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Abstract
We propose in this article a discretization of the momentum convection oper-
ator for fluid flow simulations on quadrangular or generalized hexahedral
meshes. The space discretization is performed by the low-order nonconforming
Rannacher–Turek finite element: the scalar unknowns are associated with the
cells of the mesh while the velocities unknowns are associated with the edges
or faces. The momentum convection operator is of finite volume type, and its
expression is derived, as in MUSCL schemes, by a two-step technique: (i) com-
putation of a tentative flux, here, with a centered approximation of the velocity,
and (ii) limitation of this flux using monotonicity arguments. The limitation
procedure is of algebraic type, in the sense that its does not invoke any slope
reconstruction, and is independent from the geometry of the cells. The derived
discrete convection operator applies both to constant or variable density flows
and may thus be implemented in a scheme for incompressible or compressible
flows. To achieve this goal, we derive a discrete analogue of the computation
ui (𝜕t(𝜌ui) + div(𝜌uiu) = 1

2
𝜕t
(
𝜌u2

i

)
+ 1

2
div

(
𝜌u2

i u
)

(with u the velocity, ui one of
its component, 𝜌 the density, and assuming that the mass balance holds) and
discuss two applications of this result: first, we obtain stability results for a
semi-implicit in time scheme for incompressible and barotropic compressible
flows; second, we build a consistent, semi-implicit in time scheme that is based
on the discretization of the internal energy balance rather than the total energy.
The performance of the proposed discrete convection operator is assessed by
numerical tests on the incompressible Navier–Stokes equations, the barotropic
and the full compressible Navier–Stokes equations and the compressible Euler
equations.
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1 INTRODUCTION

When designing numerical schemes for fluid flow simulations, combining a finite element approximation of diffusion
terms with a finite volume discretization of the convection operator is an appealing solution, sometimes found in the
literature. Indeed, the diffusion term may be easily discretized using the finite element method with minimal mesh
restrictions while preserving the stability, that is, the control of a (possibly discrete) H1-norm, but the discretization of the
convection term is less straightforward, since standard finite element methods may yield numerical instabilities, espe-
cially in the convection dominated case. Tackling this problem amounts to introduce some upwinding in the scheme,
and, to this purpose, many solutions have been explored in the context of the finite volume; finite-volume convection
operators respecting both some monotonicity and L2-stability properties (including, for the latter item, a local discrete
entropy or, in the world of fluid flow, a kinetic energy balance) have been obtained in this way. Several authors have
thus proposed discretizations combining finite elements and finite volumes, to take benefit of the best of both worlds, see
for instance1–6 and references therein. These works may address convection-diffusion or Navier–Stokes equations, using
preferably finite elements approximations of accuracy compatible with finite volumes, that is, low-order elements. For the
incompressible Navier–Stokes equations or for low-Mach compressible flows, associating this property with the inf-sup
stability requirement suggests turning to low-order nonconforming elements, namely the low-order Crouzeix-Raviart
element for simplicial meshes7 or the Rannacher–Turek element for quadrangles and hexahedra.8 An application of this
strategy for the discretization of the stationary incompressible Navier–Stokes equations by Crouzeix-Raviart finite ele-
ments may be found in Reference 9; extension to quasi-incompressible unsteady flows, both with the Crouzeix-Raviart
and Rannacher–Turek finite elements, is performed in Reference 10.

In most of the above cited papers, only a first-order upwinding technique is considered, leading to diffusive approx-
imations. Reducing the scheme diffusivity and increasing its accuracy while preserving its stability can be tricky since
naive higher-order methods might lead to spurious oscillations. As already mentioned, successful methods exist to achieve
this goal; such a now well-known method is Van Leer’s so-called MUSCL scheme.11 This technique was first used for
hyperbolic conservation laws in one space dimension; extending it to multi-dimensional problems on general meshes is a
challenging task, due to the so-called slope construction involved in the limitation step, see for instance.12–15 A numerical
scheme circumventing this problem for the transport operator is proposed in Reference 16; it relies on the observation that
the requirements for the scheme to satisfy the maximum principle may be substituted to the usual limitation technique,
yielding a limitation step of purely algebraic type, and so free of any geometric consideration.

The continuous momentum convection operator that we consider here takes the following generic form:

(𝜌,ui) = 𝜕t(𝜌ui) + div(𝜌uiu), (1)

where 𝜌 is the density of the fluid and u its velocity (so, for 1 ≤ i ≤ d, ui stands for the ith component of the velocity). It
may be recast under the form of a transport operator provided that a mass balance equation holds, that is

𝜕t𝜌 + div(𝜌u) = 0. (2)

Indeed, we have:

𝜕t(𝜌ui) + div(𝜌uiu) = ui(𝜕t𝜌 + div(𝜌u))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

=0

+ 𝜌(𝜕tui + u ⋅ 𝛁ui). (3)

This formulation shows that the operator  satisfies a maximum principle. In addition, a standard manipulation of partial
derivatives yields:

ui (𝜌,ui) =
1
2
𝜌
(
𝜕tu2

i + u ⋅ 𝛁u2
i
)
= 𝜕t

(

𝜌

u2
i

2

)

+ div

(

𝜌

u2
i

2
u

)

. (4)

A finite volume discretization of the operator  based on the previously cited algebraic limitation technique was
recently derived for cell-centered variables, for simplicial or quadrangular (or hexahedral) meshes, and implemented
in an explicit scheme for the Euler equations (for the convection of the scalar variables only) in Reference 17. Here we
generalize this operator derivation to cope with a space discretization using the unknowns of the Rannacher–Turek finite
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1106 BRUNEL et al.

element (Section 3), that is, with face-centered variables. The form of  is quite general, and the operator built here
may be applied to both incompressible or compressible flows. Its construction also extends to more general 3D cells,
and a staggered scheme for Euler equations working on pyramids and prisms is proposed in forthcoming work.18 As in
standard MUSCL techniques, it relies on a two-step process: first, a tentative value for the unknown (or, equivalently, in
the linearized transport case, for the flux) is computed, usually to meet some accuracy requirements; second, the flux is
“limited” to ensure monotonicity. We show that a discrete analog of Equation (4) is satisfied by the discrete convection
operator (Section 4.1) provided that the chosen tentative approximation is the centered one, that is, for a given interface,
the average of the unknowns of the two adjacent cells. Unfortunately, this centered approximation provides a second-order
approximation only for structured grids based on uniform partitions in each space dimension. However, we are able with
the resulting scheme, referred to as “centered limited,” to build a discrete analog of (4) and derive the following results:

- First, for an advection diffusion with an implicit-in-time discretization of the diffusion term (while the centered limited
approximation of the convection term is explicit), integrating the discrete counterpart of (4) in space yields a stability
estimate, valid for time steps lower than a limit depending on the diffusion coefficient and the mesh regularity, but
independent of the mesh size (Section 4.2); this estimate is the essential argument that is required to control the kinetic
energy for incompressible flows or the total energy for barotropic flows.

- Second, we show how to build, once again from the discrete version of (4), a consistent scheme for the Euler equations
based on the solution of the internal energy balance to preserve the positivity of the latter variable (Section 4.3). To this
aim, having at hand a local (i.e., written on each cell and not integrated over the space domain) kinetic energy balance
is indeed necessary.

Finally, numerical experiments are performed (Section 5) to assess the expected behavior of the scheme: (i) to damp
the diffusion while preserving the stability, especially in the case of compressible flow problems, and (ii) to be consistent
for the Euler equations (precisely speaking, to compute correct shock solutions) while being based on the internal energy
balance. We also check that the centered limited scheme reaches second order on structured grids, and observe as the
accuracy deteriorates along with the distortion of the cells.

2 SPACE AND TIME DISCRETIZATIONS

We first define a primal mesh  by splitting Ω into a finite family of disjoint quadrangles (if d = 2, with d the space
dimension) or generalized hexahedra (if d = 3) denoted by K and called control volumes or cells. By generalized, we
mean that cells of the 3D meshes are obtained by the standard Q1 transformation of the unit cube (0, 1)3 defined by their
eight vertices; consequently, the cell faces are not necessarily planar. We then denote by  the set of faces of the mesh
; for K ∈, (K) stands for the set of faces of K and we thus have 𝜕K = ∪𝜎∈(K)𝜎. Any face 𝜎 ∈  is either a part of
the boundary of Ω, that is, 𝜎 ⊂ 𝜕Ω, in which case 𝜎 is said to be an external face, or there exists (K,L) ∈2 with K ≠ L
such that K ∩ L = 𝜎: we denote in this case 𝜎 = K|L and 𝜎 is said to be an internal face. We denote by ext and int the
set of external and internal faces, respectively. For K ∈ and 𝜎 ∈  , we denote by |K| the measure of K and by |𝜎| the
(d − 1)-measure of the face 𝜎.

The discretization is staggered in the sense that the scalar and vector unknowns are not collocated:

- the unknowns associated to the density, and to any other scalar variable involved in the problem, as for instance the
pressure, are associated with the cells of the primal mesh; limiting the list of set of scalar fields to the density, the
pressure p and the internal energy e (which will be sufficient for the numerical applications presented in Section 5),
the corresponding unknowns are denoted by (𝜌K)K∈, (pK)K∈ and (eK)K∈;

- the degrees of freedom for the velocity are defined on a dual mesh using the Rannacher–Turek non-conforming
low-order finite element approximation8 and are denoted (u𝜎)𝜎∈ with u𝜎 = (u𝜎,1, … ,u𝜎,d); they are identified with
the mean value of the velocity component over the face.

The dual mesh is constructed as follows (see Figure 1): if K ∈ is a rectangle or a rectangular cuboid, we denote by
xK the mass center of K and we construct DK,𝜎 as the cone with basis 𝜎 and with vertex xK ; this definition is extended to
a general cell K, by supposing that K is split in the same number of sub-cells (the geometry of which does not need to be
specified) and with the same connectivity and the same measure (area of volume) |DK,𝜎| equal to |K|∕4 for a quadrangle
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BRUNEL et al. 1107

F I G U R E 1 Primal and dual meshes for the Rannacher–Turek elements. [Colour figure can be viewed at wileyonlinelibrary.com]

and |K|∕6 for a hexahedron. We now define D𝜎 , the dual cell associated to 𝜎, as D𝜎 = DK,𝜎 ∪ DL,𝜎 if 𝜎 = K|L ∈ int and
D𝜎 = DK,𝜎 if 𝜎 ∈ (K) ∩ ext; its measure is denoted by |D𝜎|. We then denote by ̃(D𝜎) the set of dual faces of D𝜎 , by
𝜖 = D𝜎|D𝜎′ the face separating two dual cells D𝜎 and D𝜎′ and by ̃ int the set all internal dual faces.

Finally, for the sake of simplicity, a constant time step denoted by 𝛿t is used for the time discretization, with 𝛿t = T∕N.
We define tn = n 𝛿t, 0 ≤ n ≤ N, and the notations for the discrete unknowns at step n are obtained from the notations
for space discretization introduced above by adding an index n. Hence, finally, the unknowns involved in the definition
of the convection operator are

(
𝜌

n
K
)

K∈, 0≤n≤N and (un
𝜎)𝜎∈ , 0≤n≤N .

3 A CENTERED LIMITED MOMENTUM CONVECTION OPERATOR

The purpose of this section is to build the momentum convection operator proposed in this article. The presentation
requires three steps: first, we suppose a finite volume expression of the discrete mass balance, posed on the primal cells,
and thus featuring mass fluxes across the primal faces; second, from this expression, we deduce densities associated to the
dual cells and mass fluxes across the dual faces, computed from their primal analogues and which satisfy a discrete mass
balance over the dual cells; finally, this latter mass balance is used to obtain a momentum convection operator, taking
itself the form of a finite volume discretization over the dual cells.

The mass balance on the primal cells: Let us first address the discretization of the mass balance equation (2).
Since, in the Rannacher–Turek element, the pressure is piecewise constant over the cells, the natural mass balance (or, at
least, for incompressible flows, the natural divergence-free constraint) takes a finite volume like formulation, posed over
the primal cells. With an explicit-in-time discretization of the convection flux, this equation thus reads, for 0 ≤ n ≤ N − 1
and K ∈:

|K|
𝛿t

(
𝜌

n+1
K − 𝜌

n
K
)
+ |K| div(𝜌u)nK = 0, div(𝜌u)nK =

1
|K|

∑

𝜎∈(K)
Fn

K,𝜎
, (5)

where Fn
K,𝜎

stands for the (primal) numerical mass flux across 𝜎 outward K and is defined by:

∀𝜎 = K|L ∈ int, Fn
K,𝜎

= |𝜎| 𝜌n
𝜎 un

𝜎 ⋅ nK,𝜎 ,

with nK,𝜎 the normal vector to the face 𝜎 outward K and 𝜌
n
𝜎 an approximation of the density at the face 𝜎 at tn, which

does not need to be specified in this section. We suppose that the cell densities are positive at all time steps. This may be
the consequence of the fact that they are the solution to Equation (5) with a suitable choice of the discretization of the
normal fluxes Fn

K,𝜎
(see Remark 1 below) or that they are given by an expression of another variable(s) which ensures their

positivity. This latter case corresponds, for instance, to non-Boussinesq natural convection flows, where the density is a
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1108 BRUNEL et al.

function of the temperature; in such a problem, Equation (5) acts as a constraint on the velocity field. When the density
is constant, we recover the usual divergence-free constraint for the Rannacher–Turek element.

