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A 34-year survey under phosphorus decline and warming: Consequences on 

stoichiometry and functional trait composition of freshwater macroinvertebrate 

communities 

Abstract 

Worldwide, freshwater systems are subjected to increasing temperatures and nutrient changes. 

Under phosphorus and nitrogen enrichment consumer communities are often thought to shift 

towards fast-growing and P-rich taxa, supporting the well-known link between growth rate 

and body stoichiometry. While these traits are also favoured under warming, the temperature 

effect on stoichiometry is less clear. As recently shown, there is a general link between 

functional traits and body stoichiometry, which makes the integration of stoichiometric traits a 

promising tool to help understanding the mechanisms behind taxonomic and functional 

community responses to nutrient changes and/or warming. Yet, such approaches have been 

scarcely developed at community level and on a long-term perspective. In this study, we 

investigated long-term responses in stoichiometry and functional trait composition of 

macroinvertebrate communities to nutrient changes (decreasing water P; increasing water 

N:P) and warming over a 34-year period in the Middle Loire River (France), testing the 

potentially opposing responses to these drivers. Both drivers should cause shifts in species 

composition, which will alter the overall community stoichiometry and functional 

composition following assumptions from ecological stoichiometry theory. We found that the 

macroinvertebrate community shifted towards P-poor taxa, causing significant trends in 

overall community stoichiometry which indicates long-term changes in the nutrient pool 

provided by these consumers (i.e. decrease in %N and %P, increase in N:P). Further, while 

the former high-P conditions favoured traits associated to detritus feeding and fast 

development (i.e. small maximum body size, short life duration), recent conditions favoured 
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predators and slow-developing taxa. These results suggest nutrients to be a more important 

driver than temperature over this period. By providing a pivotal link between environmental 

changes and functional trait composition of communities, approaches based on stoichiometric 

traits offer sound perspectives to investigate ecological relationships between multiple drivers 

operating at various scales and ecosystem functioning. 

 

Keywords: community, ecological stoichiometry, global warming, nutrient change, 

stoichiometric traits 

 

Introduction 

Climate change and the consequences of human activities are ubiquitous in most ecosystems 

and freshwaters are often impacted by multiple stressors. Globally, water temperature of 

streams and lakes has increased and is predicted to rise in the future, often accompanied by 

drastic changes in flow regime or stratification (Hardenbicker et al., 2017; Michel et al., 2021; 

van Vliet et al., 2013). Fertilization or fossil fuel burning have dramatically increased nitrogen 

(N) and phosphorus (P) concentrations in rivers and lakes over the past decades (Battye et al., 

2017; Peñuelas et al., 2013). Even where successful nutrient input reduction schemes have led 

to decline in phosphorus concentrations (Jeppesen et al., 2005), nitrogen levels often remain 

unaffected by these measures. Along with a faster accumulation of phosphorus rather than 

nitrogen in freshwaters (Yan et al., 2016), this has also caused a change in the N:P ratio in 

many systems (Isles et al., 2018; Jeppesen et al., 2005; Peñuelas et al., 2013; Yan et al., 

2016).  

Apart from toxic effects at rather high increase (Camargo et al., 2005), the effect of nutrient 

enrichment on consumer communities is mainly indirect, via changes in resource quality and 

quantity (Evans & Sanderson, 2018; Nessel et al., 2021). In contrast, warming affects 
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organisms also directly by increasing their metabolic activity and physiological rates thus 

leading to altered respiration (Hamburger and Dall, 1990), growth (Janssens et al., 2015; 

Pöckl, 1992; Sutcliffe et al., 1981) or development (Gillooly et al., 2002; Pöckl, 1992). 

Globally, total invertebrate abundance and biomass tend to increase following nutrient 

enrichment (Nessel et al., 2021) while overall taxonomic richness, evenness and diversity 

decrease (Singer and Battin, 2007; Zhang et al., 2019). Declining taxonomic richness was also 

observed as a response to warming (Daufresne et al., 2009; Latli et al., 2017; O’Gorman et al., 

2012; Živić et al., 2014). However, species shifts can occur without affecting diversity indices 

(McCormick et al., 2004; Nessel et al., 2021). Under increasing nutrient concentrations or 

temperatures, invertebrate communities tend to shift towards pollution- or temperature-

tolerant taxa, with increasing abundances of oligochaets and snails over insects (esp. the 

orders Ephemeroptera, Plecoptera and Trichoptera) (Friberg et al., 2010; McCormick et al., 

2004; Ortiz and Puig, 2007; Theodoropoulos and Karaouzas, 2021; Živić et al., 2014).  

Trait-based approaches can help investigating how environmental changes affect the 

functional structure and composition of communities. For example, feeding groups respond 

differently to nutrient enrichment, scrapers and collector-gatherers being favoured over 

shredders and filter/suspension feeders (Demi et al., 2019; McCormick et al., 2004). Life-

history traits exhibit shifts towards small and fast-growing/-developing taxa in response to 

increasing nutrient load (Demi et al., 2019; Singer and Battin, 2007) or temperature 

(Daufresne et al., 2009; Latli et al., 2017; O’Gorman et al., 2012). 

