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Abstract: Introduction. Musculoskeletal disorders related to work might be caused by the cumulative 1

effect of occupational exposures during working life. We aimed to develop a new model which allows 2

to compare the accuracy of duration of work and intensity/frequency associations in application 3

to severe knee pain. Methods. From the CONSTANCES cohort, 66,553 subjects who were working 4

at inclusion and coded were included in the study. The biomechanical job exposure matrix “JEM 5

Constances” was used to assess the intensity/frequency of heavy lifting and kneeling/squatting 6

at work together with work history to characterize the association between occupational exposure 7

and severe knee pain. An innovative model G was developed and evaluated, allowing to compare 8

the accuracy of duration of work and intensity/frequency associations. Results. The mean age was 9

49 years at inception with 46 percent of women. The G model developed was slightly better than 10

regular models. Among the men subgroup, odds ratios of the highest quartile for the duration and 11

low intensity were not significant for both exposures, whereas intensity/duration were for every 12

duration. Results in women were less interpretable. Conclusion. Though higher duration increased 13

strength of association with severe knee pain, intensity/frequency were important predictors among 14

men. Exposure estimation along working history should have emphasis on such parameters, though 15

other outcomes should be studied and have a focus on women. 16

Keywords: Occupational; Musculskeletal; pain; lifecourse; mathematical modeling. 17

0. Introduction 18

Musculoskeletal disorders (MSDs) related to repetitive and physically demanding 19

working conditions continue to represent one of the largest occupational disease in indus- 20

trialized countries[1,2]. MSD related to work are caused by non-traumatic injuries, with 21

a possible cumulative effect of occupational exposures during working life, mainly for 22

degenerative disorders like osteoarthritis, and severe knee pain[3,4]. 23

The evaluation of biomechanical exposures can be done in different ways and ex- 24

pressed around two main dimensions, intensity/frequency per day and duration over 25

the year[5]. The exposure assessment can be obtained by estimations based on subjective 26

judgments (self-reports, expert judgments), systematic observations (observations at the 27
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workplace, video recording), and direct measurements (at the workplace or in laboratory). 28

However, these techniques are problematic when past exposure evaluations are needed. 29

Job exposure matrices (JEMs) are commonly used in occupational epidemiology re- 30

search for the evaluation of past exposures [6]. Indeed, JEMs allow estimating participants 31

exposures to occupational factors based on job titles, industry sector, and population expo- 32

sure data. Several biomechanical JEMs have become available recently [7–11]. A cumulative 33

exposure index is commonly used to assess cumulative work exposure by multiplying 34

duration and intensity/frequency. However, it is not clear how to consider the combination 35

of intensity/frequency when assessing exposure over the years. 36

Thus, before optimizing models using relevant statistical methods, we first aimed to 37

determine if low level exposure with high duration is equivalent to high level exposure 38

with low duration in the example of severe knee pain and two occupational exposures: 39

carrying heavy loads and kneeling/squatting. 40

We then aimed develop a new model and compare the accuracy of duration of work 41

and intensity/frequency associations in application to the knee disorders using severe knee 42

pain as an outcome in a large cohort study, by developing an innovative model. 43

1. Materials and Methods 44

1.1. Population 45

The CONSTANCES study is a French general population-based cohort[12]. More 46

than 200,000 participants, aged 18-69 years, were recruited between 2012 and 2020 in 23 47

health screening centers across France. The recruitment was limited to people affiliated to 48

the French National Health Insurance Fund who correspond to active or former salaried 49

workers and their families and excludes agricultural and self-employed workers[12]. At 50

enrolment, self-administered questionnaires were sent to participants to collect data includ- 51

ing lifestyle, life events, health, and occupations. Variables of interest were collected from 52

the baseline self-administered questionnaire and the medical interview. 53

For this work, we used French CONSTANCES clean data from 2020. Subjects from 54

this cohort were active at their inclusion with work trajectory coded. 55

1.2. Variables of interest 56

Participants’ sex, age at inception, known inflammatory disease of the joints, regular 57

leisure activity (sports, gardening yes/no), Center for Epidemiologic Studies-Depression 58