Face densities and dual mass fluxes: We now construct face densities and dual mass fluxes so as to ensure that a
similar discrete mass balance holds over the dual cells, that is, to obtain a relation of the form:

∀𝜎 ∈  , |D𝜎|
𝛿t

(
𝜌

n+1
D
𝜎

− 𝜌
n
D
𝜎

)
+

∑

𝜖∈̃(D
𝜎
)

Fn
𝜎,𝜖 = 0, (6)

where 𝜌n
D
𝜎

(resp. 𝜌n+1
D
𝜎

) is the density at the face 𝜎 and at time step tn (resp. tn+1), and Fn
𝜎,𝜖 a (conservative) mass flux through

𝜖 outward D𝜎 . For the internal faces, the face densities are defined as a weighted average of the density unknowns in the
cells adjacent to 𝜎:

∀𝜎 ∈ int, 𝜎 = K|L, and for k = n and k = n + 1, |D𝜎| 𝜌k
D
𝜎

= |DK,𝜎| 𝜌k
K + |DL,𝜎| 𝜌k

L. (7)

For an external face 𝜎 of adjacent cell K, we just set 𝜌n
D
𝜎

= 𝜌
n
K . With this choice, the dual discrete mass balance (7) holds

provided that the dual mass fluxes Fn
𝜎,𝜖 are chosen adequately. To this purpose, for 𝜖 included in the primal cell K and 𝜎 a

face of K, the mass fluxes F𝜎,𝜖 are obtained by a linear combination of the mass fluxes through the primal faces of K. Let
us give the general principle of the construction of the dual fluxes. We first consider an internal face 𝜎 = K|L. Since the
sub-cells DK,𝜎 all have the same measure |DK,𝜎| = |K|∕q with q = 4 for quadrangles and q = 6 for generalized hexahedra,
Equation (7) yields that

|D𝜎|
𝛿t

(
𝜌

n+1
D
𝜎

− 𝜌
n
D
𝜎

)
= 1

q

(
|K|
𝛿t

(
𝜌

n+1
K − 𝜌

n
K
)
+ |L|

𝛿t
(
𝜌

n+1
L − 𝜌

n
L
))

. (8)

Hence, if the dual fluxes are chosen so that the equality

∑

𝜖∈̃(D
𝜎
)

Fn
𝜎,𝜖 =

1
q

(
∑

𝜎′∈(K)
Fn

K,𝜎′
+

∑

𝜎′∈(L)
Fn

L,𝜎′

)

(9)

holds, adding these two latter equalities yields that the dual mass balance (6) is satisfied. The equality (9) is obtained by
choosing the dual fluxes Fn

𝜎,𝜖 on the faces 𝜖 of D𝜎 that are inside the cell K so that

Fn
K,𝜎
+

∑

𝜖∈̃(D𝜖 )
𝜖⊂K

Fn
𝜎,𝜖 =

1
q

∑

𝜎′∈(K)
Fn

K,𝜎′
. (10)

Indeed, adding this equality with its equivalent for the cell L yields (9). Writing relation (10) for all the half-diamond
cells of K, we obtain a system for the dual fluxes (F𝜎,𝜖)𝜎∈(K), 𝜖⊂K which is singular but admits solutions. Any of them
reads as a set of relations of the desired form for the dual mass fluxes, namely, for 𝜖 ⊂ K, an expression of Fn

𝜎,𝜖 as a linear
combination of the primal fluxes

(
Fn

K,𝜎

)

𝜎∈(K)
. In addition, we show in Reference 18 that any linear expression with

bounded coefficients satisfying (10) yields a consistent scheme, in the Lax-Wendroff sense. The linear expressions used in
practice may be found in Reference 10. For an external face 𝜎 of the cell K, the above arguments may be readily simplified
by suppressing the terms associated to the neighbor cell in (8) and (9). This construction of the convection operator is
quite general with respect to the geometry of the primal cell, and we extend it in Reference 18 to pyramids and prisms.

Remark 1 (On the face densities). Two different values of the density 𝜌 at the interfaces 𝜎 have been intro-
duced, namely 𝜌n

𝜎 and 𝜌
n
D
𝜎

. Both are computed from the cell unknowns 𝜌n
K , but take a different expression. The

values 𝜌n
𝜎 are used to compute the mass fluxes and, if the density is computed from the mass balance (5), they

can be given by the upwind choice or obtained by a MUSCL technique, to preserve the positivity of the den-
sity. By contrast, the values 𝜌n

D
𝜎

are used to define the discrete momentum convection operator, as we proceed
to see.

The momentum convection operator: The densities 𝜌D
𝜎

and fluxes Fn
𝜎,𝜖 are then used for the definition of the

discrete momentum convection term C(𝜌,u)n+1
𝜎,i , that is, the discretization of the continuous term (𝜌,ui) = 𝜕t(𝜌ui) +
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BRUNEL et al. 1109

div(𝜌uiu). For 1 ≤ i ≤ d and 𝜎 ∈  , this discrete term takes the following form:

C(𝜌,u)n+1
𝜎,i = 1

𝛿t

(
𝜌

n+1
D
𝜎

un+1
𝜎,i − 𝜌

n
D
𝜎

un
𝜎,i

)
+ div(𝜌uiu)n𝜎, with div(𝜌uiu)n𝜎 =

1
|D𝜎|

∑

𝜖∈̃(D
𝜎
)

Fn
𝜎,𝜖 un

𝜖,i, (11)

where un
𝜖,i is an approximation of ui over the face 𝜖 at time tn. For a boundary face 𝜎 ∈ ext, one of the dual faces of D𝜎 is

the face 𝜎 itself. If this primal/dual face is included in a part of the boundary where the velocity is prescribed, no equation
is written for un+1

𝜎 (it is just set to the prescribed value) and no definition is needed for un
𝜖,i; in the other case (i.e., for a

Neumann boundary condition), we suppose that the flow leaves the computational domain, and we set un
𝜖,i to the upwind

value, that is, un
𝜖,i = un

𝜎,i. For an internal dual face, un
𝜖,i is obtained by a centered limited approximation with the limitation

technique introduced in Reference 16, which implements the following procedure. Let us recast the convection term
C(𝜌,u)n+1

𝜎,i as

C(𝜌,u)n+1
𝜎,i = 1

𝛿t
𝜌

n+1
D
𝜎

(
un+1
𝜎,i − ūn+1

𝜎,i

)
,

with

ūn+1
𝜎,i = 1

𝜌
n+1
D
𝜎

(
𝜌

n
D
𝜎

un
𝜎,i − 𝛿t div(𝜌uiu)n𝜎

)
= 1

𝜌
n+1
D
𝜎

⎛
⎜
⎜
⎝
𝜌

n
D
𝜎

un
𝜎,i −

𝛿t
|D𝜎|

∑

𝜖∈̃(D
𝜎
)

Fn
𝜎,𝜖un

𝜖,i

⎞
⎟
⎟
⎠
.

The discrete convection operator is said to be monotone if the term ūn+1
𝜎,i can be written as a convex combination of

degrees of freedom of un
i (which, for consistency reasons, must be associated to faces located in the neighborhood of 𝜎); for

instance, such a property would ensure a discrete maximum principle for the transport equation, or a convection-diffusion
equation with a suitable (only available on specific meshes) discretization of the diffusion term. Let us now introduce
some conditions for the values un

𝜖,i which ensure that we obtain such a convex combination. We recast ūn+1
𝜎,i as

ūn+1
𝜎,i = 1

𝜌
n+1
D
𝜎

⎡
⎢
⎢
⎣

⎛
⎜
⎜
⎝
𝜌

n
D
𝜎

− 𝛿t
|D𝜎|

∑

𝜖∈̃(D
𝜎
)

Fn
𝜎,𝜖

⎞
⎟
⎟
⎠

un
𝜎,i −

𝛿t
|D𝜎|

∑

𝜖∈̃(D
𝜎
)

Fn
𝜎,𝜖

(
un
𝜖,i − un

𝜎,i

)⎤
⎥
⎥
⎦
. (12)

The mass balance equation (6) yields

1
𝜌

n+1
D
𝜎

⎛
⎜
⎜
⎝
𝜌

n
D
𝜎

− 𝛿t
|D𝜎|

∑

𝜖∈̃(D
𝜎
)

Fn
𝜎,𝜖

⎞
⎟
⎟
⎠
= 1. (13)

Equation (12) may thus be recast as:

ūn+1
𝜎,i = un

𝜎,i −
𝛿t

𝜌
n+1
D
𝜎

|D𝜎|

∑

𝜖∈̃(D
𝜎
)

Fn
𝜎,𝜖

(
un
𝜖,i − un

𝜎,i

)
. (14)

The coefficients multiplying the velocities un
𝜎,i and un

𝜖,i on the right-hand side of this relation are

un
𝜎,i ∶ 1 + 𝛿t

𝜌
n+1
D
𝜎

|D𝜎|

∑

𝜖∈̃(D
𝜎
)

Fn
𝜎,𝜖, un

𝜖,i, for 𝜖 ∈ ̃(D𝜎) ∶ −
𝛿t

𝜌
n+1
D
𝜎

|D𝜎|
Fn
𝜎,𝜖.

Therefore, their sum is equal to 1. In addition, the coefficient of un
𝜎,i is non-negative under the CFL condition

CFL = max
𝜎∈

⎧
⎪
⎨
⎪
⎩

𝛿t
𝜌

n+1
D
𝜎

|D𝜎|

∑

𝜖∈̃(D
𝜎
)

|Fn
𝜎,𝜖|

⎫
⎪
⎬
⎪
⎭

≤ 1. (15)
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1110 BRUNEL et al.

Now we wish to express un
𝜖,i in terms of the unknowns

(
un
𝜎′,i

)

𝜎′∈
in such a way that ūn+1

𝜎,i is a convex combination of the

unknowns
(

un
𝜎′,i

)

𝜎′∈
, which is a discrete analogue to the fact that the continuous operator (𝜌,ui) = 𝜕t(𝜌ui) + div(𝜌uiu)

satisfies a maximum principle, since it may be recast as a transport operator thanks to the mass balance. We observe that
we indeed obtain a convex combination at the right hand side of Equation (14) if the following condition holds for each
𝜖 = D𝜎|D𝜎′ ∈ ̃ int:

∃𝛼𝜎
𝜖 ∈ [0, 1], ∃�̃� ∈  such that un

𝜖,i − un
𝜎,i =

|||||||

𝛼
𝜎
𝜖

(
un
𝜎,i − un

�̃�,i

)
if F𝜎,𝜖 ≥ 0,

𝛼
𝜎
𝜖

(
un
�̃�,i − un

𝜎,i

)
otherwise.

