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Abstract—The goal of a workflow engine is to facilitate
the writing, the deploying, and the execution of a scientific
workflow (i.e., graph of coarse-grain and heterogeneous tasks)
on distributed infrastructures. With the democratization of the
Cloud paradigm, many workflow engines of the state of the art
offer a way to execute workflows on distant data centers by
using the Infrastructure-as-a-Service (IaaS) or the Function-as-
a-Service (FaaS) services of Cloud providers. Hence, workflow
engines can take advantage of the (presumably) infinite resources
and the economical model of the Cloud. However, two important
limitations lie in this vision of Cloud-oriented workflow engines.
First, by using existing services of Cloud providers, and by
managing the workflows at the user side, the Cloud providers are
unaware of both the workflows and their user needs, and cannot
apply specific resource optimizations to their infrastructure.
Second, for the same reasons, handling the heterogeneity of tasks
(different operating systems) in workflows necessarily degrades
either the transparency for the users (who must provision
different types of resources), or the completion time performance
of the workflows, because of the stacking of virtualization layers.
In this paper, we tackle these two limitations by presenting a new
Cloud service dedicated to scientific workflows. Unlike existing
workflow engines, this service is deployed and managed by the
Cloud providers, and enables specific resource optimizations and
offers a better control of the heterogeneity of the workflows. We
evaluate our new service in comparison to Argo, a well-known
workflow engine of the literature based on FaaS services. This
evaluation was made on a real distributed experimental platform
with a realistic and complex scenario.

I. INTRODUCTION

Scientific workflows model scientific applications as a set of
coarse-grain tasks linked together through data dependencies.
Developing scientific applications as a set of interdependent
tasks is a common pattern that has been adopted by many
scientists. This approach allows to develop complex appli-
cations by splitting them into different simpler parts, which
enhances their development and maintainability as well as
their parallelization and distribution. However, such workflows
often become very complex and difficult to manage, deploy
and execute for scientists. To simplify the management of
workflows the scientists generally use workflow engines, such
as Pegasus [1], DEWE [2], Airflow [3], Argo [4], or Hyper-
flow [5]. In this paper we aim at tackling two drawbacks of
existing engines.

First, these engines are generally designed to be used and
deployed by the scientists (i.e., end-users) on existing Cloud
services, and are then used to automatically orchestrate the

execution of the tasks of a given workflow for a given user.
For instance, Pegasus and Hyperflow use Infrastructure-as-a-
Service (IaaS) and DEWE uses Function-as-a-Service (FaaS).
This conceptual design imposes that the workflow engine
runs on the end-users side, thus that the Cloud provider
is fully unaware of the workflows. For this reason, Cloud
providers cannot take advantage of the workflows to optimally
schedule tasks of users on their resources. Hence, scheduling
algorithms of the literature [6]–[11] cannot be leveraged by
Cloud providers to optimize, for instance, their costs and
energy consumption, or to favor the fairness between users
etc.

Second, the management of a potential extreme hetero-
geneity of tasks in workflows is limited in existing engines.
Indeed, in addition to the different library requirements, some
tasks may need to be executed on different operating systems
(OS) in the same workflow. For example, the genomic data
stream designed by the ICO in [12]–[14] uses data produced
by a vendor-specific machine1. To convert the output formats
of the machine to standards, a specific software developed
for Windows must be used, while the other libraries (e.g.,
Openswath) must be run under Linux. This is a common issue
in scientific workflows. None of the existing workflow engines
offer this level of heterogeneity while not degrading one of the
following aspects: the performance of the workflow execution
(i.e., completion time, power efficiency); or the simplicity of
usage for the scientist.

In this document, we present the definition and implemen-
tation of a service, specifically designed for the execution of
scientific workflows. By moving the workflow management
from the scientist side to the Cloud provider side, and thanks
to its modular and distributed design, our new service solves
the two following aspects compared to the state of the art:
(i) handling heterogeneous workflows without loss of perfor-
mance nor simplicity for the end-user (i.e., the scientist); (ii)
enabling workflow-specific resources optimizations for Cloud
providers (e.g., cost and energy savings).

The remainder of this paper is organized as follows. First,
Section II presents the related work on workflow execution and
workflow engines, and highlights the limitations of existing
solutions. Second, Section III details the contribution: (i) the

1Data acquisition documentation
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Scientist concerns References
1 Easy workflow specification [1], [3]–[5], [15]–[17]
2 Automatic execution [1], [3]–[5], [15]–[17]
3 Transparent provisioning [3], [4], [16], [17]
4 Transparent elasticity [3], [4], [15]–[17]

TABLE I: Concerns of the scientists (i.e., end-users) when
using a workflow engine.

workflow submission language for the end-users, and (ii) the
architecture and the modular aspect of the new service for
the Cloud provider. Third, Section IV evaluates this solution.
Finally, Section V concludes this works and opens some
perspectives.

II. BACKGROUND AND RELATED WORK

From a scientist (i.e., end-user) perspective, two important
features have to be considered for a workflow engine: be-
ing able to easily specify a scientific workflow; and being
able to submit a workflow which is automatically executed
while handling software dependencies and files (i.e., data)
between tasks. This is of course the basic purpose of any
workflow engine found in the literature [1], [3]–[5], [15]–
[17]. In addition to this, in the context of Cloud computing,
provisioning (i.e., booking) resources on Cloud infrastructures
should be fully transparent for the end-user who is not a
DevOps engineer, nor a developer in most cases. Finally, the
end-user may want the elasticity of the provisioned resources
to be handled automatically, to reduce their costs when exe-
cuting a workflow. Indeed, because workflows are composed
of many inter-dependent tasks with heterogeneous execution
time and requirements, the number of required resources
changes during their execution. By dynamically adapting the
provisioned resources on the Cloud (i.e., elasticity), the overall
cost is reduced which is important for the scientist who may
run hundreds of workflows. Of course, the elasticity should
be handled automatically and transparently from the end-
user viewpoint. These four requirements for scientists are
summarized in Table I.