Scale (CES-D) into two categories (yes/no), were retrieved from the baseline questionnaire, 59

and body mass index from the medical examination. 60

JEM Constances, which is based on self-reported exposure was used to evaluate occu- 61

pational exposure[13]. In the JEM, occupational exposure is rated from 0 to 4 for intensity/ 62

frequency of heavy lifting (“lifting”) and 1 to 4 of kneeling of squatting (“kneeling”) based 63

on reported job titles. The JEM Constances was combined with participants reported work 64

trajectory that were coded at baseline retrospectively. 65

The main outcome was reporting severe knee pain, collected from the self-reported 66

questionnaire at inception: yes if knee pain intensity >5/10 or having knee pain for more 67

than a month per year. 68
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1.3. Mathematical modeling 69

In order to study the influence of duration and intensity/frequency on the onset of 70

the disease, several logistic regression models were built for the two exposures separetely: 71

heavy lifting and kneeling. 72

The method we propose in this article is based on a generalization of the logistic 73

regression approach. Formally, we define (Y, Xi1, . . . , Xip)[1,n] an i.i.d sample in {0, 1} ×Rp
74

of size n ∈ N∗ where Y is the response variable and corresponds to the illness status of each 75

subject (if the subject is sick Y = 1, if else Y = 0) and Xi = (Xi1, . . . , Xip) are the variables 76

Xi1, . . . , Xip−6 corresponding to a score based on occupation times and levels exposures 77

and Xip−5, . . . , Xip corresponding to others adjustements variables. 78

For a given i conditionally on Xi := (Xi1, ..., Xip), Yi follows a Bernoulli distribution 79

such as: 80

P(Yi = 1|Xi) = πβ∗(Xi) :=
exp(< β∗, Xi >)

1 + exp(< β∗, Xi >)
, (1)

where β∗ = (β∗
0, β∗

1, . . . , β∗
p) ∈ Rp is an unknown vector of parameters to be estimated. 81

We estimate the parameter β∗, given in (1), by Maximal Likelihood Estimation, i.e. by 82

minimizing the normalized opposite of the log likelihood γn(β) over Rp: 83

β̂ = arg min
β∈Rp

γn(β).

1.3.1. Statistical models 84

For the occupational health data from the cohort CONSTANCES, several logistic 85

models were possible, depending on the total duration value of the careers and the average 86

exposures of the individuals. We describe them in our cohort via the variables Ti = 87

(Ti1, . . . , Tiki
), Ni = (Ni1, . . . , Niki

) and a1i, . . . , a6i respectively for occupation times, levels 88

of exposures for each ki jobs held by the subject i as well as six adjustment variables (a1i= 89

sex, a2i= age, a3i= imc, a4i= leisure, a5i= arthrite, a6i= depression). We must take into 90

account that the number of jobs ki can be very different. The models A,B and C are defined 91

through the three following transformations: 92

XA
i =

m
∑

j=1
NijTij 93

XB
i =

m
∑

j=1
NB

ij Tij, with NB
ij =

{
0, if Nij ≤ 1

Nij, if else.
94

XC
i =

m
∑

j=1
NC

ij Tij, with NC
ij =

{
0, if Nij ≤ 3
1, if else.

95

Thus, Yi follows a Bernoulli distribution such that P(Yi = 1|Xi) = logit(β∗
0 + β∗

1X•
i + 96

∑6
j=1 β∗

j+1aji) where X•
i is to be replaced by XA

i , XB
i or XC

i depending on the variable con- 97

sidered. We specify that the model B differs, from the model A, because in the computation 98

of its transformation the exposure levels between 0 and 1 are confounded. The model C 99

differs, from the model A, because in the computation of its transformation the lowest 100

exposure levels are nullified. In order to define the model G we need to introduce two 101

transformations ϕ1 and ϕ2: 102

• ϕ1(Ti) = ∑ki
j=1 Tij corresponding to the total duration of the career range. 103

