# Faster Montgomery multiplication and Multi-Scalar-Multiplication for SNARKs 

Gautam Botrel, Youssef El Housni

## - To cite this version:

Gautam Botrel, Youssef El Housni. Faster Montgomery multiplication and Multi-Scalar-Multiplication for SNARKs. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2023, pp.504521. 10.46586/tches.v2023.i3.504-521 . hal-03922635v1

## HAL Id: hal-03922635 <br> https://hal.science/hal-03922635v1

Submitted on 4 Jan 2023 (v1), last revised 4 Dec 2023 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

# EdMSM: Multi-Scalar-Multiplication for recursive SNARKs and more 

Gautam Botrel ${ }^{1}$ and Youssef El Housni ${ }^{1,2,3}$<br>${ }^{1}$ ConsenSys R\&D, gnark team<br>\{firstname.lastname\}@consensys.net<br>${ }^{2}$ LIX, CNRS, École Polytechnique, Institut Polytechnique de Paris<br>${ }^{3}$ Inria


#### Abstract

The bottleneck in the proving algorithm of most of elliptic-curve-based SNARK proof systems is the Multi-Scalar-Multiplication (MSM) algorithm. In this paper we give an overview of a variant of the Pippenger MSM algorithm together with a set of optimizations tailored for curves that admit a twisted Edwards form. This is the case for SNARK-friendly chains and cycles of elliptic curves, which are useful for recursive constructions. Accelerating the MSM over these curves on mobile devices is critical for deployment of recursive proof systems on mobile applications. This work is implemented in Go and uses hand-written arm64 assembly for accelerating the finite field arithmetic (bigint). This work was implemented as part of a submission to the ZPrize competition in the open division "Accelerating MSM on Mobile" (https://www.zprize.io/). We achieved a $78 \%$ speedup over the ZPrize baseline implementation in Rust.


Keywords: elliptic curves • multi-scalar-multiplication • implementation • zeroknowledge proof

## 1 Introduction

A SNARK is a cryptographic primitive that enables a prover to prove to a verifier the knowledge of a satisfying witness to a non-deterministic (NP) statement by producing a proof $\pi$ such that the size of $\pi$ and the cost to verify it are both sub-linear in the size of the witness. Today, the most efficient SNARKs use elliptic curves to generate and verify the proof. A SNARK usually consists in three algorithms Setup, Prove and Verify.

The Setup and Prove algorithms involve solving multiple large instances of tasks about polynomial arithmetic in $\mathbb{F}_{r}[X]$ and multi-scalar multiplication (MSM) over the points of an elliptic curve. Fast arithmetic in $\mathbb{F}_{r}[X]$, when manipulating large-degree polynomials, is best implemented using the Fast Fourier Transform (FFT) [Pol71] and MSMs of large sizes are best implemented using a variant of Pippenger's algorithm [BDLO12, Section 4]. For example, Table 1 reports the numbers of MSMs required in the Setup, Prove and Verify algorithms in the [Gro16] SNARK and the KZG-based PLONK universal SNARK [GWC19]. The report excludes the number of FFTs as the dominating cost for such constructions is the MSM computation ( $\sim 80 \%$ of the overall time).

Given a set of $n$ elements $G_{1}, \cdots, G_{n}$ (bases) in $\mathbb{G}$ a cyclic group (e.g. group of points on an elliptic curve) whose order $\# \mathbb{G}$ has $b$-bit and a set of $n$ integers $a_{1}, \cdots, a_{n}$ (scalars) between 0 and $\# \mathbb{G}$, the goal is to compute efficiently the group element $\left[a_{1}\right] G_{1}+\cdots+\left[a_{n}\right] G_{n}$. In SNARK applications, we are interested in large instances of variable-base MSMs ( $n=10^{7}, 10^{8}, 10^{9}$ ) - with random bases and random scalars - over the pairing groups $\mathbb{G}_{1}$ and $\mathbb{G}_{2}$.

Table 1: Cost of Setup, Prove and Verify algorithms for [Gro16] and PLONK. $m=$ number of wires, $n=$ number of multiplication gates, $a=$ number of addition gates and $\ell=$ number of public inputs. $\mathrm{M}_{\mathbb{G}}=$ multiplication in $\mathbb{G}$ and $\mathrm{P}=$ pairing. Note: Both Groth16 and PLONK verifiers have a dependency on the number of public inputs $\ell$, but for PLONK it is just a polynomial evaluation (FFT).

|  | Setup | Prove | Verify |
| :--- | :---: | :---: | :---: |
| [Gro16] | $3 n \mathrm{M}_{\mathbb{G}_{1}}$ | $(3 n+m-\ell) \mathrm{M}_{\mathbb{G}_{1}}$ | 3 P |
|  | $m \mathrm{M}_{\mathbb{G}_{2}}$ | $n \mathrm{M}_{\mathbb{G}_{2}}$ | $\ell \mathrm{M}_{\mathbb{G}_{1}}$ |
| PLONK (KZG) | $(\geq n+a)$ <br> $1 \mathrm{M}_{\mathbb{G}_{1}}$ <br>  | $9(n+a) \mathrm{M}_{\mathbb{G}_{1}}$ | 2 P |
| $18 \mathrm{M}_{\mathbb{G}_{1}}$ |  |  |  |

The naive algorithm uses a double-and-add strategy to compute each $\left[a_{i}\right] G_{i}$ then adds them all up, costing on average $3 / 2 \cdot b \cdot n$ group operations $(+)$. There are several algorithms that optimize the total number of group operations as a function of $n$ such as Strauss [Str64], Bos-Coster [dR95, Sec. 4] and Pippenger [Pip76] algorithms. For large instances of a variable-base MSM, the fastest approach is a variant of Pippenger's algorithm [BDLO12, Sec. 4]. For simplicity, we call it the bucket method. In this paper we are interested in the bucket-method MSM on inner curves of 2-chains and 2-cycles of elliptic curves. We've chosen to test and benchmark our results on mobile devices because it is critical for deployment of recursive proof systems on mobile applications.