Pegasus [1] and Hyperflow [5] are two well-known engines
that are deployable on resources reserved by an end-user. To
use Pegasus or Hyperflow on Cloud infrastructures, an end-
user has to reserve a cluster of virtual machines (VMs) in
an IaaS Cloud service (Infrastructure-as-a-Service), install the
workflow engine on these virtual resources, and launch the ex-
ecution of the workflow with the engine. On the one hand, they
require from the end-users the ability to deploy an infrastruc-
ture by themselves, assuming that the end-users composing the
workflows, i.e., scientists, are experts in resource management.
Moreover, they also expect from the end-users to manage the
various dependencies required by the workflow engine to be
properly configured and executed. In addition to being difficult
and time-consuming, this limits the possibility of re-using
the efforts between several users. Indeed, in addition to the
workflow specification, some deployment and configuration
scripts should be sharable between scientists but may have to
be adapted to different infrastructures and user requirements. If
DevOps tools could help in this task (e.g., Terraform, Ansible,

Heterogeneity Scientist Performance Optimizations
(Table I) (providers)

Airflow [3] ✓ ✗ ✓ ✗
✗ ✓ ✓ ✗

Argo [4] ✓ ✓ ✗ ✗
✗ ✓ ✓ ✗

TABLE II: Metrics of interest on Airflow and Argo. None of
these solutions succeed in handling heterogeneous workflows
while preserving both the scientists concerns and a good per-
formance when executing workflows. None of these solutions
enable specific resources optimizations from a Cloud provider
viewpoint.

Puppet etc.) this remains an important time-consuming and
technical drawback for scientists. This may require that an
expert IT engineer work with the scientists. On the other hand,
as the end-users are responsible for resource provisioning on
the Cloud, they have to determine the number of resources that
will be needed for the overall execution of their workflows.
This is a very difficult task that can lead to under-used
resources. Furthermore, the resource usage of a workflow may
vary during its execution lifetime (e.g., the number of parallel
tasks at each step is variable), and therefore a non elastic
resource reservation seems inappropriate.

Some workflow engines leverage the usage of the FaaS
(Function as a Service) Cloud services [3], [4], [15]–[18]. The
FaaS offers the opportunity to define functions (small comput-
ing entities using specific libraries), that will be executed in a
serverless environment. The idea of workflow engines coupled
to a FaaS service is to associate one task of a workflow to
one function in the FaaS. In the FaaS, the deployment and
management of resources are handled by the Cloud provider,
and are hidden from the end-user. Basically, the resources
provisioned in a FaaS are containers. By using the FaaS, the
resources are provisioned when required, and released when
no longer used, therefore enhancing the transparent elasticity
of the solution. To the best of our knowledge, as indicated
in Table I, only four FaaS-oriented workflow engines of the
literature offer the four expected properties from the scientist
perspective [3], [4], [16], [17]. Because Apache Airflow, and
Argo have accessible documentations and implementations, we
study more specifically these two solutions in the rest of this
section.

An important aspect of the contribution presented in this
article is to design a solution capable of managing and
executing highly heterogeneous workflows containing tasks
that need to be run on different operating systems. This
property is difficult to address when combined with two other
properties : (1) preserving the scientist properties of Table I;
and (2) avoiding a loss of performance in the completion
time of workflows. Table II resumes the combination of these
three properties, or metrics, for both Airflow and Argo. In
these workflow engines, handling heterogeneous workflows
has to be done with some compromises. First, in Airflow
it is possible to define specific provisioners for any type of
resource, from bare-metal resources to virtual machines. How-
ever, this functionality degrades the provisioning transparency



for the scientist. Indeed, to use heterogeneity, the end-user
has to provide supplementary technical script files. Second,
because it is relying on a Kubernetes cluster, Argo is based
on containers and in particular Docker containers. If multiple
operating systems are required by the tasks, a virtual machine
(or a specific additional subsystems as WSL) and a container
have to be stacked which involves a high overhead, reducing
the performance of the execution. Furthermore, bare-metal
resources are not available in Argo. The solution presented
in [16], [17] have the same limitations as Airflow, as they lie
on public FaaS services (e.g., AWS Lambda, IBM Cloud func-
tions), and does not manage transparently the heterogeneity.

Finally, and this is the main point of this paper, in both Air-
flow and Argo (but also in other engines of the literature) the
Cloud provider cannot make specific optimizations to handle
scientific workflows. Indeed, generic Cloud services (i.e., IaaS
and FaaS) are directly used by workflow engines, thus leaving
the Cloud provider outside the decisions of resource allocation
and scheduling. This is potentially an economical loss for the
Cloud provider who would have been able to perform smart
global optimizations by considering all submitted workflows
of all users.

As a matter of fact, existing engines are designed to run
one workflow of one end-user, and therefore make local
optimizations like for example makespan minimization [1],
[5], or cost optimization [3], [4], [19], [20], without any
knowledge of the physical infrastructure, while assuming that
an infinite number of resources are available. Yet, when many
users share the same infrastructure, applying a set of local
optimizations, at the level of one workflow, leads to a sub-
optimal utilization of the infrastructure in many dimensions
(e.g., fairness, energy efficiency, etc.). In particular, by being
unaware of the workflows, the Cloud provider cannot leverage
the optimization algorithms of the literature [6]–[11].