• ϕ2(Ti, Ni) =
∑

ki
j=1 Nijg(Tij)

∑
ki
j=1 g(Tij)

, where g(x) = 1 − exp (−x) which is the time-weighted 104

average of the exposure level. 105

The construction of the design matrix (Xij)(1≤i≤n,1≤j≤p) of the model G is based on a 106

semi-coding of the variables {ϕ1(Ti)}1≤i≤n and {ϕ2(Ti, Ni)}1≤i≤n. More precisely, the 107
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membership in a group is determined by the belonging of the values ϕ1(Ti) and ϕ2(Ti, Ni) 108

to different given intervals. For this study, we consider the classes of intervals 109

G1 := {[qj, qj+1[, j = 1, . . . , q} and G2,c := { [j − 1, j[ }c≤j≤4 ∪ {4}, c = 1, 2

where qj ∈ N∗ defines fixed empirical quantiles of the sample {ϕ1(Ti)}1≤i≤n. When c = 1, 110

the exposure considered is carrying a heavy load, and when c = 2 when the exposure 111

considered is kneeling. The set of groups is defined as the class G := {Gj, j = 1, . . . , p} = 112

G1 × G2 where p = (6 − c)q. An individual is then associated with the group j ∈ [[1, p]] 113

with Xij = 1 if and only if (ϕ1(Ti), ϕ2(Ti, Ni)) ∈ Gj. 114

1.3.2. Selection of the design matrix for model G 115

We propose to choose the design matrix X for the model G by a recent model selection 116

procedure, introduced and described in the article "Model selection in logistic regression" 117

by Kwemou et al. [14]. The mathematical guarantees for this model selection method are 118

based on oracle inequalities from Birgé and Massart [15]. This model selection is performed 119

using penalized maximum likelihood estimators which will allow us to choose the best 120

design matrix. 121

Let F be a family of design matrices X(m), m ∈ {1, . . . , M}. For each m ∈ {1, . . . , M}, 122

we define β̂m as the estimator obtained by minimizing γn over Rpm where pm is the number 123

of columns of X(m), namely: 124

β̂m = arg min
β∈Rpm

γn(β)

We use a data driven strategy that selects the best matrix among the family F . For this pur- 125

pose we use a penalized maximum likelihood criterion for choosing the index m associated 126

to the appropriate design. Here, we consider the Akaike information criterion where pm 127

corresponds to the number of parameters in the model (1), i.e. pm is the number of columns 128

of the matrix X(m) and 129

130

m̂ = arg min
m∈{1,...,M}

{
γn(β̂m) + pm

}
.

Hence, minimizing this criterion allows us to find the best design matrix Xm̂. 131

The “lifting” and “kneeling” quartiles of high exposure is considered in terms of duration 132

and intensity/frequency: 133

• into 5 categories for heavy lifting G2,1 := { [j − 1, j[ }1≤j≤4 ∪ {4}, 134

• into 4 categories for kneeling G2,2 := { [j − 1, j[ }2≤j≤4 ∪ {4}. 135

1.4. α-divergence and Statistical tests 136

The logistic regression formula given in (1) depends on the model A, B, C and G. We 137

wish to compare these statistical models, via a differentiation criterion, in order to identify 138

the most appropriate model for this formula. Let r be the unknown probability that a 139

randomly selected subject from the population is sick. It is natural to estimate the unknown 140

parameter r by the proportion of patients observed in our dataset: r̂1 = 1
n ∑n

i=1 Yi. One can 141

also estimate r from the logistic regression formula via the estimator r̂2 = 1
n ∑n

i=1 πβ∗(Xi). 142

Note that unlike r̂1, the estimator r̂2 depends on the model. For an appropriate model it is 143

natural to choose the model for which the estimators r̂1 and r̂2 are close. 144

We here chose to rely on the work of A.Basu et al. [16] who developped a robust 145

estimator for the density function. The criterion used in this article is based on the α- 146

divergence between two densities f and g (relative to a measure µ) defined for an α > 0 as 147

follows: 148

dα(g, f ) =
∫ {

f 1+α(z)−
(

1 +
1
α

)
g(z) f α(z) +

1
α

g1+α(z)
}

dµ(z)
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Here, we need to use the α-divergence between two Bernoulli laws with parameters 149

r1 ∈]0.1[ and r2 ∈]0.1[ which we define by 150

dα(r1, r2) =


r1+α

2 + (1 − r2)
1+α −

(
1 + 1

α

)
((1 − r2)

