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A centered limited finite volume approximation of the
momentum convection operator for low-order
nonconforming face-centered discretizations
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Marseille, France We propose in this article a discretization of the momentum convection oper-

*IRSN, Saint-Paul-lez-Durance, France ator for fluid flow simulations on quadrangular or generalized hexahedral
meshes. The space discretization is performed by the low-order nonconforming
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or faces. The momentum convection operator is of finite volume type, and its

expression is derived, as in MUSCL schemes, by a two-step technique: (i) com-
putation of a tentative flux, here, with a centered approximation of the velocity,
and (ii) limitation of this flux using monotonicity arguments. The limitation
procedure is of algebraic type, in the sense that its does not invoke any slope
reconstruction, and is independent from the geometry of the cells. The derived
discrete convection operator applies both to constant or variable density flows
and may thus be implemented in a scheme for incompressible or compressible
flows. To achieve this goal, we derive a discrete analogue of the computation
u; (0:(pu;) + div(pu;u) = %a, (pu?) + %div (pu?u) (with u the velocity, u; one of
its component, p the density, and assuming that the mass balance holds) and
discuss two applications of this result: first, we obtain stability results for a
semi-implicit in time scheme for incompressible and barotropic compressible
flows; second, we build a consistent, semi-implicit in time scheme that is based
on the discretization of the internal energy balance rather than the total energy.
The performance of the proposed discrete convection operator is assessed by
numerical tests on the incompressible Navier-Stokes equations, the barotropic
and the full compressible Navier-Stokes equations and the compressible Euler
equations.
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1 | INTRODUCTION

When designing numerical schemes for fluid flow simulations, combining a finite element approximation of diffusion
terms with a finite volume discretization of the convection operator is an appealing solution, sometimes found in the
literature. Indeed, the diffusion term may be easily discretized using the finite element method with minimal mesh
restrictions while preserving the stability, that is, the control of a (possibly discrete) H!-norm, but the discretization of the
convection term is less straightforward, since standard finite element methods may yield numerical instabilities, espe-
cially in the convection dominated case. Tackling this problem amounts to introduce some upwinding in the scheme,
and, to this purpose, many solutions have been explored in the context of the finite volume; finite-volume convection
operators respecting both some monotonicity and L2-stability properties (including, for the latter item, a local discrete
entropy or, in the world of fluid flow, a kinetic energy balance) have been obtained in this way. Several authors have
thus proposed discretizations combining finite elements and finite volumes, to take benefit of the best of both worlds, see
for instance!™® and references therein. These works may address convection-diffusion or Navier-Stokes equations, using
preferably finite elements approximations of accuracy compatible with finite volumes, that is, low-order elements. For the
incompressible Navier-Stokes equations or for low-Mach compressible flows, associating this property with the inf-sup
stability requirement suggests turning to low-order nonconforming elements, namely the low-order Crouzeix-Raviart
element for simplicial meshes’ or the Rannacher-Turek element for quadrangles and hexahedra.® An application of this
strategy for the discretization of the stationary incompressible Navier-Stokes equations by Crouzeix-Raviart finite ele-
ments may be found in Reference 9; extension to quasi-incompressible unsteady flows, both with the Crouzeix-Raviart
and Rannacher-Turek finite elements, is performed in Reference 10.

In most of the above cited papers, only a first-order upwinding technique is considered, leading to diffusive approx-
imations. Reducing the scheme diffusivity and increasing its accuracy while preserving its stability can be tricky since
naive higher-order methods might lead to spurious oscillations. As already mentioned, successful methods exist to achieve
this goal; such a now well-known method is Van Leer’s so-called MUSCL scheme.!! This technique was first used for
hyperbolic conservation laws in one space dimension; extending it to multi-dimensional problems on general meshes is a
challenging task, due to the so-called slope construction involved in the limitation step, see for instance.'?>"!> A numerical
scheme circumventing this problem for the transport operator is proposed in Reference 16; it relies on the observation that
the requirements for the scheme to satisfy the maximum principle may be substituted to the usual limitation technique,
yielding a limitation step of purely algebraic type, and so free of any geometric consideration.