In this paper we aim at tackling the execution of heteroge-
neous workflows in the Cloud while preserving the scientist
concerns and execution performance. Furthermore, by offering
a workflow-specific service deployed at the Cloud provider
side and designed to be modular with an easy way to plug new
types of resources or schedulers, we also enable optimizations
at the resource management level. As preserving the concerns
of the scientist is a primary issue in our proposal, a comparison
of our new service with Argo is made in the evaluation in
Section IV.

III. WAAS : WORKFLOW AS A SERVICE

In this section is presented our new Cloud service dedicated
to scientific workflows, namely the WaaS for Workflow-as-
a-Service. The idea of the WaaS is, unlike usual workflow
engines, to provide a solution for scientific workflows de-
ployed and managed on the Cloud provider side. This way,
the limitations of the state of the art that we pointed out
in the previous section can be solved: heterogeneity and
optimizations of the resources.

This section is divided into two parts. The first part presents
the operations performed by the end-user (i.e., the scientist)

1 f i l e s : # list of files
2 - id : v a l u e # file ID
3 name: v a l u e # file name
4 type : o u t p u t # Optional
5 * a d d i t i o n a l o p t i o n a l a t t r i b u t e s
6 t a s k s : # list of tasks
7 - app: v a l u e # Name of executable
8 hardware: # list of Hardware requirements
9 key1: v a l u e 1

10 key2: v a l u e 2
11 . . .
12 os :
13 name : v a l u e # Name of operating system
14 s o f t w a r e : # list of software dependencies
15 - va lue1
16 - . . .
17 output : # list of file references
18 - va lue1
19 - . . .
20 input : # list of file references
21 - va lue1
22 - . . .
23 params : v a l u e # execution parameters
24 * a d d i t i o n a l o p t i o n a l a t t r i b u t e s

Fig. 1: Meta-grammar of the workflow description file

wishing to run a scientific workflow in the WaaS. The second
part presents how the service can be deployed and customized
by a Cloud provider. This second part also presents a detailed
view of the service architecture and its different modules.

A. Scientist concerns

As presented in the previous section, a scientific workflow
is a succession of tasks with file dependencies, which can
be described by a DAG (directed acyclic graph). In our
context, the job of the end-user is to select the different
tasks of the workflow and to describe the workflow topology
by composing them. The tasks composing the workflows
are usually developed by experts in the community of the
scientist, and are made available to create workflows. The tasks
are generally coarse-grained, and can be very heterogeneous
(unlike the tasks considered in the high performance com-
puting community for instance). In the WaaS, the workflow
topology must be given by the scientist in a YAML description
file. Figure 1 presents the meta-grammar of the workflow
description language, and Figure 2 presents an example of a
workflow. In the WaaS the meta-grammar of the workflow
description has to be implemented and customized by the
Cloud provider to get its own specific grammar. This will be
detailed in the second part of this section.

In the YAML description file, two main elements are re-
quired, the specification of files, and the specification of tasks.
The files section is the list of all the files that are created
during the workflow execution and transmitted from tasks to
tasks. Each file is specified by an identifier (id), and a name
(name). A file whose type is output (optional), is a file
that the end-user wants to retrieve and analyze at the end
of the execution. Similarly, the tasks section is the list of
all the tasks of a workflow. To each task is associated the
path and the name of the executable file to run (app), as
well as the associated execution parameters (params), the
hardware requirements of the task (hardware), the needed
operating system with attached software dependencies (os),
its input files (input) as well as its output files (output),
as references to the files list. In os, the end-user has the



ability to specify a list of software dependencies that must
be installed before launching the task. Available dependencies
are customized by the Cloud provider (see the second part of
this section), and all provisioning and installation operations
are automated by the WaaS (by a mechanism close to a
Dockerfile), thus making the resource management aspect
transparent for the user.

One can note that for each file, or task, optional attributes
can be added. Those optional attributes depends on the type of
scheduler that the Cloud provider chooses to deploy, and on
the type of hardware and operating systems available in their
specific infrastructure. Thus, it is up to the Cloud provider to
define the specific grammar of the description file accepted
in its service, by defining the list of attributes required in the
YAML description file. For example, it is up to the Cloud
provider to define the list of hardware informations required
or optional (e.g., CPUs, RAM, GPU, etc.). Figure 2 presents
an example of a workflow specification. The example file
corresponds to the workflow depicted on the left-side of the
figure. In this example, a few optional parameters have been
added by the Cloud provider: the size of the files to transfer
between tasks; the duration of each task as a number of
instructions; the requirements in terms of CPUs and memory.

T1

T2

inter.txt

out.txt

1 f i l e s :
2 - id : F i l e 1
3 name: i n t e r . t x t
4 s i z e : 1000 # Kbytes
5 - id : F i l e 2
6 name: o u t . t x t
7 s i z e : 2096 # Kbytes
8 type : o u t p u t
9 t a s k s :

10 - app: T1
11 l e n : 22000
12 needs :
13 cpu : 1
14 memory : 1024
15 os : ubuntu18 . 0 4
16 output :
17 - F i l e 1
18 - app: T2
19 l e n : 34000
20 needs :
21 cpu: 2
22 memory: 2048
23 os : ubuntu18 . 0 4
24 input :
25 - F i l e 1
26 output :
27 - F i l e 2
28 params: − i i n t e r . t x t −o o u t . t x t

Fig. 2: Example of a workflow with two tasks by using a
cloud-specific-grammar built from the meta-grammar.

Once a scientist has specified her workflow and has created
its input files, she submits the workflow to the service. This
submission is composed of the tasks (app), the input files
(input of the entry tasks of the workflow), and the workflow
description file in a single archive, and can be made on a
simple web interface. Once a workflow has been correctly
executed by the Cloud provider, its result files (output files)
are available to the scientist via a web link. The scientist does
not have any other work to do, thus it can be said that the
execution is fully automatized and transparent for the end-
user, (i.e., as specified in Table I).