α(1 − r1) + rα
2r1)

+ 1
α ((1 − r1)

1+α + r1+α
1 ) α > 0

r1 ln
(

r1
r2

)
+ (1 − r2) ln

(
1−r1
1−r2

)
α = 0

The parameter α here defines a trade-off between the estimation efficiency and the variabil- 151

ity robustness. Note that when α is close to 0 we retrieve the Kullback–Leibler divergence 152

and when α = 1 we have d1(r1, r2) = 2(r1 − r2)
2. 153

Next, we compared the p-value of the Wald’s test (with Bonferroni correction) and odds 154

ratios (OR) of the highest quartile for the duration with low intensity/frequency and the 155

highest quartile for the intensity/frequency with low duration. Stratification on sex was 156

performed as sensitivity analysis. For both exposures, logistic models were built adjusted 157

on relevant variables. We compared the p-value of the Wald’s test (with Bonferroni adjust- 158

ments) and odds ratios of different quartile of duration and intensity/frequency and with 159

low duration and lowest intensity as reference. 160

1.5. Analysis plan 161

After a brief description of the sample and the available adjustement variables, we 162

assessed the performance score based on the α-divergence allowing the comparison of 163

different models with α varying with each relevant occupational exposure. For a small 164

value of parameter α, the decision of the model choice can be questioned but when α 165

increases the choice of model becomes easier and the model G is selected. 166

Then, we were able to compare Odds ratios with the Wald’s test. Sex stratification 167

has been performed as primary analysis (whereas 45 year of age stratification has been 168

considered in secondary analysis). 169

Analyses were performed on Python 3.8.8 (statsmodels,statistics,pandas,numpy). 170

2. Results 171

The sample included 66,553 subjects (Table 1), with 30,765 women (46.2%) and with a 172

median of 49 years old (21 years of employment). The subjects reported regular primary 173

leisure activities in 43.1% of cases, with half of sample who were overweight/ obese, and 174

an important part (21.2%). who had a positive CES-D, suggesting a depression. 175

2.1. Figures, Tables and Schemes 176

Table 1. Description of the sample.

Variables N(%) Mean (SD)

Sex Men 35788 (53.7)
Women 30765 (46.2)

Age (years) 48.5 (13.1)
Body Mass Index

(kg/m²) 25.07 (24.0)

Leisure activites Yes 28693 (43.1)
No 37860 (56.9)

Inflammatory
Ostearthritis Yes 950 (1.4)

No 65603 (98.6)
Depression Yes 14095 (21.2)

No 52458 (78.8)
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Table 2. Comparison of performance score for severe knee pain with lifting.

α A B C G

0 0.305 0.329 0.326 0.192
0.25 0.162 0.228 0.218 0.019
0.5 0.155 0.221 0.211 0.017

0.75 0.146 0.210 0.200 0.015
1 0.136 0.198 0.189 0.013

Table 3. Comparison of performance score for severe knee pain with kneeling.

α A B C G

0 0.282 0.304 0.297 0.194
0.25 0.101 0.160 0.145 0.021
0.5 0.096 0.153 0.138 0.018

0.75 0.092 0.143 0.13 0.016
1 0.088 0.134 0.121 0.014

In order to study intensity and duration of exposure, we first selected the best model 177

between A to G. We compared this familly of models by increasing α. For any value of 178

parameter alpha, the model G is selected (Tables 2 and 3). 179

For heavy lifting as well as kneeling, intensity/ frequency was the most important 180

predictor. Duration increased risks only for men with a dose response relationship. For 181

women, only intensity and frequency in low duration for both exposures seemed associated 182

with the knee pain (Tables 4 and 5). Although the statistical power was lower, the pattern 183

of association was similar for participants aged less and more than 45 years (supplemental 184

Tables 6 and 7). 185

Table 4. Results of adjusted logistic regression of severe knee pain with lifting, for men and women
separately.