Organization of the paper. Section 2 provides definitions of 2-chains and 2-cycles of elliptic curves and some results we prove. In section 3, we explain the bucket method and provide its complexity analysis. The core of the paper are sections 4 and 5 . Section 4 provides our optimizations to the bucket method for both generic elliptic curves and the twisted Edwards curves. We prove that inner 2-chains and 2-cycles always fall into the second more optimized case. Finally, section 5 reports on our implementation of the bucket method alongside our optimizations. We choose to tailor the implementation to the widely used BLS12-377 curve and to benchmark our results on a mobile widely available mobile device.

## 2 2-chain and 2-cycle of elliptic curves

### 2.1 2-chains

Following [EG22], a 2-chain of elliptic curves is a set of two curves as in Definition 2.
Definition 1. A 2-chain of elliptic curves is a list of two distinct curves $E_{1} / \mathbb{F}_{p_{1}}$ and $E_{1} / \mathbb{F}_{p_{2}}$ where $p_{1}$ and $p_{2}$ are large primes and $p_{1} \mid \# E_{2}\left(\mathbb{F}_{p_{2}}\right)$. SNARK-friendly 2-chains are composed of two curves that have highly 2 -adic subgroups of orders $r_{1} \mid \# E_{1}\left(\mathbb{F}_{p_{1}}\right)$ and $r_{2} \mid \# E_{2}\left(\mathbb{F}_{p_{2}}\right)$ such that $r_{1} \equiv r_{2} \equiv 1 \bmod 2^{L}$ for a large integer $L \geq 1$. This also means that $p_{1} \equiv 1 \bmod 2^{L}$.

In a 2-chain, the first curve is denoted the inner curve, while the second curve whose order is the characteristic of the inner curve, is denoted the outer curve (cf. Fig. 1).

Inner curves from polynomial families. The best elliptic curves amenable to efficient implementations arise from polynomial based families. These curves are obtained by parameterizing the Complex Multiplication (CM) equation with polynomials $p(x), t(x), r(x)$ and $y(x)$. The authors of [EG22] showed that the polynomial-based pairing-friendly Barreto-Lynn-Scott families of embedding degrees $k=12$ (BLS12) and $k=24$ (BLS24) [BLS03]


Figure 1: A 2-chain of elliptic curves.
are the most suitable to construct inner curves in the context of pairing-based SNARKs. These curves require the seed $x$ to satisfy $x \equiv 1 \bmod 3 \cdot 2^{L}$ to have the 2 -adicity requirement with respect to both $r$ and $p$.

A particular example of an efficient 2-chain for SNARK applications is composed of the inner curve BLS12-377 $\left[\mathrm{BCG}^{+} 20\right]$ and the outer curve BW6-761 [EG20].

We prove useful results (Prop. 1 and Lemma 1) that will be needed later to optimize the MSM computation.

Proposition 1 ([EG22, Sec. 3.4]). All inner BLS curves admit a short Weierstrass form $Y^{2}=X^{3}+1$.
Proof. Let $E: Y^{2}=X^{3}+b$ be a BLS curve over $\mathbb{F}_{p}$ parametrized by polynomials in $x$ [BLS03]. Let $g$ neither a square nor a cube in $\mathbb{F}_{p}$. One choice of $b \in\left\{1, g, g^{2}, g^{3}, g^{4}, g^{5}\right\}$ gives a curve with the correct order (i.e. $\left.r \mid \# E\left(\mathbb{F}_{p}\right)\right)$ [Sil09, §X.5]. For all BLS curves, $x-1 \mid \# E\left(\mathbb{F}_{p}\right)$ and $3 \mid x-1$ (which leads to all involved parameters being integers) [BLS03]. If, additionally, $2 \mid x-1$ then $2,3 \mid \# E\left(\mathbb{F}_{p}\right)$ and the curve has points of order 2 and 3 . A 2 -torsion point is $\left(x_{0}, 0\right)$ with $x_{0}$ a root of $x^{3}+b$, hence $b=\left(-x_{0}\right)^{3}$ is a cube. The two 3 -torsion points are $(0, \pm \sqrt{b})$ hence $b$ is a square. This implies that $b$ is a square and a cube in $\mathbb{F}_{p}$ and therefore $b=1$ is the only solution in the set $\left\{g^{i}\right\}_{0 \leq i \leq 5}$ for half of all BLS curves: those with odd $x$.

An inner BLS curve has a seed $x$ such that $x \equiv 1 \bmod 3 \cdot 2^{L}$ for some large integer $L$ [EG22]. This means that $2 \mid x-1$ and hence that the curve is always of the form $Y^{2}=X^{3}+1$.

Lemma 1. All inner BLS curves admit a twisted Edwards form $a y^{2}+x^{2}=1+d x^{2} y^{2}$ with $a=2 \sqrt{3}-3$ and $d=-2 \sqrt{3}-3$ over $\mathbb{F}_{p}$. If further $-a$ is a square, the equation becomes $-x^{2}+y^{2}=1+d^{\prime} x^{2} y^{2}$ with $d^{\prime}=7+4 \sqrt{3} \in \mathbb{F}_{p}$.
Proof. Proposition 1 shows that all inner BLS curves are of the form $W_{0,1}: y^{2}=x^{3}+1$. The following map

$$
\begin{aligned}
W_{0,1} & \rightarrow E_{a, d} \\
(x, y) & \mapsto\left(\frac{x+1}{y}, \frac{x+1-\sqrt{3}}{x+1+\sqrt{3}}\right)
\end{aligned}
$$

defines the curve $E_{a, d}: a y^{2}+x^{2}=1+d x^{2} y^{2}$ with $a=2 \sqrt{3}-3$ and $d=-2 \sqrt{3}-3$. The inverse map is

$$
\begin{aligned}
E_{a, d} & \rightarrow W_{0,1} \\
(x, y) & \mapsto\left(\frac{(1+y) \sqrt{3}}{1-y}-1, \frac{(1+y) \sqrt{3}}{(1-y) x}\right)
\end{aligned}
$$

If $-a$ is a square in $\mathbb{F}_{p}$, the $\operatorname{map}(x, y) \mapsto(x / \sqrt{-a}, y)$ defines from $E_{a, d}$ the curve $E_{-1, d^{\prime}}$ of equation $-x^{2}+y^{2}=1+d^{\prime} x^{2} y^{2}$ with $d^{\prime}=-d / a=(2 \sqrt{3}+3) /(2 \sqrt{3}-3)=7+4 \sqrt{3}$.