Stoichiometric traits are one kind of biological traits, describing the elemental composition of 

organisms, i.e. the nutrient content (e.g. P-content) or ratio (e.g. N:P) of an organism’s body 

tissue. This composition is assumed to represent the organism’s nutrient demand depending 

on its physiology and biology and is taxon-specific (Frost et al., 2006; Sterner and Elser, 

2002). Regulating mechanisms in heterotrophs allow for (general) homeostasis and – although 
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there is intra-species variation, e.g. over ontogeny as demonstrated for aquatic insects (Back 

and King, 2013) – most aquatic invertebrate species keep a constant body stoichiometry even 

under changing nutrient conditions (Danger et al., 2013; Evans-White et al., 2005; Persson et 

al., 2010). As already demonstrated, high phosphorus environments favour taxa with high 

body P-content (Prater et al., 2015; Singer and Battin, 2007; Teurlincx et al., 2017), which 

likely alters the overall nutrient pool provided by an invertebrate community (Prater et al., 

2015; Singer & Battin, 2007). Moreover, several studies have demonstrated a strong 

relationship between stoichiometric traits and other functional traits in macroinvertebrates 

(Beck, 2021), especially growth rate (Acharya et al., 2004; Elser et al., 2003), development-

related traits (Beck et al., 2022) or feeding habits (Cross et al., 2003; Fagan et al., 2002; 

González et al., 2017, 2011). Fast-growing and fast-developing taxa for example require high 

amounts of phosphorus to achieve their fast growth rates and thus are expected to express a 

rather high body P content, commonly referred to as the “Growth Rate Hypothesis” (Acharya 

et al., 2004; Beck et al., 2021; Elser et al., 2003). The stoichiometric approach thereby is not 

limited to aquatic invertebrates and works available cover also the terrestrial and marine 

environments, including various organisms from unicellular microbes and phytoplankton to 

plants and mammals (recently reviewed by Sardans et al., 2021). 

Although temperature probably does not directly interfere with the link between 

stoichiometric and other functional traits, altered physiological rates and functional traits as a 

response to warming might indirectly affect organism’s nutrient budget. For example, 

increased respiration rate under warming can increase the energetic demand of ectotherms 

requiring increasingly carbon-rich diet (Anderson et al., 2017; Malzahn et al., 2016). Another 

response could be an increased phosphorus demand due to increased growth rate as observed 

for a crustacean under moderate temperature increase (Ruiz et al., 2020). Both effects would 
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antagonistically affect the C:P demand of individuals and consequences at the community 

level are even less clear.  

Several authors already proposed to combine the stoichiometric and metabolic theories (Allen 

and Gillooly, 2009; Hillebrand et al., 2009; Ott et al., 2014) to better understand the 

functioning from population to ecosystem level, but observational or experimental evidence is 

rare. Only few studies have investigated the relationship between environmental nutrient 

conditions and body stoichiometry at the community scale, or have examined the interacting 

and probably opposing effects of increasing temperature and nutrient changes beyond 

planktonic assemblages. The studies available for the aquatic environment remained largely 

focused on individual taxa or functional groups within communities (e.g. Cross et al., 2003; 

Prater et al., 2015), have been limited to relatively short periods (e.g. Singer & Battin, 2007) 

and/or have faced non-controlled geophysical differences among study sites. The mono-site 

characteristic of a time series excludes such confounding factors and, due to the long period 

covered, increases the chance to detect true long-term trends rather than short-term effects.  

Based on a long-term dataset, this study aims at investigating how community stoichiometry 

and functional composition responded to multi-decadal changes in water nutrient 

concentrations and temperature. We combined stoichiometric and biological trait information 

available from databases with abundance data collected over a 34-year period at Dampierre-

en-Burly, on the upper section of the Middle Loire River (France). Continuous detailed 

information on water parameters is available, revealing significant changes. Phosphorus 

concentration decreased following a phosphate input reduction, reaching in the most recent 

years a range of values revealing the existence of only a moderate impact (in the European 

Water Framework Directive context; European Council, 2000). Temperature increased 

(+0.9°C) leading also to a decline in water discharge over this period. These changes caused a 

shift in the taxonomic and functional composition of the macroinvertebrate community 
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(Floury et al., 2017, 2013). Therefore, adding a stoichiometric view is attractive in order to 

investigate its potential to help explaining the observed community changes. The combination 

of changes in nutrient concentration and temperature at this site allows examining the 

combined effect of these stressors and shedding light onto the - sometimes contradictory - 

community responses reported in the literature (Tab. 1) by possibly identifying the main 

driver. 

Our main hypothesis (H1, Tab. 1) is that community %P decreased over time following the 

water phosphorus concentration (likely going along with increasing community C:P and N:P 

ratios). This pattern should have been caused by a shift of the community towards P-poor taxa 

that require lower quantities of phosphorus. Based on the link described by the Growth Rate 

Hypothesis, we further expect that trait attributes linked to fast growth and development (such 

as small body size, short life span) will be associated to high body %P, hence disfavoured 

along P decrease over time. The community should thus shift towards larger taxa with a 

slower development rate (H2). In case temperature will be the most important driver, we 

expect taxa expressing  fast growth and/or development to be increasingly favoured when 

temperature increases over the study period (H3). Considering the link towards stoichiometry 

described above, this temperature increase should also select for P-rich taxa and consequently 

increase the overall community %P (i.e. decrease community C:P and N:P ratios) over the 

study period (H4). As recent work on macroinvertebrates has demonstrated a general link 

between stoichiometric and (other) functional traits (Beck, 2021), we expect that the change 

in the functional composition of the community will be in line with ecological stoichiometry 

theory.  