Variable Men Women
Duration Intensity/Frequency OR IC 95% p-value OR IC 95% p-value

low [1,2[ 1.83 [1.53 , 2.19] < 10−4 1.46 [1.29 , 1.66] < 10−4

low [2,3[ 2.08 [1.71 , 2.52] < 10−4 1.47 [1.20 , 1.81] < 10−4

low [3,4[ 1.96 [1.42 , 2.70] < 10−4 1.38 [ 0.91 , 2.09 ] 0.13
low {4} 2.49 [1.86 , 3.33] < 10−4 2.81 [1.60 , 4.92] < 10−4

medium [0,1[ 1.07 [0.91 , 1.27] 0.41 0.86 [0.77 , 0.96] 0.01
medium [1,2[ 1.63 [1.35 , 1.97] < 10−4 1.11 [0.97 , 1.28] 0.13
medium [2,3[ 2.39 [1.97 , 2.90] < 10−4 1.28 [1.02 , 1.61] 0.04
medium [3,4[ 2.45 [1.78 , 3.39] < 10−4 1.08 [ 0.62 , 1.86 ] 0.79
medium {4} 2.71 [1.84 , 3.98] < 10−4 1.09 [0.41 , 2.93] 0.86

high [0,1[ 1.09 [0.92 , 1.29] 0.33 0.87 [ 0.77 , 0.98] 0.03
high [1,2[ 1.77 [1.49 , 2.11] < 10−4 1.07 [0.93 , 1.23] 0.36
high [2,3[ 2.12 [1.77 , 2.53] < 10−4 1.09 [0.86 , 1.37] 0.49
high [3,4[ 2.41 [1.87 , 3.11] < 10−4 1.37 [0.99 , 1.91] 0.06
high {4} 3.56 [2.68 , 4.72] < 10−4 1.67 [0.68 , 4.12] 0.27

Adjusted on body mass index, leisure activity, inflammatory osteoarthritis, depression, and age/sex when not
stratified ; Reference duration low, Intensity/Frequency [0,1[.
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Table 5. Results of adjusted logistic regression of severe knee pain with kneeling, men and women
separately.

Variable Men Women
Duration Intensity/Frequency OR IC 95% p-value OR IC 95% p-value

low [2,3[ 1.97 [1.67 , 2.31] < 10−4 1.34 [1.16 , 1.53] < 10−4

low [3,4[ 1.75 [1.40 , 2.20] < 10−4 1.44 [1.22 , 1.71] <10−4

low {4} 1.98 [1.51 , 2.60] < 10−4 1.35 [1.01 , 1.82] 0.04
medium [1,2[ 1.06 [0.91 , 1.23] 0.48 0.83 [0.74 , 0.93] <10−4

medium [2,3[ 1.86 [1.57 , 2.20] < 10−4 1.02 [0.88 , 1.17] 0.83
medium [3,4[ 2.19 [1.72 , 2.79] < 10−4 1.23 [1.03 , 1.48] 0.02
medium {4} 2.66 [1.91 , 3.71] < 10−4 0.91 [0.59 , 1.39] 0.66

high [1,2[ 1.10 [0.94 , 1.28] 0.26 0.85 [0.76 , 0.96] 0.01
high [2,3[ 1.80 [1.54 , 2.11] < 10−4 1.03 [0.89 , 1.19] 0.67
high [3,4[ 2.16 [1.78 , 2.62] < 10−4 0.88 [0.74 , 1.04] 0.13
high {4} 2.55 [1.99 , 3.28] < 10−4 1.38 [1.03 , 1.84] 0.03

Adjusted on body mass index, leisure activity, inflammatory osteoarthritis, depression, and age/sex when not
stratified ; Reference duration low, Intensity/Frequency [1,2[.

