
HAL Id: hal-03922866
https://hal.science/hal-03922866v2

Submitted on 13 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Supporting Dynamic Allocation of Heterogeneous
Storage Resources on HPC Systems

Julien Monniot, François Tessier, Matthieu Robert, Gabriel Antoniu

To cite this version:
Julien Monniot, François Tessier, Matthieu Robert, Gabriel Antoniu. Supporting Dynamic Allocation
of Heterogeneous Storage Resources on HPC Systems. Concurrency and Computation: Practice and
Experience, 2023, Special Issue:S2 World 2020. CUG 2021 & 2022. PN_HCP. HeteroPar 2022, 35
(28), pp.1-16. �10.1002/cpe.7890�. �hal-03922866v2�

https://hal.science/hal-03922866v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Supporting Dynamic Allocation of Heterogeneous
Storage Resources on HPC Systems

Julien Monniot, François Tessier, Matthieu Robert, and Gabriel Antoniu

Univ Rennes, Inria, CNRS, IRISA Rennes, France
Corresponding author: julien.monniot@inria.fr

Abstract. Scaling up large-scale scientific applications on supercomput-
ing facilities is largely dependent on the ability to scale up efficiently data
storage and retrieval. However, there is an ever-widening gap between
I/O and computing performance. To address this gap, an increasingly
popular approach consists in introducing new intermediate storage tiers
(node-local storage, burst-buffers, ...) between the compute nodes and
the traditional global shared parallel file-system. Unfortunately, without
advanced techniques to allocate and size these resources, they remain
underutilized. In this paper, we investigate how heterogeneous storage
resources can be allocated on an HPC platform, just like compute re-
sources. To this purpose, we introduce StorAlloc, a simulator used as a
testbed for assessing storage-aware job scheduling algorithms and eval-
uating various storage infrastructures. We illustrate its usefullness by
showing through a large series of experiments how this tool can be used
to size a burst-buffer partition on a top-tier supercomputer by using the
job history of a production year.

Keywords: Intermediate storage resources · Storage disaggregation ·
Simulation · Job scheduling.

1 Introduction

The execution of highly complex scientific applications usually leverages large-
scale compute-intensive infrastructures (typically, supercomputers). Tradition-
ally, such High-Performance Computing (HPC) systems have been designed with
the main objective of improving computing power. However, scientific applica-
tions have recently evolved from compute-intensive codes towards complex data-
centric workflows bridging the domains of modeling, simulation, data analytics
and AI. The data deluge engendered by these workloads has been observed in ma-
jor supercomputing centers: the National Energy Research Scientific Computing
Center (NERSC), USA, noticed that the volume of data stored by applications
has been multiplied by 41 over the past ten years while the annual growth rate is
estimated to 30% [29]. While absorbing these data requires extended I/O perfor-
mance and advanced technologies, storage systems on HPC platforms have been
mostly based on an old paradigm: a centralized parallel file-system shared by all
the computing resources. This storage architecture, not very adaptable from a

2 Julien Monniot, François Tessier, Matthieu Robert, and Gabriel Antoniu

user perspective, suffers a relative performance decrease: a study of the top three
supercomputers from the Top500 ranking between 2009 and 2022, as depicted
in Figure 1, shows that the ratio of I/O bandwidth of the parallel file-system
(PFS) to computing power has been divided by 25 during that period.

Date

G
B

ps
/T

Fl
op

s

0.00

0.05

0.10

0.15

0.20

0.25

01/2010
01/2012

01/2014
01/2016

01/2018
01/2020

01/2022

GBps / TFlops Trend

Fig. 1. Ratio of PFS I/O bandwidth (GBps) to computing power (TFlops) of the top
3 supercomputers of the Top500 from 2009 to 2022

To mitigate this gap, recently proposed approaches rely on new tiers of inter-
mediate storage, such as node-local disks or burst buffers [19], backed by diverse
technologies (Flash memory, NVDIMM, NVMeoF, CXL storage ...), and placed
between the compute nodes and the global shared parallel file-system. This stor-
age disaggregation offers new alternatives to a centralized storage system. How-
ever, to fully exploit the benefits of such approaches, advanced techniques for
sizing and allocating these resources have yet to be devised.

Some of the limitations which make it difficult to investigate new methods
for allocating such storage resources are the difficult access to hardware (with
enough privileges) or the limited range of technologies deployed on the studied
system. Simulation is one means to overcome these constraints. At the cost of
a loss of accuracy, ideally as moderate as possible [13], simulation offers much
better flexibility for representing a wide variety of storage architectures and can
be used to estimate the benefits of storage infrastructures before their actual
deployment.

This paper proposes to explore how storage resources can be allocated on
HPC systems, i.e. to investigate which method (scheduling algorithm) and with
which efficiency (metric) a set of I/O intensive jobs can be scheduled on a pool
of heterogeneous storage resources. To this purpose, we introduce StorAlloc, a
Discrete-Event Simulator (DES) of a batch scheduler able to play (or replay) the
scheduling of I/O intensive jobs on intermediate storage resources.

StorAlloc 3

A preliminary description of our approach has been made in a previous work-
shop paper [31]. This extended paper aims to provide a more refined view of our
contribution. New experimental results have been added while previous results
have been reinforced through additional experiments. Supplementary discussions
of related work and extended explanations of our approach have also been added.

The remainder of this paper is organized as follows. Section 2 details the
main motivational facts underlying our work. We then discuss the gaps that our
contribution aims to fill in related work (Section 3). The architecture of StorAlloc
is described in Section 4. Then we evaluate the tool on a set of basic scheduling
algorithms and on multiple models of infrastructures featuring heterogeneous
storage resources (Section 5). From our simulations, we can conclude on the
right sizing of intermediate storage resources among a set of architectures and
analyze the utilization rate of the underlying disks. Based on this use-case and
thanks to the data that StorAlloc collects during the simulations, we provide
an in-depth study of the scheduling algorithms and the storage layouts. Finally,
Section 6 summarizes our contribution and discusses open research directions.

2 Context and Motivation

For many years, supercomputers have followed a hyper-centralized paradigm
regarding storage: a unique global shared parallel file-system such as Lustre [3],
BeeGFS [1] or Spectrum Scale (formerly GPFS [35]), used as a staging area
from which data is read or written by applications or workflow components.
These file-systems, although increasingly powerful, suffer the drawbacks of any
highly centralized system: contention and interference make them very prone to
performance variability [22]. In order to overcome this problem, we have seen
the emergence of new storage systems, closer to the computing nodes. Node-local
SSDs, burst buffers or dedicated storage nodes with network-attached storage
technology (NVMeoF, CXL), to name a few, are all technologies that provide fast
storage, albeit with limited capacity, various data lifetime, cost and performance,
and different means of access.

This last point in particular makes the use of these resources complicated.
To illustrate this, Table 1 presents the multiple ways of accessing resources for a
subset of storage tiers that tend to become popular on large-scale systems. The
usual scope of the storage space and the commonly deployed data manager, if
any, are also listed.