B. Cloud provider concerns and WaaS architecture

The entire execution of the workflow (i.e., the scheduling,
the resource management, the execution of the tasks as well
as the file management) is handled by the WaaS service
deployed on the Cloud provider side. The service is composed
of two main modules, the Master and the Worker modules. The
Master module is responsible for a cluster of Workers, where
each worker is attached to one physical machine (i.e., node).
The bandwidth within a cluster is assumed to be homogeneous.

Master module - The Master module is hosted by one of the
nodes of the infrastructure, and is accessible from the outside
of the cluster in order to receive submission requests from
end-users. It contains a scheduler sub-module. This scheduler
is responsible for the following decisions: where (on which
resource) and when to execute a task. In the WaaS the role of
the scheduler is abstracted as a set of interfaces as follows. The
scheduler provides for each task a slot s =< t, b, e, r > ∈ S,
where t ∈ V is a task of a workflow G = (V,A), where
b, e ∈ N are the starting and ending times of the task, and
r ∈ R is the virtual resource that will execute the task. Ending
time e can be unset depending on the scheduler that is used,
and the virtual resource r can be anything, depending on the
virtualization technology that is used (even bare metal), but for
the sake of simplicity we will use the term virtual resource.
A virtual resource is defined by r =< b, a, e, k, n >, where
b, a, e ∈ N are respectively the starting instant, the availability
instant (after the boot process), and the ending instant (killing
of the resource) of the virtual resource. The attribute k ∈ K
represents the capacities of the VM, for instance vCPU, or
memory. The attribute n is the node that will host the virtual
resource. Depending on available information, the scheduler
can determine the ending time e of a task, or may set an infinite
lifetime for the task slot, and its associated virtual resource.
In the rest of this paper, the assignment of the tasks to virtual
resources through time (i.e., the set of slots S) is called a
planning. As long as the scheduler is designed in the respect
of the above interfaces, any kind of scheduler can be used
by the Master. The idea behind the modular scheduler is to
provide a flexible solution for the Cloud providers, which may
have different objectives in mind (e.g., energy optimization,
performance optimization, fairness, etc.). Note that different
schedulers may need different kinds of information, thus ex-
plaining the meta-grammar of the workflow description file we
presented in the previous subsection. Indeed, for example some
schedulers may require different type of hardware information
about the tasks, or average number of instructions of the tasks,
as presented in the example in Figure 2.

The Master module execution pipeline (Figure 3) consists of
two different parts: (1) calling the scheduler sub-module when
a new workflow submission occurs to update the planning; (2)
performing the execution of its current planning, by sending
execution and provisioning orders to the Workers, and by
managing new monitoring information from them. The types
of orders that can be sent to the Workers by the Master
module is presented in the next sub-part. The wait event



Wait event
(monitoring / submission)

New submission?

Call the scheduler

Update the planificationApply the planification

yes

no

Fig. 3: Master execution pipeline

step of Figure 3 represents both monitoring and submission
events, where monitoring events refers to the events sent by
the Workers in response to orders.

1 name: v a l u e
2 hardware:
3 # hardware capacities
4 key1: v a l u e 1
5 . . .
6 os :
7 # OS and boot times
8 name1: t ime1
9 . . .

10 * o p t i o n a l a t t r i b u t e s :

Fig. 4: Meta-grammar of a worker description file

1 name: node 1
2 speed : 2200
3 hardware:
4 cpus : 16
5 memory: 16384
6 os :
7 ubuntu: 30

Fig. 5: Example of description of a worker by using a cloud-
specific-grammar built from the meta-grammar of Figure 4.

Worker module - One Worker module is deployed on each
node of the Cloud infrastructure dedicated to scientific work-
flows. When deployed, a Worker module registers itself to the
Master module responsible for its cluster. To the registration
is attached information that can be customized by the Cloud
provider, and that are described by a YAML file. The meta-
grammar of this description file is presented in Figure 4, and an
example is given in Figure 5 where one possible specification
of this meta-grammar is presented. The hardware attributes
defines the hardware capabilities of a node, and one can note
the relationship with the hardware requirements of a task
presented in Figure 1. The os section lists all the virtual
resources that can be provisioned on the nodes, and the number
of seconds it will require in average. One can note again the
relationship between the os requirements of a task presented
in Figure 1. The attributes of a node are typically used by
the scheduler of the Master module and are reported to the
grammar of the YAML file asked to the scientist.

A Worker module is responsible for launching and stopping
the virtual resources, executing the tasks, and transferring
the required files for tasks. However, the Worker module is
not responsible for taking decisions, and simply answers to
the orders sent by the Master module (i.e., according to the
planning created by the scheduler). There are four orders that
can be received and addressed by a Worker:

• launch a virtual resource r;
• kill a virtual resource r;
• execute a task t on a virtual resource r;
• download a file f for a task t from a remote node n.

Note that the number of orders is small, and that only the
first three depend on the type of virtualization. Therefore,
defining new Workers to manage different types of virtual
resources is quite straightforward by following the above
interfaces. In addition, one can note that the virtual resources
provisioned by the Worker module are customizable and may
be stacked or unstacked, and may even run directly on the
physical node (i.e., bare metal), according to the specific
choices of the Cloud provider. Finally, a cluster can contain
heterogeneous Worker modules, e.g., Workers providing con-
tainer, along with workers providing VM. The idea behind this
conceptual choice, is to enable the management and execution
of heterogeneous workflows, that may require different kinds
of operating systems to be properly executed. By putting the
heterogeneity management at the Worker level, it becomes
fully transparent for the end-users, unlike the solutions of the
state of the art [3], which requires from them additional script
files.