3. Discussion 186

This is the first study that used a developed mathematical model to compare the 187

effect of duration and intensity during working life, on the association with severe knee 188

as a proxy of degenerative musculoskeletal disorders. The new model G was found to 189

be better than the usual ones, though the difference was minor. For men, we found that 190

the OR of the highest quartile for the duration and low intensity is not significant for 191

both exposures, whereas intensity/duration is significant for every duration, with a dose 192

response relationship. Results for women were limited. 193

As expected, there was as an important effect of the intensity of heavy lifting and 194

kneeling on severe knee pain. Both exposures are known to be associated with knee 195

disorders [17–19]. The dose response relationship has been described previously. Jensen 196

calculated an equivalent of our model A using an individual exposure from the number of 197

knee-straining activities and the number of years in the trade within a collective of floor 198

layers, carpenters and compositors. The ORs for knee complaints and radiographically 199

determined knee osteoarthritis were 3.0 (95% CI, 0.5 to 17.2) in the low-exposure group, 200

4.2 (95% CI, 0.6 to 27.6) in the medium-exposure group, and 4.9 (95% CI, 1.1 to 21.9) 201

in the high-exposure group compared with the zero-exposure group [20]. There is an 202

important difference in the strength of the associations compared to our work but it 203

should be explained by the large population design with JEM exposure methods. Indeed, 204

high exposure is considered using the proxy of job title with a large variation inside job 205

categories. 206

Also expected, in a previous review on occupational exposure and knee osteoarthritis, 207

[21] lifting and carrying of loads was significantly associated with severe knee pain. Knee 208

osteoarthritis was also found associated with lifting and carrying of loads with a dose- 209

response relationship : OR of 2.0 (95% CI, 1.1 to 3.6) in the exposure group 630 to <5,120 210

kg-hours over life, up to an OR of 2.6 (95% CI, 1.1 to 6.1) in the highest exposure group 211

(>37,000 kg-hours over life) in men [20]. 212

The lack of clear association for women was also found by D’Souza et al. who reported 213

on an analysis of the US national survey, where they describe relationships between 214

work activities and symptomatic knee osteoarthritis [22]. A significant exposure-response 215

relationship was only found between symptomatic knee osteoarthritis and kneeling in men 216

but not women. Different explanations might be suggested: since our model included 217

adjusting factors like BMI and depression, there might be a more complex causal pathways 218

than in men such as considered in back pain [23]. JEM Constances is not gender stratified 219

and applying a specific JEM for sex could be a lead for another study. Furthermore, 220

selection effect similar to healthy workers effect is also possible. The main strength of 221
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our study was the possibility to use JEM with working life course on a large cohort study. 222

Limitations might also be raised by using a large but not representative population of 223

French workers, and specific jobs in agriculture (not included by design) and mining 224

(almost disappeared in France) should be considered since they are known factors related 225

to lower limb MSD [19]. Second, the outcome was focused on severe knee pain. Even, it 226

is self-declared and might correspond to heterogenous disorders, work-related or not. It 227

was used as a good example of a proxy of degenerative musculoskeletal disorders, and 228

the use of pain intensity and severity is recommended [24]. We have previously shown 229

that working in a kneeling or squatting position was significantly associated with severe 230

knee pain [18]. More recently, similar trends of associations between severe knee pain 231

and knee arthroplasty groups were showed in the same cohort [25]. This result is also 232

found elsewhere, with non-managerial jobs associated with higher prevalence of knee 233

osteoarthritis and knee symptoms [26]. Third, as we already mentioned, the use of JEMs 234

might also be questioned since it is a global average evaluation that does not consider 235

the differences inside job [27]. However, assessing exposure during long periods of time 236

and for a big number of subjects is challenging and JEMs are appropriate tool to consider. 237

Furthermore, assessement of carrying heavy loads exposure using JEMs was found to be 238

valid compared to a self-administrated questionnaire [28]. 239

4. Conclusions 240

This innovative approach using mathematic modeling of working history and a JEM, 241

shows that duration in years has a smaller impact than frequency/intensity and should 242

be considered at least among men. Our new model G seems to be an interesting approach 243

though the improvement is light. Further study, should be done on other outcomes, and 244

have a focus on women. 245

Table 6. Results of adjusted logistic regression of severe knee pain with lifting, for <45 years old and
45 or more participants.