These maps work only if $\sqrt{3}$ is defined in $\mathbb{F}_{p}$, that is 3 is a quadratic residue. This is always the case in $\mathbb{F}_{p}$ on which an inner BLS curve is defined. Let $\left(\frac{3}{p}\right)$ be $3^{\frac{p-1}{2}} \bmod p$,
the Legendre symbol. The quadratic reciprocity theorem tells us that $\left(\frac{3}{p}\right)\left(\frac{p}{3}\right)=(-1)^{\frac{p-1}{2}}$. We have $p \equiv 1 \bmod 4$ from the 2-adicity condition, so $\left(\frac{3}{p}\right)=\left(\frac{p}{3}\right)$. Now $\left(\frac{p}{3}\right) \equiv p \bmod 3$ which is always equal to 1 for all BLS curves $(x \equiv 1 \bmod 3$ and $x-1 \mid p-1)$. More generally one can prove that when $p=2$ or $p \equiv 1$ or $11 \bmod 12$ then 3 is a quadratic residue in $\mathbb{F}_{p}$. For inner BLS, we have $p \equiv 1 \bmod 3 \cdot 2^{L}$ with $L \gg 2$.

### 2.2 2-cycles

Definition 2. A 2-cycle of elliptic curves is a list of two distinct prime-order curves $E_{1} / \mathbb{F}_{p_{1}}$ and $E_{1} / \mathbb{F}_{p_{2}}$ where $p_{1}$ and $p_{2}$ are large primes, $p_{1}=\# E_{2}\left(\mathbb{F}_{p_{2}}\right)$ and $p_{2}=\# E_{1}\left(\mathbb{F}_{p_{1}}\right)$. SNARK-friendly 2 -cycles are composed of two curves that have highly 2-adic subgroups, i.e. $\# E_{1}\left(\mathbb{F}_{p_{1}}\right) \equiv \# E_{2}\left(\mathbb{F}_{p_{2}}\right) \equiv 1 \bmod 2^{L}$ for a large integer $L \geq 1$. This also means that $p_{1} \equiv p_{2} \equiv 1 \bmod 2^{L}$.

This notion was initially introduced under different names, for example amicable pairs (or equivalently dual elliptic primes [Mih07]) for 2-cycles of ordinary curves, and aliquot cycles for the general case [SS11]. Some examples of SNARK-friendly 2-cycles include MNT4-MNT6 curves [BCTV14], Tweedle curves [BGH19] and Pasta curves [Hop20].

In particular a 2 -cycle is a 2 -chain where both curves are inner and outer curves with respect to each other (cf. Fig. 2). This means that both curves in a 2 -cycle admit a twisted Edwards form following the same reasoning as in subsection 2.1. In the sequel we will focus on the case of BLS12 inner curves that form a 2 -chain but we stress that these results apply to 2-chain inner curves from other families (e.g. BLS24 and BN [AHG22]) and to 2 -cycles as well.


Figure 2: A cycle of elliptic curves.

## 3 The bucket method

The high-level strategy of the bucket-method MSM can be given in three steps:

- Step 1: reduce the $b$-bit MSM to several $c$-bit MSMs for some fixed $c \leq b$
- Step 2: solve each $c$-bit MSM efficiently
- Step 3: combine the $c$-bit MSMs into the final $b$-bit MSM


### 3.1 Step 1: reduce the $b$-bit MSM to several $c$-bit MSMs

1. Choose a window $c \leq b$
2. Write each scalar $a_{1}, \cdots, a_{n}$ in binary form and partition each into $c$-bit parts

$$
a_{i}=\underbrace{(a_{i, 1}, a_{i, 2}, \cdots, \underbrace{a_{i, b / c}}_{c \text {-bit }})_{2}}_{b \text {-bit }}
$$

3. Deduce $b / c$ instances of $c$-bit MSMs from the partitioned scalars

$$
\begin{aligned}
T_{1} & =\left[a_{1,1}\right] G_{1}+\cdots+\left[a_{n, 1}\right] G_{n} \\
\quad & \vdots \\
T_{j} & =\left[a_{1, j}\right] G_{1}+\cdots+\left[a_{n, j}\right] G_{n} \\
\quad & \\
T_{b / c} & =\left[a_{1, b / c}\right] G_{1}+\cdots+\left[a_{n, b / c}\right] G_{n}
\end{aligned}
$$

## Cost of Step 1 is negligible.

### 3.2 Step 3: combine the $c$-bit MSMs into the final $b$-bit MSM

Algorithm 1 gives an iterative way to combine the small MSMs into the original MSM.

```
Algorithm 1: Step 3
    Output: \(T=\left[a_{1}\right] G_{1}+\cdots+\left[a_{n}\right] G_{n}\)
    \(T \leftarrow T_{1}\);
    for \(i\) from 2 to \(b / c\) do
        \(T \leftarrow\left[2^{c}\right] T ; \quad / /\) Double \(c\) times
        \(T \leftarrow T+T_{i} ;\)
    // ADD
    return \(T\);
```

Cost of Step 3: $(b / c-1)(c+1)=b-c+b / c-1$ group operations.

### 3.3 Step 2: solve each $\boldsymbol{c}$-bit MSM $\boldsymbol{T}_{j}$ efficiently

1. For each $T_{j}$, accumulate the bases $G_{i}$ inside buckets

Each element $a_{i, j}$ is in the set $\left\{0,1,2, \cdots 2^{c}-1\right\}$. We initialize $2^{c}-1$ empty buckets (with points at infinity) and accumulate the bases $G_{i}$ from each $T_{j}$ inside the bucket corresponding to the scalar $a_{i, j}$.


$$
\text { Cost: } n-\left(2^{c}-1\right)=n-2^{c}+1 \text { group operations. }
$$

2. Combine the buckets to compute $T_{j}$

This step is also a $c$-bit MSM of size $2^{c}-1$ but this time the scalars are ordered and known in advance $S_{1}+[2] S_{2}+\cdots+\left[2^{c}-1\right] S_{2^{c}-1}$, thus we can compute this instance efficiently as follows

$$
\text { Cost: } 2\left(2^{c}-2\right)+1=2^{c+1}-3 \text { group operations. }
$$

Cost of Step 2: $n-2^{c}+1+2^{c+1}-3=n+2^{c}-2$ group operations.
Combining Steps 1, 2 and 3, the expected overall cost of the bucket method is

$$
\text { Total cost: } \frac{b}{c}\left(n+2^{c}\right)+(b-c-b / c-1) \approx \frac{b}{c}\left(n+2^{c}\right) \text { group operations. }
$$

Remark 1 (On choosing $c$ ). The theoretical minimum occurs at $c \approx \log n$ and the asymptotic scaling looks like $\%\left(b \frac{n}{\log n}\right)$. However, in practice, empirical choices of $c$ yield a better performance because the memory usage scales with $2^{c}$ and there are fewer edge cases if $c$ divides $b$. For example, with $n=10^{7}$ and $b=256$, we observed a peak performance at $c=16$ instead of $c=\log n \approx 23$.