(16)

Of course, in this relation, both the coefficient 𝛼𝜎
𝜖 and the face �̃� may change at each time step, and the face �̃� is searched in

the neighborhood of 𝜎 in practice. We now deduce from the relation (16) a constructive process to compute the quantities
un
𝜖,i. Let 𝜖 be a given internal face, and let D𝜎− (resp. D𝜎+) denote the adjacent upwind (resp. downwind) dual cell to the face

𝜖 (i.e., F𝜎−,𝜖 ≥ 0, see Figure 2). Let𝜖(D𝜎−) (resp.𝜖(D𝜎+)) be a set of neighboring dual cells of D𝜎− (resp. D𝜎+). Denoting
by I(a, b) the interval [a, b] if a ≤ b and [b, a] otherwise, the following assumptions are then a transcription of Condition
(16) written for 𝜎+ and 𝜎

−:

∃ D𝜏+ ∈𝜖(D𝜎+) such that un
𝜖,i ∈ I

(
un
𝜏+,i,un

𝜏+,i +
𝜉
+

2

(
un
𝜎+,i − un

𝜏+,i

))
∶= I+, (17a)

∃ D𝜏− ∈𝜖(D𝜎−) such that un
𝜖,i ∈ I

(
un
𝜎−,i,un

𝜎−,i +
𝜉
−

2

(
un
𝜎−,i − un

𝜏−,i

))
∶= I−, (17b)

where 𝜉+ and 𝜉
− are two numerical parameters lying in the interval [0, 2]. These parameters have to be chosen by the user,

and are usually kept constant through the whole computation; decreasing their value makes the algorithm limitation
more restrictive. The set𝜖(D𝜎+) is always required to contain D𝜎− , with the following two consequences: first, the value
un
𝜎−,i always belongs to both intervals I+ and I−, so their intersection is not void and the scheme is always defined; sec-

ond, setting 𝜉
+ = 𝜉

− = 0 yields the usual upwind scheme. To make the definition of the scheme complete, we now need
to define the sets𝜖(D𝜎+) and𝜖(D𝜎−). Here we choose𝜖(D𝜎+) = {D𝜎−}, so that the condition (17a) implies that un

𝜖,i is
a convex combination of un

𝜎−,i and un
𝜎+,i. Furthermore, if 𝜉+ ≤ 1, the hypothesis (17a) yields u𝜖,i ∈ I(u𝜎−,i, ū𝜖,i) where u𝜎−,i,

u𝜖,i and ū𝜖,i are the values given by the upwind, the centered limited and the centered discretization respectively; note that
the centered limited discretization thus yields in this case a more diffusive scheme than the centered discretization and
less diffusive than the upwind discretization, whatever the choice of 𝜉+ and 𝜉

− in the (0, 2] interval. Hence in our numer-
ical experiments, we choose to set 𝜉+ ≤ 1, in order to recover a control of the discrete kinetic energy, see Section 4.1; note
also that considering 𝜉

+
> 1 is generally motivated so as to allow a second order interpolation of the unknown at the face,

which here does not make sense since the dual mesh cannot be built explicitly except in the case of simplicial or Carte-
sian meshes (recall that in this work we are concerned with general quadrangular or hexahedral meshes). Concerning
𝜖(D𝜎−), several choices are possible:

- a simple choice is to take the neighboring cells of D𝜎− :

𝜖(D𝜎−) = {(D𝜏)𝜏∈ such that D𝜏 shares a face with D𝜎−};

- the previous set can be restricted to the upstream neighboring cells of D𝜎− :

𝜖(D𝜎−) =
{
(D𝜏)𝜎∈ such that D𝜏 shares a face 𝜂 with D𝜎− and F𝜎,𝜂 ≥ 0

}
;

- another possibility is to take the opposite cell to D𝜎+ with respect to D𝜎− (see Figure 2), that is,

𝜖(D𝜎−) = {dual cell D𝜏 which shares a face 𝜂 with D𝜎−

such that 𝜖 and 𝜂 have no common vertex (d = 2) or edge (d = 3)}.

The last choice was selected in our numerical experiments, in the interior of the computational domain. For dual
edges with one of the adjacent cells itself adjacent to the boundary, depending on the sign of the mass fluxes, this choice
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BRUNEL et al. 1111

F I G U R E 2 Left: Dual cells involved in the definition of the convection flux. 𝜖: considered dual face. D𝜎− and D𝜎+ : upwind and
downwind dual cells of 𝜖 (i.e., 𝜖 = D𝜎− |D𝜎+ and F𝜎− ,𝜖 ≥ 0); 𝜂: dual face of D𝜎− which does not share a vertex with 𝜖 and thus separates D𝜎−

from the opposite dual cell to 𝜖; D𝜏 : opposite dual cell. Right: a case where the opposite cell does not exist. [Colour figure can be viewed at
wileyonlinelibrary.com]

may be impossible if the opposite cell does not exist (see Figure 2); in such a case, the choice for un
𝜖,i boils down to the

upwind choice.
We are now in a position to give the algorithm used to compute the quantities un

𝜖,i:

(i) Compute a tentative value un
𝜖,i with a convex combination of the values (in numerical experiments, the

centered choice) at the surrounding faces.
(ii) The flux Fn

𝜎,𝜖 being given, determine the upwind diamond cell D𝜎− and the downwind diamond cell D𝜎+ , and
choose accordingly the neighboring sets𝜖(D𝜎−) and𝜖(D𝜎+).

(iii) Compute an admissible interval I+ ∩ I− for u𝜖,i by (17).
(iv) Compute un

𝜖,i by projecting the tentative centered value un
𝜖,i onto the interval obtained in the previous step.

Remark 2 (Deriving an implicit limited scheme). Since this procedure is not linear, we cannot expect to derive
an explicit formula to compute the values of the coefficients a𝜎

𝜖 . Their evaluation is however not necessary
in order to define an explicit scheme: the presented algorithm univocally defines the value un

𝜖,i. But, for this
reason, we cannot easily define an implicit-in-time limited scheme. However, two strategies may be envisaged:

- a first technique would consist of an iterative process at each time step: in an inner loop, advance the veloc-
ity by replacing in the momentum equation the limited convection operator at inner step k, divM(𝜌uiu)k𝜎 , by
divU(𝜌uiu)k+1

𝜎 − divU(𝜌uiu)k𝜎 + divM(𝜌uiu)k𝜎 , where the subscript U denote the standard upwind convection
operator (i.e., faces values u𝜖,i are set to the upwind value) and the superscript k + 1 indicate an implicit
discretization, and then loop until acceptable convergence is reached;
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1112 BRUNEL et al.

- another technique would be to first compute the value un
𝜖,i, then use (16) (or rather (17)) to compute the

coefficients a𝜎
𝜖 thanks to un

𝜖,i and the (un
𝜎)𝜎∈ . Then, express an implicit value at the interface un+1

𝜖,i as linear
combination of the

(
un+1
𝜎

)
𝜎∈ thanks to the a𝜎

𝜖 .

Note that the convergence of the first algorithm may not be proven and the second one does not ensure the
monotonicity of the operator (the coefficients a𝜎

𝜖 may not be suitable for the upgraded values); both techniques
are also more expensive from a computational point of view.

4 A DISCRETE KINETIC ENERGY IDENTITY AND SOME APPLICATIONS

In this section, we first focus on the proposed centered limited finite volume convection operator and show that it satisfies
an identity which may be seen as a building brick for the derivation of a kinetic energy balance (or, equivalently, an entropy
identity for the entropy function 𝜂(ui) = 1

2
u2

i ). We then give two applications of this result: first, we establish a stability
property for a convection-diffusion problem, with an implicit discretization of the diffusion term, which may readily be
extended to obtain stability estimates for incompressible or barotropic flows; second, we build a consistent scheme for
the Euler equations based on a discrete solution of a (corrected) internal energy balance.

4.1 A local identity for the discrete convection operator

In the continuous setting, let us assume that the mass balance equation (2) holds. Let 1 ≤ i ≤ d; for sufficiently regular
density and velocity functions, using twice the mass balance to switch from a convection to a transport operator for ui
and then from a transport back to a convection operator for u2

i , leads to:

ui (𝜕t(𝜌ui) + div(𝜌uiu)) = 𝜌ui (𝜕tui + u ⋅ 𝛁ui) =
1
2
𝜌
(
𝜕t
(

u2
i
)
+ u ⋅ 𝛁

(
u2

i
))
= 𝜕t

(

𝜌

u2
i

2

)

+ div

(

𝜌

u2
i

2
u

)

. (18)

Our aim here is to derive a discrete analogue of this identity. For the sake of simplicity, we focus on the term uiC(𝜌,u)n+1
𝜎,i

for the internal faces 𝜎 ∈ int of the mesh, where C(𝜌,u)n+1
𝜎,i is the discrete convection operator defined by (11). We mimick

the derivation of the identity (18) and therefore recast the convection term as a transport one; in order to do so, we again
suppose that the dual mass fluxes and the face densities are constructed so as to ensure that a discrete mass balance of
the form (6) holds over the dual cells.

We are now in position to state a discrete analogue to Equation (18) (which, however, features a rest term). This result
can be seen as a direct consequence of Reference 19 (Lemma A1); for the sake of clarity, we reformulate it here in a way
that is more convenient for the applications of this article.

Lemma 1 (Approximate transport operator for the kinetic energy). Assume that Equation (6) holds. Then,
for 1 ≤ i ≤ d, 𝜎 ∈  and 0 ≤ n ≤ N − 1:

|D𝜎| un+1
𝜎,i C(𝜌,u)n+1

𝜎,i = |D
𝜎
|

2 𝛿t

(
𝜌

n+1
D
𝜎

(
un+1

i,𝜎

)2
− 𝜌

n
D
𝜎

(
un

i,𝜎

)2
)
+ 1

2

∑

𝜖∈̃(D
𝜎
)

Fn
𝜎,𝜖

(
un

i,𝜖

)2
+

∑

𝜖∈̃(D
𝜎
)

Tn+1
𝜎,𝜖,i + Rn+1

𝜎,i ,

with

Tn+1
𝜎,𝜖,i = −

1
2

Fn
𝜎,𝜖

(
un

i,𝜖 − un
i,𝜎

)2
, (19)

Rn+1
𝜎,i = |D𝜎|

2 𝛿t
𝜌

n+1
D
𝜎

(
un+1

i,𝜎 − un
i,𝜎

)2
+
(

un+1
i,𝜎 − un

i,𝜎

) ∑

𝜖∈̃(D
𝜎
)

Fn
𝜎,𝜖

(
un

i,𝜖 − un
i,𝜎

)
. (20)

Proof. Let 𝜎 ∈ int and 0 ≤ n < N − 1. Subtracting the dual mass balance equation (6) multiplied by un
i,𝜎 yields:

1
𝛿t

(
𝜌

n+1
D
𝜎

un+1
i,𝜎 − 𝜌

n
D
𝜎

un
i,𝜎

)
+ 1
|D𝜎|

∑

𝜖∈̃(D
𝜎
)

Fn
𝜎,𝜖un

i,𝜖 =
𝜌

n+1
D
𝜎

𝛿t

(
un+1

i,𝜎 − un
i,𝜎

)
+ 1
|D𝜎|

∑

𝜖∈̃(D
𝜎
)

Fn
𝜎,𝜖

(
un

i,𝜖 − un
i,𝜎

)
.
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BRUNEL et al. 1113

The left hand side of this relation is a discretization of the conservative form of the convection operator
𝜕t(𝜌ui) + div(𝜌uiu), while the right hand side may be seen as a discretization of the non-conservative form
𝜌(𝜕tui + u ⋅ 𝛁ui). We now multiply the right hand side of the previous equality (which is precisely C(𝜌,u)n+1

𝜎,i )
by |D𝜎| un+1

i,𝜎 and use (twice) the identity 2a(a − b) = a2 − b2 + (a − b)2, once for the time derivative term and
once for the “velocity gradient term,” to obtain:

|D𝜎| un+1
𝜎,i C(𝜌,u)n+1

𝜎,i = |D𝜎|
2 𝛿t

𝜌
n+1
D
𝜎

((
un+1

i,𝜎

)2
−
(

un
i,𝜎

)2
)
+ |D𝜎|

2 𝛿t
𝜌

n+1
D
𝜎

(
un+1

i,𝜎 − un
i,𝜎

)2

+ un
i,𝜎

∑

𝜖∈̃(D
𝜎
)

Fn
𝜎,𝜖

(
un

i,𝜖 − un
i,𝜎

)
+
(

un+1
i,𝜎 − un

i,𝜎

) ∑

𝜖∈̃(D
𝜎
)

Fn
𝜎,𝜖

(
un

i,𝜖 − un
i,𝜎

)

= |D𝜎|
2 𝛿t

𝜌
n+1
D
𝜎

((
un+1

i,𝜎

)2
−
(

un
i,𝜎

)2
)
+ |D𝜎|

2 𝛿t
𝜌

n+1
D
𝜎

(
un+1

i,𝜎 − un
i,𝜎

)2

+ 1
2

∑

𝜖∈̃(D
𝜎
)

Fn
𝜎,𝜖

((
un

i,𝜖

)2
−
(
un

i,𝜎

)2
)
− 1

2
∑

𝜖∈̃(D
𝜎
)

Fn
𝜎,𝜖

(
un

i,𝜖 − un
i,𝜎

)2
+
(
un+1

i,𝜎 − un
i,𝜎

) ∑

𝜖∈̃(D
𝜎
)

Fn
𝜎,𝜖

(
un

i,𝜖 − un
i,𝜎

)
.

We now reverse the trick used previously to switch from the non-conservative form of the convection opera-
tor (this time for 1

2
u2

i ) to the conservative form (which amounts to add this time Equation (6) multiplied by
1
2
|D𝜎|

(
un

i,𝜎

)2
). This changes the first term of the first and second lines of the right hand side, and yields the

desired identity. ▪

In the previous lemma, the expression of the approximation of ui at the dual faces is not specified. Let us then discuss
the properties of the remainder term Tn+1

𝜎,𝜖,i defined by (19) for the specific choice of ui given by the centered limited scheme
introduced in the previous section. For a dual face 𝜖 = D𝜎|D𝜎′ , 𝜎, 𝜎′ ∈  , since the set𝜖(D𝜎+) of neighbors of the dual
cell D𝜎+ is chosen as {D𝜎−}, the condition (17a) yields:

un
i,𝜖 =

(

1 −
𝜉

n
i,𝜖

2

)

un
i,𝜎− +

𝜉
n
i,𝜖

2
un

i,𝜎+ ,

with 𝜉
n
i,𝜖 ∈ [0, 𝜉

+], so 𝜉
n
i,𝜖 ∈ [0, 1] if we choose 𝜉

+ = 1, as in the numerical experiments of Section 5 below. In this relation,
we recall that D𝜎− (resp. D𝜎+) is the upwind (resp. downwind) dual cell with respect to 𝜖, that is, the dual cell of {D𝜎,D𝜎′ }
such that Fn

𝜎−,𝜖 ≥ 0 (resp. Fn
𝜎+,𝜖
≤ 0). Considering both possible signs of Fn

𝜎,𝜖 , we obtain the following expression for un
i,𝜖:

un
i,𝜖 =

un
i,𝜎 + un

i,𝜎′

2
+ 1

2
sgn

(
Fn
𝜎,𝜖

) (
1 − 𝜉

n
i,𝜖

) (
un

i,𝜎 − un
i,𝜎′

)
.