Tab. 1: Overview of individual and community responses towards phosphorus (P) increase or warming reported 

in the literature for aquatic macroinvertebrates or zooplankton. The last column gathers the derived hypotheses 

for our study system (P decrease and warming). 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

8 
 

 Response to P increase Response to temperature 

increase 

Expected response for 

the study system  

(P decrease + 

temperature increase) 

Parameter Reference Response Reference Response  

Mean body 

size 

Davis et al., 2010 

Juvigny-Khenafou et 

al., 2021 

Southwood, 1977 

Demi et al., 2019 

Bourassa & Morin, 

1995 







  
 




Latli et al., 2017 

O’Gorman et al., 

2012 

Yvon-Durocher et al., 

2011 

Daufresne et al., 2009 

  
  
 
  
 

 if nutrient effect 

dominates (H2)

 if temperature effect 

dominates (H3)

Mean 

community 

P-content 

 

Elser et al., 2000 

Prater et al., 2015 

Singer & Battin, 2007 

  
 
 

hypothesized by Waal 

et al., 2010  

Bullejos et al., 2014 

hypothesized by 

Cross et al., 2015  













 if nutrient effect 

dominates (H1) 

 if temperature effect 

dominates (H4)



P storage in 

the 

community 

 

hypothesized by 

Cross et al., 2015  

 hypothesized by 

Cross et al., 2015  

 

 

Material & methods 

Datasets 

Community and environmental data 

The study site is located in the upper section of the Middle Loire River in France. Hydro-

climatic parameters (temperature, discharge) were monitored at “Dampierre-en-Burly” 

(47.4°N; 2.3° E) continuously over the 1980-2013 study period, due to a regulatory survey at 

the Electricité de France power plant, located downstream of the study site. Water chemistry 

information (NO3, PO4) was obtained from monthly measurements of the monitoring program 

of the Loire-Bretagne Basin Water Authority at a site located 40 km downstream (“Jargeau”, 

47.5° N; 2.1° E). In Dampierre-en-Burly and Jargeau, the Loire is an 8
th

 order river, with a 

catchment of about 35 500 km², a mean width of 300 m and a mean depth of about 1 m in low 

flow. Dampierre is at an altitude of 123 m a.s.l., 110 km downstream from the confluence 

with the Allier River and 550 km from the source. Jargeau is at 109 m a.s.l. A preliminary 
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climatic, hydrological and chemical study confirmed that the two sites were typical of all 

other measurement stations in this river reach (Floury et al., 2013, 2012). As a result, these 

data provided the best homogeneous data coverage available over the study period regarding 

these parameters and were fully representative for Dampierre-en-Burly. 

Invertebrate communities were sampled at Dampierre-en-Burly four times per year (except 

for 2008 with only three sampling events), providing in total 135 benthic invertebrate 

community samples between 1980 and 2013. Most sampling events were conducted during 

summer (June, July, August, September) but the sampling period ranged from April to 

November. 

The invertebrate sampling followed the IQBG protocol (“Indice de Qualité Biologique 

Globale”; Verneaux et al., 1976) for 1980-1994 and the normalized IBGN field protocol 

(“Indice Biologique Global Normalisé”; French Norm NF T90-350; AFNOR 1992, 2004) 

between 1995 and 2013. Both protocols include sub-sampling of different habitats present at 

the site, but differ in the number of sample units (six vs. eight) and the way to select where the 

sub-samples are taken. All samplings were performed with a Surber sampler (mesh size : 

500µm). Abundances were weighted by the sampled area to account for the different surfaces 

captured by the two protocols (i.e. 0.6m² until 1994 and 0.4m² from 1995). Bryozoa, 

Hydrozoa, Hydrachnidia, Nematoda, Oligochaeta and Porifera have been excluded to avoid 

identification or quantification bias. Taxonomic resolution of the other groups was 

harmonized to family level, resulting in a total of 108 taxa included in this study (S1). 

Although there is variation in trait expression also among finer taxonomic levels, applying the 

functional trait approach on family level has already allowed suitable results (Dolédec et al., 

2000; Sotomayor et al., 2022). For the period 1980-2008 both data sets have already been 

used in previous studies (Floury et al., 2017, 2013). 

Stoichiometric and biological trait information 
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Stoichiometric traits were available from a database (Beck et al., 2022) gathering 

stoichiometric information as mass contents of carbon (%C), nitrogen (%N) and phosphorus 

(%P) as well as the molar ratios C:N, C:P and N:P. It provides taxon mean values, based 

mainly on field sampling data but also including values from the literature. In case the 

stoichiometric information was not available for a taxon, the values from a finer taxonomic 

level (i.e. genus) were used (n ≤ 3 taxa per individual sample). The data finally covered on 

average 85% of the communities in terms of abundances. 

Eleven biological traits were taken from Tachet et al. (2010), supplemented by two traits 

(“reproductive cycles”, “molting events”) already used in other works (Beck, 2021; Beck et 

al., 2021) (Tab. 2). The information is fuzzy coded (Chevenet et al., 1994): a trait is resolved 

in different categories, for which each taxon’s affinity is described by scores. These scores 

range between 0 (= no affinity) and 5 (= high affinity) and have been transformed into relative 

frequencies within each trait before further analysis. By using this fuzzy coding approach, we 

rely on potential traits that capture intra-taxon variation. The description of some trait 

categories was slightly modified, i.e. by merging ecologically/functionally similar categories 

to avoid categories only occupied by a very low number of taxa (S2). The traits and the final 

categories used in this study can be found in Tab.2.  

Data analysis 

Trends in community stoichiometry and water parameters 

Community stoichiometry was calculated as abundance-weighted mean of individual taxon 

values. Stoichiometric values (%C, %N, %P, C:N, C:P, N:P) of individual taxa were weighted 

by the log(ni +1)-transformed abundances (ni) of taxa. The sum of weighted stoichiometric 

values was then divided by the sum of weights to obtain the community stoichiometric 

composition for each sampling event. Thereby, the calculations were based only on those 

taxa, for which the corresponding stoichiometric information was available. To avoid any bias 
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when calculating with ratio data, taxon body C:N, C:P and N:P ratios were log-transformed 

prior to calculations. For each year, the mean of each community stoichiometry variable was 

calculated (n = 4, except for 2008 where n = 3).  