## 4 Optimizations

### 4.1 Parallelism

Since each $c$-bit MSM is independent of the rest, we can compute each (Step 2) on a separate core. This makes full use of up to $b / c$ cores but increases memory usage as each core needs $2^{c}-1$ buckets (points). If more than $b / c$ cores are available, further parallelism does not help much because $m$ MSM instances of size $n / m$ cost more than 1 MSM instance of size $n$.

### 4.2 Precomputation

When the bases $G_{1}, \cdots, G_{n}$ are known in advance, we can use a smooth trade-off between precomputed storage vs. run time. For each base $G_{i}$, choose $k$ as big as the storage allows and precompute $k$ points $\left[2^{c}-k\right] G, \cdots,\left[2^{c}-1\right] G$ and use the bucket method only for the first $2^{c}-1-k$ buckets instead of $2^{c}-1$. The total cost becomes $\approx \frac{b}{c}\left(n+2^{c}-k\right)$. However, large MSM instances already use most available memory. For example, when $n=10^{8}$ our implementation needs 58GB to store enough BLS12-377 curve points to produce a Groth16 [Gro16] proof. Hence, the precomputation approach yield negligible improvement in our case.

### 4.3 Algebraic structure

Since the bases $G_{1}, \cdots, G_{n}$ are points in $\mathbb{G}_{1}\left(\right.$ or $\left.\mathbb{G}_{2}\right)$, we can use the algebraic structure of elliptic curves to further optimize the bucket method.

$$
\begin{aligned}
& \begin{array}{cccccccccccc} 
& S_{2^{c}-1} \\
+ & S_{2^{c}-1} & + & S_{2^{c}-2} & & & & & & & \\
& \vdots & & & & & & & & & & \\
+ & S_{2^{c}-1} & + & S_{2^{c}-2} & + & \cdots & + & S_{3} & + & S_{2} & & \\
+ & S_{2^{c}-1} & + & S_{2^{c}-2} & + & \cdots & + & S_{3} & + & S_{2} & + & S_{1} \\
\hline
\end{array} \\
& {\left[2^{c}-1\right] S_{2^{c}-1}+\left[2^{c}-2\right] S_{2^{c}-2}+\cdots+[3] S_{3}+[2] S_{2}+S_{1}}
\end{aligned}
$$

Non-Adjacent-Form (NAF). Given a point $G_{i}=(x, y) \in \mathbb{G}_{1}$ (or $\mathbb{G}_{2}$ ), on a Weierstrass curve for instance, the negative $-G_{i}$ is $(x,-y)$. This observation is well known to speed up the scalar multiplication $[s] G_{i}$ by encoding the scalar $s$ in a signed binary form $\{-1,0,1\}$ (later called 2-NAF - the first usage might go back to 1989 [MO90]). However, this does not help in the bucket method because the cost increases with the number of possible scalars regardless of their encodings. For a $c$-bit scalar, we always need $2^{c}-1$ buckets. That is said, we can use the 2-NAF decomposition differently. Instead of writing the $c$-bit scalars in the set $\left\{0, \cdots, 2^{c}-1\right\}$, we write them in the signed set $\left\{-2^{c-1}, \cdots, 2^{c-1}-1\right\}$ (cf. Alg. 2). If a scalar $a_{i, j}$ is strictly positive we add $G_{i}$ to the bucket $S_{\left(a_{i, j}\right)_{2}}$ as usual, and if $a_{i, j}$ is strictly negative we add $-G_{i}$ to the bucket $S_{\left|\left(a_{i, j}\right)_{2}\right|}$. This way we reduce the number of buckets by half.

$$
\text { Total cost: } \approx \frac{b}{c}\left(n+2^{c-1}\right) \text { group operations. }
$$

```
Algorithm 2: Signed-digit decomposition
    Input: \(\left(a_{0}, \cdots, a_{b / c-1}\right) \in\left\{0, \cdots, 2^{c}-1\right\}\)
    Output: \(\left(a_{0}^{\prime}, \cdots, a_{b / c-1}^{\prime}\right) \in\left\{-2^{c-1}, \cdots, 2^{c-1}-1\right\}\)
    for \(i\) from 0 to \(b / c-1\) do
        if \(a_{i} \geq 2^{c-1}\) then
            assert \(i \neq b / c-1 ; \quad / /\) No overflow for the final digit
            \(a_{i}^{\prime} \leftarrow a_{i}-2^{c} ; \quad / /\) Force this digit into \(\left\{-2^{c-1}, \cdots, 2^{c-1}-1\right\}\)
            \(a_{i+1} \leftarrow a_{i+1}+1 ; \quad / /\) LEND \(2^{c}\) TO THE NEXT DIGIT
        else
            \(a_{i}^{\prime} \leftarrow a_{i}\)
    return \(\left(a_{0}^{\prime}, \cdots, a_{b / c-1}^{\prime}\right)\);
```

The signed-digit decomposition cost is negligible but it works only if the bitsize of $\# \mathbb{G}_{1}$ (and $\# \mathbb{G}_{2}$ ) is strictly bigger than $b$. We use the spare bits to avoid the overflow. This observation should be taken into account at the curve design level.

Curve forms and coordinate systems. To minimize the overall cost of storage but also run time, one can store the bases $G_{i}$ in affine coordinates. This way we only need the tuples $\left(x_{i}, y_{i}\right)$ for storage (although we can batch-compress these following [Kos21]) and we can make use of mixed addition with a different coordinate systems.