This variety, which would require working on new levels of abstraction, also
raises another problem: how to preempt all or part of these storage resources so
as to make them available for the duration of an I/O-intensive job’s execution,
as we do for compute nodes? Allocation methods exist for storage tiers but
they are numerous and not interoperable: storage allocated at the same time
as the compute node, dedicated APIs integrated or not into the job scheduler,
complex low-level configurations. Thus, while it is common on HPC systems to
get access exclusively to compute nodes (usually through a job scheduler), the
allocation of those intermediate levels of storage remains minor in practice and

4 Julien Monniot, François Tessier, Matthieu Robert, and Gabriel Antoniu

Access Scope Data manager
Global storage system Mount point System-wide Parallel file-system
Node-local disk Mount point Node File-system
NVDIMM - FSDAX Mount point Node DAX-enabled file-system
NVDIMM - DEVDAX Direct access Node Raw persistent memory
CXL storage Direct access Configurable Raw storage/memory space
Burst buffer Middleware Job (Parallel) file-system
Network-attached storage API Node(s) Raw storage space

Table 1. Type of access, scope and default data management system on a subset of
storage resources that tend to be democratized on large-scale systems.

often limited to homogeneous resources. In order to use these new storage tiers
to their full potential, new allocation techniques must be devised and deployed
on supercomputers.

The development of such solutions would, however, require access to interme-
diate storage resources with enough rights to repurpose them, which is usually
not possible on deployed infrastructures for various reasons such as security or
maintenance efforts. In addition, such experimentation can easily disrupt other
users’ workloads on production systems. An alternative approach is to use sim-
ulations as a way to reproduce with a certain degree of accuracy the behavior of
a system with a very low footprint. While experiments on real systems would be
limited to the embedded technologies, a simulator can also evaluate new types
of architectures combining existing and emerging storage tiers, for example to
make decisions about their sizing or their design. Using traces from actual HPC
workloads, a number of uses cases can thus be modelled, ranging from realistic
scenarios where replaying the allocations can help better understand past and
current resource usage, to more theoretical ones where improbable platform con-
figurations can be studied as well. Several simulators already exist for scheduling
jobs on compute nodes or for optimizing I/O, yet very few has been done to model
and allocate storage resources. Therefore, in this paper, we propose StorAlloc,
a simulator of a storage-aware job scheduler whose main objective is to explore
heterogeneous storage resource allocation on supercomputers.

3 Related work

3.1 Simulation frameworks

To the best of our knowledge, there is no tool whose goal is to simulate the
scheduling of jobs on heterogeneous storage resources of a supercomputer. Sim-
ulators allowing to play or replay the execution of parallel and distributed appli-
cations on HPC systems exist and have been studied for many years. However,
most frameworks essentially address the computational aspect. SimGrid [8], for
example, is a powerful framework for simulating the scheduling and execution

StorAlloc 5

of a large number of applications on real or made-up infrastructure models. The
I/O aspect is limited to simulating data movement but storage resource alloca-
tion is absent from the framework, although preliminary work was started a few
years ago [25]. Similarly, CODES [12], while initially presented as a simulation
framework for storage systems, has eventually specialized in network topology
simulation offering various built-in models for high-radix networks but showing
the same limitations as SimGrid in terms of storage model.

Like StorAlloc, a few SimGrid-derived simulators have job scheduling ori-
ented approaches. This is the case of batsim [15] or Wrench [9] for example.
However, the support of heterogeneous storage levels as allocatable resources
is not implemented: batsim does not include a model for disk capacity while
Wrench only manipulates files located on an abstract storage location with-
out considering the underlying hardware. Another recent work [23] built upon
CODES evaluates burst buffers placement through the study of network topolo-
gies, I/O workload patterns and job scheduling techniques. Again the focus is
mostly on data movement, while underlying resources and dynamic allocation
are not in scope. The above-mentioned solutions also differ from StorAlloc in
their monolithic design. As described in Section 4, StorAlloc has all its com-
ponents decoupled. Therefore, the servers can be distributed on multiple nodes
while the simulator component can be disabled to turn StorAlloc into a real
storage-aware job scheduler.

3.2 Scheduling models and studies of intermediate resources

A large number of solutions for optimizing HPC storage systems performance
consider the issue from the point of view of I/O requests. That is, they offer
algorithms to orchestrate individual I/Os or I/O phases of concurrently executing
applications. They can be specifically directed at the application level [17, 37,
27, 28], the I/O forwarding level [5, 36], or can be integrated into middlewares in
charge of offloading such I/O requests [21]. Another common approach consists
of considering the availability of I/O resources as a constraint when placing the
scheduled tasks onto the compute nodes, without subsequently interfering with
the way the applications do I/Os [20, 6]. In these approaches, the storage system
is often considered as statically configured or even represented as a black box,
and applications and their I/Os are the parameters to be acted upon. Our work
takes an opposite stance. For each job, previously scheduled based on its compute
requirements, we want to allocate an optimal set of storage nodes and disks that
will fit the job’s storage and I/O needs without needing to change the way the
application does I/Os.

Allocating storage resources involves partitioning and sizing these resources
to meet the needs of submitted jobs. In that field, models such as burst buffers
have been studied [4, 34, 18, 24]. This research is complementary to StorAlloc.
The proposed techniques are the basis of storage-aware job scheduling algorithms
that could be evaluated in our simulator. For instance, the Harmonia dynamic
I/O scheduler [24] considers I/O interference in the allocation process. It targets

6 Julien Monniot, François Tessier, Matthieu Robert, and Gabriel Antoniu

burst-buffer systems and offers multiple scheduling policies (such as maximiz-
ing buffer efficiency and improving application bandwidth) which achieve better
performances than vendor software for these resources.

More generally, a better understanding and management of storage resources
in HPC is decisive to improve data management at extreme scale. This has been
highlighted in an analysis of the NERSC systems [30]. The authors demonstrate,
among other findings, that the parallel file system on this platform receives at
least 8 times more reads and 16 times more writes than the burst buffers. On the
same system, the authors also point out that some specific I/O forwarding nodes
remain vastly unutilized by applications. More recently, a study [14] also shows
how much work is still needed to better use intermediate storage tiers, both in
terms of storage API and workflow configuration. This work hints that richer and
more complex software between hardware resources and scientific applications is
necessary to correctly address the needs of the workflows. Our work ultimately
aims to address this kind of issues by streamlining the way storage is allocated
to the users.

Finally, it is necessary to note that our approach can be similar to what has
been done in the world of Cloud Computing for several years although these
fully virtualized systems with very limited low-level access are different from
HPC systems. On Clouds, the allocation of storage tiers as well as compute or
network resources is more familiar. Work comparable to StorAlloc has been done
to simulate the allocation of resources between different users [33, 7] in virtualized
environment but these works are outdated and have very limited storage support.
A variety of works have also addressed the issue of storage scheduling, but they
tend to focus on requirements that are not necessarily in phase with HPC needs,
such as SLAs, end-user costs or Cloud-specific infrastructures [26, 10, 32]. Some
of the methods employed in these works could however prove useful for the next
iterations of our work.

4 Architecture

StorAlloc is a tool able to simulate the scheduling of I/O-intensive jobs on het-
erogeneous storage resources available on a HPC system. In this section, we
present its design and discuss implementation choices.

4.1 General design

The objective of StorAlloc is to provide a simple way to develop and evalu-
ate storage-aware job scheduling algorithms targeting heterogeneous storage re-
sources (any kind of disk-based storage can be described). Therefore, StorAlloc
has been designed following the basic principles of a job scheduler, i.e. a middle-
ware allowing clients to request resources available on a supercomputer. Extend-
ing from this architecture, we then added the ability to run it as a simulator,
using a single code base.