We recover a classical presentation of the convection scheme as a centered scheme possibly corrected by a diffusion term;
𝜉

n
i,𝜖 = 1 indeed corresponds to the centered scheme, while Fn

𝜎,𝜖 sgn
(

Fn
𝜎,𝜖

) (
1 − 𝜉

n
i,𝜖

)
≥ 0, so that the second term can be

seen as a numerical diffusion term (with a diffusion coefficient taking its maximal value for 𝜉
n
i,𝜖 = 0, i.e., the upwind

choice). With this expression of un
i,𝜖 , the term Tn+1

𝜎,𝜖,i reads:

Tn+1
𝜎,𝜖,i = −

1
8

(
1 +

(
1 − 𝜉

n
i,𝜖

)2
)

Fn
𝜎,𝜖

(
un

i,𝜎 − un
i,𝜎′

)2
+ 1

4

(
1 − 𝜉

n
i,𝜖

)
|Fn

𝜎,𝜖|
(

un
i,𝜎 − un

i,𝜎′

)2
. (21)

Thanks to the conservativity of the dual mass fluxes, the first part of the right hand side is also conservative; the second
part may be seen as a numerical dissipation.

4.2 A stability result

Suppose, for the sake of simplicity, that the ith component of the velocity ui satisfies a nonlinear convection-diffusion
equation of the form:

𝜕t(𝜌ui) + div(𝜌uiu) − 𝜇𝚫ui = 0, (22)
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1114 BRUNEL et al.

where 𝜇 is a positive parameter. This equation can be seen as a momentum balance equation with no source term and
without the pressure gradient term. The diffusion term may arise either from a physical fluid viscosity or from a numerical
stabilization term. Assuming that a mass balance equation holds, multiplying Equation (22) by ui yields, by the same
computation for the convection term as in the previous section:

1
2
𝜕t
(
𝜌u2

i
)
+ 1

2
div(𝜌u2

i u) − 𝜇 div(ui𝛁ui) + 𝜇 ||𝛁ui||2 = 0. (23)

Now suppose that the velocity is prescribed to zero on 𝜕Ω. Integrating the previous formula over the domainΩ, then using
the divergence theorem for the convection term and Green’s identity for the diffusion term yields:

1
2 ∫Ω

𝜕t
(
𝜌u2

i
)

dx + 𝜇
∫Ω

||𝛁ui||2 dx = 0. (24)

Integrating in time, this equality yields a control of 𝜌1∕2ui in the L∞(0,T;L2(Ω)) norm and of 𝜇1∕2ui in the L2(0,T;H1(Ω))
norm. In addition, we remark that, for 𝜑 ∈ C∞

c (Ω × [0,T)),

∫

T

0 ∫Ω
𝜇 div(ui𝛁ui) 𝜑 dx dt = −

∫

T

0 ∫Ω
𝜇 ui𝛁ui ⋅ 𝛁𝜑 dx dt ≤ 𝜇

1∕2 ||ui||L2(Ω×(0,T)) ||𝜇1∕2ui||L2(0,T;H1(Ω)) ||𝛁𝜑||L∞(Ω×(0,T)).

If we consider a sequence of solutions to Equation (22) obtained with a sequence of vanishing viscosities, provided that 𝜌
is bounded by below by a positive real number (so that ui is controlled in L2), this integral thus tends to zero, and Equation
(23) may be used to obtain an entropy inequality, that is

1
2
𝜕t
(
𝜌u2

i
)
+ 1

2
div(𝜌u2

i u) ≤ 0,

in the distributional sense. Dealing with the real momentum balance equation requires to cope with a pressure gradient,
which is standard for incompressible and barotropic flows. In both cases, the estimate of 𝛁p ⋅ u is obtained thanks to the
mass balance equation and the equation of state. The simplest situation is the incompressible case, for which the term

𝛁p ⋅ u = div(p u) − p divu = div(p u),

yields an entropy flux; its integral over the computational domain vanishes thanks to the boundary conditions. The quan-
tity 1

2
𝜌|u|2 is now referred to as the kinetic energy and Equations (23) and (24) as the local and global, respectively, kinetic

energy balances.
Our goal here is to demonstrate a similar result for the centered limited finite volume convection operator introduced

in the previous section. It is well-known that such an operator is not L2-stable (while the first-order upwind discretization
is, under a CFL condition), but we show here that the L2-stability is recovered when a non-vanishing implicit-in-time dif-
fusion is added, for small enough time steps. As in the continuous setting in the above introduction, we restrict ourselves
to the discretization of the convection-diffusion problem for a component of the velocity, in such a way that the proposed
analysis may be used as a building brick for the study of staggered schemes for both incompressible and compressible
flows. We suppose homogeneous Dirichlet boundary conditions on the whole boundary and thus set the velocity to zero
on external faces; the scheme reads, for a given index i, 1 ≤ i ≤ d:

1
𝛿t

(
𝜌

n+1
D
𝜎

un+1
i,𝜎 − 𝜌

n
D
𝜎

un
i,𝜎

)
+ div(𝜌uiu)n𝜎 − (𝜇𝚫ui)n+1

𝜎 = 0, ∀𝜎 ∈ int. (25)

The discrete mass balance equation (6) over the dual cells is supposed to hold. The discretization of the diffusion term
is implicit and does not need to be precisely defined at this point. We only need to suppose that the following inequality
holds:

−
∑

𝜎∈int

|D𝜎| un+1
i,𝜎

(
𝜇𝚫un+1

i

)
𝜎
≥

∑

𝜖∈̃ int ,
𝜖=D𝜎 |D𝜎′

𝜇
n
𝜖 hd−2

K
𝜖

(
un+1

i,𝜎 − un+1
i,𝜎′

)2
, (26)

 10970363, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/fld.5276 by C

ea G
renoble, W

iley O
nline L

ibrary on [13/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



BRUNEL et al. 1115

where K𝜖 the primal cell in which 𝜖 is included and hK
𝜖

its diameter. This relation might be seen as a discrete analogue
to the inequality − ∫Ω ui𝜇𝚫ui dx ≥ ∫Ω 𝜇𝛁ui ⋅ 𝛁ui dx (recall that we have supposed homogeneous Dirichlet boundary con-
ditions). The viscosity 𝜇

n
𝜖 is supposed to be positive (and therefore, at least for a given discretization, bounded away from

zero), and the right hand side of Inequality (26) defines a discrete H1 semi-norm (precisely speaking, is equal to the square
of an H1 semi-norm), which we denote |ui| . If the diffusion operator is given by the standard finite elements discretiza-
tion based on the Rannacher–Turek element, this bound might be obtained thanks to the equivalence between the | ⋅ |
norm and the broken H1 semi-norm, which holds under regularity assumptions for the cells.

The following result is a global (i.e., integrated over the computational domain) estimate which may be seen as a
discrete analogue of Equation (24).

Theorem 1 (Stability for a convection-diffusion equation). Assume that Equation (6) holds, that 𝜌n
D
𝜎

≥ 0 for
𝜎 ∈ int and 0 ≤ n ≤ N − 1, and that the coercivity condition (26) for the diffusion term holds. Suppose that the
time step satisfies the following set of inequalities:

𝜂
n = 𝛿t

𝜅n ≤ 1 for 0 ≤ n ≤ N − 1, with

𝜅
n = min

⎧
⎪
⎪
⎨
⎪
⎪
⎩

21−d hd−2
K 𝜇

n
𝜖

(
Fn
𝜎,𝜖

)2
(

1
|D

𝜎
| 𝜌n+1

D𝜎

+ 1
|D

𝜎′ | 𝜌
n+1
D
𝜎′

) , 𝜖 ∈ ̃ int, 𝜖 = D𝜎|D𝜎′ , 𝜖 ⊂ K

⎫
⎪
⎪
⎬
⎪
⎪
⎭

.

(27)

Then the scheme (25), using the proposed centered limited scheme with 𝜉
+ = 1, is stable in the L2-norm, in the

sense that its solution satisfies the following inequality:

1
2

∑

𝜎∈int

|D𝜎|
(
𝜌

n+1
D
𝜎

(
un+1
𝜎

)2 − 𝜌
0
D
𝜎

(
u0
𝜎

)2
)
≤ 𝜂

0
𝛿t |u0|2


. (28)

Note that the right hand side only depends on the initial conditions for the velocity and the density, and, through
𝜂

0, on the density at the end of the first time step.

Remark 3 (Dependency of 𝜅n on the space discretization and flow characteristics). The dual mass fluxes
are obtained as a linear combination, with bounded coefficients, of the primal mass fluxes, see Reference 10.
More specifically, for 𝜖 ∈ int(D𝜎),

Fn
𝜎,𝜖 =

∑

𝜏∈(K
𝜖
)
𝛼
𝜖,𝜏

K
𝜖

Fn
K
𝜖
,𝜏
,

∑

𝜏∈(K
𝜖
)
|𝛼𝜖,𝜏

K
𝜖

| = 𝛼 with 𝛼 = 22−d
,

where Fn
K
𝜖
,𝜏
= |𝜏| 𝜌n

𝜏 un
𝜏 ⋅ nK

𝜖
,𝜏 (recall that K𝜖 is the primal cell in which 𝜖 is included). For the sake of simplicity,

let us suppose that the density is equal to a constant value, which we denote by 𝜌, and that the velocity is
bounded by a quantity umax, which yields |Fn

𝜎,𝜖| ≤ 22−d|𝜎| 𝜌 umax. Using |D𝜎| > |DK
𝜖
,𝜎| = |K𝜖|∕(2d) and |𝜎| <

hd−1
K
𝜖

, 𝜎 ∈ (K𝜖), we get

𝜅
n
≥

2d−5

d
|K𝜖|
hd

K
𝜖

min
{

𝜇
n
𝜖

u2
max𝜌

, 𝜖 ∈ ̃ int

}
,

which shows that 𝜅n only depends on the viscosity, the density, the velocity and the regularity of the mesh but
not on the mesh size.

Remark 4 (Evaluation of 𝜅n). The expression (27) of 𝜅n depends on the density at step n + 1, which may
suggest that its actual computation is impossible. In fact, we use in practice fractional-steps or explicit algo-
rithms so that the end-of-step velocity (or a substitute) is known before the solution of the momentum balance
equation.

Remark 5 (On the dependency of the right hand side of Equation (28) on the density at the end of the first
time step). In view of the expression of 𝜂n, relation (28) yields a control of

∑
𝜎∈int

|D𝜎| 𝜌n+1
D
𝜎

(
un+1
𝜎

)2, for 0 ≤
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1116 BRUNEL et al.

n ≤ N − 1, provided that we have a lower bound for the density at the end of the first time step. Such a lower
bound depends on the whole problem at hand, and on the algorithm used to solve it; in our applications,
however, it turns out that we often compute the density at t1 using the mass balance equation, with the initial
velocity and with a monotone approximation. To give an example, let us suppose that the mass balance is
discretized with an explicit upwind scheme, which reads:

|K|
𝛿t

(
𝜌

1
k − 𝜌

0
K
)
+

∑

𝜎=K|L
|𝜎| 𝜌0

K
(

u0
K,𝜎

)+ −
∑

𝜎=K|L
|𝜎| 𝜌0

L
(

u0
K,𝜎

)− = 0,

with u0
K,𝜎

= u0
𝜎 ⋅ nK,𝜎 ; here, for any real number r, we use the notation r+ = max(r, 0), r− = −min(r, 0). The

notation
∑

𝜎=K|L means that we sum over the internal faces of K, which implicitly implies that the mass flux
vanishes at the boundary, and that L is the cell sharing the face 𝜎 with K. The previous relation equivalently
reads:

𝜌
1
K =

(

1 − 𝛿t
|K|

∑

𝜎=K|L
|𝜎|

(
u0

K,𝜎

)+
)

𝜌
0
K +

𝛿t
|K|

∑

𝜎=K|L
|𝜎|

(
u0

K,𝜎

)−
𝜌

0
L. (29)

Let us suppose the following CFL condition:

max
K∈

𝛿t
|K|

∑

𝜎=K|L
|𝜎|

(
u0

K,𝜎

)+
≤ 1 − 1

a
, with a > 1.