The overall cost of the bucket method is $\frac{b}{c}\left(n+2^{c-1}\right)+(b-c-b / c-1)$ group operations. This can be broken down explicitly to:

- Mixed additions: to accumulate $G_{i}$ in the $c$-bit MSM buckets with cost $\frac{b}{c}\left(n-2^{c-1}+1\right)$
- Additions: to combine the bucket sums with cost $\frac{b}{c}\left(2^{c}-3\right)$
- Additions and doublings: to combine the $c$-bit MSMs into the $b$-bit MSM with cost $b-c+b / c-1$
- $b / c-1$ additions and

■ $b-c$ doublings
For large MSM instances, the dominating cost is in the mixed additions as it scales with $n$. For this, we use extended Jacobian coordinates $\{X, Y, Z Z, Z Z Z\}(x=X / Z Z, y=$ $Y / Z Z Z, Z Z^{3}=Z Z Z^{2}$ ) trading-off memory for run time compared to the usual Jacobian coordinates $\{X, Y, Z\}\left(x=X / Z^{2}, y=Y / Z^{3}\right)$ (cf. Table 2).

Table 2: Cost of arithmetic in Jacobian and extended Jacobian coordinate systems. $\mathbf{m}=$ Multiplication and $\mathbf{s}=$ Squaring in the field.

| Coordinate systems | Mixed addition | Addition | Doubling |
| :--- | :--- | :--- | :--- |
| Jacobian | $7 \mathbf{m}+4 \mathbf{s}$ | $11 \mathbf{m}+5 \mathbf{s}$ | $2 \mathbf{m}+5 \mathbf{s}$ |
| Extended Jacobian | $8 \mathbf{m}+2 \mathbf{s}$ | $12 \mathbf{m}+2 \mathbf{s}$ | $6 \mathbf{m}+4 \mathbf{s}$ |

Remark 2. In [GW20], the authors suggest to use affine coordinates for batch addition. That is, they only compute the numerators in the affine addition, accumulate the denominators and then batch-invert them using the Montgomery trick [Mon87]. An affine addition costs $3 \mathbf{m}+1 \mathbf{i}$ (i being a field inversion). For a single addition this is not worth it as $1 \mathbf{i}>7 \mathbf{m}(=10 \mathbf{m}-3 \mathbf{m})$. If we accumulate $L$ points and batch-add them with cost $3 L \mathbf{m}+L \mathbf{i}=6 L \mathbf{m}+1 \mathbf{i}$ (the Montgomery trick costing $L \mathbf{i}=3 L \mathbf{m}+1 \mathbf{i}$ ), this might be worth it. Assuming $\mathrm{I}=\mathrm{Cm}$, there might be an improvement if we accumulate a number of points $L>C / 4$. However, we did not observe a significant improvement in our implementation in compared to the extended Jacobian approach. This is mainly because $C$ is large due the optimized finite field arithmetic in bigint library we use. This means $L$ should be large requiring more memory.

We work over fields of large prime characteristic $(\neq 2,3)$, so the elliptic curves in question have always a short Weierstrass $(S W)$ form $y^{2}=x^{3}+a x+b$. Over this form, the fastest mixed addition is achieved using extended Jacobian coordinates. However, there are other forms that enable even faster mixed additions (cf. Table 3).

Table 3: Cost of mixed addition in different elliptic curve forms and coordinate systems assuming $1 \mathbf{m}=1 \mathbf{s}$. Formulas and references from [BL22].

| Form | Coordinates system | Equation | Mixed addition cost |
| :--- | :--- | :--- | :--- |
| short Weierstrass | extended Jacobian | $y^{2}=x^{3}+a x+b$ | $10 \mathbf{m}$ |
| Jacobi quartics | $X X Y Z Z$, <br> doubling-oriented $X X Y Z Z$, <br> $X X Y Z Z R$, <br> doubling-oriented $X X Y Z Z R$ | $y^{2}=x^{4}+2 a x^{2}+1$ | $9 \mathbf{m}$ |
|  | projective, <br> inverted | $x^{2}+y^{2}=c^{2}\left(1+d x^{2} y^{2}\right)$ | $9 \mathbf{m}$ |
| twisted Edwards | extended $(X Y Z T)$ <br> $x=X / Z, y=Y / Z, x \cdot y=T / Z$ | $a x^{2}+y^{2}=1+d x^{2} y^{2}$ | $8 \mathbf{m}$ (dedicated) <br> $9 \mathbf{m}$ (unified) |
| twisted Edwards | extended $(X Y Z T)$ <br> $x=X / Z, y=Y / Z, x \cdot y=T / Z$ | $-x^{2}+y^{2}=1+d x^{2} y^{2}$ <br> $(a=-1)$ | $7 \mathbf{m}$ (dedicated) <br> $8 \mathbf{m}$ (unified) |

It appears that a twisted Edwards $(t E d)$ form is appealing for the bucket method since it has the lowest cost for the mixed addition in extended coordinates. Furthermore, the arithmetic on this form is complete, i.e. the addition formulas are defined for all inputs. This improves the run time by eliminating the need of branching in case of adding the neutral element or doubling compared to a $S W$ form. We showed in Lemma 1 that all inner BLS curves admit a $t E d$ form.

For the arithmetic, we use the formulas in [HWCD08] alongside some optimizations. We take the example of BLS12-377 for which $a=-1$ :

- To combine the $c$-bit MSMs into a $b$-bit MSM we use unified additions [HWCD08, Sec. 3.1] (9m) and dedicated doublings [HWCD08, Sec. 3.3] ( $4 \mathbf{m}+4 \mathbf{s}$ ).
- To combine the bucket sums we use unified additions ( $9 \mathbf{m}$ ) to keep track of the running sum and unified re-additions ( $8 \mathbf{m}$ ) to keep track of the total sum. We save 1 m by caching the multiplication by $2 d^{\prime}$ from the running sum.
- To accumulate the $G_{i}$ in the $c$-bit MSM we use unified re-additions with some precomputations. Instead of storing $G_{i}$ in affine coordinates we store them in a custom coordinates system $(X, Y, T)$ where $y-x=X, y+x=Y$ and $2 d^{\prime} \cdot x \cdot y=T$. This saves 1 m and $2 \mathbf{a}$ (additions) at each accumulation of $G_{i}$.