StorAlloc 7

Fig. 2. StorAlloc core scheduling components

Core components StorAlloc’s design is based on the composability of several
components, which can be run together and extended in order to provide the
desired behavior. Figure 2 depicts the core components: one or multiple server
and client agents are communicating through a central orchestrator. The clients
request storage allocations to the orchestrator and expect connection settings to
the newly allocated storage space in return. The server components declare a pool
of available resources under their responsibility to the orchestrator and perform
the storage management operations when needed (partitioning, rights granting,
exposure on the network, releasing). In between, the orchestrator handles routing
messages between components, keeps track of running and pending allocations
and hosts the scheduler process.

Fig. 3. StorAlloc simulation components

Additional components In addition to these core components, we have ex-
tended StorAlloc with two simulation units (client and server), a visualisation
server for real-time plotting during simulation and an external log aggregator.
They are presented on Figure 3. The simulation client offers an efficient way
to serve requests to the orchestrator from a dataset file. Its counterpart, the

8 Julien Monniot, François Tessier, Matthieu Robert, and Gabriel Antoniu

simulation server, accumulates scheduling decisions in order to build a Discrete
Event Simulation, and outputs results to file. The visualisation server provides
a convenient way to setup a live display of major metrics while the log server
aggregates logs from all components in a single place, even when they are all
distributed on several nodes.

The architecture of the tool makes it possible to add additional elements
if necessary. All of these components are interconnected using a message-based
protocol we have defined. They can be deployed across a set of hosts, or run on
a single machine. While the former case is intended to properly map clients and
servers onto an actual HPC platform, the latter is sufficient for simulations. The
current design only allows for one orchestrator component to be running at any
time. This constraint creates a single point of failure when deployed as a mid-
dleware in a production setting, and will be addressed in further developments.

In the following sections, we detail design choices for StorAlloc. In particular,
we explain the general functioning of the scheduler, a central component in our
simulator. Then we describe the storage abstraction layer used to characterize
the pool of resources. In 4.4, we present the simulation capability with a focus
on the real-time collection of scheduling data. We end this section with some
technical considerations about StorAlloc.

4.2 Scheduling storage requests

We define a storage request as a triple consisting of a capacity in GB, an alloca-
tion time in minutes and a submission time in a datetime format. The scheduling
of storage requests takes place in a scheduler sub-component of the orchestrator,
as depicted in Figure 2. This sub-component receives requests through messages
from clients and process them asynchronously in the receiving order. The sched-
uler has access to both the entire list of available storage resources and the list of
currently allocated requests. Any algorithm can thus make a resource allocation
decision backed by a full view of the platform state. So far, four algorithms have
been implemented in StorAlloc as listed below:

– random: storage resources are picked randomly with a chance of failure;
– round-robin: storage space is allocated in a round-robin manner;
– worst-fit : disks are filled until no more space is available;
– best-bandwidth: nodes and disks on nodes are selected according to the best

remaining bandwidth, considering a permanent maximum I/O regime for
the existing allocations.

At launch time, the scheduler chooses one of these algorithms through a user-
defined parameter. The scheduling algorithms share a common interface which
accepts a storage request and a list of available storage resources, and returns an
identifier for the resource(s) on which the desired storage space will be allocated.
A request can also be refused (no space left for instance). In this case, we assume
that the job falls back to a traditional parallel file-system, instead of using the
intermediate storage tiers available through StorAlloc.

StorAlloc 9

Only two out of four algorithms have been implemented with the capacity
to refuse requests (round-robin and best-bandwidth). For each new request, they
lookup on-going and planned allocations and try to determine if the new allo-
cation has a chance to fit on any of the available resources. They do so in a
deliberately conservative manner: deciding on future resource availability has
to be fast and doesn’t return an exact result. This is driving us to implement
policies with a small bias towards refusing requests, instead of risking to allow
too many requests that have good chances to fail once forwarded to the storage
servers. The other two algorithms, random and worst-fit, always accept requests,
but do not provide any guarantee on the availability of the selected resources.
This implementation choice entails a pronounced difference in the behaviours of
our algorithms, which is reflected in the analysis and help us check the coherency
of our results.

At a higher level, the scheduling of storage requests can also be adjusted by
leveraging two strategies presented in Table 2. They are meant to help allocate
requests when resources are constrained. The first, called "Split", is to divide an
allocation into several sub-allocations of equal size in order to distribute them
over multiple nodes and disks. The second strategy, called "Requeued", consists
of defining criteria for resubmitting unsuccessful allocations. This strategy only
applies to algorithms able to proactively refuse requests. Both strategies have
default values but are configurable in StorAlloc. The impact of these strategies,
independent of the scheduling algorithms, is evaluated in Section 5. Again, we
make the assumption that in case of allocation failure, I/O will be performed on
the global shared parallel file system.

Default setting Comment

Split Threshold at 200GB Split requests whose capacity > threshold
and allocate the parts on multiples resources.

Requeued 5 retries, one every 5m Postpone starting time and retry a refused
allocation.

Table 2. Optional scheduling strategies

Discussion on algorithms choice Let us note that the four algorithms used
throughout this work, while being relatively simple, are still rather comparable
to the level of complexity found in current production systems. For instance, in
Lustre [3], objects may be internally load-balanced between OSTs using round-
robin, and the policy switches to a basic weighted allocator only if inbalance
between OSTs exceeds 20%. Similarly, in BeeGFS [1], files can be stripped in a
RAID0 fashion (same mechanism as round-robin) between targets inside a stor-
age pool. In both cases, a user must manually provide a chunk size and decide
which paths in the filesystem should use stripping. In OpenStack, the Cinder
scheduler [2], selects storage hosts in a fairly simple manner: the first step is to
filter the list of hosts based on a capacity or placement criteria for instance. Then

10 Julien Monniot, François Tessier, Matthieu Robert, and Gabriel Antoniu

in a second step, remaining storage hosts are weighted according to their already
allocated capacity, system health, or simply by volume number. Eventually the
storage host with the best weight is chosen. This process is similar to the method
used in best-bandwidth, using the criteria of storage access bandwidth as weight.
The main purpose of our current work being to evaluate the usefulness of a sim-
ulator such as StorAlloc, we chose to limit ourselves to the four algorithms listed
above, and the evaluation of more complex or innovative scheduling algorithms
(eg. multi-objective optimizations based on genetic algorithms) will be left to
future works.

4.3 Storage abstraction

Because the available storage tiers can be extremely heterogeneous, an abstrac-
tion layer is needed to allow scheduling algorithms to accommodate the variety
of technologies without needing to know the technical details of each level. In
StorAlloc, storage platforms are represented through a hierarchy of three objects:
servers, nodes and disks. Servers are top-level StorAlloc components which act as
an interface between the orchestrator and one or many storage nodes. Nodes em-
bed at least one disk. Nodes and disks may be of heterogeneous nature (number
of disks, disk capacity, read and write bandwidth, node’s network bandwidth).
Disk or node characteristics don’t have a fixed format. Anyone can define new
fields, and it’s up to the selected scheduling algorithm to make use of the infor-
mation in order to achieve its own optimization goal. Whenever required by a
parent server, a node should be able to setup and expose a specific partition of
its storage resources, whose ownership will be transferred to a client. In simula-
tion mode, servers passively accept requests without taking any action, but we
still ensure that any allocation would be legal in terms of available resources.