Then, supposing that the initial density is positive, Equation (29) yields 𝜌1
K ≥ 𝜌

0
K∕a, and this uniform estimate

in turn yields an estimate of the right hand side of Equation (28) as a function of the initial data only. Similar
estimates may be derived for an explicit MUSCL discretization of the mass balance, or for an implicit upwind
one, thanks to a M-matrix argument.

Proof. Let 0 ≤ n ≤ N − 1 and 1 ≤ i ≤ d. Summing the result of the previous lemma over 𝜎 ∈ int and using
inequality (26) yields

1
2 𝛿t

∑

𝜎∈int

|D𝜎|
(
𝜌

n+1
D
𝜎

(
un+1

i,𝜎

)2
− 𝜌

n
D
𝜎

(
un

i,𝜎

)2
)
≤ −1 −2 − 1 − 2 −,

where the terms on the right hand side are defined by

1 =
1

2 𝛿t
∑

𝜎∈int

|D𝜎| 𝜌n+1
D
𝜎

(
un+1

i,𝜎 − un
i,𝜎

)2
,

2 =
∑

𝜎∈int

(
un+1

i,𝜎 − un
i,𝜎

) ∑

𝜖∈̃(D𝜎 ),
𝜖=D𝜎 |D𝜎′

Fn
𝜎,𝜖

(
un

i,𝜖 − un
i,𝜎

)
,

1 =
1
2
∑

𝜎∈int

∑

𝜖∈̃(D
𝜎
)

Fn
𝜎,𝜖

(
un

i,𝜖

)2
,

2 = −
1
2
∑

𝜎∈int

∑

𝜖∈̃(D𝜎 ),
𝜖=D𝜎 |D𝜎′

Tn+1
𝜎,𝜖,i,

 =
∑

𝜖∈̃ int ,
𝜖=D𝜎 |D𝜎′

𝜇
n
𝜖 hd−2

K
𝜖

(
un+1

i,𝜎 − un+1
i,𝜎′

)2
.

By conservativity, the sum 1 vanishes and, using the expression (21) of Tn+1
𝜎,𝜖,i, the sum 2 is non-negative. Let

us now turn to the term2. By assumption on the convection scheme, we have |un
i,𝜖 − un

i,𝜎| ≤ |un
i,𝜎′ − un

i,𝜎|, and
therefore

2 ≤
∑

𝜎∈int

|un+1
i,𝜎 − un

i,𝜎|
∑

𝜖∈̃(D𝜎 ),
𝜖=D𝜎 |D𝜎′

|Fn
𝜎,𝜖||un

i,𝜖 − un
i,𝜎| ≤

∑

𝜎∈int

|un+1
i,𝜎 − un

i,𝜎|
∑

𝜖∈̃(D𝜎 ),
𝜖=D𝜎 |D𝜎′

|Fn
𝜎,𝜖||un

i,𝜎′ − un
i,𝜎|.
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BRUNEL et al. 1117

Using the inequality ab ≤ a2

2𝜀
+ 𝜀b2

2
for two real numbers a and b and 𝜀 > 0 yields, with 𝜀 = 𝛿t

|D
𝜎
| 𝜌n+1

D𝜎

:

|un+1
i,𝜎 − un

i,𝜎|
∑

𝜖∈̃(D𝜎 ),
𝜖=D𝜎 |D𝜎′

|Fn
𝜎,𝜖| |un

i,𝜎′ − un
i,𝜎| ≤

|D𝜎|
2 𝛿t

𝜌
n+1
D
𝜎

(
un+1

i,𝜎 − un
i,𝜎

)2
+ 𝛿t

2 |D𝜎| 𝜌n+1
D
𝜎

⎛
⎜
⎜
⎜
⎝

∑

𝜖∈̃(D𝜎 ),
𝜖=D𝜎 |D𝜎′

|Fn
𝜎,𝜖| |un

i,𝜎′ − un
i,𝜎|

⎞
⎟
⎟
⎟
⎠

2

.

The sum of the first term over 𝜎 ∈  is equal to 1, whereas using the inequality
(∑n

i=0xi
)2
≤ n

∑n
i=0(xi)2 in

the second term, with n the number of the faces of a dual cell which is equal to 4 if d = 2 and 8 if d = 3 and
thus may be written 2d, yields for2:

−2 ≤ 1 +
∑

𝜎∈int

2d−1
𝛿t

|D𝜎| 𝜌n+1
D
𝜎

∑

𝜖∈̃(D𝜎 ),
𝜖=D𝜎 |D𝜎′

(
Fn
𝜎,𝜖

(
un

i,𝜎′ − un
i,𝜎

))2

= 1 +
∑

𝜖∈̃ int ,
𝜖=D𝜎 |D𝜎′

2d−1
𝛿t

(
1

|D𝜎| 𝜌n+1
D
𝜎

+ 1
|D𝜎′ | 𝜌n+1

D
𝜎′

)
(

Fn
𝜎,𝜖

)2
(

un
i,𝜎′ − un

i,𝜎

)2
.

Gathering all the previous information leads to:

1
2 𝛿t

∑

𝜎∈int

|D𝜎|
(
𝜌

n+1
D
𝜎

(
un+1

i,𝜎

)2
− 𝜌

n
D
𝜎

(
un

i,𝜎

)2
)

≤

∑

𝜖∈̃ int ,
𝜖=D𝜎 |D𝜎′

2d−1
𝛿t

(
1

|D𝜎| 𝜌n+1
D
𝜎

+ 1
|D𝜎′ | 𝜌n+1

D
𝜎′

)
(

Fn
𝜎,𝜖

)2
(

un
i,𝜎′ − un

i,𝜎

)2
−

∑

𝜖∈̃ int ,
𝜖=D𝜎 |D𝜎′

𝜇
n
𝜖 hd−2

K
𝜖

(
un+1

i,𝜎 − un+1
i,𝜎′

)2
.

Summing this inequality over all time steps tk with 0 ≤ k ≤ n, we get:

1
2 𝛿t

∑

𝜎∈int

|D𝜎|
(
𝜌

n+1
D
𝜎

(
un+1

i,𝜎

)2
− 𝜌

0
D
𝜎

(
u0

i,𝜎

)2
)
≤ − n+1 + n +  0

,

with


n+1 =

∑

𝜖∈̃ int ,
𝜖=D𝜎 |D𝜎′

𝜇
n
𝜖 hd−2

K
𝜖

(
un+1

i,𝜎 − un+1
i,𝜎′

)2
,


n =

n∑

k=1

∑

𝜖∈̃ int ,
𝜖=D𝜎 |D𝜎′

(

2d−1
𝛿t

(
1

|D𝜎| 𝜌k+1
D
𝜎

+ 1
|D𝜎′ | 𝜌k+1

D
𝜎′

)
(

Fk
𝜎,𝜖

)2 − 𝜇
k
𝜖hd−2

K
𝜖

) (
uk

i,𝜎′ − uk
i,𝜎

)2
,


0 =

∑

𝜖∈̃ int ,
𝜖=D𝜎 |D𝜎′

2d−1
𝛿t

(
1

|D𝜎| 𝜌1
D
𝜎

+ 1
|D𝜎′ | 𝜌1

D
𝜎′

)
(

F0
𝜎,𝜖

)2
(

u0
i,𝜎′ − u0

i,𝜎

)2
.

The term  n+1 is obviously positive, the sum n is negative thanks to the assumption on the time step, and
0 ≤ 𝜂

0 |u0
i |

2


. ▪

Remark 6 (Extension of this result to less-limited MUSCL schemes). In the present case, we have seen that,
since no geometrical interpolation for the velocity at the dual faces is possible, the choice 𝜉+ = 1 is reasonable.
However, a stability result may still be obtained if, for some reason, only the condition 𝜉 ≤ 2 (i.e., 𝜉+ = 2) was
imposed; in this case, the term −2 is no longer positive, but satisfies

−2 ≤
1
2

∑

𝜖∈̃ int ,
𝜖=D𝜎 |D𝜎′

|Fn
𝜎,𝜖|

(
un

i,𝜎′ − un
i,𝜎

)2
.
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1118 BRUNEL et al.

In order to obtain a stability estimate, we add this term to  and obtain (indexing now the terms 2 and 
with respect to time)

−n+1
2 −n

≤ −
∑

𝜖∈̃ int ,
𝜖=D𝜎 |D𝜎′

𝜇
n
𝜖 hd−2

K
𝜖

(
un+1

i,𝜎 − un+1
i,𝜎′

)2
, with 𝜇

n
𝜖 hd−2

K
𝜖

= 𝜇
n
𝜖 hd−2

K
𝜖

− 1
2
|Fn+1

𝜎,𝜖 |,

and to suppose that𝜇n
𝜖 is bounded by below away from zero. Note that, since Fn

𝜎,𝜖 is proportional to the measure
of the faces, this assumption is satisfied when the mesh size is small enough. The stability condition (27) is
then rephrased switching 𝜇n

𝜖 to 𝜇
n
𝜖 . In addition, the quantity−C0

2 (which only depends on the initial condition)
must now be added to the right hand side of the stability inequality (28); this term may be recast as the H1

seminorm |u0|2


multiplied by a factor proportional to the space and time steps product.

4.3 A consistent “internal-energy-based” staggered scheme for the full Euler equations

For shock solutions of the Euler equations, only the total energy equation makes sense, because of its conservative
character. This relation reads:

𝜕t(𝜌 E) + div(𝜌 E u) + div(p u) = 0, (30)

where E = 1
2
|u|2 + e, with e the internal energy. Formally, this equation may be seen as the sum of the kinetic balance:

𝜕t(𝜌Ek) + div(𝜌 Ek u) + 𝛁p ⋅ u = 0, Ek =
1
2
|u|2,

and the internal energy balance:

𝜕t(𝜌e) + div(𝜌eu) + p divu = 0. (31)

Solving this latter equation is appealing since a suitable discretization (both for the convection operator, with a
maximum-principle-preserving approximation, and for the term p divu, to take benefit of the fact that p vanishes when e
vanishes) leads to a conservation of the positivity of the internal energy; combining this approach with a discretization of
the mass balance equation which preserves the positivity of the density, we thus would obtain a scheme which preserves
the convex of admissible states (𝜌 ≥ 0, e ≥ 0 and, thanks to the equation of state, p ≥ 0), which is a non-trivial task (see
e.g., Reference 20 and references herein). Note also that the total energy is a function of unknowns discretized on both
the primal and the dual meshes, and discretizing only the internal energy balance allows to circumvent the technical dif-
ficulty of building an approximation of such a “composite” unknown. However, it may be anticipated (and is observed
in practice) that a blunt discretization of Equation (31) would yield a non-consistent scheme, giving solutions that do
not respect the Rankine–Hugoniot jump conditions at shocks. The problem stems from the fact that the discrete kinetic
energy balance equation features remainder terms which may be seen as a dissipation associated with numerical diffu-
sion, and which do not tend to zero when the time step and mesh size tend to zero, but to measures borne by the shocks.
The technique initially proposed in Reference 21 to solve this problem is to compensate these remainder terms in the
internal energy balance, in the following sense. Let us denote these terms by

(


n+1
𝜎

)
𝜎∈ , 0≤n<N and, Ω × (0,T) → R be

the function defined by

(x, t) = n+1
𝜎 for x ∈ D𝜎 and t ∈ (tn, tn+1).

The corrective terms in the internal energy balance are denoted by
(


n+1
K

)
K∈, 0≤n<N , associated with a function

(x, t) = n+1
K for x ∈ K and t ∈ (tn, tn+1),

and required to be such that the difference  − tends to zero in the distributional sense when the space and time steps
tend to zero. The consistency analysis may be found in Reference 22, and semi-explicit or explicit-in-time variants of the

 10970363, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/fld.5276 by C

ea G
renoble, W

iley O
nline L

ibrary on [13/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



BRUNEL et al. 1119

scheme may be found in References 21,19, and 17. In all these works, the discrete kinetic energy balance is obtained from
a first-order upwind discretization of the convection operator in the momentum balance; we generalize this construction,
here.