We note that although the dedicated addition (resp. the dedicated mixed addition) in [HWCD08, Sec. 3.2] saves the multiplication by $2 d^{\prime}$, it costs $4 \mathbf{m}$ (resp. 2m) to check the operands equality: $X_{1} Z_{2}=X_{2} Z 1$ and $Y_{1} Z_{2}=Y_{2} Z 1$ (resp. $X_{1}=X_{2} Z 1$ and $Y_{1}=Y_{2} Z 1$ ). This cost offset makes both the dedicated (mixed) addition and the dedicated doubling slower than the unified (mixed) addition in the MSM case. We also note that the conversion of all the $G_{i}$ points given on a $S W$ curve with affine coordinates to points on a $t E d$ curve (also with $a=-1$ ) with the custom coordinates $(X, Y, T)$ is a one-time computation dominated by a single inverse using the Montgomery batch trick. In SNARKs, since the $G_{i}$ are points from the proving key, this computation can be part of the Setup algorithm and do not impact the Prove algorithm. If the Setup ceremony is yet to be conducted, it can be performed directly with points in the twisted Edwards form.

Our implementation shows that an MSM instance of size $2^{16}$ on the BLS12-377 curve is $30 \%$ faster when the $\mathbb{G}_{i}$ points are given on a $t E d$ curve with the custom coordinates compared to the Jacobian-extended-based version which takes points in affine coordinates on a $S W$ curve.

## 5 Implementation

Submissions to the ZPrize "Accelerating MSM on Mobile" division must run on Android 12 (API level 32) and are tested on the Samsung Galaxy A13 5G (Model SM-A136ULGDXAA with SoC MediaTek Dimensity 700 (MT6833)). The MSM must be an instance of $2^{16} \mathbb{G}_{1^{-}}$ points on the BLS12-377 curve. The baseline is the arkworks [aC22] MSM implementation in Rust (the bucket-list method), a widely used library in SNARK projects. Submissions must beat this baseline by at least $10 \%$ in order to be eligible for the prize. We implemented our algorithm in Go language using the gnark-crypto bigint library $\left[\mathrm{BPH}^{+}\right]$. The ZPrize judges have chosen this mobile device as a representative Android device, with specifications similar to older higher-end devices and new budget devices, and as a result represents the kind of hardware that is common today in wealthy markets, and will become common over the next 3-5 years in middle income markets. It is also widely available and relatively inexpensive. We achieved a speedup of $78 \%$ (cf. Table 4). The source code is available under MIT or Apache-2 licenses at:
https://github.com/gbotrel/zprize-mobile-harness
The speedup against the baseline/arkworks comes from the algorithmic optimizations discussed in this paper and the bigint arithmetic optimizations in gnark-crypto aimed at the arm64 target. We use a Montgomery CIOS variant to handle the field multiplication (Details of the algorithms and proofs are in Appendix A). On x86 architectures, gnark-crypto leverages the ADX and BMI2 instructions to efficiently handle the interleaved carry chains in the algorithm. For arm64 architecture, we "untangled" the carry propagation in the pure Go code to ensure the carry chains were uninterrupted. Moreover, the large number of registers available (in practice 28 for arm64 against 14 for x86) allowed for an efficient implementation of the squaring function - the 64 word-word multiplications are performed at the beginning of each iteration, and the results are stored in registers. This

Table 4: Comparison of the ZPrize baseline and the submission MSM instances of $2^{16}$ $\mathbb{G}_{1}$-points on the BLS12-377 curve.

| Implementation | Timing | Curve form and <br> coordinates system | Parallelism? | Precomputation? | 2-NAF <br> buckets? |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Baseline | 2309 ms | SW <br> Jacobian $(X, Y, Z)$ | $\checkmark$ | $\boldsymbol{x}$ | $\boldsymbol{x}$ |
| Submission | 509 ms | $t E d(a=-1)$ <br> Custom $(X, Y, T)$ | $\checkmark$ | $\mathbf{x}$ | $\boldsymbol{\checkmark}$ |

allows to have uninterrupted carry chains when doubling the intermediate product. The impact of these optimizations is $\sim 17 \%$ for $\mathbb{F}_{p}$ multiplication and $\sim 25 \%$ for the squaring. For an ext-Jac MSM instance of size $2^{16}$, the timing was 821 ms before these arm64 field arithmetic optimizations and 620 ms after. For the tEd-custom version the speedup is only related to the $\mathbb{F}_{p}$-multiplication since there are no squaring in the mixed addition. For this same version, we stored $(y-x, y+x)$ in the coordinates system instead of $(x, y)$ and added $\sim 40$ lines of arm64 assembly for a small function in $\mathbb{F}_{p}$ (Butterfly (a, b) $\rightarrow \mathrm{a}$ $=\mathrm{a}+\mathrm{b} ; \mathrm{b}=\mathrm{a}-\mathrm{b})$. The butterfly performance impact was $\sim 5 \%$, as it speeds up the unified (mixed) addition in the $t E d$ form.

However, the large gap cannot be justified by these facts only. The target device SoC can run 32 -bit and 64 -bit instruction sets. The stock firmware runs a 32 -bit ARM architecture (armv7, 32-bit) on which the baseline implementation is benchmarked by the ZPrize judges. For the sake of the competition, we performed a static build targeting a 64 -bit ARM architecture (armv8-a, 64-bit), which allowed us without a complicated build process to run the 64 -bit code on the target device.

That is said, for a fair comparison, we perform the same architecture hack on the baseline implementation. We report in Figure 3 a comparison of our code to the baseline. We report timings of several MSM instances of different sizes and with different curve parameterizations ( $S W$ in extended Jacobians vs. $t E d(a=-1)$ in custom/extended coordinates).


Figure 3: Comparison of our MSM code and the arkworks one for different instances on the BLS12-377 $\mathbb{G}_{1}$ group.

For the ZPrize MSM instance of size $2^{16}$ the speed up is $45 \%$ with the $t E d$ version and $33 \%$ with the more generic $S W$-extJac version. For different sizes ranging from $2^{8}$ to $2^{18}$ the speed up is $40-47 \%$ with the $t E d$ version and $20-35 \%$ with $S W$-extJac.