The continuous momentum convection operator that we consider here takes the following generic form:

C(p, w;) = 0y(pu;) + div(pu;u), €}

where p is the density of the fluid and u its velocity (so, for 1 < i < d, u; stands for the ith component of the velocity). It
may be recast under the form of a transport operator provided that a mass balance equation holds, that is

0yp + div(pu) = 0. 2)
Indeed, we have:

0i(pu) + div(puiu) = wi(9,p + div(pw)) + p(,u; + u - Vuy). (3)
=0

This formulation shows that the operator C satisfies a maximum principle. In addition, a standard manipulation of partial
derivatives yields:

u? u?
u; Clp, uy) = % p(oul +u-Vu?) = a,(;;j) + div(p?lu) 4)

A finite volume discretization of the operator C based on the previously cited algebraic limitation technique was
recently derived for cell-centered variables, for simplicial or quadrangular (or hexahedral) meshes, and implemented
in an explicit scheme for the Euler equations (for the convection of the scalar variables only) in Reference 17. Here we
generalize this operator derivation to cope with a space discretization using the unknowns of the Rannacher-Turek finite
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element (Section 3), that is, with face-centered variables. The form of C is quite general, and the operator built here
may be applied to both incompressible or compressible flows. Its construction also extends to more general 3D cells,
and a staggered scheme for Euler equations working on pyramids and prisms is proposed in forthcoming work.!® As in
standard MUSCL techniques, it relies on a two-step process: first, a tentative value for the unknown (or, equivalently, in
the linearized transport case, for the flux) is computed, usually to meet some accuracy requirements; second, the flux is
“limited” to ensure monotonicity. We show that a discrete analog of Equation (4) is satisfied by the discrete convection
operator (Section 4.1) provided that the chosen tentative approximation is the centered one, that is, for a given interface,
the average of the unknowns of the two adjacent cells. Unfortunately, this centered approximation provides a second-order
approximation only for structured grids based on uniform partitions in each space dimension. However, we are able with
the resulting scheme, referred to as “centered limited,” to build a discrete analog of (4) and derive the following results:

- First, for an advection diffusion with an implicit-in-time discretization of the diffusion term (while the centered limited
approximation of the convection term is explicit), integrating the discrete counterpart of (4) in space yields a stability
estimate, valid for time steps lower than a limit depending on the diffusion coefficient and the mesh regularity, but
independent of the mesh size (Section 4.2); this estimate is the essential argument that is required to control the kinetic
energy for incompressible flows or the total energy for barotropic flows.

- Second, we show how to build, once again from the discrete version of (4), a consistent scheme for the Euler equations
based on the solution of the internal energy balance to preserve the positivity of the latter variable (Section 4.3). To this
aim, having at hand a local (i.e., written on each cell and not integrated over the space domain) kinetic energy balance
is indeed necessary.

Finally, numerical experiments are performed (Section 5) to assess the expected behavior of the scheme: (i) to damp
the diffusion while preserving the stability, especially in the case of compressible flow problems, and (ii) to be consistent
for the Euler equations (precisely speaking, to compute correct shock solutions) while being based on the internal energy
balance. We also check that the centered limited scheme reaches second order on structured grids, and observe as the
accuracy deteriorates along with the distortion of the cells.

2 | SPACE AND TIME DISCRETIZATIONS

We first define a primal mesh M by splitting Q into a finite family of disjoint quadrangles (if d = 2, with d the space
dimension) or generalized hexahedra (if d = 3) denoted by K and called control volumes or cells. By generalized, we
mean that cells of the 3D meshes are obtained by the standard Q, transformation of the unit cube (0, 1)* defined by their
eight vertices; consequently, the cell faces are not necessarily planar. We then denote by £ the set of faces of the mesh
M; for K € M, £(K) stands for the set of faces of K and we thus have 0K = U,egk)o. Any face o € £ is either a part of
the boundary of Q, that is, 6 C 9, in which case ¢ is said to be an external face, or there exists (K, L) € M? with K # L
such that K n L = o: we denote in this case 6 = K |L and o is said to be an internal face. We denote by £ and &y the
set of external and internal faces, respectively. For K € M and ¢ € £, we denote by |K| the measure of K and by |o| the
(d — 1)-measure of the face o.
The discretization is staggered in the sense that the scalar and vector unknowns are not collocated:

- the unknowns associated to the density, and to any other scalar variable involved in the problem, as for instance the
pressure, are associated with the cells of the primal mesh M; limiting the list of set of scalar fields to the density, the
pressure p and the internal energy e (which will be sufficient for the numerical applications presented in Section 5),
the corresponding unknowns are denoted by (px)xer, (Px)xkem and (ex)ker;

- the degrees of freedom for the velocity are defined on a dual mesh using the Rannacher-Turek non-conforming
low-order finite element approximation® and are denoted (u,)sce With u, = (U1, ... , Usq); they are identified with
the mean value of the velocity component over the face.

