the
x-axis). Therefore, if there is a parity respecting embedding of σ into π, it must
map the k vertex boxes of σ into k vertex boxes of π associated to k vertices
that form a clique in G.

Corollary 12. (⋆)Given a pattern σ ∈ Sk and a text π ∈ Sn, Parity PPM

cannot be solved in time f(k) ⋅ no(
√

k) for any computable function f , under the
Exponential Time Hypothesis (ETH).
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Note that reducing from Subgraph Isomorphism instead of k-Clique in
the proof of Theorem 4 to get a better lower bound under the ETH is not
trivial since there is a notion of order of the pattern in Parity PPM (i.e.,
two isomorphic subgraphs can result in different permutations depending on the
ordering of their vertices).

3.2 Parameterized hardness for 4321-avoiding patterns

In this subsection, we complement the previous hardness result by showing that
the problem remains hard for patterns belonging to the class of 4321-avoiding
permutations. Our proof uses a colored version of PPM defined in [16], proven
W[1]-hard parameterized by k = ∣σ∣ in [16].

Definition 13. 2-colored 2IPP (2 Increasing Permutation Pattern)
consists on, given a 321-avoiding permutation σ ∈ Sk and an arbitrary permu-
tation π such that both σ and π are 2-colored permutations, finding a color-
preserving embedding of σ into π.

Theorem 14. (⋆) Parity PPM is W[1]-hard parameterized by the length k of
the pattern, even if the pattern is 4321-avoiding.

3.3 Parameterized algorithm for fixed pattern avoiding text

In the previous subsection, we showed that restricting the pattern does not
necessarily reduce the complexity of the problem. However, we now see that
restricting the text allows us to use the twin-width meta-theorem [5] to have a
positive result. In fact, to see that Parity PPM is FPT if the text avoids a
fixed pattern x, it suffices to show that we can describe the problem using first-
order (FO) logic, i.e., that we can express it as a formula which uses quantified
variables over non-logical objects, and sentences (formulas without free variables)
that contain the variables. Indeed, adding unary relations to mark the odd and
even values preserves bounded twin-width, and therefore FPT tractability. The
result follows from [5]:

Lemma 15 ([5]). FO model checking is FPT on every hereditary proper sub-
class of permutation graphs.

This implies that FO model checking is FPT in the class of permutations
avoiding a fixed pattern. Here, FO model checking refers to the problem of,
given a first-order sentence ϕ of FO and a finite modelM of FO (which speci-
fies the domain of disclosure of the variables), deciding whether M satisfies ϕ,
i.e., whether there exists an assignment of the variables which respects the do-
main imposed byM and that satisfies ϕ. Therefore, we can state the following
theorem:

Theorem 16. (⋆)Parity PPM is in FPT if the text π avoids a fixed permuta-
tion.
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4 Classical complexity

Even though Parity PPM is harder than PPM from the parameterized point
of view, we will show that this is not the case concerning its classical complexity.

4.1 Hardness

A nice quite recent result showed that PPM remains NP-hard, even if the pattern
is 321-avoiding and the text is 4321-avoiding [17]. In the following, we show that
it remains true for Parity PPM.

Theorem 17. (⋆)Parity PPM is NP-hard, even if σ is a 321-avoiding permu-
tation and π is a 4321-avoiding permutation.

4.2 Polynomial-time solvable cases

For some specific cases of Permutation Pattern Matching, polynomial time
algorithms that solve the problem exactly have been proposed. Here, we show
that some of these algorithms can be adapted to solve the problem Parity
Permutation Pattern Matching while still running in polynomial time.

Theorem 18. (⋆)Let σ be a permutation in Sk and π be a permutation in Sn.
Parity PPM can be solved in polynomial time in the following cases:

1. If both permutations are separable. In particular, if both permutations are
(231, 213)-avoiding, it can be solved in linear time.

2. If both permutations are 321-avoiding.

Acknowledgements Thanks to Édouard Bonnet and Eun Jung Kim for point-
ing out the link with the twin-width framework, and to the reviewers for their
useful comments.
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