Variable <45 years ≥45 years
Duration Intensity/Frequency OR IC 95% p-value OR IC 95% p-value

low [1,2[ 1.59 [1.35 , 1.87] < 10−4 1.51 [1.26 , 1.81] < 10−4

low [2,3[ 1.71 [1.37 , 2.14] < 10−4 1.62 [1.31 , 2.00] < 10−4

low [3,4[ 1.45 [0.95 , 2.19] 0.08 1.42 [0.93 , 2.16] 0.107
low {4} 2.63 [1.83 , 3.79] < 10−4 1.31 [0.86 , 2.02] 0.212

medium [0,1[ 0.87 [0.75 , 1.02] 0.09 0.92 [0.79 , 1.06] 0.234
medium [1,2[ 1.33 [1.10 , 1.59] 0.002 1.24 [1.05 , 1.46] 0.01
medium [2,3[ 1.64 [1.28 , 2.10] < 10−4 1.57 [1.28 , 1.93] < 10−4

medium [3,4[ 1.79 [1.19, 2.70] 0.005 1.95 [1.34 , 2.84] 0.001
medium {4} 3.30 [2.04, 5.34] < 10−4 2.25 [1.42, 3.58] 0.001

high [0,1[ 0.93 [0.77, 1.12] 0.442 0.88 [0.78, 1.01] 0.073
high [1,2[ 1.31 [1.07, 1.62] 0.01 1.21 [1.05, 1.39] 0.007
high [2,3[ 1.93 [1.51, 2.47] < 10−4 1.46 [1.25, 1.71] < 10−4

high [3,4[ 1.36 [0.85, 2.19] 0.204 1.69 [1.36, 2.09] < 10−4

high {4} 1.63 [0.89, 2.98] 0.114 2.58 [1.97, 3.37] < 10−4

Adjusted on body mass index, leisure activity, inflammatory osteoarthritis, depression, and age/sex when not
stratified ; Reference duration low, Intensity/Frequency [0,1[.
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Table 7. Results of adjusted logistic regression of severe knee pain with kneeling, for <45 years old
and 45 or more participants.

Variable <45 years ≥45 years
Duration Intensity/Frequency OR IC 95% p-value OR IC 95% p-value

low [2,3[ 1.50 [1.28 , 1.78] < 10−4 1.49 [1.24 , 1.79] < 10−4

low [3,4[ 1.62 [1.31 , 2.01] < 10−4 1.45 [1.16 , 1.80] 0.001
low {4} 1.80 [1.33 , 2.44] < 10−4 1.40 [1.04, 1.88] 0.025

medium [1,2[ 0.86 [0.74 , 1.00] 0.06 0.91 [0.79 , 1.05] 0.19
medium [2,3[ 1.45 [1.22 , 1.73] < 10−4 1.20 [1.02 , 1.41] 0.028
medium [3,4[ 1.34 [1.04 , 1.73] 0.026 1.47 [1.20 , 2.47] < 10−4

medium {4} 1.24 [0.78, 1.97] 0.361 1.75 [1.24, 2.47] 0.001
high [1,2[ 0.91 [0.76, 1.09] 0.300 0.88 [0.78, 1.00] 0.050
high [2,3[ 1.38 [1.14, 1.69] 0.001 1.23 [1.08, 1.41] 0.002
high [3,4[ 1.59 [1.22, 2.09] 0.001 1.22 [1.05, 1.42] 0.011
high {4} 1.42 [0.89, 2.26] 0.139 1.73 [1.41, 2.12] < 10−4

Adjusted on body mass index, leisure activity, inflammatory osteoarthritis, depression, and age/sex when not
stratified ; Reference duration low, Intensity/Frequency [1,2[.
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