The last order of the Worker interface is to transfer files
created by a task, and to ensure that the dependencies between
the tasks are respected. To enable the transfer of the different
files, each Worker module instance stores all the files produced
during the execution of the workflows locally. When a Worker
module requires access to a file that was created on another
node, it will simply get it by sending a file download request to
a sibling Worker module. In the workflow definition, multiple
tasks could depend on the same file. For this reason, when
multiple tasks are to be executed by the same Worker, and
have the same file dependency, the file transfers are merged
in order to prevent multiple copies of the files that would
be useless. All the file transfers are managed by the Worker
module automatically. For privacy reasons, virtual resources
have access to the files needed by the tasks they are executing,
but have no access to the other files (i.e., the files of the other
users). An additional small order can be noted on the Worker,
the order to delete useless files (i.e., files that are no longer
required by any tasks, and that are not output files).

The types of operating systems that can be provisioned can
be customized by deriving from a standard OS (“à la Docker-
file”), and all the dependencies are automatically installed by
the Worker module, thus enhancing the heterogeneity manage-
ment capabilities of our solution. Finally, virtual resources are
provisioned only when required by the workers, and resources
can be released when becoming useless, therefore, resource
provisioning is elastic.

Federation of services - Until now we have described the part
of the WaaS that manages the resources of a single cluster of
nodes. Yet, most of the time the infrastructure offered by Cloud
providers are composed of multiple clusters (assuming that a
cluster refers to a single local area network). When handling
multiple clusters, some issues are raised. For instance, some



scalability issues may be due to the high number of Workers
handled by a single Master, or due to the high number of
variables to consider in the scheduling problem. Furthermore,
some issues can be raised by the network bandwidth bottle-
necks between clusters etc.

In the current version of the WaaS, we address the problem
due to the number of events that need to be handled by the
Master module when considering multiple clusters of nodes.
To address this explosion of events for the Master module, the
intuition is to divide the planning execution between multiple
Masters, hence reducing the number of events managed by a
single Master (less Workers, tasks, files and virtual resources
to manage). Another solution would have been to deploy as
many WaaS services as there are clusters, and let the end-users
choose on which cluster to execute their workflows. However,
in case of big workflows or when clusters are highly loaded,
a workflow can be poorly executed on a single cluster, while
using multiple clusters could improve the execution quality.
For this reason, we have opted for a federated service where
each cluster is handled by one Master, and where a Leader
module is deployed to federate the Master modules (Figure 6).
In this federated version, the Leader module is the only one
making decision and possessing a scheduler sub-module.

Leader

Scheduler

Master
Master

Master

Worker

Worker

Worker

Worker

Worker

Worker

WorkerWorkerWorker

Fig. 6: WaaS deployed on 3 clusters with 3 nodes each

Thus, instead of calling the scheduler, each Master module
receives a sub-planning to apply from the Leader module. This
sub-planning received by a Master module only involves the
nodes of the cluster under its supervision, as well as only the
tasks that will be executed on its own cluster. Workers from
different clusters cannot communicate, however the different
Master modules can directly communicate to handle file
transfers from point to point without the intervention of the
Leader.

Note that since a distributed infrastructure with several clus-
ters is targeted, decentralized scheduling algorithms would be
needed, for scalability, in addition to federation. However, our
results (Section IV) shows that our first scalability bottleneck
is the number of events handled by the Master module, and
not the scheduler resolution time. Furthermore we wanted the
WaaS to be, as a first step, compatible with the centralized
algorithms of the literature. Considering distributed scheduling
algorithms could be the subject of future work.

To conclude this section, a new Cloud service for the exe-
cution of scientific workflows has been described. This service
is highly customizable in terms of scheduling decisions, and

resource provisioning, which enhances heterogeneity manage-
ment and enables resource optimizations compared to the state
of the art. Furthermore, the service is usable in a context of an
infrastructure composed of multiple clusters, thus providing a
good turnkey solution for Cloud providers.

IV. EVALUATION

In this section, a detailed evaluation of the WaaS is pre-
sented. Each section refers to some of the objectives of Ta-
ble II: (1) tackling heterogeneous workflows while not degrad-
ing the scientist concerns and the performance; (2) enabling
specific optimizations from the Cloud provider perspective.
The experimental protocol is detailed hereafter. All codes and
results are available on a public git repository2.

A. Experimental protocol

WaaS implementation - The WaaS has been implemented us-
ing the library SCALA AKKA. The architecture of the platform
has been presented in Section III. The SCALA AKKA library
is an actor oriented library. In the WaaS implementation,
each module is an actor answering and sending messages to
the other modules. To evaluate the capability of the WaaS
to enable optimizations of resources for the Cloud provider,
four different scheduling algorithms of the literature have
been implemented, HEFT [6], Min-Min, Max-Min [7] and
HEFT deadline [8]. HEFT, Min-Min and Max-Min have orig-
inally been designed for the scheduling on Grid infrastructures,
and have been adapted to be able to schedule virtual resources.
This adaptation is presented for the HEFT algorithm in [8],
and is similar for the Min-Min and Max-Min algorithms.
Furthermore, to show that the WaaS tackles heterogeneity,
two different Workers have been implemented, one providing
KVM virtual machines, and one providing Docker containers.
Recall that these workers are written at the level of the Cloud
provider and that nothing is asked to the scientist. All these
codes are available on the repository.
Execution infrastructure - Experiments have been run on a
distributed infrastructure composed of two different clusters.
These two clusters are part of the Grid’5000 3 experimental
platform, and are presented in Table III. The WaaS has been
deployed on this infrastructure with five Master modules as
depicted in Figure 7. One of them handles the whole econome
cluster, and each of the four others handles a sub-cluster
composed of 11 nodes of ecotype. In other words, ecotype
is divided in four sub-clusters for experiments. On the one
hand, the worker providing Docker virtualization has been
instantiated and deployed on the nodes of two of the ecotype
sub-clusters, and on the econome cluster. On the other hand,
the worker providing KVM virtualization has been instantiated
and deployed on the two remaining sub clusters of ecotype.
The bandwidth between the ecotype and econome clusters is
10 Gbps. The Master modules are running on nodes that also
host a Worker module, and the Leader module is running on
a node that also hosts a Master module.