## 6 Conclusion

Multi-scalar-multiplication dominates the proving cost in most elliptic-curve-based SNARKs. Inner curves such as the BLS12-377 are optimized elliptic curves suitable for both proving generic-purpose statements and in particular for proving composition and recursive statements. Hence, it is critical to aggressively optimize the computation of MSM instances on these curves. We showed that our work yield a very fast implementation both when the points are given on a short Weierstrass curve and even more when the points are given on a twisted Edwards curve. We showed that this is always the case for inner curves such as BLS12-377 and that the conversion cost is a one-time computation that can be performed in the Setup phase. We note that, more generally, these tricks apply to any elliptic curve that admits a twisted Edwards form - particularly SNARK-friendly 2-cycles of elliptic curves. We suggest that this should be taken into account at the design level of SNARK-friendly curves.

Open-question: For the Groth16 SNARK [Gro16], the same scalars $a_{i}$ are used for two MSMs on two different elliptic curves ( $\mathbb{G}_{1}$ and $\mathbb{G}_{2}$ MSMs where these and the pairing groups). We ask if it is possible to mutualize a maximum of computations between these two instances? It seems that moving to a type-2 pairing would allow to deduce the $\mathbb{G}_{1}$ instance from the $\mathbb{G}_{2}$ one using an efficient homomorphism over the resulting single point. However, $\mathbb{G}_{2}$ computations would be done on the much slower full extension $\mathbb{F}_{p^{k}}$ (instead of $\mathbb{F}_{p^{k / d}}$ where $d$ is the twist degree). The pairing, needed for proof verification, would also be slower.

## Acknowledgement

The two co-authors of this paper are also co-authors of the gnark-crypto library. We thank the other co-authors Thomas Piellard, Ivo Kubjas, Arya Pourtaba Tabaie and Gus Gutoski for their contributions to gnark-crypto, which allowed this work. We also acknowledge that the appendix of this paper is a reprint of the material as it appears in a blog note we shared in 2020 on hackmd.io. This note was never published in an academic paper.

## A Faster bigint modular multiplication for most moduli

We discovered an optimization that reduces the number of operations needed to compute the modular multiplication of two big integers for most (but not quite all) choices of modulus. To the best of our knowledge, we are not aware of any prior art describing this optimization, though it is possible that we missed something in the literature.

## A. 1 The Montgomery multiplication: theory

The modular multiplication problem. Given integers $a, b$ and $p$ the modular multiplication problem is to compute the remainder of the product

$$
a b \quad \bmod p .
$$

On computers a division operation is much slower than other operations such as multiplication. Thus, a naive implementation of $a b \bmod p$ using a division operation is prohibitively slow. In 1985, Montgomery introduced a method to avoid costly divisions [Mon85]. This method, now called the Montgomery multiplication, is among the fastest solutions to the problem and it continues to enjoy widespread use in modern cryptography.

Overview of the solution: the Montgomery multiplication. There are many good expositions of the Montgomery multiplication (e.g. [BM17]). As such, we do not go into detail on the mathematics of the Montgomery multiplication. Instead, this section is intended to establish notation that is used throughout this appendix.

The Montgomery multiplication algorithm does not directly compute $a b \bmod p$. Instead it computes $a b R^{-1} \bmod p$ for some carefully chosen number $R$ called the Montgomery radix. Typically, $R$ is set to the smallest power of two exceeding $p$ that falls on a computer word boundary. For example, if $p$ is 381 bits then $R=2^{6 \times 64}=2^{384}$ on a 64 -bit architecture.

In order to make use of the Montgomery multiplication the numbers $a$ and $b$ must be encoded into the Montgomery form: instead of storing $(a, b)$, we store the numbers $(\tilde{a}, \tilde{b})$ given by $\tilde{a}=a R \bmod p$ and $\tilde{b}=b R \bmod p$. A simple calculation shows that the Montgomery multiplication produces the product $a b \bmod p$, encoded in the Montgomery form: $(a R)(b R) R^{-1}=a b R \bmod p$. The idea is that numbers are always stored in the Montgomery form so as to avoid costly conversions to and from the Montgomery form.

Other arithmetic operations such as addition, subtraction are unaffected by the Montgomery form encoding. But the modular inverse computation $a^{-1} \bmod p$ must be adapted to account for the Montgomery form. We do not discuss modular inversion in this appendix.

## A. 2 The Montgomery multiplication: implementation

For security purposes, cryptographic protocols use large moduli - $a, b$ and $p$ are stored on multiple machine words (multi-precision). In this appendix, we let $D$ denote the basis in which integers are represented. (For example, $D=2^{64}$ if a word is 64 bits). A large number $n$ can be represented by its base- $D$ digits $n_{0}, \ldots, n_{m}$ stored in machine words (uint): $\sum_{i=0}^{m} n_{i} D^{i}$.

There are several variations of multi-precision Montgomery multiplication. A popular choice is the Coarsely Integrated Operand Scanning (CIOS) variant [Aca98]. In some settings, factors such as modulus size, CPU cache management, optimization techniques, architecture and available instruction set might favor other variants.

How fast is the CIOS method? Let $N$ denote the number of machine words needed to store the modulus $p$. For example, if $p$ is a 381 -bit prime and the hardware has 64 -bit word size then $N=6$. The CIOS method solves modular multiplication using $4 N^{2}+4 N+2$ unsigned integer additions and $2 N^{2}+N$ unsigned integer multiplications.

Our optimization reduces the number of additions needed in the CIOS Montgomery multiplication to only $4 N^{2}-N$, a saving of $5 N+2$ additions. This optimization can be used whenever the highest bit of the modulus is zero (and not all of the remaining bits are set - see below for details).

The core of the state-of-the-art CIOS Montgomery multiplication is reproduced below. This listing is adapted from Section 2.3.2 of Tolga Acar's thesis [Aca98]. The symbols in this listing have the following meanings:

- $N$ is the number of machine words needed to store the modulus $p$.
- $D$ is the word size. For example, on a 64 -bit architecture $D$ is $2^{64}$.
- $a[i], b[i], p[i]$ are the $i$-th words of the integers $a, b$ and $p$.
- $p^{\prime}[0]$ is the lowest word of the number $-p^{-1} \bmod R$. This quantity is precomputed, as it does not depend on the inputs $a$ and $b$.
- $t$ is a temporary array of size $N+2$.
- $C, S$ are machine words. A pair $(C, S)$ refers to (high-bits, low-bits) of a two-word number. For short we denote them (hi, lo).

```
Algorithm 3: The CIOS Montgomery multiplication
    for \(i=0\) to \(N-1\) do
        \(C:=0\)
        for \(j=0\) to \(N-1\) do
            \((C, t[j]):=t[j]+a[j] \cdot b[i]+C\)
        \((t[N+1], t[N]):=t[N]+C ;\)
        \(C:=0\);
        \(m:=t[0] \cdot p^{\prime}[0] \bmod D\);
        \(\left(C, \_\right):=t[0]+m \cdot p[0] ;\)
        for \(j=1\) to \(N-1\) do
            \((C, t[j-1]):=t[j]+m \cdot p[j]+C\)
        \((C, t[N-1]):=t[N]+C ;\)
        \(t[N]:=t[N+1]+C ;\)
```

Next, we show that we can save the additions in lines 5 and 12 of Alg. 3 when the highest word of the modulus $p$ is at most $(D-1) / 2-1$. This condition holds if and only if the highest bit of the modulus is zero and not all of the remaining bits are set.