It has to be noted that when defining a storage layout, we consider the
network to be flat i.e., with all the nodes connected to the same switch and
at equal distance from each other. This is motivated by the fact that dynamic
routing policies are unpredictable, either because the vendor does not provide
enough details (such as on the Cray XC40 Theta platform which provided the
input data used in Section 5 [11]) or because there are too many factors involved
in packet routing decisions to be accurately modeled. Hence we only define the
bandwidth at the node and disk levels and let the scheduling algorithm model
the impact of concurrent allocations on these resources.

4.4 Simulation

A longer-term goal of StorAlloc is to provide a single code base for a storage-
aware job scheduler and its simulator. Therefore, we have designed our simulation
server with a "component in the middle" approach. The core components run
as if they were actually deployed on a real system except that, if the simula-
tion mode is enabled, the requests are rerouted to the simulation server which
stacks them until a specific message triggers the actual execution of the simula-
tion.This mode of operation allows us to seamlessly switch from the theoretical

StorAlloc 11

case to real allocations if StorAlloc needs to be tested on an actual platform.
Then, the simulation is unrolled and go through the scheduler, using a discrete
event simulation (DES) model [16]. During that phase, we replay the allocation
decisions that were made by the scheduler onto the simulated storage. StorAlloc
traces any possible allocation failures, and collect data measuring the impact of
scheduling to feed a visualization server in real-time and output a result file. We
have defined a number of indicators that allow us to study the behavior of the
storage infrastructure. These indicators are defined below:

– sum_cap is the total capacity that should be allocated and deallocated dur-
ing a simulation:

sum_cap =
∑
j∈J

Vj

– mean_disk_use is the mean disk usage (in % of Cdi
):

mean_disk_use =
1

T

T−1∑
t=0

Udi
(t) ∗ 100
Cdi

, ∀di ∈ D

– max_disk_use is the maximum disk usage:

max_disk_use = max{Udi
(t) : t = 1..T}, ∀di ∈ D

– mean_alloc is the mean number of concurrent allocations:

mean_alloc =
1

T

T−1∑
t=0

Adi
(t), ∀di ∈ D

– max_alloc is the maximum number of concurrent allocations:

max_alloc = max{Adi
(t) : t = 1..T}, ∀di ∈ D

Where:

T : The simulation duration, in seconds
J : The set of jobs scheduled on the platform
Vj : The storage space that needs to be allocated for a job j, with j ∈ J
D: The set of disks available on the storage infrastructure
di: The ith disk of the platform, with i ∈ D
Cdi

: Total capacity of disk i
Udi(t): Used space on disk i at time t
Adi

(t): Number of allocations on disk i at time t

At the request level, although we only record their cardinality, we also define
the following sets:

RDelay: The set of delayed requests during the simulation (and Dr the total
delay time)
RRequeued: The set of requeued requests during the simulation
RSplit: The set of splitted requests during the simulation
RAllocated: The set of allocated requests during the simulation
RRefused: The set of refused requests during the simulation
RFailed: The set of failed requests during the simulation

12 Julien Monniot, François Tessier, Matthieu Robert, and Gabriel Antoniu

4.5 Implementation details

The simulator presented in this paper is implemented using Python3. Our mes-
saging protocol relies on ZeroMQ, while the DES model used for the simulation
comes from the SimPy library 1. These choices allow us to limit the size of the
source code by relying on robust on-shelf implementations. Our simulation is
nevertheless constrained by the use of DES instead of more complex and ac-
curate model: the potential impact of allocations choices, for instance on the
runtime of a job, cannot be taken into account due to the lack of any form of
feedback loop. However we believe this limitation, which will be addressed in
future works, is acceptable when experimenting with static traces and focus-
ing on the storage system usage. The source code of StorAlloc can be found at
https://github.com/hephtaicie/storalloc.

5 Evaluation

In this section, we evaluate the benefits of our simulator to assess storage-aware
job scheduling algorithms on heterogeneous resources. To do so, we run multiple
configurations and show their impact on the storage tiers.

5.1 Simulation setup

To simulate storage requests from clients representative of real applications, we
used a dataset composed of one year (2020) of Darshan 2 logs on Theta, a 11.7
PFlops Cray XC40 supercomputer at Argonne National Laboratory 3. We ex-
tracted from these traces jobs spending at least 10% of their run time doing IO,
and reading or writing at least 10 GB of data. It resulted in about 24 000 jobs
out of approximately 624 000 jobs, each one translating into a storage request
in StorAlloc: the requested capacity is conservatively based on the maximum of
either read or write volume while the allocation time uses the initial job dura-
tion. Using Darshan traces as input data allows us to work with multiple HPC
platforms which offer datasets of traces generated with this broadly available
library. As the traces are pre-processed, other formats could also be adapted to
be used with StorAlloc, thus making the simulator accessible for a large array
of use case on various platforms.

Request ordering. We submitted these requests to the simulation process with
the same ordering as in the original Darshan file, which is the order in which
the traced jobs were initially scheduled on their host system. Consequently, the
overall scheduling process could be seen as a two-step operation: a first scheduling
1 Resp. https://zeromq.org/ and https://simpy.readthedocs.io/en/latest/
2 Darshan I/O monitoring tool. https://www.mcs.anl.gov/research/projects/darshan/
3 This data was generated from resources of the Argonne Leadership Computing Fa-

cility, which is a DOE Office of Science User Facility supported under Contract
DE-AC02-06CH11357.

StorAlloc 13

happened independently from StorAlloc, based on compute criteria only, and
StorAlloc is in charge of a second operation, where we allocate storage resources
based on I/O criteria. One of our future plans is to extend our simulator and
use it to help design algorithms that rely on both criteria to make scheduling
decisions.

In order to have a good overview of what can be observed with our simula-
tor, we have run 256 different simulation setups based on the settings presented
in Table 3. The average simulation time is around 5m9s per run, in a range of
[4m50s; 6m51s] on a single core of a Intel Xeon E5-2630 processor. This variabil-
ity is due to the difference in complexity of the algorithms and the activation or
not of the requeuing and splitting strategies. It has to be noted that total capac-
ity, individual disk size and layout parameters have been chosen based on the
study of our dataset, and allow us to simulate platforms which bracket a wide
range of practical scenarios, from under-provisioned to over-provisioned storage
resources.

Settings Tested values Comment

Algorithm Random, round-robin
worst-fit, best-bandwidth See Section 4.2

Total capacity 8TB, 16TB, 32TB, 64TB Disk sizes are 1TB, 2TB, 4TB and 8TB
respectively.

Storage Layout

Single node, single disk (1N1D)
Single node, multi disks (1NnD)
Multi nodes, single disk (nN1D)
Multi nodes, multi disks (nNnD)

1N1D serves as baseline.

Requeued Enabled or disabled When enabled, new attempts
every 5m, until a 60m delay.

Split 200 GB or disabled
When disabled, some requests
will be too large for any of
the disks.

Table 3. Simulation settings

5.2 Analysis

We present here results plotted based on StorAlloc simulation data. From these
figures, we can conclude on a right sizing of the intermediate storage architecture
while we can compare the efficiency of the tested scheduling algorithms. For
this analysis, platforms and algorithms have been chosen to reflect a variety of
behaviors.

Platform sizing In our dataset, the sum of all the storage capacities requested
by clients, called sum_cap, reaches 1.6 PB. In Figure 4, we plot the percentage

14 Julien Monniot, François Tessier, Matthieu Robert, and Gabriel Antoniu

of this value achieved by each of the 256 runs of our simulation according to
storage layouts and algorithms, grouped by platform capacity and split strategy.