Water N:P ratio was calculated from NO3 and PO4 concentrations on the raw data set, that is 

for each measurement with both variables available. For the analysis, only water parameter 

information that was assumed relevant for the macroinvertebrate community (concentrations 

of NO3, PO4, water N:P, temperature), was considered. Therefore, available information on 

the 126-day period before each sampling date was averaged for each invertebrate sampling 

date. Using the same dataset, such ~4-month period was identified as the optimal proxy for 

the response time of macroinvertebrate communities to these water parameters at this site 

(Floury et al., 2013). As for community stoichiometry, the yearly mean of each water 

parameter was calculated. 

To detect possible trends, Mann-Kendall trend tests were applied to each community 

stoichiometric variable and water parameter. To overcome the problem of autocorrelation in 

time series data a modified version of the test that removes autocorrelation by Spearman rank 

correlations (Hamed & Rao, 1998) was used. 

Association between water parameters, stoichiometric and biological traits 

A RLQ analysis was applied to investigate the co-structure between functional traits 

(stoichiometric and biological) and water parameters (PO4, NO3, water N:P, temperature). 

This extension of the co-inertia analysis (Dolédec and Chessel, 1994) allows to link an 

environment table (sites x environmental parameters, ‘R’) to a trait table (traits x taxa, ‘Q’) 

via an abundance table (sites x taxa, ‘L’), producing a simultaneous ordination of the three 

tables (Dolédec et al., 1996; Dray et al., 2014, 2003). The dimension of sites in R and L (i.e. 

rows) and of taxa in L and Q (i.e. columns) thereby must be the same. Yearly mean 
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abundances were calculated from the abundance table, so that “year” in our analysis could be 

treated as “site” from the original design.  

First, Correspondence Analysis (CA) was applied to the log(n+1)-transformed mean 

abundance array (=L). The environmental data array (=R) was subjected to Principal 

Component Analysis (PCA), weighting the rows (=sites) by the row weights provided by the 

CA. Likewise, the trait array (=Q) was subjected to PCA weighting the columns (=taxa) by 

the columns weights provided by the CA. Water chemistry variables (NO3, PO4, water N:P) 

and stoichiometric ratios (C:N, C:P, N:P) were log-transformed prior to the analysis.  

Second, the rlq() function was applied using the three output objects from the individual 

analyses described above to perform a double inertia analysis (’R’, ’Q’) linked by a 

contingency table (’L’). The total inertia indicates the link between functional traits and water 

parameters as mediated by abundances. Its significance was estimated by a permutation test 

(9999 permutations). We used the two-step procedure suggested by Dray & Legendre (2008) 

for a better control of type I error. 

Differences in body stoichiometry between groups of taxa 

Over the study period, Floury et al. (2013) identified seven groups of macroinvertebrate 

families that show distinct temporal distributions. They used a cluster analysis on the taxon 

scores on the first factorial plane obtained from a CA performed on taxa ln-transformed 

abundances over the period from 1979-2008. We gathered these groups according to their 

response curve. Group A contains taxa that were present in the first years of the study and 

showed decreasing abundances (originally groups 1 and 2 in Floury et al., 2013). Taxa of 

group B were present over the whole period showing unimodal or saturating response curves 

over time (groups 3, 4 and 5). Group C gathers taxa only appearing during the last decade 

(groups 6 and 7). 
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We calculated the mean stoichiometric traits (%C, %N, %P, C:N, C:P, N:P) for each group 

and applied Kruskal-Wallis tests on each stoichiometric variable to test for differences among 

groups. Pairwise comparisons were applied when significant between-group heterogeneity 

had been identified (Dunn test, with Bonferroni correction for multiple testing). Non-

parametric tests were used because of unequal sample sizes and deviations from 

homoscedasticity and normality assumptions as judged from graphical inspection. 

All the analyses were performed using R (R Development Core Team, 2019, version 3.5.2) 

and the package ade4 (Dray and Dufour, 2007).  

Tab. 2: Biological traits and their corresponding trait categories. 

Functional trait Categories 

Aquatic life stages egg, larva, nymph, adult 

Dispersal aquatic-active, aquatic-passive, aerial-active, aerial-passive 

Feeding habits deposit feeder, filter-feeder, piercer, parasite, scraper, shredder, swallower/chewer 
Food resources 
 

dead animal (≥1mm), dead plant (≥1mm), detritus (<1mm), living macrophytes, living 
microphytes, living microinvertebrates, living macroinvertebrates 

Life duration ≤ 1 year, >1 year 

Locomotion attached, burrower, crawler, interstitial, swimmer 

Maximum body size ≤0.5cm, >0.5-1cm, >1-2cm, >2-4cm, >4cm 

Molting events 0, 1, 2-4, 5-9, 10-14, 15-19, ≥20 (= number of molting events) 

Resistance forms eggs/statoblasts, housing/cocoons, diapause/dormancy, none 

Respiration tegument, gill, plastron/spiracle 

Reproductive cycles 1, 2, >2-6, >6 (= number of reproductive cycles per individual) 
Reproduction mode 
 

ovoviviparity, isolated eggs, clutches, clutches.vegter (vegetation/terrestrial), asexual 
reproduction 

Voltinism <1, 1, >1 

 

Results 

Trends in community stoichiometry and water parameters 

All community stoichiometry variables showed a significant trend over the period 1980-2013. 

This trend was negative for community %C, %N and %P and positive in community molar 

ratios (C:N, C:P, N:P) (Fig. 1, Tab.3). From the first decade (1980-1989) to the last decade of 

the study period (2004-2013), mean yearly community %C decreased from 43.05 to 39.53. 
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Likewise, community %N and %P decreased from 8.75 to 7.82 and 0.79 to 0.65, respectively. 