2https://github.com/EmileCadorel/WaaS
3https://www.grid5000.fr

https://github.com/EmileCadorel/WaaS
https://www.grid5000.fr
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Fig. 7: Deployment of the WaaS on Grid’5000

Name Nodes CPU Memory Storage Network
econome 22 Intel Xeon E5-2660 64 GB 2.0 TB 10Gbps

2.20GHz, 2 CPUs/node HDD SATA
8 cores/CPU

ecotype 44 Intel Xeon E5-2630L v4 128 GB 400 GB SSD 2 x 10Gbps
1.80GHz, 2 CPUs/node
10 cores/CPU

TABLE III: Hardware description of the nodes used in experiments.

Workload - The Montage workflow is a typical case-study
used to evaluate workflow engines and scheduling algo-
rithms [15], [18], [21], [22]. It is a real and complex workflow
that integrates most of the workflow classes characterized by
Bharati et al. in [23], and that creates astronomic mosaic
images. The simulated workload is composed of 100 Montage
workflows, each of them composed of 619 tasks. A total
number of 400 executions of the Montage workflow has been
performed, a hundred for each of the 4 different scheduling
algorithms: HEFT, Min-Min, Max-Min and HEFT deadline.
Each workflow generates approximately 2.0 GB of files during
their execution that have to be transferred to fulfill the tasks
dependencies. Each workflow is submitted in a waiting queue
and is processed by the Leader after the scheduling algorithm
has planned the previous one, so approximately every 3 to
4 seconds. This waiting queue of submissions is required by
the centralized scheduling algorithm. The average duration of
the workload execution for the four execution is 24 minutes.
To make comparison with the state of the art, the Montage
workflow has also been written for the Argo workflow engine.

B. Results

In this section are presented the different results we obtained
in relation with our objectives of Table II.
Scientist concerns - The submission of the Montage workflow
composed of 619 tasks has been made 400 times in our
experimental benchmark. As expected, the scientists (end-
users) do not have to make any modification, even when
different scheduling algorithms are deployed. The end-users
also did not have to worry about the virtualization technologies
that have been used, and chosen by the Cloud provider, and
the resource management is fully transparent for the end-user.
Note that the description file of the Montage workflow in our
experiments has been generated automatically by the workflow
generator provided by Pegasus, and was easily adapted for

the WaaS with a transformation script. This file4 is 11977
lines long. An almost similar description file is necessary for
the state of the art workflow engines, such as Argo5, thus
we can state that properties of Table I are preserved by the
WaaS in comparison to the state of the art. One can note
from the git repository that the WaaS file is longer than the
Argo file, this is due to two different reasons: (1) first in
Argo the description of the workflow does not handle the
dependencies between tasks through files specifications, but
with abstract dependencies between the tasks (i.e., edges),
which reduces the specification size; (2) second Argo has
template task descriptions, that we did not implemented in
our prototype, but which could be easily added. Note that,
by not handling dependencies between tasks with files, Argo
is theoretically more generic but it requires from the users
to manually handle files sharing through Kubernetes volumes.
This reduces the transparency for the users. This will be further
discussed later in this section.

Heterogeneity - Two different Workers have been deployed on
the infrastructure, providing different types of virtualization.
We do not intend to compare the different virtualization
techniques, but to illustrate the ability of the WaaS to integrate
and handle different Workers in a transparent manner for
the scientist, thus handling heterogeneous workflows while
preserving the scientists concerns. The code of the Workers
can be found on the git repository6, where only one file differs
from KVM to Docker. This file is 200 lines long for Docker,
and 500 for KVM. They both follow the interfaces defined
in Section III and are written by engineers or operators at
the level of the Cloud provider. Table IV lists the number of
virtual resources provisioned by KVM Workers and Docker

4WaaS description of Montage
5Argo description of Montage
6Docker and KVM workers

https://github.com/EmileCadorel/WaaS/blob/master/apps/Montage_619/flow.yaml
https://github.com/EmileCadorel/WaaS/blob/master/comparison/argo/montage_619/flow.yaml
https://anonymous.4open.science/r/WaaS-75FF/source/src/main/scala/com/orch/daemon/


Workers in our benchmark. VMs provisioned with KVM use
Ubuntu 18.04, and each provisioning took 59 seconds in
average, when the provisioning of a Docker container (also
Ubuntu 18.04 container) took 3 seconds in average. Such
transparent heterogeneity for the scientist is not possible in
other workflow engines of the state of the art except Argo. But
we will show that Argo degrades a lot the completion time
of workflows to achieve heterogeneity. In Apache Airflow,
tackling the heterogeneity of workflows is possible but it is up
to the end-users to manage it. Indeed, to use heterogeneous
resources, the end-users have to call different Cloud providers
using configuration and script files, when it is completely
transparent in the case of the WaaS.

Virtualization HEFT HEFT deadline Min-Min Max-Min
Docker 4728 1197 4923 3981
KVM 1749 0 1539 1658

TABLE IV: Number of virtual resources provisioned during
the experiment for each scheduler.