8TB - No request split

20.0

40.0

60.0

80.0

100.0

16TB - No request split 32TB - No request split 64TB - No request split

8TB - Request split at 200GB

20.0

40.0

60.0

80.0

100.0

%
 o

f t
ot

al
 a

llo
ca

tio
n

16TB - Request split at 200GB 32TB - Request split at 200GB 64TB - Request split at 200GB

Algorithms
Random choice
Worst-Fit

Round-robin
Best bandwidth

Storage layouts
Multi node, single disk
Multi node, multi disk

Single node, multi disk
Single node, single disk

Fig. 4. Percentage of sum_cap (sum of the requested capacities in the entire dataset)
per simulation run, grouped by capacity and split strategy. Ordered in each plot by
total allocation volume (GB)

On the top row (no request split), only the 1N1D layout at 32TB and 64TB
capacities reaches 100% of sum_cap. However this layout is merely a baseline
which shouldn’t be used, as it leads to a high concurrency and consequently a
very low I/O bandwidth. From this result, we can also conclude that never more
than 32TB are needed at the same time in our dataset. This information must
be balanced by the fact that we exclude from Theta’s traces several hundreds of
thousands of jobs that we do not consider I/O intensive. The best results with
other layouts peak slightly above 60%, which hints towards an underprovisioning
of storage resources.

Impact of request splitting on the allocation success rate The bot-
tom row depicts the same analysis when using the split strategy with chunks
of 200GB. We see that all layouts reach a 100% of sum_cap for 64TB. With a
capacity of 32TB, the result is similar, although suggesting an ordering of the
algorithms: worst-fit and random unsurprisingly rank last most of the time be-
cause they still fail on a few allocations. More generally, request splitting allows
a better use of resources and requires less storage space (even the 16TB platform
reaches between 91% and 96% of sum_cap). In the following plots, we present
data from simulation runs exclusively using the split strategy, as it has proven
to bring more efficiency in the resource utilization, and even stands out as one of
the leading criteria for maximizing request allocations. Additionally, with many
simulations runs reaching over 95% of sum_cap, split-enabled setups offer the

StorAlloc 15

opportunity to study the behaviour of our algorithms at a boundary between
sufficient and insufficient storage capacity.

40

60

80

100

40

60

80

100

32TB Storage infrastructure

Random choice Worst-Fit Round-robin Best bandwidth

40

60

80

100

64TB Storage infrastructure

Multi node, multi disk
Single node, multi disk
Multi node, single disk

M
ax

. d
is

k
ca

pa
ci

ty
 u

til
is

at
io

n
(%

)

16TB Storage infrastructure

Fig. 5. Maximum disk capacity utilisation (% of capacity), for 16TB, 32TB and 64TB
platforms with split strategy and 200G threshold. The 1N1D layout has been removed.

Impact of request splitting on disk utilization The above results give
little information, however, about the use of the disks composing the modeled
platform. Figure 5 proposes to study this. Here, we plot the maximum disk
utilization, called max_disk_use, for 16TB, 32TB and 64TB infrastructures
(excluding 1N1D layout). As expected, the disk utilization rate correlates with
the ability to absorb split requests for storage space (Figure 4). For instance, with
16TB of storage capacity, all disks end up full at least once during the simulation.
This is an expected result, granted that Figure 4 already exposes this capacity
choice as being slightly underprovisioned. The 32TB case presents a different
outcome: although disk utilization is globally still very high, only random and
worst-fit algorithms now have disks reaching a 100% of their total capacity. The
other two algorithms would instead make a 32TB platform suitable, although
with a very small margin before entirely filling up disks. Eventually, it is possible
to quantify a potential underutilization, as seen for the 64TB platform where the
best algorithms now never use more than 50% of max_disk_use. The worst-fit
algorithm is specifically intended for maximising the use of a single disk from a
single node, which explains that it still reaches 100% of max_disk_use for one
of its disks.

16 Julien Monniot, François Tessier, Matthieu Robert, and Gabriel Antoniu

This first analysis shows that a 32TB intermediate storage tier can handle at
least 99% of all the I/O intensive jobs in our dataset, as long as the requests are
split into 200GB blocks. In that case, some of the targeted disks are used at their
full capacity at least once, leaving little flexibility in case of a sudden overload,
while the average disk utilization rate is however still very low (1.53%). This is
explained by the sparsity of the jobs studied spread over a whole year. Finally,
the different layouts tested (1NnD, nN1D, nNnD) behave in much the same
way. Nevertheless, they have an impact on the available aggregated bandwidth
as long as the scheduling algorithms can efficiently take advantage of the storage
disaggregation, as shown in the rest of this paper.

Comparison of scheduling algorithms fairness We have implemented
four different storage-aware job scheduling algorithms in StorAlloc, as described
in 4.2. To evaluate their efficiency, we propose to define a fairness metric that
looks at the maximum and average number of concurrent allocations per disk
allocated by each algorithm. This metric provides information on the balanc-
ing of the distribution of requests and consequently on the potential bandwidth
available for the allocated jobs: in a permanent maximum I/O regime hypothesis
(all jobs with continuous I/O operations), the less allocations are concurrent on
resources, the more I/O bandwidth is available.

0.48

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

M
ea

n
nb

 o
f a

llo
ca

tio
ns

 /
di

sk

= 0.025 = 0.021 = 0.033 = 0.038

= 0.011 = 0.011 = 0.008 = 0.010

Random choice Worst-Fit Round-robin Best bandwidth
20

40

60

80

100

120

140

160

M
ax

 n
b

of
 a

llo
ca

tio
ns

 /
di

sk

= 2.29 = 2.31

= 40.71 = 37.85

= 1.94 = 1.94 = 2.41 = 2.12

Split at 200GB - No requeuing
Split at 200GB - Requeuing

Fig. 6. mean_alloc (top) and max_alloc (bottom) per disk, grouped by algorithms,
for 32TB platform and split strategy. Storage layout 1N1D excluded. Dots plot the
mean and max number of allocations of each disk separately. σ denotes the standard
deviation of each group.

Figure 6 depicts this fairness for our four algorithms, in the case of split
requests. First, we can see that the general variability (standard deviation) in
both the mean and max numbers of allocations per disk are lower for round-robin
and best-bandwidth than for random and worst-fit. As expected, worst-fit stands

StorAlloc 17

out, as its design clearly goes against fairness. We also observe that round-robin
and best-bandwidth have a quite similar fairness, with a slight advantage to best-
bandwidth. This latter is the most advanced algorithm as it takes into account
existing allocations on disks and nodes to make a decision. In terms of maximum
number of allocations per disk, best-bandwidth is almost as stable as round-robin
and random, and also leads to the smallest maximums. In other words, this
algorithm can be expected to provide the best average bandwidth to jobs in the
permanent regime case.