Community C:N increased from 5.87 during the first decade to 6.42 during the last one. 

Community C:P and N:P changed from 146.94 to 184.93 and 24.53 to 28.50. 

 

Fig. 1: Community stoichiometry (%C, %N, %P and molar C:N, C:P, N:P) over the study period 1980-2013. The 

black lines represent yearly mean values; light grey lines the mean +/- the standard deviation. The number of 

sampling events per year was n = 4 for all the years except 2008 with n = 3. Please note that ratio values (C:N, 

C:P, N:P) have been exponentiated in the figure to facilitate interpretation and comparison with other studies, 

while all analyses have been conducted using log-transformed values. 

Water phosphorus concentration decreased significantly over the 34-year period, even though 

it slightly increased again during the years from 2003 to 2010 (Fig. 2, Tab.3). Compared to 

the first decade (0.22 mg/ L), the mean concentration during the last decade declined by 

63.97% to 0.08 mg/ L. 

Water nitrogen concentration fluctuated between years, but with no clear overall trend. Mean 

concentrations slightly increased from 6.10 to 6.60 mg/ L (+8.19%) between the first and the 

last decade. 
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Water N:P ratio increased more than fivefold from 31.52 (first decade) to 174.67 (last 

decade). From 2002 (when water P was the lowest) to 2004, water N:P drastically increased 

from 98.73 to a maximum of 377.09 and then decreased to values around 50 in 2009-2011. 

Water temperature significantly increased (+29.65%) from 14.37°C (first decade) to 18.63°C 

(last decade).  

 

Tab. 3: Results of the Mann-Kendall trend tests applied to water parameters and community stoichiometry. Bold 

lettering indicates statistical significance of Kendall Tau at  = 0.05.  

 Parameter Trend Tau 

Water NO3 - 0.11 
 PO4  -0.61 
 N:P  0.57 
 Temperature  0.66 
Community %C  -0.60 
stoichiometry %N  -0.56 
 %P  -0.70 
 C:N  0.56 
 C:P  0.76 
 N:P  0.79 
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Fig. 2: Water quality parameters (concentrations of NO3 & PO4 in mg/ L and their ratio) and temperature (°C) 

over the study period 1980-2013. The black lines represent yearly mean values; light grey lines the mean +/- the 

standard deviation. The number of sampling events per year was n = 4 for all the years except 2008 with n = 3. 

The calculations were based on mean values over the 126-day period before each faunal sampling date. 

Links between water parameters, stoichiometric and biological traits 

There was a significant link between water parameters and stoichiometric and biological traits 

(p < 0.05, Tab. 4). Clearly the largest part of co-variation was captured by the first RLQ axis 

(95.23%, Fig. 3a), which separated water phosphorus concentration (F1 < 0) from water N:P 

and temperature (F1 > 0), thus well representing global trends in the annual mean values of 

water parameters over the study period. Water nitrate concentration, slightly negatively 

correlated to the first axis, showed a strong correlation to the second axis, which explained 

only 4.05% of the variance. The following description of the results will focus on trait 
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category contributions to the definition of the first RLQ axis only. The location of years along 

the first axis follows a clear trend, supporting an underlying temporal trend (Fig. 3b). 

Body %C, %N and %P were all negatively varying along the first axis (Fig. 3c), positively 

related to water phosphorus concentration (Fig. 3a). Body molar ratios (C:N, C:P, N:P) were 

varying in the opposite direction, positively linked to water N:P and temperature. All six 

stoichiometric variables were among the trait categories highest involved in the link between 

invertebrate traits and environmental parameters as visible from the weighted average 

factorial scores of sampling events representing these stoichiometric traits along the first axis 

of the RLQ analysis (Fig. 3c). 

The proportion of large-sized invertebrates (> 4 cm) increased along the first RLQ axis and 

was linked to high water N:P ratio values, while the proportion of small-sized taxa (> 0.5-1 

cm) decreased and was related to high water phosphorus concentrations (Fig. 3d). Other size 

classes exhibited only a slight association with the first RLQ axis but were ordered according 

to their range of values between these extreme categories (except for the smallest maximum 

sizes; ≤ 0.5 cm). 

Other development-related trait categories highly involved in the link between environmental 

variables and biological traits and related to high water phosphorus concentrations (F1 < 0) 

included a short life duration (“≤ 1 year”), polyvoltinism (“>1 generation/year”), one single 

reproductive cycle per individual (“1 cycle”) and a high number of molting events (“10-14”, 

“15-19”, “> 20”) (Fig. 3d). They were associated with aquatic larvae, an aerial, passive 

dispersal, eggs and statoblasts as resistance stages and deposit (i.e. fine detritus) feeding (Fig. 

3e+f). 

At the opposite side (F1 > 0), long-lived (“>1 year”), monovoltin (“1 generation/year”) 

organisms with several reproductive events per individual (mainly two cycles), a direct 

development (“0 molt”) were related to both high water temperature and high values of water 
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N:P ratios (Fig. 3d). Such organisms exhibited also aquatic adults, living macroinvertebrates 

(and vertebrates; mainly fish eggs and juveniles) as food, and an aquatic, active dissemination 

mode (Fig. 3e+f). 