To understand how the management of heterogeneous work-
flow can be achieved with the WaaS, lets consider a simple
workflow composed of two sequential tasks T1 and T2. Lets
also assume that T1 needs to be executed on Windows, and
that T2 needs to be executed on Ubuntu. On the one hand, if
considering that clusters use Linux, there are no choice for the
execution of T1: a VM has to be provisioned, thus the WaaS
would consider either the cluster Ecotype 3 or Ecotype
4 (Figure 7). On the other hand, the task T2 can be executed
on a container or a VM. Because containers have a faster
boot process, they would probably be preferred (depending
on the scheduler, and infrastructure load context), thus the
clusters Econome 1, Ecotype 1 or Ecotype 2 would be
selected for the execution of T2. In either case (execution of
T1, and T2), the virtual resources are provisioned without any
stacking of resources. In Argo the management of this same
heterogeneous workflow would not be considered directly
by Argo, but by the Kubernetes cluster that is selected to
execute the pods requested by Argo. To run a container under
Windows, there is no other choice than starting a Windows
VM, and then start a container over it (which could be handled
by Docker), thus creating a stack of virtual resources and a
loss of performance. One can also note that in any case, Argo
and Kubernetes cannot manage bare metal resources unlike
the WaaS.

Even if the Montage workflow is not an heterogeneous
workflow (every tasks has to be executed under Ubuntu), our
evaluation shows that heterogeneous resources are used when
the clusters that handle Docker containers are highly loaded.
For example, with the HEFT algorithm, the 100th submitted
workflow was executed by 29 different nodes. In these 29
nodes, 23 were running docker containers and 6 were running
KVM virtual machines (Table IV). This proportion is of course
not the same for all the workflows, according to the scheduling
algorithm. For instance, HEFT chooses the virtual resource
that provides the earliest finish time for the task, while taking
into account the current load of the infrastructure.

Performance - The execution of the workflow Montage was
made using both the WaaS and Argo. It is difficult to have a
fair comparison between these two systems, as they operate
in different contexts. To be as fair as possible, the comparison
was performed on a single econome node, using Docker
virtualization for WaaS, and a local Kubernetes for Argo (the
deployment of Kubernetes is available on the source repository
for reproductibility). Contrary to an execution with the WaaS,
the full workflow Montage with 619 tasks cannot be executed
on a single node by Argo, thus a smaller workflow was chosen
composed of 31 tasks. We consider that this comparison is fair
for two reasons. First, we execute a single workflow of a single
user which is the kind of scenario handled by Argo which
is not designed to manage multiple workflows of multiple
users. Second, the use of only Docker containers in the WaaS
ensures the same virtualization conditions as Argo (that uses
Kubernetes).

The completion time of the workflow is 37 seconds for the
WaaS, and 3 minutes and 32 seconds for Argo. This difference
is due to the time taken by Kubernetes to starts new pods (1
per tasks), and configure them, when the WaaS only starts one
virtual resource for the whole workflow (because only one user
is involved). The time required to start a pod can be due to
many parameters that we do not know with precision, therefore
we will not develop further on this aspect. However, we are
sure that this overhead is due to the pods as the execution
times of the tasks are exactly the same for both the WaaS and
Argo. Hence, even when virtual layers are not stacked and
with a single workflow of 31 tasks, the overhead of Argo is
significant.

From this experiment, some points should be discussed.
First, Argo is not aware of the physical infrastructure and
assumes that it has access to an infinite amount of resources.
This is a major issue when using a small infrastructure and
big workflows. On the contrary, the WaaS is able to take
into account the small size of the infrastructure and adapt the
execution to this context. This first point is further discussed
in the following sub-part. Second, by running each task in a
different pod, Argo loses a lot of time in resource provisioning.
This second granularity issue is once again related to the
unawareness of the physical infrastructure. Indeed, because
the WaaS knows the capacities of each nodes, bigger virtual
resources running multiple tasks can be used.

Optimizations - Furthermore, with our benchmark, we also
aim at showing that different scheduling algorithms could
be used or added by Cloud providers with minimal efforts.
The code of these scheduling algorithms can be found on
the git repository7, where only one file of about 100 lines
is required for each scheduler. Each scheduler has a different
behavior and uses the infrastructure in a different way. We
do not intend to compare the performances and results of
the different algorithms. However, in order to validate the
scheduler modularity, Figure 8 presents for each algorithm and
for each submitted workflow (each 3 to 4 seconds) its ending

7Codes of the schedulers

https://github.com/EmileCadorel/WaaS/tree/master/source/src/main/scala/com/orch/leader/scheduling


time on the execution timeline of the experimental scenario.
One can note that, as expected, each scheduler has its own
behavior in response to the input workload.
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Fig. 8: Comparison of the behavior of each scheduler in response
to the experimented workload. A workflow associated to an id is
submitted each 3 or 4 seconds. The completion time of each workflow
is depicted according to the scheduling algorithm to illustrate the
modularity of the WaaS.

The deployed schedulers use the information about the
infrastructure, and about the workflow topologies to take
scheduling decisions. This is a completely different philosophy
compared to other solutions as it enables the optimization of
the resources at the level of the Cloud provider. Indeed, as
already mentioned, in other workflow engines the management
and the scheduling of the workflow is performed at the level of
the scientist. As a result, the infrastructure is unknown by the
embedded scheduling algorithm of the engine. For example,
the scheduler of the Argo workflow engine simply starts a pod
(Kubernetes virtual resource) for each task, as soon as they can
be started. This can result in a high demand on the physical
infrastructure. In our example with Montage 619 tasks, Argo
would start 423 pods at the same time, a workload that cannot
be handled by a single node, while the WaaS succeeds in
running the workflow on a single node, by making decision
based on the capacity of the infrastructure.