Random Round-Robin Worst-Fit Best-Bandwidth
Baseline algorithm

Ra
nd

om
Ro

un
d-

Ro
bi

n
W

or
st

-F
it

Be
st

-B
an

dw
id

th
Ef

fe
ct

 si
ze

 c
om

pa
re

d
to

 o
th

er
 a

lg
or

ith
m

0 0.00036 0.00017 0.0002

-0.00036 0 -0.0002 -0.00017

-0.00017 0.0002 0 3e-05

-0.0002 0.00017 -3e-05 0

Fig. 7. Cohens d metric for mean_alloc

Random Round-Robin Worst-Fit Best-Bandwidth
Baseline algorithm

Ra
nd

om
Ro

un
d-

Ro
bi

n
W

or
st

-F
it

Be
st

-B
an

dw
id

th

0 -0.038 0.75 -0.24

0.038 0 0.78 -0.21

-0.75 -0.78 0 -0.95

0.24 0.21 0.95 0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Fig. 8. Cohens d metric for max_alloc

For further analysis, we present the effect sizes between all four algorithms for
mean_alloc (Fig 7) and max_alloc (Fig 8), calculated using Cohen’s d metric.
Cohens d indicates the standardized difference between the means of two groups.
This quantitative measurement of the strength of the relationship between two
variables is helpful to confirm the initial conclusions drawn from Fig 6.

Fig 7 shows that the choice of algorithm has no effect on the mean number of
allocations between disks. This is expected as the platform capacity and layout
is the same for all four algorithms and they all manage to grant almost all
allocations. On the other hand, Fig 8 validates the observation from Fig 6 that
best-bandwidth has a strong effect on the maximum number of allocations per
disk compared to worst-fit, and a small but perceptible effect when compared
to round-robin or random algorithms. However, we also observe that in this
experimental context, round-robin doesn’t actually present any clear effect when
compared to the random baseline.

Impact of allocation failures and refused requests Our fairness metric
must also be balanced with the ability of an algorithm to allocate all the requests
sent to it. As noted earlier, two negative outputs for requests are the failure of an
allocation that was accepted by the scheduler and the refusal of a request which

18 Julien Monniot, François Tessier, Matthieu Robert, and Gabriel Antoniu

is expected to fail. As mentioned in 5.1, only best-bandwidth and round-robin
may refuse requests, but all algorithms may lead to failures. Actively refusing
large requests might help with fairness, due to less allocations to deal with, but it
obviously goes against the primary goals of our scheduler. Figure 9 presents the
maximum number of requests in RSplit ∩ RFailed and RSplit ∩ RRefused among
all simulation runs for a given capacity and a given algorithm.

0.0
50.0

100.0
150.0
200.0

Algorithm Random choice
 Capacity 8 TB

Algorithm Worst-Fit
 Capacity 8 TB

Algorithm Round-robin
 Capacity 8 TB

Algorithm Best bandwidth
 Capacity 8 TB

0.0
10.0
20.0
30.0

Capacity 16 TB Capacity 16 TB Capacity 16 TB Capacity 16 TB

Failed
Refused

0.0
0.5
1.0
1.5
2.0

Capacity 32 TB

Failed
Refused

Capacity 32 TB

Failed
Refused

Capacity 32 TB

Failed
Refused

Capacity 32 TB

Fig. 9. Maximum number of failed and refused split requests, grouped by algorithm
and platform capacity: 8, 16 and 32TB (no failed or refused requests at 64TB).

When the storage resources are very constrained (8TB), we observe up to
217 failures for random. In comparison, best-bandwidth and round-robin both
have a combined number of failed and refused requests more than twice as low.
This is comparable to the results of worst-fit, and shows that refusing requests
doesn’t have a negative impact compared to other solutions. In the 16TB case,
however, there is no clear winner although random and worst-fit appear to be
slightly ahead. Indeed, in this case the relatively high number of refused requests
for best-bandwidth and round-robin still doesn’t prevent them from experiencing
failures. We can assume that the policy they use to refuse requests is not ideal
when storage is only slightly underprovisioned and many requests could either
succeed or fail by a small margin. Nevertheless, looking back at Figure 4, we
see that for the 16TB case, random clearly leads to fewer allocations than best-
bandwidth, even though it records fewer missed allocations (38 failures for the
former, and 41 failed or refused requests for the latter). The advantage for best-
bandwidth comes here from selecting which requests should be refused rather
than facing random failures. As for the 32TB case, no more refused requests are
recorded, and only random and worst-fit algorithms still end up with a handful
of failures.

As a result, we show that it is possible to compare our algorithms not only
in terms of fairness but also regarding their allocation capabilities. This lets us
make sure that aiming for the best fairness, or other comparable goals, doesn’t
unnecessarily affect the basic capabilities of our algorithms. In this situation,

StorAlloc 19

best-bandwidth and round-robin are once again better choices than the other two
algorithms.

Behavior in the face of more heterogeneity The previous observations led
us to conclude that a possible solution to allocate all the requests in our dataset
was to use a 32TB platform, in conjunction with the best-bandwidth algorithm
and a split request strategy. Requeuing doesn’t seem necessary in this case. Using
these parameters, we now run a final simulation with a different platform that
presents more heterogeneity than our other simulated systems. It is composed of
two types of nodes, as described in Table 4. These nodes have different numbers
of disks, disk size, disk bandwidth, and network link bandwidth. Considering past
results, an algorithm like best-bandwidth should be able to strongly minimize the
use of HDD nodes, and prefer the SSD partition, which presents enough storage
to accommodate most requests.

Disks / node Disk bandwidth # of nodes Total capacity Network
5 x 1.6TB SSD 2.93Gbps 2 16TB 200Gbps
2 x 2TB HDD 0.08Gbps 4 16TB 100Gbps

Table 4. Heterogeneous platform description

Fig. 10. mean_alloc and max_alloc per disk, grouped by node, when using a 32TB
heterogeneous platform composed of nodes using either SSDs or HDDs.

Figure 10 displays the mean and maximum number of allocations per disk
during the simulation, grouped by node. We can conclude on a much more fre-
quent use of SSD nodes, whose disks support up to 25 concurrent allocations

20 Julien Monniot, François Tessier, Matthieu Robert, and Gabriel Antoniu

when HDDs see at most 9 allocations per disk. Similarly, mean number of allo-
cations is much higher for SSDs than for HDDs. In that regard, best-bandwidth
worked as expected and indeed strongly favored the SSD partition. The offload-
ing of some allocations onto the HDDs was also expected as, as shown in Figure 4,
best-bandwidth wasn’t able to allocate 100% of sum_cap on a 16TB platform
which is the size of the SSD-based partition. Nevertheless, best-bandwidth proved
to be resilient to this new level of heterogeneity. It once again reached 97% of
sum_cap, with no more than 17 failed split requests, and all SSD disks ended-up
full before the HDDs were used. These results are compatible with the observa-
tions made in the previous sections, and show that the algorithm is adaptable
and performs well in this new setting.

Using this experimental setting, we can also compare effect sizes between
algorithms when the layout changes. Best-bandwidth is the only algorithm in our
study able to distinguish between SSDs and HDDs when granting allocations.
Consequently, we expect that using it instead of any other algorithm will have
a much greater effect than what was reported in Fig 8 (same capacity HDDs
only).

First of all, we plot the maximum number of allocations per disk for all
four algorithms, grouping data by disk type, in Fig 11. We show that only best-
bandwidth and worst-fit grant more allocations on SSDs than on HDDs. However
in the case of worst-fit, the decision is entirely based on the smaller capacity of
the SSDs, and we can observe that HDDs still receive a considerable amount of
allocations. In general, best-bandwidth appears to display some of the smallest
maximums for the number of allocations per disk.