The dual mesh is constructed as follows (see Figure 1): if K € M is a rectangle or a rectangular cuboid, we denote by
xg the mass center of K and we construct D, as the cone with basis ¢ and with vertex xx; this definition is extended to
a general cell K, by supposing that K is split in the same number of sub-cells (the geometry of which does not need to be
specified) and with the same connectivity and the same measure (area of volume) |Dg ,| equal to |K|/4 for a quadrangle
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FIGURE 1 Primal and dual meshes for the Rannacher-Turek elements. [Colour figure can be viewed at wileyonlinelibrary.com]

and |K|/6 for a hexahedron. We now define D, the dual cell associated to ¢, as D, = Dx, U Dy, if 6 = K|L € &pyy and
D, = Dg if 6 € E(K) N Eexs; its measure is denoted by |D,|. We then denote by £(D,) the set of dual faces of D,, by
€ = D;|D, the face separating two dual cells D, and D, and by &ine the set all internal dual faces.

Finally, for the sake of simplicity, a constant time step denoted by 6t is used for the time discretization, with 6t = T/N.
We define t, = n 6t, 0 < n < N, and the notations for the discrete unknowns at step n are obtained from the notations
for space discretization introduced above by adding an index n. Hence, finally, the unknowns involved in the definition
of the convection operator are () 1, o<pey 204 M)oce, o<nen-

3 | ACENTERED LIMITED MOMENTUM CONVECTION OPERATOR

The purpose of this section is to build the momentum convection operator proposed in this article. The presentation
requires three steps: first, we suppose a finite volume expression of the discrete mass balance, posed on the primal cells,
and thus featuring mass fluxes across the primal faces; second, from this expression, we deduce densities associated to the
dual cells and mass fluxes across the dual faces, computed from their primal analogues and which satisfy a discrete mass
balance over the dual cells; finally, this latter mass balance is used to obtain a momentum convection operator, taking
itself the form of a finite volume discretization over the dual cells.

The mass balance on the primal cells: Let us first address the discretization of the mass balance equation (2).
Since, in the Rannacher-Turek element, the pressure is piecewise constant over the cells, the natural mass balance (or, at
least, for incompressible flows, the natural divergence-free constraint) takes a finite volume like formulation, posed over
the primal cells. With an explicit-in-time discretization of the convection flux, this equation thus reads, for0 <n < N -1
and K € M:

K] . . 1
= (Pt = pit) + K| div(pw)l =0,  div(pw)} = = Z Fg (5)
Kl , &)

where F¢ _ stands for the (primal) numerical mass flux across ¢ outward K and is defined by:
Vo =K|L € &, Fy, =lo| ps Ug - Nk,

with ng, the normal vector to the face o outward K and p! an approximation of the density at the face ¢ at t,, which
does not need to be specified in this section. We suppose that the cell densities are positive at all time steps. This may be
the consequence of the fact that they are the solution to Equation (5) with a suitable choice of the discretization of the
normal fluxes F _ (see Remark 1 below) or that they are given by an expression of another variable(s) which ensures their
positivity. This latter case corresponds, for instance, to non-Boussinesq natural convection flows, where the density is a
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function of the temperature; in such a problem, Equation (5) acts as a constraint on the velocity field. When the density
is constant, we recover the usual divergence-free constraint for the Rannacher-Turek element.