Tab. 4: Results of the RLQ analysis linking water chemistry (NO3, PO4, water N:P) and temperature to species 

functional (i.e. stoichiometric and biological) traits via their abundances over a 34-year period. Total inertia 

indicates the global link between environment and functional traits, bold lettering indicates significance at  = 

0.05 (permutation tests with n= 9999; applying two separate tests to correct for type I error (Dray & Legendre 

2008)). The projected inertia along the first three RLQ axes is indicated. The fit of the RLQ analysis compared to 

the preliminary analyses (i.e. inertia/co-inertia) has been quantified by 1) the ratio between eigenvalues from 

RLQ and PCA for the environment (column Env) and trait (column Traits) tables and 2) the ratio between the 

correlation between the taxon scores and site scores from the RLQ and CA for the taxon abundance table 

(column Taxa). 

 Total     Fit of RLQ analysis 

Inertia Projected inertia (%)   Env Traits  Taxa 

1.093 Ax. 1 95.23 Ax. 1 0.98 0.86 Ax. 1 0.53 

 
Ax. 2 4.05     

   
  Ax. 3 0.69           
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Fig.3 : Canonical weights of a) environmental parameters (water PO4, NO3, N:P, temperature) and c-f) biological trait categories along the first RLQ axis. Biological trait 

categories were all equally part of the analysis and are simply presented group-wise (stoichiometric (c), development (d), feeding (e), other traits (f)) for better readability. 

Panel b shows chronologically the location of years along the first RLQ axis.
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Fig. 4: Body stoichiometry (%C, %N, %P, C:N, C:P, N:P) of macroinvertebrate families belonging to groups 

with distinct abundance patterns over the study period as defined by Floury et al. (2013). The horizontal line 

represents the median, the boxes range from the 25
th

 to the 75
th

 percentile and the whiskers extend to the last 

values within 1.5 times the inter-quartile range with black dots representing outliers. Different letters indicate 

significant differences using pairwise Dunn-tests following a significant Kruskal-Wallis test (adjustment of p-

values for multiple testing using Bonferroni method). Sample size was n = 6/ 36/ 13 for groups A/ B/ C. 

 

Taxa groups only differed significantly in %P and C:P stoichiometry (Fig. 4). Taxa belonging 

to group A (decreasing abundance over the study period) had the highest %P among groups, 

although this difference was only significant compared to group B (Dunn-test with p<0.05). 

Groups B (present over the whole period) and C (mainly present at the end of the period) did 

not differ. C:P ratio was significantly lower in taxa of group A than in both other groups, 

which did not differ (p>0.05). A non-significant trend for highest values of %C and %N in 
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group A was also observed, while values in groups B and C hardly differed. Body C:N and 

N:P ratios increased from group A to group B and C, but neither groups differed significantly.  

Discussion 

The shift in water quality and temperature was significantly linked to community biological 

and stoichiometric trait profiles, following assumptions based on ecological stoichiometry. 

Generally, stoichiometric traits were the trait-based metrics most involved in the link between 

environmental parameters and functional traits of benthic macroinvertebrate assemblages over 

the study period, taking into account the high scores of sampling events representing these 

traits along the F1 axis in RLQ analysis. 

Trends in community stoichiometry 

Phosphorus-related community stoichiometry decreased (%P) or increased (C:P, N: P) 

significantly over the 34-year study period. It thus followed the decline in water phosphorus 

concentration (and increase in water N:P ratio), supporting our main hypothesis (H1) and the 

findings of previous studies (Prater et al., 2015; Singer and Battin, 2007; Teurlincx et al., 

2017). The other community stoichiometric traits also showed significant trends. The likely 

reason for this is a shift among (major) taxonomic groups that generally differ in their body 

stoichiometry (Beck et al., 2022; Evans-White et al., 2005; Mehler et al., 2013). The increase 

in community C:N and C:P went along with increasing proportions of Bivalvia and 

Gastropoda (S3), two groups that have generally higher C:N and C:P ratios than others (Beck 

et al., 2022). The proportion of Insecta, which are relatively rich in phosphorus, decreased 

over the study period, in parallel with the overall community %P and water phosphorus 

concentration. Families that tended to decrease or even vanished during the first years of the 

study period, such as Perlodidae, Ephemerellidae or Simuliidae (Floury et al., 2013), had 

significantly higher %P and lower C:P than those occurring only during the last years (e.g. 

Aeshnidae or Glossosomatidae) or that were present during the whole period (e.g. Baetidae or 
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Rhyacophilidae). The RLQ analysis has further confirmed this selection for phosphorus-rich 

taxa under high phosphorus conditions. 

Links between water parameters, stoichiometric and biological traits 

All six stoichiometric traits showed a strong association to the first axis of the RLQ analysis 

and overall seemed to be more affected by environmental parameters than the other biological 

traits. The correlations found in other functional traits are in line with our hypotheses based 

on ecological stoichiometry theory and/or with results already reported in the literature. Taxa 

with high body %P and expressing traits indicating a fast growth and/or development and 

often considered as r-strategists (small body size, short life duration, high number of 

generations) (e.g. Southwood, 1977) were positively related to high water phosphorus 

concentrations and therewith had higher abundances early in the study period. In recent years, 

the community shifted towards larger, longer-lived taxa with direct development (no molt) 

and several reproductive events per individual. The recent environmental conditions, notably 

the reduction in phosphorus load, also selected for taxa with high N:P (and C:N, C:P) ratio. 