Random choice Worst-Fit Round-robin Best bandwidth

10

20

30

40

50

60

70

M
ax

 n
b

of
 a

llo
ca

tio
ns

 /
di

sk

ssd
hdd

Fig. 11. Maximum number of allocations per disk, grouped by algorithm and disk
type (32TB platform with heterogeneous disk layout). Given the platform capacity, all
algorithms almost manage to grant every allocation from the dataset.

In Table 5, we confirm the observations from Fig 11, using a Cohen’s d metric
computed between best-bandwidth and each one of the three other algorithms,

StorAlloc 21

for the maximum number of allocations per disk. We observe that Cohen’s d is
always greater or comparable to the values presented in Fig 8. In particular, we
show a very large effect when looking only at SSDs or only HDDs disks, which
support the initial design goal of the best-bandwidth algorithm.

Best-bandwidth compared to Random Round-robin Worst-fit
Values from Fig 8 (HDD-only) 0.24 0.21 0.95
All nodes / all disks 0.42 0.21 1.77
SSD nodes only 1.18 0.99 1.66
HDD nodes only -3.68 -5.20 2.59

Table 5. Cohen’s d metric for compared use of Best-Bandwidth and other algorithms,
computed on the max_alloc metric.

6 Conclusion

This paper builds upon our previous work on StorAlloc, and offers a detailed
perspective on this tool. StorAlloc is a DES-based simulator integrated on top
of a job scheduler architecture. It helps investigate scheduling strategies for I/O
intensive jobs on heterogeneous storage resources distributed across a HPC sys-
tem. Through an extensible design and flexible configuration settings, this tool
can be used to model diverse storage infrastructures, and to implement various
scheduling strategies. In this work, we have explored a large parameter space, us-
ing multiple simulated platforms and algorithms. We demonstrated how StorAl-
loc can efficiently ingest a consequent number of allocation requests generated
from production traces and output storage-related metrics. They provide valu-
able insights for storage platform sizing and scheduling algorithms evaluation. In
particular, we have shown that a 32TB burst-buffer partition on Theta, a top-tier
supercomputer at Argonne National Laboratory, would be sufficient to absorb
the I/O burden of the I/O intensive jobs running on the system. Eventually,
we proposed to assess the reliability of one of our algorithms, best-bandwidth,
capturing its behaviour through multiple metrics and a statistical analysis.

In future work, we plan to carry out additional experimental campaigns us-
ing other datasets, along with new metrics, infrastructures and storage-aware
scheduling algorithms. We are also currently evaluating the benefits we can ob-
tain from simulation frameworks such as Wrench [9] for the implementation of
our simulation component. In that regard, we started to work on the neces-
sary foundations for porting features from StorAlloc to Wrench. We hope this
will allow us to eventually combine compute and storage criteria into a single
scheduling algorithm and analyse its behaviour with advanced feedback, thanks
to the state-of-the-art models in Wrench. Another goal will be to add support for
Cloud storage in order to simulate emerging hybrid workflows distributed across
HPC and Cloud infrastructures, using storage as a staging area for coupling
components.

22 Julien Monniot, François Tessier, Matthieu Robert, and Gabriel Antoniu

References

1. BeeGFS. https://www.beegfs.io/c/, accessed: 2022-12-12
2. Cinder block scheduler. https://docs.openstack.org/cinder/pike/configuration/block-

storage/schedulers.html, accessed: 2023-03-30
3. Lustre filesystem website. https://www.lustre.org/
4. Aupy, G., Beaumont, O., Eyraud-Dubois, L.: Sizing and Partitioning Strategies for

Burst-Buffers to Reduce IO Contention. In: IPDPS 2019 - 33rd IEEE International
Parallel and Distributed Processing Symposium. Rio de Janeiro, Brazil (May 2019),
https://hal.inria.fr/hal-02141616

5. Bez, J.L., Boito, F.Z., Schnorr, L.M., Navaux, P.O.A., Méhaut, J.F.: Twins: Server
access coordination in the i/o forwarding layer. In: 2017 25th Euromicro Interna-
tional Conference on Parallel, Distributed and Network-based Processing (PDP).
p. 116–123 (Mar 2017). https://doi.org/10.1109/PDP.2017.61

6. Bleuse, R., Dogeas, K., Lucarelli, G., Mounié, G., Trystram, D.: Interference-
Aware Scheduling Using Geometric Constraints, Lecture Notes in Com-
puter Science, vol. 11014, p. 205–217. Springer International Pub-
lishing, Cham (2018). https://doi.org/10.1007/978-3-319-96983-1_15,
https://link.springer.com/10.1007/978-3-319-96983-1_15

7. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F., Buyya, R.:
Cloudsim: a toolkit for modeling and simulation of cloud computing environ-
ments and evaluation of resource provisioning algorithms. Software: Practice and
Experience 41(1), 23–50 (2011). https://doi.org/https://doi.org/10.1002/spe.995,
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.995

8. Casanova, H., Giersch, A., Legrand, A., Quinson, M., Suter, F.: Versatile, scal-
able, and accurate simulation of distributed applications and platforms. Jour-
nal of Parallel and Distributed Computing 74(10), 2899–2917 (Jun 2014),
http://hal.inria.fr/hal-01017319

9. Casanova, H., Ferreira da Silva, R., Tanaka, R., Pandey, S., Jethwani,
G., Koch, W., Albrecht, S., Oeth, J., Suter, F.: Developing Accurate
and Scalable Simulators of Production Workflow Management Systems with
WRENCH. Future Generation Computer Systems 112, 162–175 (2020).
https://doi.org/10.1016/j.future.2020.05.030

10. Chikhaoui, A., Lemarchand, L., Boukhalfa, K., Boukhobza, J.: Multi-objective
optimization of data placement in a storage-as-a-service federated cloud. ACM
Transactions on Storage 17(3), 1–32 (Aug 2021). https://doi.org/10.1145/3452741

11. Chunduri, S., Harms, K., Groves, T., Mendygral, P., Zarins, J., Wei-
land, M., Ghadar, Y.: Performance evaluation of adaptive routing on
dragonfly-based production systems. In: IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS). pp. 340–349. IEEE, USA (2021),
https://doi.org/10.1109/IPDPS49936.2021.00042

12. Cope, J., Liu, N., Lang, S., Carns, P., Carothers, C., , Ross, R.: Codes: Enabling
co-design of multi-layer exascale storage architectures. In: Workshop on Emerging
Supercomputing Technologies (WEST 2011) (2011)

13. Cornebize, T.: High Performance Computing : towards better Performance Predic-
tions and Experiments. Theses, Université Grenoble Alpes [2020-....] (Jun 2021),
https://theses.hal.science/tel-03328956

14. Daley, C.S., Ghoshal, D., Lockwood, G.K., Dosanjh, S., Ramakrishnan, L., Wright,
N.J.: Performance characterization of scientific workflows for the optimal use
of burst buffers. Future Generation Computer Systems 110, 468–480 (2020).
https://doi.org/10.1016/j.future.2017.12.022

StorAlloc 23

15. Dutot, P.F., Mercier, M., Poquet, M., Richard, O.: Batsim: A realistic language-
independent resources and jobs management systems simulator. In: Desai, N.,
Cirne, W. (eds.) Job Scheduling Strategies for Parallel Processing. pp. 178–197.
Springer International Publishing, Cham (2017)