From the consistency analysis,22 it appears that only non-conservative terms have to be kept in the remainder of the
discrete kinetic energy balance, the conservative terms being possibly disregarded or not (they vanish, in the distributional
sense, when space and time steps tend to zero). From Lemma 1, it thus appears that a candidate forn+1

𝜎 is obtained by
adding to Rn+1

𝜎 the non-conservative part of
∑

𝜖∈̃(D
𝜎
) Tn+1

𝜎,𝜖,i, and summing over the component index:


n+1
𝜎 = |D𝜎|

2 𝛿t
𝜌

n+1
D
𝜎

||u
n+1
𝜎 − un

𝜎
||
2 +

d∑

i=1

(
un+1

i,𝜎 − un
i,𝜎

) ∑

𝜖∈̃(D
𝜎
)

Fn
𝜎,𝜖

(
un

i,𝜖 − un
i,𝜎

)
+

d∑

i=1

∑

𝜖∈̃(D
𝜎
)

1
4

(
1 − 𝜉

n
i,𝜖

)
|Fn

𝜎,𝜖|
(

un
i,𝜎 − un

i,𝜎

)2
,

where 𝜌
n+1
D
𝜎

is weighted average of the density in the neighboring cells, defined by (7). For 𝜎 ∈ int, 𝜎 = K|L, the terms of


n+1
𝜎 are distributed to K and L to obtain n+1

K = n+1
K,1 + 

n+1
K,2 + 

n+1
K,3 with:


n+1
K,1 = 𝜌K

2 𝛿t
∑

𝜎∈(K)
|DK,𝜎| ||u

n+1
𝜎 − un

𝜎
||
2
,


n+1
K,2 =

d∑

i=1

∑

𝜎∈(K)

(
un+1

i,𝜎 − un
i,𝜎

) ∑

𝜖∈̃(D
𝜎
), 𝜖⊂K

Fn
𝜎,𝜖

(
un

i,𝜖 − un
i,𝜎

)
,


n+1
K,3 =

d∑

i=1

∑

𝜖⊂K, 𝜖=𝜎|𝜎′

1
2

(
1 − 𝜉

n
i,𝜖

)
|Fn

𝜎,𝜖|
(

un
i,𝜎 − un

i,𝜎′

)2
.

5 NUMERICAL TESTS

The discretization of the convection operator presented in the above paragraphs was implemented in the open-source
CALIF3S software developed at IRSN.23 We now present the results obtained with CALIF3S, namely a comparison
between the upwind, centered, and centered limited choices, for several classical tests of the literature for incompressible
(Section 5.1), barotropic (Section 5.2), and compressible flows (Section 5.3).

Our aim here is two-fold:

- In the incompressible case, we use an IMEX discretization (implicit-in-time discretization of the diffusion term and
explicit-in-time discretization of the convection term) which matches the situation studied in Section 4.2. We expect
here the limitation of the centered scheme to bring some stability, with however a numerical diffusion significantly
lower than the upwind scheme. To assess this qualitative behavior, we intentionally use rather coarse meshes, because
they are representative of the situations often encountered in practice.

- In the case of the Euler equations, we check that the corrective term derived in Section 4.3 for the internal energy
balance indeed ensures consistency.

In the section devoted to barotropic equations, we check that the centered limited scheme reaches second order in the
specific case of uniform (in each direction) Cartesian grids, and observe how this accuracy deteriorates for perturbations
of these meshes.

5.1 Incompressible Navier–Stokes equation

We first turn to the incompressible Navier–Stokes equations, which read, on a domain Ω:

𝜕t(𝜌ui) + div(𝜌uiu) + 𝜕ip − div(𝜇(𝛁u + 𝛁ut))i = 0, 1 ≤ i ≤ d, (32a)

div(u) = 0. (32b)
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1120 BRUNEL et al.

Here, we suppose that the density is constant, and we set 𝜌 = 1 for the sake of simplicity. These equations must be supple-
mented by initial conditions for the velocity and suitable (especially for stability) boundary conditions, which are specified
hereafter in the presentation of each of the tests.

5.1.1 The scheme

This system is solved using a projection scheme (see Reference 24 for an overview). We write it supposing that the velocity
is prescribed on the boundary (so no equation is written for the corresponding unknowns), and refer to Reference 10 for
more general boundary conditions. It consists of the two following steps:

Prediction step − Solve for ũn+1 ∶

For 1 ≤ i ≤ d, ∀𝜎 ∈ int,
1
𝛿t

(
ũn+1
𝜎,i − un

𝜎,i

)
+ div

(
un

i un)
𝜎
+ (𝛁p)n

𝜎,i − div
(
𝜇 (𝛁ũn+1 + (𝛁ũn+1)t)

)
𝜎,i = 0.

(33a)

Correction step − Solve for pn+1 and un+1 ∶

For 1 ≤ i ≤ d, ∀𝜎 ∈ int,
1
𝛿t

(
un+1
𝜎,i − ũn+1

𝜎,i

)
+ (𝛁pn+1)𝜎,i − (𝛁pn)𝜎,i = 0,

(33b)

∀K ∈, div(un+1)K = 0. (33c)

The convection terms are those introduced in this article, with the density set to 1 in the mass fluxes. The term (𝛁p)n
𝜎,i

stands for the ith component of the discrete pressure gradient built at the face 𝜎, given by:

∀𝜎 ∈ int, 𝜎 = K|L, (𝛁p)n
𝜎,i =

|𝜎|
|D𝜎|

(pL − pK) nK,𝜎 ⋅ e(i), (34)

with e(i) the ith vector of the orthonormal basis of Rd, and nK,𝜎 the normal vector to the face 𝜎 outward the cell K. We use
the usual finite element discretization for the viscous term, which reads:

−div
(
𝜇(𝛁ũn+1 + (𝛁ũn+1)t)

)
𝜎,i = −

1
|D𝜎|

∑

K∈
∫K

(
𝜇(𝛁ũn+1 + (𝛁ũn+1)t)

)
∶ 𝛁𝝋(i)𝜎 dx, (35)

where𝝋(i)𝜎 stands for the vector-valued Rannacher–Turek finite element shape function associated with the ith component
of the velocity and to the face 𝜎 (with the version of the element where the mean value of the shape function over the face is
equal to 1) and the operator: is defined by A ∶ B =

∑d
i,j=1Ai,jBi,j for two matrices A and B of Rd×d. Finally, the discretization

of the divergence of the velocity on the primal mesh reads:

div(un+1)K =
1
|K|

∑

𝜎∈(K)
|𝜎| u𝜎.nK,𝜎 ,

which, together with Equation (34), ensures the usual discrete 𝛁 − div L2-duality.
The initial values of the unknowns are given by an average of the initial data:

For 1 ≤ i ≤ d, ∀𝜎 ∈  , u0
𝜎,i =

1
|𝜎| ∫𝜎

u0,i(x) d𝛾(x),

where d𝛾 stands for the d − 1-dimensional Lebesgue measure and u0 = (u0,1, … ,u0,d)t is the initial condition for the
velocity, supposed to be regular enough for the integral over the faces to be defined (for instance, u0 ∈ H1(Ω)d). Note
that, if u0 is divergence-free, then the discrete divergence of u0 vanishes. The same average is used for boundary
values.

For the scheme (33), a control of the kinetic energy (or, in other words, of the predicted velocity in discrete L2(H1)
norm and in L∞(L2) norm, and of the end of step velocity in L∞(L2) norm) may be derived using Theorem 1, following
known techniques.25,26
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BRUNEL et al. 1121

F I G U R E 3 Incompressible flow past a cylinder: Coarse mesh.

5.1.2 Flow past a cylinder

We compute here a two-dimensional flow past a cylinder, inspired form a literature benchmark (Test Case 2D-2 of Refer-
ence 9). The computational domain is the same as in Reference 9, and consists of a rectangular channel with a cylindrical
obstacle near the inlet (left) boundary; we refer to Reference 9 (fig. 1) for the exact definition of the domain. At the time
t = 0, the fluid is at rest. The velocity satisfies a homogeneous Dirichlet condition at the top and bottom sides, and the
flow leaves freely the domain through the right hand side. It enters the domain on the left boundary with an imposed
velocity profile:

ux(0, x2) = 4 um
x2 (H − x2)

H2 , uy(0, x2) = 0, ∀x2 ∈ [0,H],

where H = 0.41 is the height of the domain and um = 1.5. The robustness of the scheme for strongly convection dominated
flow is assessed by changing the Reynolds number chosen in Reference 9 (Re = 100) to a larger value, namely Re = 500
(with Re = (𝜌uD)∕𝜇 where u = 2u1(0,H∕2)∕3 = 1). To this purpose, the density is fixed at 𝜌 = 1 and the viscosity is equal
to 𝜇 = 0.0002. The computations are first performed using a very coarse grid with 4033 cells (see Figure 3), representative
of what is often encountered in complex 3D industrial simulations. The time step is 𝛿t = 0.002.

The results are plotted in Figure 4, together with the results obtained with (implicit-in-time) upwind and centered
convection operators. For all the schemes, the flow is unsteady. As expected, the upwind operator introduces a large
numerical diffusion; this is not the case for the other operators. The centered scheme yields an unrealistic large recir-
culation zone. The computation is then run on refined grids (12,913 cells and 43,009 cells), with an adjusted time step
(𝛿t = 0.000625 and 𝛿t = 0.000187 respectively). On these grids, the centered scheme seems to yield results more in line
with the ones obtained with the upwind and centered limited discretizations, as can be seen in Figure 5. This confirms
that, on the coarsest grid, the solution obtained with the limited centered scheme is much more accurate than with the
other discretizations.

To further assess the quality of the different schemes, we turn to the other outputs studied in of Reference 9 (Test
Case 2D-2) (even though our aim is not to compare our results with those of Reference 9, since the viscosity is different).
The main quantities of interest are the pressure difference ΔP between the front and end points of the cylinder (i.e., the
points (0.15, 0.20) and (0.25, 0.20) respectively), the Strouhal number, the maximum drag coefficient, and the maximal
and minimal lift coefficients (see Reference 9 for a definition). They are gathered in Tables 1–3, and the computed drag
and lift coefficients are plotted as a function of time on Figures 6 and 7. With the centered scheme, the computed flow
does not seem to tend to a periodic flow, contrary to what happens with the centered limited and upwind schemes. Even
if the convergence is far from being reached with the (intentionally) very coarse mesh used in this study, the centered
limited scheme seems able to capture at least the order of magnitude of the recorded quantities (see in particular the lift
coefficient in Table 2).

To sum up, the conclusion of this test is that, for the simulation of such convection-dominated flow, the centered
limited scheme seems to be a better alternative than the upwind and centered schemes on coarse meshes (representative
of industrial simulations): indeed the upwind and centered schemes respectively suffer from an over-diffusion and a lack
of stability.

5.1.3 Lid-driven cavity

We now turn to the well-known 2D lid-driven cavity flow test case, which is a classical test problem for the validation of
Navier–Stokes schemes. It consists in the study of a flow in the square [0, 1] × [0, 1]. Homogeneous Dirichlet boundary

 10970363, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/fld.5276 by C

ea G
renoble, W

iley O
nline L

ibrary on [13/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



1122 BRUNEL et al.

F I G U R E 4 Incompressible flow past a cylinder: Magnitude of the velocity at time t = 5 (coarse mesh). From top to bottom: upwind
scheme, centered scheme, centered limited scheme. [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 5 Incompressible flow past a cylinder: Magnitude of the velocity at time t = 5 for the most refined mesh, with the centered
scheme. [Colour figure can be viewed at wileyonlinelibrary.com]

conditions are prescribed to the velocity on the left, right, and bottom sides. The velocity is tangential to the top side, and
its norm is set to 1, that is:

u1(x, 1) = 1, u2(x, 1) = 0 ∀x ∈ [0, 1]. (36)

The value of the viscosity is chosen to obtain a Reynolds number Re equal to 5000, with Re = 𝜌uD∕𝜇 with 𝜌 = 1, D = 1,
u = 1, and 𝜇 = 0.0002. With this value of the Reynolds number, the problem is known to converge to a steady state. To
reach this state, we let the computation run up to a final time of T = 200 s (with a time step of 𝛿t = 0.0025), which is
enough to obtain a relative difference between the velocity at two successive time steps in the range of 10−6. This test
is classical, and numerous computations are available (see e.g., References 27–29); the reference used in this article is a
converged-in-space computation that can be found in Reference 29.

We perform two computations, with uniform 128 × 128 and 256 × 256 grids respectively. The amplitude of the varia-
tions of the streamline function and the location of the center of the primary and bottom right secondary vortices obtained
with the upwind, centered, and centered limited schemes are reported in Tables 4 and 5 respectively. The location of the
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BRUNEL et al. 1123

T A B L E 1 Incompressible flow past a cylinder: Quantitative results for the upwind scheme.

Number of cells 4033 12,913 43,009

Min. mesh area 3.43 × 10−5 1.11 × 10−5 2.55 × 10−6

ΔP 2.29620 2.37170 2.53970

Strouhal number 0.22257 0.25077 0.27523

Max. drag coeff. 3.23134 3.01118 2.81112

Max. lift coeff. 0.51332 1.11934 1.50993

Min. lift coeff. −0.50646 −0.95858 −1.44269

T A B L E 2 Incompressible flow past a cylinder: Quantitative results for the centered limited scheme.

Number of cells 4033 12,913 43,009

Min. mesh area 3.43 × 10−5 1.11 × 10−5 2.55 × 10−6

ΔP 2.38970 2.52830 2.76460

Strouhal number 0.25112 0.27822 0.29464

Max. drag coeff. 3.38864 3.19996 2.99350

Max. lift coeff. 0.96980 1.75976 2.21766

Min. lift coeff. −0.98392 −1.43585 −1.91979

T A B L E 3 Incompressible flow past a cylinder: Quantitative results for the centered scheme.