This is in line with the Growth Rate Hypothesis (= GRH, Elser et al., 1996), assuming a high 

demand for phosphorus and thus higher phosphorus content in the body tissues of fast 

growing taxa (Acharya et al., 2004; Elser et al., 2003); a link that also seems to hold for 

development rate (Beck et al., 2021). Other studies already observed a shift towards small-

bodied, fast-developing taxa (Demi et al., 2019; Singer and Battin, 2007), and decreasing life 

duration (Floury et al., 2017) under high nutrient conditions supporting the common 

assumption in general ecological theory that nutrient enrichment favours r-strategists 

(Dolédec et al., 2006; Southwood, 1977). Despite size being a key trait in ecology, there is no 

consensus about the effect of eutrophication on macroinvertebrate community size structure 

as observed results go in diverse directions for freshwater (c.f. Tab. 1), as well as terrestrial 

(Mulder and Elser, 2009; Ott et al., 2014) systems. While the lack of an effect can be due to 
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rather constant taxonomic composition between treatments (Bourassa and Morin, 1995), an 

increase in mean body size can indicate a response at population level (i.e. individuals 

becoming larger; Davis et al., 2010; Dolédec et al., 2006; Juvigny-Khenafou et al., 2021) 

and/or a shift in taxonomic composition at community level (Juvigny-Khenafou et al., 2021). 

The duration (short-term vs. long-term) and strength of the nutrient change might (partly) 

cause these differing responses. Moreover, the specificities of the study system (i.e. the 

presence or absence of predators or prey refugia) should also be kept in mind when comparing 

the results. 

With decreasing water phosphorus concentration, feeding habits shifted from deposit-feeders 

and shredders feeding on detritus towards predatory feeding strategies (swallowing/chewing, 

piercing invertebrates as resource) and filter-feeding. The increase of the latter feeding habit 

is likely due to the increasing proportion of Bivalvia over the study period. A general link 

between filter-feeding and high C:P and C:N ratios has already been found (Beck, 2021), and 

was also (partly) related to an effect of phylogeny, since this combination of functional and 

stoichiometric traits was mainly expressed by molluscan taxa. The same study also reported a 

positive association between deposit-feeders and shredders towards high body phosphorus 

content. A decrease in deposit-feeding has already been observed under the same 

environmental scenario (Floury et al., 2013; Latli et al., 2017), but these works reported either 

no effect on predators or a decrease (mainly influenced by phytoplankton concentration, a 

parameter that was not considered in our study), and therewith the opposite to our finding. 

Generally, the observed predator responses to nutrient enrichment have been divergent (Hulot 

et al., 2000; McCormick et al., 2004; Wimp et al., 2010; Murphy et al., 2012; Demi et al., 

2019) and are most likely not only driven by prey quality but also quantity. Predatory feeding 

behaviour has already been linked to body nitrogen content (Fagan et al., 2002; Cross et al., 

2003; Beck, 2021), but not to phosphorus. Although in our study this link was among the 
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strongest links over the feeding-related traits, feeding traits overall contributed only little to 

the link between traits and environmental parameters. 

Like community stoichiometry, part of the observed trait patterns was clearly driven by trait 

syndromes, i.e. groups of traits that originate from phylogenetic constraints, and shifts among 

larger taxonomic groups, especially the increase of Mollusca with notably the bivalve 

Corbicula (see Floury et al., 2013). However, some of these observations can also be 

explained by ecological stoichiometry theory. For example, the decreasing affinity for aerial, 

active dispersal could either be due to a generally rather high nitrogen content of Insecta 

(Beck et al., 2022), the only group expressing this trait, or due to a higher investment into 

nitrogen-rich muscle tissue necessary for flight. This makes it impossible to disentangle 

causes and effects among stoichiometric traits, other biological traits and taxonomy. In case of 

community stoichiometry however, the observed decrease in community phosphorus content 

remained when only analysing the insect community and therewith reducing the effect of 

taxonomy (S. 4.  

Nutrients vs. temperature as drivers of the community response 

The strong negative relationship between phosphorus concentration and coordinates of 

sampled years along the first axis of the RLQ analysis, and the position of high PO4 

concentrations opposite to high water N:P and temperature values clearly represent the major 

trends in environmental parameters. They suggest a stronger driving effect of phosphorus 

concentration and temperature on the functional trait composition of invertebrate assemblages 

than nitrogen concentration, which fluctuated among years but did not show a continuous 

trend over the study period. The observed changes in stoichiometric and biological traits 

support our hypotheses H1 and H2 expected under P decrease to the detriment of hypotheses 

H3 and H4 expected under temperature increase. Thus, it seems that the P-decrease had a 

higher impact on the stoichiometric composition of invertebrate assemblages than the 
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temperature increase. As a result, temperature does not seem to be the most important driver 

of invertebrate traits in the Loire River at Dampierre-en-Burly over the study period. Floury et 

al. (2013) already suggested that water quality (esp. phosphorus concentration) was a more 

important driver on life-history traits than hydro-climatic parameters (temperature, discharge). 

Overall, the positive effect of phosphorus decline likely buffered the effect of increasing 

temperature (Floury et al., 2013). This might explain, why – despite an improvement of water 

quality – we observed the decrease or the disappearance of several pollution-sensitive families 

of Ephemeroptera (e.g. Heptageniidae) and Plecoptera (e.g. Perlodidae and Perlidae). Other 

sensitive taxa appeared during the last decade (e.g. the trichopterans Glossosomatidae and 

Philopotamidae or the ephemeropteran Leptophlebiidae). In other multiple-stressor 

experiments the effect of nutrients on taxa or trait groups was only minor compared to those 

of temperature or physical habitat changes (sediment deposition, flow velocity), but affected 

body sizes and community size-structure (Juvigny-Khenafou et al., 2021; Piggott et al., 2015). 

Other works have suggested also an effect of increased predation risk (due to exogenous 

species whose settlement has been facilitated by new environmental conditions) rather than a 

direct effect of temperature or water quality on invertebrate traits related to life history (Latli 

et al., 2017).  