Face densities and dual mass fluxes: We now construct face densities and dual mass fluxes so as to ensure that a
similar discrete mass balance holds over the dual cells, that is, to obtain a relation of the form:

|Ds |
Vo € €, —("“ >+ Fi, =0, 6
o == (0 > ©
SEE(D)

where pD (resp. p"“) is the density at the face ¢ and at time step ¢, (resp. t,+1), and FZ . a (conservative) mass flux through
¢ outward D, . For the internal faces, the face densities are defined as a weighted average of the density unknowns in the
cells adjacent to o:

Vo € Epn, 6 =K|L, andfork=nandk=n+1, ID,| p% = Dk sl pk + Dy, Pk @)

For an external face o of adjacent cell K, we just set pD = pi. With this choice, the dual discrete mass balance (7) holds
provided that the dual mass fluxes F” . are chosen adequately To this purpose, for € included in the primal cell K and ¢ a
face of K, the mass fluxes F, . are obtalned by a linear combination of the mass fluxes through the primal faces of K. Let
us give the general principle of the construction of the dual fluxes. We first consider an internal face ¢ = K|L. Since the
sub-cells Dk , all have the same measure |Dg ;| = |K|/q with q = 4 for quadrangles and q = 6 for generalized hexahedra,
Equation (7) yields that

|Ds | 1( K| IL|
5 (ﬂi‘)jl-p%)j = (=) + 50 (o = 0p) ) ®)

Hence, if the dual fluxes are chosen so that the equality

Z Fgﬂ:%( z Flyéa’ Z FZ:;’) (9)

eeé’(D(,) c'e&(K) o’'€&(L)

holds, adding these two latter equalities yields that the dual mass balance (6) is satisfied. The equality (9) is obtained by
choosing the dual fluxes F; . on the faces e of D, that are inside the cell K so that

Y Fg€=é Y Fp,. (10)

e€€(De) o’'e&(K)
ecK

Indeed, adding this equality with its equivalent for the cell L yields (9). Writing relation (10) for all the half-diamond
cells of K, we obtain a system for the dual fluxes (F, ¢)ses). eck Which is singular but admits solutions. Any of them
reads as a set of relations of the desired form for the dual mass fluxes, namely, for ¢ C K, an expression of Fj . as a linear

combination of the primal fluxes (F;ég) . In addition, we show in Reference 18 that any linear expression with
"/ oe&(K)
bounded coefficients satisfying (10) yields a consistent scheme, in the Lax-Wendroff sense. The linear expressions used in

practice may be found in Reference 10. For an external face ¢ of the cell K, the above arguments may be readily simplified
by suppressing the terms associated to the neighbor cell in (8) and (9). This construction of the convection operator is
quite general with respect to the geometry of the primal cell, and we extend it in Reference 18 to pyramids and prisms.

Remark 1 (On the face densities). Two different values of the density p at the interfaces ¢ have been intro-
duced, namely p}} and pD . Both are computed from the cell unknowns p%, but take a different expression. The
values p! are used to compute the mass fluxes and, if the density is computed from the mass balance (5), they
can be given by the upwind choice or obtained by a MUSCL technique, to preserve the positivity of the den-
sity. By contrast, the values p]’sc are used to define the discrete momentum convection operator, as we proceed
to see.
The momentum convection operator: The densities pp_ and fluxes F; , are then used for the definition of the
discrete momentum convection term C(p, u)Zjlfl, that is, the discretization of the continuous term C(p, ;) = d,(pu;) +
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div(pu;u). For 1 <i < d and o € &, this discrete term takes the following form:

o,i

1 1
Clp, it = = (p,’g“ ol —ppu >+dIV(pulu)6, with div(puw); = - | Y Froul, 11
e€&(D,)

where u ; is an approximation of u; over the face € at time t,. For a boundary face 6 € £, one of the dual faces of D, is
the face c 1tself If this primal/dual face is included in a part of the boundary where the velocity is prescribed, no equation
is written for u”*! (it is just set to the prescribed value) and no definition is needed for u’ ; in the other case (i.e., for a
Neumann boundary condltlon) we suppose that the flow leaves the computational domaln and we set u”; to the upwind
value, that is, u! ;- For an internal dual face, u” , is obtained by a centered limited approximation w1th the limitation
technique 1ntroduced 1n Reference 16, which 1mplements the following procedure. Let us recast the convection term
Clp.w!t" as

1 _
C(p, u)::ii—l — _pn+1 <un-+_—1 _ un-}_—l)7

St D, o,i ol
with
_ 1 1 ot
u;tl = — <pD ,— ot d1v(pulu)c,> =— pgdugyi - D] F,’,‘,eugj .
D, Pp, ol ecéD,)