Number of cells 4033 12,913 43,009

Min. mesh area 3.43 × 10−5 1.11 × 10−5 2.55 × 10−6

ΔP - 2.34780 3.07140

Strouhal number - 0.26484 0.30252

Max. drag coeff. 3.20972 3.42892 3.51592

Max. lift coeff. 0.15683 1.36092 2.50430

Min. lift coeff. −0.14332 −1.23030 −2.42746

center of the vortices is defined as the point where the streamline function reaches an extremum: the primary vortex corre-
sponds to the minimum of the streamline function, while the secondary vortex corresponds to a maximum. On both grids,
the amplitude of the streamline function variations seems to be overvalued with the upwind discretization, and underval-
ued with the centered one, while the centered limited discretization yields a better agreement with the reference value.
Concerning the location of the vortices, all methods seem to give close outcomes, and the results are in reasonable agree-
ment with the reference ones; with the upwind discretization, both vortices seem to be however slightly shifted upward
compared to the higher-order methods. Slight differences may also be observed on the shape of the vortices (Figures 8
and 9 for the primary and secondary vortex, respectively).

5.1.4 Backward-facing step

We finally address the so-called backward-facing step problem, introduced in Reference 30 and also addressed in Refer-
ences 31 and 10. The domain is rectangular, its length is set to L = 20 and its height to H = 1.9423. The flow enters the
domainΩ through its left boundary and a step of height h = 0.9423 is considered at the left of the computational domain,
outside and adjacent to Ω; the step is thus only modeled by the boundary conditions, and a parabolic velocity profile
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1124 BRUNEL et al.

F I G U R E 6 Incompressible flow past a cylinder: Drag and lift coefficient as a function of time (coarse mesh). Top-left: upwind scheme.
Top-right: centered limited scheme. Bottom: centered scheme. [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 7 Incompressible flow past a cylinder: ΔP as a function of time on the coarsest mesh. Top-left: upwind scheme. Top-right:
centered limited scheme. Bottom: centered scheme. [Colour figure can be viewed at wileyonlinelibrary.com]
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BRUNEL et al. 1125

T A B L E 4 Lid-driven cavity: Amplitude of the streamline function variations (𝜓max − 𝜓min).

Reference 29 on refined mesh: 0.1249994

Scheme Grid 128 × 128 Grid 256 × 256

Upwind 0.1539811 0.1551107

Centered 0.0877255 0.1081858

Centered limited 0.1066407 0.1155036

T A B L E 5 Lid-driven cavity: Location of the primary vortex (x1,pv, x2,pv) and the lower right secondary vortex (x1,sv, x2,sv).

Scheme Grid x1,pv x2,pv x1,sv x2,sv

Reference 29 1024 × 1024 0.51465 0.53516 0.80566 0.073242

Upwind 128 × 128 0.516 0.547 0.820 0.086

Centered 128 × 128 0.516 0.539 0.820 0.078

Centered limited 128 × 128 0.516 0.539 0.812 0.078

Upwind 256 × 256 0.516 0.543 0.812 0.078

Centered 256 × 256 0.512 0.539 0.812 0.074

Centered limited 256 × 256 0.512 0.535 0.809 0.074

F I G U R E 8 Lid-driven cavity: Primary vortex. From left to right: results with the upwind, centered, and centered limited scheme.
[Colour figure can be viewed at wileyonlinelibrary.com]

above it is assumed. Consequently, Dirichlet conditions are prescribed at the left, top, and bottom boundaries, the veloc-
ity being set to zero except in the inlet part of the boundary, that is, the part of the left side located above h = 0.9423;
homogeneous Neumann conditions are imposed on the right side of the domain. The fluid density is 𝜌 = 1, the viscosity
is 𝜇 = 0.001 and the peak velocity in the inlet boundary is equal to 1, which corresponds to a Reynolds number Re = 1000
(with respect to this maximum inlet velocity). The mesh used here is a rather coarse 250 × 50 grid and the time step is
𝛿t = 0.01.

The streamlines vortices at time t = 20 are plotted on Figure 10. As expected, the upwind scheme is the most diffusive:
all the vortices are damped, with a quasi-complete disappearance of the one located on the right of the reattachment
point. Both the centered and centered limited schemes yield qualitatively similar results.
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1126 BRUNEL et al.

F I G U R E 9 Lid-driven cavity: Secondary vortex. From left to right: results with the upwind, centered, and centered limited scheme.
[Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 10 Backward-facing step: Streamlines at time t = 20. From top to bottom: upwind, centered, and centered limited schemes.
[Colour figure can be viewed at wileyonlinelibrary.com]

5.2 Compressible barotropic Navier–Stokes equations

We now show applications to the barotropic (isentropic) compressible Navier–Stokes equations:

𝜕t(𝜌ui) + div(𝜌uiu) + 𝜕ip − div(𝜇(𝛁u + 𝛁ut))i = 0, 1 ≤ i ≤ d, (37a)

𝜕t𝜌 + div(𝜌u) = 0, (37b)

p = a𝜌𝛾 , a > 0, 𝛾 ≥ 1. (37c)

5.2.1 The scheme

A first-order forward Euler time-discretization of system (37) reads:

∀K ∈,
1
𝛿t
(
𝜌

n+1
K − 𝜌

n
K
)
+ div(𝜌nun)K = 0, (38a)

For 1 ≤ i ≤ d, ∀𝜎 ∈  ,
1
𝛿t

(
𝜌

n+1
D
𝜎

un+1
𝜎,i − 𝜌

n
D
𝜎

un
𝜎,i

)
+ div(𝜌nun

i un)𝜎 + (𝛁p)n
𝜎,i − div(𝜇(𝛁un + 𝛁(un)t))𝜎,i = 0,

(38b)

∀K ∈, pn+1
K = a

(
𝜌

n+1
K

)𝛾
. (38c)
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BRUNEL et al. 1127

The momentum discrete convection terms are described in the previous section, the mass fluxes in (38a) are approxi-
mated with a MUSCL scheme16 and the other terms of the system are the same as those used for the incompressible
Navier–Stokes equations. The first-order scheme (38) is then extended to second-order in time using a second order
Runge–Kutta scheme (or Heun scheme), which reads, with Wn = (𝜌n

,un
, pn) the unknowns at step n and S(W) the new

unknowns resulting from the application of (38) to the unknown vector W:

Wn+1∕3 = S(Wn), Wn+2∕3 = S(Wn+1∕3), Wn+1 = 1
2
(Wn +Wn+2∕3). (39)

Unless specified, the Heun scheme is used in the following numerical tests.

5.2.2 Travelling vortex

Here we assess the convergence rate of the proposed scheme on a test case built to this purpose. We first derive an analytical
solution of the steady isentropic Euler equations consisting in a standing vortex; then this solution is made unsteady by
adding a constant velocity translation. A solution to the Navier–Stokes equations is finally derived by compensating the
viscous forces (that appear on the left hand side of Equation (37a)) with a source term. This solution reads:

u =
(
1 − x̂2

1 − x̂2
2
)2
[
− x̂2

x̂1

]

+ utr if x̂2
1 + x̂2

2 ≤ 1, u = utr otherwise, with utr = 0.2

[
1
1

]

and x̂ = x − utr t,

and

𝜌 = 0.36
(
1 − x̂2

1 − x̂2
2
)5
, p = 𝜌

2
.

System (37) is identical thus similar to the (viscous) shallow-water equations without bathymetry. The viscosity 𝜇 is equal
to 0.004, so that the Reynolds number is equal to 50 (with 𝜌, |u| and the length scale in the range of 0.4, 0.5, and 1,
respectively). The domain is the square Ω = (−1.2, 2)2 and the computation is run on the time interval (0, 4).

The meshes are uniform n × n grids, starting from a 25 × 25 one and then doubling the number of control volumes in
each direction until we reach a 200 × 200 mesh. The time step is set to h∕12.8, with h = 3.2∕n, which yields a CFL number
with respect to the celerity of the fastest wave close to 0.1 (the material velocity and the speed of sound are in the range of
0.5 and 0.84, respectively), this low value of the CFL number being imposed by the explicit discretization of the diffusion
term (the constraint stems from the necessity to be stable up to the finest mesh).

In Figure 11, we draw the L1 norm of the numerical error for the velocity and the pressure as a function of the mesh
step. This error is defined as the difference between the computed velocity or pressure at the final time and the piece-
wise constant function defined by taking the value of the continuous solution at the diamond or primal cell center. The
measured order of convergence is close to 1.9 for both the velocity and the pressure, which corresponds to the properties
which are expected for the scheme. We also compare the results of the centered limited scheme with the results of a first
order scheme (first order forward Euler time stepping and, in space, first order upwinding of the convection terms). For
this latter scheme, we observe a convergence order close to 0.8 for both the velocity and the pressure. The gain of accu-
racy obtained by switching from the first order to the centered limited scheme varies from 3.2 and 2.5 (25 × 25 mesh) to
27 and 25 (200 × 200 mesh), for the velocity and the pressure, respectively.

However, the observed convergence is specific to uniform (in each direction, i.e., rectangular cells are possible) Carte-
sian grids, for two reasons: first, in this case, computing the face velocity as the average the velocities in the two neighbor
adjacent cells corresponds to a second order interpolation; second, the slope limitation 𝜉

+ = 1 does not prevent to choose
this tentative value (the situation would be different, for instance, for a non-uniform one-dimensional mesh and a ten-
tative value computed by linear interpolation). To characterize the expected loss of convergence, we build non-Cartesian
meshes from the n × n grids by moving each vertex in a random direction. The magnitude of this perturbation is 𝜁 h,
with h = 3.2∕n; we give on Figure 12 the results for 𝜁 = 0 (Cartesian grid), 𝜁 = 0.1, 𝜁 = 0.2 and 𝜁 = 0.3. Since this oper-
ation generates small cells (especially with 𝜁 = 0.3), the stability constraint induced by the explicit discretization of the
diffusion term on the finest mesh now imposes to set the time step to a value twice smaller than for the uniform meshes
(i.e., 𝛿t = h∕25.6). As expected, the almost second order of convergence is lost; for the most perturbed mesh, the order of
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1128 BRUNEL et al.

F I G U R E 11 Barotropic travelling vortex: L1(Ω) norm of the error obtained at the final time with the centered limited scheme and a
first-order scheme, for the velocity (left) and the pressure (right). Here the mesh size is computed as h = 3.2∕n, for a n × n mesh (so
diam(K) =

√
2 h, for K ∈). [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 12 Barotropic travelling vortex: L1 norm of the error obtained at the final time with the centered limited scheme for the
velocity (left) and the pressure (right), with unstructured meshes generated by a random perturbation of the vertices location. [Colour figure
can be viewed at wileyonlinelibrary.com]

convergence is now close to 0.8, that is, the same as for the first order scheme; the centered limited scheme remains how-
ever almost twice more accurate than this latter scheme. A much greater gain in accuracy is however obtained for lower
values of 𝜁 .

5.2.3 Flow past a cylinder

We now turn to a two-dimensional problem which consists in an adaptation to the barotropic case of the flow past a
cylinder problem already studied in the incompressible context. The geometry of the domain is thus once again given in
Reference 9 (fig. 1), up to the fact that the left part of the domain is lengthened, to keep the reflected shocks travelling to
the left inside the computational domain up to the final time (see below). Here the viscosity is set to 𝜇 = 0, and we keep
a = 9.81∕2 and 𝛾 = 2, to exactly recover the shallow-water equations. We take as initial data a given homogeneous state
u0 = 0 and 𝜌0 = 0.2 over the whole domain and prescribe the velocity and the density at the left boundary in such a way
to generate a shock travelling from the left to the right. This shock is supposed to satisfy M = 2, where M = 𝜔∕c is the
so-called Mach number associated with the shock, that is, the ratio of the speed of the shock wave 𝜔 to the speed of sound
c in the initial medium (or, equivalently, in the right state of the shock), given by c =

√
2a𝜌0 (so w = 2

√
2a𝜌0). Using the

Rankine–Hugoniot jump relations, we obtain the inlet conditions at the left boundary x = 0:

∀x2 ∈ [0,H], u1(0, x2) = 𝜔

(

1 − 2
√

1 + 8M2 − 1

)

, u2(0, x2) = 0, (40)

∀x2 ∈ [0,H] 𝜌(0, x2) = 0.1

(√
1 + 8M2 − 1

2

)

. (41)
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BRUNEL et al. 1129

F I G U R E 13 Barotropic flow past a cylinder: Density at time t = 1. Top: upwind scheme. Bottom: centered limited scheme. [Colour
figure can be viewed at wileyonlinelibrary.com]

Impermeability and perfect slip boundary conditions are prescribed on the other boundaries except on the right side of
the domain; here, we let the flow leave the domain “freely”; this is numerically obtained by using a first-order upwind
approximation for the convection fluxes (the computed first component of the velocity is positive at any time and all along
the boundary) and supposing that the pressure gradient vanishes.