Although our initial hypotheses regarding temperature (H3, H4) were not supported, the 

observed patterns could nevertheless (also) be explained by concepts within the ecological 

stoichiometry theory framework. Increased respiration rates under high temperatures 

(Hamburger and Dall, 1990) or a reduced quality of autotrophic resources (Domis et al., 2014; 

Yvon-Durocher et al., 2017) could have favoured taxa of high body C:P and C:N ratios and 

their corresponding functional traits (as discussed above). As shown for the freshwater 

crustacean Daphnia, the relationship between nutrient requirements (C:P) and temperature 

seems to be U-shaped (Ruiz et al., 2020), suggesting lower nutrient and higher carbon 
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requirements (high C:P) at high temperature increase. For a leptophlebiid mayfly, Moody et 

al. (2017) showed that the GRH did not hold under temperature variation i.e. that an increase 

in body P content under warming was not caused by a temperature-induced increase in growth 

rate.  

It is likely, that the 2003 heat wave in France caused the high involvement of temperature in 

our study, and it therefore would be interesting to further disentangle the effect of nutrients vs. 

temperature events, especially considering long-term effects of the latter. A scenario with 

increasing temperature but stable nutrient concentrations could provide information about 

temperature as a driver of (stoichiometric) trait composition. Since this study was done using 

field data from uncontrolled conditions, we surely cannot exclude that other stressors (e.g. 

hydromorphological alterations, episodic contaminations) altered the community composition, 

especially since often multiple anthropogenic factors act simultaneously in large rivers. 

Notably, transport facilities and rather moderate inputs of pesticides and other micro-

pollutants (episodically detected during the study period) might have had an influence on this 

section of the Middle Loire (Loire-Bretagne Basin Water Authority, 2019). 

Invasive species can also cause major changes for macroinvertebrate assemblages and the 

whole ecosystem, for example reducing phytoplankton availability and planktonic production 

(Floury et al., 2013; Pigneur et al., 2014) and thus altering the food web structure (Latli et al., 

2017) and O2 budget (Bachmann and Usseglio-Polatera, 1999) as in the case of the bivalve 

Corbicula in West-European streams. In our case, Corbicula likely largely drove the increase 

in certain functional trait categories (e.g. filter-feeding, aquatic adultlarge body size) in the 

more recent decade. However, as pointed out throughout the discussion, the observed patterns 

both in community stoichiometry and functional trait composition are largely in line with 

ecological stoichiometry theory. It would thus be interesting to further investigate the role of 
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stoichiometry in the establishment of invasive species, as this has the potential to improve our 

mechanistic understanding of invasion success (Gonzáles et al., 2010).  

 

Outlook 

The main advantage of stoichiometric traits is their ultimate link to elements that allows 

understanding shifts in taxonomical and functional community structure (as demonstrated in 

this work), but could also help answering nutrient-related questions beyond community level. 

In an ecological context, community stoichiometry can be used as a descriptor of the nutrient 

pool provided by the community. Serving as food for higher trophic levels, releasing nutrients 

into the water via excretion (Elser & Urabe, 1999; Vanni et al., 2002; Liess & Hillebrand, 

2006) or providing energy and nutrient flows from the aquatic to the terrestrial system via 

emergence of insects (Martin-Creuzburg et al., 2017; Raitif et al., 2018), macroinvertebrates 

are important contributors to nutrient cycling in many freshwaters. Any shift in this nutrient 

pool thus can cause effects within and beyond community level, for example by providing 

lower quality prey or reduced nutrient release (Elser & Urabe, 1999; Vanni et al., 2002; 

McManamay et al., 2011; but see also Vanni & McIntyre, 2016) due to taxa exhibiting low 

C:P and C:N. 

Integrating biomass information would allow quantifying nutrient stocks or exports. A first 

estimation using this dataset suggests that although community %P decreased, the overall 

amount of phosphorus storage increased (in line with a general increase in overall biomass, 

S5). Although the estimated phosphorus export by emerging insects increased, this element 

seemed to remain in the system for a longer period as suggested by the sharp decline in 

relative phosphorus export. This indicates that the change in community (trait) structure, also 

affects the nutrient pool structure of the community and it would be interesting to investigate 

whether there is a general response primarily towards changing nutrient conditions and/or 
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towards community stoichiometric trait structure. Additionally, investigating whether the link 

between stoichiometric/biological traits and environment nutrient levels holds for other 

systems (e.g. soil, lakes) or over a spatial – rather than temporal – nutrient gradient could 

underline the potential of stoichiometric traits in a wider range of ecological contexts. 

Conclusion 

We demonstrated that over a 34-year period community (phosphorus) stoichiometry followed 

the decrease in water phosphorus concentration, which thus directly affected the nutrient pool 

provided by the community via a shift towards P-poor taxa. Shifts regarding functional traits 

were also in line with assumptions based on ecological stoichiometry theory. Recent 

communities consisted of larger-bodied taxa with traits indicating slow growth/development, 

predatory and filter-feeding habits rather than deposit-feeding or shredding. This suggests that 

nutrients rather than temperature were the main driver of invertebrate community trait 

composition over the study period. As such, our results have underlined the potential of 

integrating stoichiometric traits into (trait-based) analyses to better understand the 

mechanisms behind functional community responses towards nutrient-related stressors. 

Integrating variables such as biomass could further help quantifying nutrient stocks and fluxes 

under global stressors. 
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Highlights 

 Warming and nutrient changes cause taxonomic and functional community shifts 

 Stoichiometric traits are linked to functional traits and environmental nutrients 

 34 years of P decline favored P-poor taxa and increased community C:P and N:P 

ratios 

 A changing nutrient pool likely affects nutrient storage or export from the stream 

 Temporal shifts in functional traits were in line with ecological stoichiometry theory  
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