The discrete convection operator is said to be monotone if the term M”Jrl can be written as a convex combination of

degrees of freedom of u’ (which, for consistency reasons, must be assoc1ated to faces located in the neighborhood of ¢); for
instance, such a property would ensure a discrete maximum principle for the transport equation, or a convection-diffusion
equation with a suitable (only available on specific meshes) discretization of the diffusion term. Let us now introduce
some conditions for the values uZJ. which ensure that we obtain such a convex combination. We recast 11:':1 as

1 ot ot

=n+1 __ n n n n n n

el | oW > Fi|ur, - D] > Fi. (“e,i _ua,i) . (12)
Pp, ol ec&(D,) olectD,)

The mass balance equation (6) yields

nlﬂ 2 Fi. =1 (13)
ng eEE(D )
Equation (12) may thus be recast as:
~-n+l _ . n n n n
uo‘,i - uo’,i n+1 |D |€egZ(D )FUG ( e,‘ o’,') . (14)

The coefficients multiplying the velocities v . and v, on the right-hand side of this relation are

st .

1— o€
Pp Dol

ut. o 1+ 2 s ul,, fore e ED,) : —

o,i n+1
eeé‘(D )

Therefore, their sum is equal to 1. In addition, the coefficient of u’ . is non-negative under the CFL condition

~ st .
CFL = I{l;leag‘( pn+1—|| Z |Fa,e| <l (15)
D, lec&D,)

8519017 SUOLUWIOD BAIERIO 3|edtidde ) Aq PaUBAOB 9.8 DI WO ‘35N J0'SaINI 10} ARRIGITBUIIUO AB|IA UO (SUONIPUGO-PUE-SWLS) W00 /3 1 ATeIq Ul uo//SdIY) SUOIPUOD PUE SWLB 1 81 39S [1202/20/ET] Uo AXiq178U1IUO AB1IM ‘BId0UBID B9 Ad 9,25 P14/Z00T OT/I0p/L0d" A3 v ARe.q1PUIlUO//STNY OIS POPE0|UMO 9 ‘Y207 ‘E9E0260T



1110 BRUNEL ET AL.
™ L WILEY
Now we wish to express u ; in terms of the unknowns ( o 1> in such a way that u’“r1 is a convex combination of the
reg
unknowns (ug, l.) , which is a discrete analogue to the fact that the continuous operator C(p, u;) = 0;(pu;) + div(pu;u)
“/oleE

satisfies a maximum principle, since it may be recast as a transport operator thanks to the mass balance. We observe that
we indeed obtain a convex combination at the right hand side of Equation (14) if the following condition holds for each
€ = Dy|Dy € éint:

al (um—u ) if F,, >0,

daf €[0,1], 36 € € such that u!, —u?, = ( (16)

o
(04
€ G,i

u”. —u ) otherwise.

Of course, in this relation, both the coefficient o and the face & may change at each time step, and the face 6 is searched in
the neighborhood of ¢ in practice. We now deduce from the relation (16) a constructive process to compute the quantities
ug’i. Let e be a given internal face, and let D,- (resp. D,+) denote the adjacent upwind (resp. downwind) dual cell to the face
e (i.e., F,- . > 0, see Figure 2). Let N.(D,-) (resp. No(D,+)) be a set of neighboring dual cells of D,- (resp. Dy+). Denoting
by I(a, b) the interval [a, b] if a < b and [b, a] otherwise, the following assumptions are then a transcription of Condition
(16) written for 6+ and o™:

.
3 Dy+ € Nu(D,) such that u”, eI< " +%< 6+,i—”f+,i>> =T, (172)
3D, € Nu(D,) such that u", eI< "o +‘%( :’i—u;"i>> =T (17b)

where £t and ¢~ are two numerical parameters lying in the interval [0, 2]. These parameters have to be chosen by the user,
and are usually kept constant through the whole computation; decreasing their value makes the algorithm limitation
more restrictive. The set M (D,+) is always required to contain D,-, with the following two consequences: first, the value
”Z—,i always belongs to both intervals I and I, so their intersection is not void and the scheme is always defined; sec-
ond, setting £t = £~ = 0 yields the usual upwind scheme. To make the definition of the scheme complete, we now need
to define the sets N, (D,+) and N.(D,-). Here we choose N, (Dy+) = {D,- }, so that the condition (17a) implies that u”