16. Fishman, G.S.: Principles of discrete event simulation. [book review] (1 1978),
https://www.osti.gov/biblio/6893405

17. Gainaru, A., Aupy, G., Benoit, A., Cappello, F., Robert, Y., Snir, M.:
Scheduling the i/o of hpc applications under congestion. In: 2015 IEEE In-
ternational Parallel and Distributed Processing Symposium. p. 1013–1022.
IEEE, Hyderabad, India (May 2015). https://doi.org/10.1109/IPDPS.2015.116,
http://ieeexplore.ieee.org/document/7161586/

18. Gainaru, A., Aupy, G., Benoit, A., Cappello, F., Robert, Y., Snir, M.:
Scheduling the i/o of hpc applications under congestion. In: 2015 IEEE In-
ternational Parallel and Distributed Processing Symposium. p. 1013–1022.
IEEE, Hyderabad, India (2015). https://doi.org/10.1109/IPDPS.2015.116,
http://ieeexplore.ieee.org/document/7161586/

19. Henseler, D., Landsteiner, B., Petesch, D., Wright, C., Wright, N.J.: Architecture
and design of Cray DataWarp. In: Proceedings of 2016 Cray User Group (CUG)
Meeting (2016)

20. Herbein, S., Ahn, D.H., Lipari, D., Scogland, T.R., Stearman, M., Grondona,
M., Garlick, J., Springmeyer, B., Taufer, M.: Scalable i/o-aware job scheduling
for burst buffer enabled hpc clusters. In: Proceedings of the 25th ACM Interna-
tional Symposium on High-Performance Parallel and Distributed Computing. p.
69–80. ACM, Kyoto Japan (May 2016). https://doi.org/10.1145/2907294.2907316,
https://dl.acm.org/doi/10.1145/2907294.2907316

21. Isaila, F., Garcia Blas, F.J., Carretero, J., Liao, W.k., Choudhary, A.: A scalable
message passing interface implementation of an ad-hoc parallel i/o system. The
International Journal of High Performance Computing Applications 24(2), 164–184
(May 2010). https://doi.org/10.1177/1094342009347890

22. Jay, L., Zheng, F., Liu, Q., Klasky, S., Oldfield, R., Kordenbrock, T., Schwan, K.,
Wolf, M.: Managing variability in the io performance of petascale storage systems.
In: In 2010 ACM/IEEE International Conference for High Performance Comput-
ing, Networking, Storage and Analysis. pp. 1–12. New Orleans, LA, USA (2010),
https://doi.org/10.1109/SC.2010.32

23. Khetawat, H., Zimmer, C., Mueller, F., Atchley, S., Vazhkudai, S.S., Mubarak, M.:
Evaluating burst buffer placement in hpc systems. In: IEEE International Confer-
ence on Cluster Computing (CLUSTER). p. 1–11 (2019). https://doi.org/10.1109,
https://doi.org/10.1109/CLUSTER.2019.8891051

24. Kougkas, A., Devarajan, H., Sun, X.H., Lofstead, J.: Harmonia: An interference-
aware dynamic i/o scheduler for shared non-volatile burst buffers. In:
2018 IEEE International Conference on Cluster Computing (CLUSTER). p.
290–301. IEEE, Belfast (2018). https://doi.org/10.1109/CLUSTER.2018.00046,
https://ieeexplore.ieee.org/document/8514889/

25. Lebre, A., Legrand, A., Suter, F., Veyre, P.: Adding storage simulation capacities
to the simgrid toolkit: Concepts, models, and api. In: 2015 15th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Grid Computing. pp. 251–260 (2015).
https://doi.org/10.1109/CCGrid.2015.134

26. Lee, B.H., Song, T.G., Kim, D.H.: Block storage scheduling based on
sla in cloud storage systems. In: Proceedings of the Sixth International
Conference on Emerging Databases: Technologies, Applications, and The-
ory. p. 72–76. EDB ’16, Association for Computing Machinery, New

24 Julien Monniot, François Tessier, Matthieu Robert, and Gabriel Antoniu

York, NY, USA (Oct 2016). https://doi.org/10.1145/3007818.3007825,
https://dl.acm.org/doi/10.1145/3007818.3007825

27. Li, Y., Lu, X., Miller, E.L., Long, D.D.E.: Ascar: Automating contention
management for high-performance storage systems. In: 2015 31st Symposium
on Mass Storage Systems and Technologies (MSST). p. 1–16 (May 2015).
https://doi.org/10.1109/MSST.2015.7208287

28. Liu, J., Chen, Y., Zhuang, Y.: Hierarchical i/o scheduling for collective i/o. In: 2013
13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Comput-
ing. p. 211–218 (May 2013). https://doi.org/10.1109/CCGrid.2013.30

29. Lockwood, G., Hazen, D., Koziol, Q., Canon, R., Antypas, K., Balewski,
J.: Storage 2020: A Vision for the Future of HPC Storage. In: Re-
port: LBNL-2001072. Lawrence Berkeley National Laboratory (2017),
https://escholarship.org/uc/item/744479dp

30. Lockwood, G.K., Snyder, S., Byna, S., Carns, P., Wright, N.J.: Understand-
ing data motion in the modern hpc data center. In: 2019 IEEE/ACM Fourth
International Parallel Data Systems Workshop (PDSW). pp. 74–83 (2019).
https://doi.org/10.1109/PDSW49588.2019.00012

31. Monniot, J., Tessier, F., Robert, M., Antoniu, G.: StorAlloc: A Simulator for Job
Scheduling on Heterogeneous Storage Resources. In: HeteroPar 2022. Glasgow,
United Kingdom (Aug 2022), https://hal.inria.fr/hal-03683568

32. Negru, C., Pop, F., Mocanu, M., Cristea, V., Hangan, A., Vacariu, L.: Cost-aware
cloud storage service allocation for distributed data gathering. In: 2016 IEEE In-
ternational Conference on Automation, Quality and Testing, Robotics (AQTR). p.
1–5 (May 2016). https://doi.org/10.1109/AQTR.2016.7501280

33. Núñez, A., Vázquez-Poletti, J., Caminero, A., Castañé, G., Carretero, J., Llorente,
I.: Icancloud: A flexible and scalable cloud infrastructure simulator. Journal of Grid
Computing 10, 185–209 (03 2012). https://doi.org/10.1007/s10723-012-9208-5

34. Ruiu, P., Caragnano, G., Graglia, L.: Automatic dynamic allocation of cloud
storage for scientific applications. In: 2015 Ninth International Conference on
Complex, Intelligent, and Software Intensive Systems. pp. 209–216 (2015).
https://doi.org/10.1109/CISIS.2015.30

35. Schmuck, F., Haskin, R.: Gpfs: A shared-disk file system for large computing clus-
ters. In: Proceedings of the 1st USENIX Conference on File and Storage Technolo-
gies. p. 19–es. FAST ’02, USENIX Association, USA (2002)

36. Vishwanath, V., Hereld, M., Iskra, K., Kimpe, D., Morozov, V., Papka, M.E.,
Ross, R., Yoshii, K.: Accelerating i/o forwarding in ibm blue gene/p systems. In:
SC ’10: Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis. p. 1–10 (Nov 2010).
https://doi.org/10.1109/SC.2010.8

37. Zhou, Z., Yang, X., Zhao, D., Rich, P., Tang, W., Wang, J., Lan, Z.:
I/o-aware batch scheduling for petascale computing systems. In: 2015 IEEE
International Conference on Cluster Computing. p. 254–263 (Sep 2015).
https://doi.org/10.1109/CLUSTER.2015.45