One can also note, that the solution provided by the WaaS
service is elastic. For instance, with the HEFT algorithm,
the execution of the first submitted workflow used 22 virtual
resources with durations ranging from 11 seconds to 114
seconds with an average of 62 seconds. These virtual resources
have executed 20 to 60 tasks each, with an average of 28 tasks.
The completion time (i.e., makespan) of this first workflow
was 118 seconds. This shows that resources are created and
deleted in an elastic manner, i.e., with shorter lifetime than
the overall makespan. Of course, the elasticity depends on the
scheduling algorithm that is chosen. This is possible thanks to
the Master-Worker and heterogeneous Workers architecture of
our service.

Multiple cluster infrastructure - Our experimental bench-

Cluster HEFT HEFT deadline Min-Min Max-Min
ecotype-1 17095 21636 16752 16922
ecotype-2 10815 21777 11248 11244
ecotype-3 6051 0 5927 6196
ecotype-4 6434 0 6144 6342
econome-1 21505 18487 21829 21196

TABLE V: Distribution of the workload across the clusters,
by the number of tasks executed

Cluster HEFT HEFT deadline Min-Min Max-Min
ecotype-1 287402 211825 281331 287402
ecotype-2 104329 175991 112066 115575
ecotype-3 65892 18 64917 65692
ecotype-4 68613 17 65363 74851
econome-1 174047 143578 177889 169672
estimation all 570891 498031 571523 570716

TABLE VI: Distribution of the workload across the clusters,
by the number of messages processed

mark also shows the ability of the WaaS service to use
a distributed infrastructure composed of multiple clusters.
Table V lists the number of tasks executed in each cluster.
Every scheduler took approximately the same time to schedule
one workflow, with an average of 2.5 seconds. Hence, the
bottleneck of the execution is not located at the level of the
scheduling algorithm, but on the number of messages that
are transmitted from the Master to the Workers, as illustrated
in Table VI by the number of messages processed by each
Master module during the execution. The last line of this
table additionally shows an approximation of the number of
messages that would have been treated if only one Master
module had been used. The distribution of the work between
the different clusters depends on the decision taken by each
scheduler, however, it may be noted that in all cases the
workload is dispatched between multiple clusters. There are
nothing to compare with the state of the art on that specific
point as the management of the infrastructure is left to a third
party when using existing workflow engines.

Sharing of workflows - Finally, in this subpart we discuss
the differences between Argo and the WaaS service in terms
of sharing capacities between scientists, and execution re-
producibility, which is an important aspect for the scientific
community. First, it is important to precise that Argo has
not been initially designed for the specific case of scientific
workflows composed of tasks that share files, but for DAGs
of tasks whose dependencies are symbolic relations. In other
words, the management of the files between the tasks is not
managed by Argo itself, but is left to the end-user who has
to create a persistent volume in the Kubernetes cluster and
place the input files inside it. This is an important drawback,
first because there are a large variety of volume management
systems in Kubernetes, and second because additional scripts
have to be defined and shared by the end-users for repro-
ducibility. Furthermore, scripts may have to be customized
by each scientist. To our knowledge, all workflow engines
targeting the FaaS services encounter this same issue. In the
WaaS service the management of the files is directly tackled by
the service, thus asking no additional work than the description



of the workflow to the end-users. Hence, even if the description
of the workflow is a bit longer (files and file dependencies
must be listed in the YAML description file), no additional
scripts are required. Workflows are a single archive that can be
shared between users with almost no need for customization.
As explained in Section III, the customization of the workflow
description file may be required if using two different Cloud
providers that use different workers and schedulers. However,
this customization is a descriptive customization while the
customization in the state of the art would require system ad-
ministration and scripting knowledge which are more difficult
to acquire for scientists.

V. CONCLUSION

In this document has been presented a new Cloud service for
the execution of scientific workflows, namely the Workflow-as-
a-Service. Unlike the related work, the WaaS adopts a vision of
a Cloud-provider-side service dedicated to scientific workflows
that is presented as a turnkey solution to the Cloud providers.
In this paper, we have shown that this conceptual approach of a
workflow engine allows to handle highly heterogeneous work-
flows while enabling specific optimizations at the level of the
Cloud provider, and while maintaining both the performance
when executing workflows and the ease of use for the end-
user (i.e., the scientist). Indeed, by giving the responsibility of
the scheduling of tasks and the resources provisioning to the
Cloud provider, the Cloud provider collects more information
than in other solutions, hence enabling important optimizations
in the management of the infrastructure (energy optimization,
fairness, performances, etc.). To facilitate the adoption of the
WaaS by the Cloud providers and to improve the flexibility of
the service, the WaaS has been made modular, thus facilitating
the definition of new types of Workers (i.e., virtualization), and
the integration of new schedulers into the Master. Finally, the
WaaS has been designed to be scalable, even when considering
a complex distributed infrastructure with multiple clusters.

The service has been evaluated on a real distributed infras-
tructure divided in five clusters with four different scheduling
algorithms, and two types of Workers (KVM and Docker).
Consistency has been shown during the execution of hundreds
of workflows. A comparison to Argo, a well-known FaaS-
oriented workflow engine, has also been presented, and has
shown improvements in terms of infrastructure optimizations
and performance when handling heterogeneity.

In this paper, we have pointed out some elements that
can be subject to future works. First, we plan to evaluate
the service with dynamic scheduling algorithms, i.e., dynamic
change of decision [9], which is theoretically possible but
needs to be validated by experimentation. Second, we plan
to investigate the case of distributed scheduling algorithms, in
order to remove all possible bottlenecks within the service.
Finally, we plan to add some fault tolerance mechanisms to
avoid the whole re-execution of workflows in case of failures.
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