a convex combination of u”_. and u”, .. Furthermore, if &t < 1, the hypothesis (17a) yields u.; € I(Us- ;, ile;) Where ug i
u.;and @i ; are the values glven by the upwmd the centered limited and the centered discretization respectively; note that
the centered limited discretization thus yields in this case a more diffusive scheme than the centered discretization and
less diffusive than the upwind discretization, whatever the choice of £t and &~ in the (0, 2] interval. Hence in our numer-
ical experiments, we choose to set £+ < 1, in order to recover a control of the discrete kinetic energy, see Section 4.1; note
also that considering £t > 1 is generally motivated so as to allow a second order interpolation of the unknown at the face,
which here does not make sense since the dual mesh cannot be built explicitly except in the case of simplicial or Carte-
sian meshes (recall that in this work we are concerned with general quadrangular or hexahedral meshes). Concerning
N(Ds-), several choices are possible:

- asimple choice is to take the neighboring cells of D,-:

Ne(Dy-) = {(D;):ee such that D, shares a face with D,-};
- the previous set can be restricted to the upstream neighboring cells of D,-:
Ne(Ds-) = {(D:)see such that D, shares a face n with D,- and F,, > 0};
- another possibility is to take the opposite cell to D,+ with respect to D,- (see Figure 2), that is,

Ne(Dy-) = {dual cell D, which shares a face n with D,-

such that ¢ and # have no common vertex (d = 2) or edge (d = 3)}.

The last choice was selected in our numerical experiments, in the interior of the computational domain. For dual
edges with one of the adjacent cells itself adjacent to the boundary, depending on the sign of the mass fluxes, this choice
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Left: Dual cells involved in the definition of the convection flux. e: considered dual face. D,- and D,+: upwind and

downwind dual cells of € (i.e., € = D,- |D,+ and F,- . > 0); #: dual face of D,- which does not share a vertex with ¢ and thus separates D,-

from the opposite dual cell to €; D, : opposite dual cell. Right: a case where the opposite cell does not exist. [Colour figure can be viewed at

wileyonlinelibrary.com]

may be impossible if the opposite cell does not exist (see Figure 2); in such a case, the choice for u”; boils down to the
upwind choice.
We are now in a position to give the algorithm used to compute the quantities u” :

®
(iD)

(iii)
(iv)

Compute a tentative value ﬁg’i with a convex combination of the values (in numerical experiments, the
centered choice) at the surrounding faces.

The flux Fy . being given, determine the upwind diamond cell D,- and the downwind diamond cell D+, and
choose accordingly the neighboring sets N.(D,-) and N (D,+).

Compute an admissible interval It N I~ for u,.; by (17).

Compute ”?,i by projecting the tentative centered value EZJ- onto the interval obtained in the previous step.

Remark 2 (Deriving an implicit limited scheme). Since this procedure is not linear, we cannot expect to derive
an explicit formula to compute the values of the coefficients a?. Their evaluation is however not necessary
in order to define an explicit scheme: the presented algorithm univocally defines the value ”Z,z' But, for this
reason, we cannot easily define an implicit-in-time limited scheme. However, two strategies may be envisaged:

- afirst technique would consist of an iterative process at each time step: in an inner loop, advance the veloc-
ity by replacing in the momentum equation the limited convection operator at inner step k, divy(pu;u), by
divg(puw)**! — divy(puw)* + divy(puiu)*, where the subscript U denote the standard upwind convection
operator (i.e., faces values u,; are set to the upwind value) and the superscript k + 1 indicate an implicit
discretization, and then loop until acceptable convergence is reached;
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- another technique would be to first compute the value u” , then use (16) (or rather (17)) to compute the

n+1

* as linear
€,l

coefficients aZ thanks to u” . and the (u3),c.. Then, express an implicit value at the interface u
combination of the (uj*') _, thanks to the a?.

(o2

Note that the convergence of the first algorithm may not be proven and the second one does not ensure the
monotonicity of the operator (the coefficients a? may not be suitable for the upgraded values); both techniques
are also more expensive from a computational point of view.

4 | ADISCRETE KINETIC ENERGY IDENTITY AND SOME APPLICATIONS

In this section, we first focus on the proposed centered limited finite volume convection operator and show that it satisfies
an identity which may be seen as a building brick for the derivation of a kinetic energy balance (or, equivalently, an entropy
identity for the entropy function n(u;) = %uf). We then give two applications of 