The computation is performed on a mesh consisting of 106,897 control volumes (which yields a minimum area of the
cells equal to 4.44 × 10−7), and the time step is equal to 𝛿t = 4.10−6. For the centered limited scheme, we observe spurious
wiggles which need to be damped with an artificial diffusion term Tn

𝜖,dif of the form:

Tn
 ,dif =

1
|D𝜎|

∑

𝜖∈̃(D𝜎 ),
𝜖=D𝜎 |D𝜎′

𝜈𝜖

(
un
𝜎,i − un

𝜎′,i

)
, (42)

which is added to the left hand side of Equation (38b). The artificial viscosity parameter is equal to:

𝜈𝜖 =
1

10
√

2a𝜌𝓁 hK
𝜖
,

with hK
𝜖

the diameter of the cell K𝜖 containing 𝜖 and 𝜌𝓁 = 0.65 the maximal density obtained after reflection of the shock
wave on the cylinder. This yields a viscosity significantly lower than the numerical viscosity which would be introduced by
a Godunov scheme (note that

√
2a𝜌𝓁 is the maximum celerity of the sound wave). The necessity of such a stabilization was

already observed in Reference 19; it is probably due to the fact that the scheme numerical diffusion is linearly depending
(at most, i.e., with the upwind scheme) on the material velocity (and not on the waves celerity, as would be the case
for a Godunov scheme), which here moreover vanishes in the right state of the shock. In our numerical experiments,
no reasonable diffusive parameter was sufficient to ensure the stability of the centered scheme, so no result with this
discretization is presented here.

The computations show a reflection of the shock on the obstacle, which generates a reflected shock (first curved then
tending to a plane wave) travelling to the left, together with some complex structures in the obstacle wake, including
vortex shedding phenomena, however with a small amplitude. Density fields obtained at t = 1 with the scheme proposed
here and with an upwind discretization of the momentum balance (while the mass balance is still discretized by a MUSCL
scheme) are plotted in Figure 13. These results look qualitatively similar; this explains by the fact that the governing
structures in the flow for the velocity are shocks, where the diffusion brought by the upwind discretization is controlled
by the compressive character of the velocity field. Note also that the Heun scheme is observed to be more diffusive for
shock solutions than the first-order forward Euler time marching algorithm,17 the diffusion being probably generated by
the last averaging step of the algorithm (when written under the form (39)).

5.3 Euler equations

We now turn to an application of the centered limited discretization to the compressible Euler equations, which read

𝜕t𝜌 + div(𝜌 u) = 0, (43a)
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1130 BRUNEL et al.

𝜕t(𝜌 ui) + div(𝜌 ui u) + 𝜕ip = 0, 1 ≤ i ≤ n, (43b)

𝜕t(𝜌 E) + div(𝜌 E u) + div(p u) = 0, (43c)

p = (𝛾 − 1) 𝜌 e, E = 1
2
|u|2 + e, (43d)

where 𝛾 > 1 is a coefficient specific to the fluid under consideration. As explained in Section 4.3, while preserving the
consistency with the total energy balance (43c), we choose to base the scheme on the internal energy balance equation,
which formally takes the following form:

𝜕t(𝜌e) + div(𝜌eu) + p divu = 0. (44)

For shock solutions, this equality becomes an inequality (the left hand side is non-negative).

5.3.1 The scheme

The discrete unknowns for the internal energy are associated with the primal mesh, and the scheme reads:

∀K ∈,
1
𝛿t
(
𝜌

n+1
K − 𝜌

n
K
)
+ div(𝜌nun)K = 0, (45a)

∀K ∈,
1
𝛿t
(
𝜌

n+1
K en+1

K − 𝜌
n
Ken

K
)
+ div(𝜌nenun)K + pn

K (divun)K = Sn
K , (45b)

∀K ∈, pn+1
K = (𝛾 − 1) 𝜌n+1

K en+1
K , (45c)

For 1 ≤ i ≤ d, ∀𝜎 ∈  ,
1
𝛿t

(
𝜌

n+1
D
𝜎

un+1
𝜎,i − 𝜌

n
D
𝜎

un
𝜎,i

)
+ div(𝜌nun

i un)𝜎 + (𝛁p)n+1
𝜎,i = 0.

(45d)

All of the terms have been previously introduced, except the convection term of the discrete internal energy Equation
(45b) which reads:

div(𝜌nenun)K =
1
|K|

∑

𝜎∈(K)
Fn

K,𝜎
en
𝜎,

where the face value en
𝜎 is given by a monotone approximation, that is, either a first-order upwind (with respect to the

mass flux Fn
K,𝜎

) or a MUSCL-like approximation16; unless specified, this latter choice is made here. The corrective term
Sn

K of the internal energy balance (45b) is derived in Section 4.3. As in the barotropic case, a stabilization of the form (42)
may be introduced in the discrete momentum balance equation (45d); in this case, the corresponding dissipation must
be added to Sn

K (see Reference 19).

5.3.2 A one-dimensional Riemann problem …

We assess the behavior of the scheme on a Riemann problem, known as Test case 3 of Reference 32. The left and right
states are given by:

left state:
⎡
⎢
⎢
⎢
⎣

𝜌L = 1
uL = 0

pL = 1000

⎤
⎥
⎥
⎥
⎦

; right state:
⎡
⎢
⎢
⎢
⎣

𝜌R = 1
uR = 0

pR = 0.001

⎤
⎥
⎥
⎥
⎦

.

The computational domain is Ω = (0, 1) and the final time is T = 0.012. At the time t = 0, the unknowns are given for
x < 0.5 by the left state, and by the right state otherwise. The boundary conditions are Dirichlet conditions, the prescribed
values being given by the left or the right states. The structure of the solution to this problem is the following32: on the
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BRUNEL et al. 1131

F I G U R E 14 Riemann problem for the Euler equations: Comparison of the results of the Test case 3 of Reference 32 for a MUSCL
discretization of the scalar variables convection terms and the centered limited discretization of the velocity convection term, with the
corrective term of Section 4.3 (in blue) or without it (in orange). Exact solution is plotted in green. [Colour figure can be viewed at
wileyonlinelibrary.com]

left side of the domain, a rarefaction wave travels to the left; it is separated by a contact discontinuity from a shock wave
on the right side of the domain, travelling to the right.

… on a really one-dimensional domain
First, we choose to discretize the domain as a real one-dimensional domain, in which case the space discretization with
the Rannacher–Turek element is equivalent to the usual MAC scheme.33,34 The mesh size h is uniform and its value is
h = 1∕1000 for the results plotted in this section; the time step is equal to 𝛿t = h∕100. Here, no stabilization term needs
to be added to the discrete momentum balance equation. We illustrate the effect of the corrective term on the density,
the energy, the pressure and the velocity in Figure 14. As expected, without correction, the scheme is not consistent,
because the computed (approximate) jump at the shock does not satisfy the Rankine–Hugoniot jump relations (this error
propagating to the whole solution). A convergence study would show that the solution obtained without corrective term
converges, but to a limit that is not a weak solution to the Euler equations. On the opposite, with the correction, the
discontinuities position and the constant states are correctly (exactly, up to rounding errors, for the latter) computed;
when refining the mesh, the convergence is achieved essentially by sharpening the “approximate discontinuities,” and
we observe a first-order convergence for the velocity and the pressure (the unknowns which are constant through the
contact discontinuity) and of order slightly greater than 0.8 for the density.

We compare in Figure 15 the results obtained with the proposed centered limited scheme (precisely speaking, a
MUSCL discretization of the density and energy convection terms and the centered limited discretization for the veloc-
ity convection term) with the scheme of Reference 19, which uses a first-order upwind discretization of the convection
term (in the three equations of the system). As expected, the high-order approximation notably reduces the numerical
diffusion, which essentially plagues the contact discontinuity.

… on a fictitious two-dimensional domain
In the one-dimensional case, the space discretization for the Rannacher–Turek element is quite different from the
multi-dimensional case; in particular, in 1D, all the degrees of freedom of the velocity correspond to the normal com-
ponent to the face; moreover, in 2D, the convection fluxes involve unknowns which are associated to non-aligned face
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1132 BRUNEL et al.

F I G U R E 15 Riemann problem for the Euler equations: Comparison of the results of the Test case 3 of Reference 32 obtained with the
two following schemes. Orange: MUSCL discretization, for the scalar variables, and centered limited (C.L.), for the velocity, of the convection
terms. Blue: first-order upwind discretization of the convection terms. Exact solution is plotted in green. [Colour figure can be viewed at
wileyonlinelibrary.com]

centers. Therefore, we reproduce the test with a “fictitious” two-dimensional domain. This domain is now chosen as
Ω̃ = Ω × [0, h], where h is the mesh size in the x1- and x2-direction (so the mesh consists of only one horizontal stripe
of square cells), with again h = 0.001. Symmetry (or impermeability and perfect slip) boundaries condition are pre-
scribed at the top and the bottom sides of the domain. Now, as already observed in Reference 35, the stabilization term
given by (42) has to be introduced in the momentum balance equation (45d), to avoid an odd-even decoupling between
the normal (i.e., associated to vertical faces) and the tangential (i.e., associated to horizontal external faces) first com-
ponents of the velocity. The viscosity coefficient featured in (42) is set, at the dual face 𝜖, to 𝜈𝜖 = umax 𝜌max hK

𝜖
∕20,

where umax = 19.6 and 𝜌max = 6 are the maximum velocity and density, respectively, given by the analytical solution
and K𝜖 is the primal cell containing 𝜖. The time step is set to 𝛿t = h∕200. Results are compared to the ones obtained in
the previous paragraph in Figure 16. A good agreement is observed, even though the introduction of the stabilization
term yields, at one could expect, a slight diffusion visible essentially at the contact discontinuity and for the velocity
variable.

5.4 Flow past a cylinder

We now address once again the problem of a flow past a cylinder, with the same domain as for the barotropic case. We
still suppose that the initial data is a given homogeneous state with a fluid at rest, and we generate a shock traveling to
the right by choosing suitable boundary conditions on the left side of the domain. In addition, we tune the data to obtain
a “non-isentropic analogue” of the case presented in Section 5.2.3. We take 𝛾 = 2, so that the usual entropy for the Euler
equations reads s = e∕𝜌. If the entropy were constant, the equation of state p = (𝛾 − 1)𝜌e would yield p = s𝜌2, and we
would obtain the same problem as in Section 5.2.3 provided that s = a. We thus choose for the density the same value as
in Section 5.2.3, that is, 𝜌0 = 0.2, and the initial internal energy is given by e0 = a𝜌0. The Mach number characterizing
the shock is still M = 2, its celerity is 𝜔 = M (𝛾p0∕𝜌0)1∕2, and the Rankine–Hugoniot condition yields the values of the
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BRUNEL et al. 1133

F I G U R E 16 Riemann problem for the Euler equations: Comparison of the results of the Test case 3 of Reference 32 obtained with a
MUSCL discretization of the scalar variables convection terms and the centered limited discretization of the velocity convection term, on a
one dimensional domain (in orange) or a fictitious two dimensional domain (in blue). Exact solution is plotted in green. [Colour figure can be
viewed at wileyonlinelibrary.com]

F I G U R E 17 Flow past a cylinder, Euler equations: From top to bottom, velocity, density, and pressure at time t = 1. [Colour figure can
be viewed at wileyonlinelibrary.com]
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1134 BRUNEL et al.

unknowns (𝜌b,ub, pb) to be prescribed at the left boundary:

𝜌b =
𝛾 + 1

𝛾 − 1 + 2
M2

𝜌o, ub = 𝜔

(
1 − 𝜌o

𝜌b

)
, p = p0 + 𝜔

2
(

1 − 𝜌0

𝜌b

)
𝜌0.

Impermeability and perfect slip conditions are prescribed at the other boundaries, except the right one where we let the
flow leave the domain, with the same technique as for the barotropic case.

As in Section 5.2.3, we use a mesh that consists of 106,897 control volumes, and the time step is equal to 𝛿t = 4.10−6.
The simulation is run until the final time T = 1. A stabilization is once again needed, and the stabilization coefficient
at the dual face 𝜖 is set to c hK

𝜖
∕10, where c is the approximate sound of speed in the medium c ∶= (𝛾pmax∕𝜌max)1∕2 with

pmax = 1.7 and 𝜌max = 0.5.
As in the barotropic case, the computations show a reflection of the shock on the obstacle, which generates a reflected

shock (first curved then tending to a plane wave) travelling to the left (at a speed similar to the barotropic case), together
with some complex structures in the obstacle wake, including vortex sheddings. However, here, this latter phenomenon
is much more visible (Figure 17) than in the barotropic case.

DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.

ORCID
A. Brunel https://orcid.org/0000-0002-0743-8019
R. Herbin https://orcid.org/0000-0003-0937-1900
J.-C. Latché https://orcid.org/0000-0002-1810-695X

REFERENCES
1. Ohmori K, Ushijima T. A technique of upstream type applied to a linear nonconforming finite element approximation of convective

diffusion equations. RAIRO Anal Numér. 1984;18:309-332.
2. Angermann L. Numerical solution of second-order elliptic equations on plane domains. ESAIM Math Model Numer Anal. 1991;25:169-191.
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