Our optimization. Observe that lines 4 and 10 have the form (hi, lo) $:=m_{1}+m_{2} \cdot B+m_{3}$, where hi, lo, $m_{1}, m_{2}, m_{3}$ and $B$ are machine-words where each is at most $D-1$. If $B \leq(D-1) / 2-1$ then a simple calculation shows that

$$
\begin{aligned}
m_{1}+m_{2} \cdot B+m_{3} & \leq(D-1)+(D+1)\left(\frac{D-1}{2}-1\right)+(D-1) \\
& \leq D \underbrace{\left(\frac{D-1}{2}\right)}_{\mathrm{hi}}+\underbrace{\left(\frac{D+1}{2}-1\right)}_{10}
\end{aligned}
$$

From which we derive the following Lemma:
Lemma 2. If $B \leq(D-1) / 2-1$, then $h i \leq(D-1) / 2$.
We use Lemma 2 to prove the following Proposition:
Proposition 2. If the highest word of $p$ is at most $(D-1) / 2-1$, then the variables $t[N]$ and $t[N+1]$ always store the value 0 at the beginning of each iteration of the outer $i$-loop.

Proof. We prove this proposition by induction. The base case $i=0$ is trivial, since the $t$ array is initialized to 0 . For the inductive step at the iteration $i$, we suppose that $t[N]=t[N+1]=0$ and trace the execution through the iteration. Begin at the final iteration of the first inner loop $(j=N-1)$ on line 4 . Because $a<p$ and because the highest word of $p$ is smaller than $(D-1) / 2$, we may use Lemma 2 to see that the carry $C$ is at most $(D-1) / 2$. Then line 5 sets

$$
\begin{aligned}
t[N] & =C \\
t[N+1] & =0 .
\end{aligned}
$$

A similar observation holds at the end of the second inner loop $(j=N-1)$ on line 10 : Lemma 2 implies that the carry $C$ is at most $(D-1) / 2$. We previously observed that $t[N]$ is also at most $(D-1) / 2$, so $t[N]+C$ is at most

$$
\frac{D-1}{2}+\frac{D-1}{2}=D-1
$$

which fits entirely into a single word. Then line 11 sets $C$ to 0 and line 12 sets $t[N]$ to 0 . The proof by induction is now complete.

With this proposition, we no longer need the addition at line 5 . We store $C$ in a variable $A$ and at line 11 we compute instead

$$
\left(\_, t[N-1]\right):=A+C
$$

The final algorithm. For $N<12$, we merge the two inner loops

```
Algorithm 4: Our optimized CIOS Montgomery multiplication
for \(i=0\) to \(N-1\) do
    \((A, t[0]):=t[0]+a[0] \cdot b[i] ;\)
    \(m:=t[0] \cdot p^{\prime}[0] \bmod W\);
    \(C,:=t[0]+m \cdot p[0] ;\)
    for \(j=1\) to \(N-1\) do
        \((A, t[j]):=t[j]+a[j] \cdot b[i]+A ;\)
        \((C, t[j-1]):=t[j]+m \cdot p[j]+C ;\)
    \(t[N-1]:=C+A ;\)
```

Our optimized Montgomery squaring. The condition on the modulus differs, here

$$
p[N-1] \leq \frac{D-1}{4}-1
$$

However, the reasoning is similar and we end up with

```
Algorithm 5: Our optimized CIOS Montgomery squaring
for \(i=0\) to \(N-1\) do
    \(C, t[i]:=a[i] \cdot a[i]+t[i] ;\)
    \(p:=0\);
    for \(j=i+1\) to \(N-1\) do
        \(p, C, t[j]:=2 a[j] \cdot a[i]+t[j]+(p, C)\)
        \(A:=C\);
        \(m:=t[0] \cdot p^{\prime}[0] ; C,:=t[0]+p[0] \cdot m\) for \(j=1\) to \(N-1\) do
            \(C, t[j-1]:=p[j] \cdot m+t[j]+C\)
    \(t[N-1]:=C+A ;\)
```


## References

[aC22] arkworks Contributors. arkworks zkSNARK ecosystem. https://arkworks. rs, 2022.
[Aca98] Tolga Acar. High-Speed Algorithms and Architectures For Number-Theoretic Cryptosystems. PhD thesis, June 1998.
[AHG22] Diego F. Aranha, Youssef El Housni, and Aurore Guillevic. A survey of elliptic curves for proof systems. Cryptology ePrint Archive, Paper 2022/586, 2022. https://eprint.iacr.org/2022/586.
$\left[\mathrm{BCG}^{+} 20\right]$ Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and Howard Wu. ZEXE: Enabling decentralized private computation. pages 947-964, 2020.
[BCTV14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable zero knowledge via cycles of elliptic curves. LNCS, pages 276-294, 2014.
[BDLO12] Daniel J. Bernstein, Jeroen Doumen, Tanja Lange, and Jan-Jaap Oosterwijk. Faster batch forgery identification. LNCS, pages 454-473, 2012.
[BGH19] Sean Bowe, Jack Grigg, and Daira Hopwood. Halo: Recursive proof composition without a trusted setup. Cryptology ePrint Archive, Report 2019/1021, 2019. https://eprint.iacr.org/2019/1021.
[BL22] Daniel Bernstein and Tanja Lange. Explicit-formulas database. https://www. hyperelliptic.org/EFD/, 2022.
[BLS03] Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott. Constructing elliptic curves with prescribed embedding degrees. LNCS, pages 257-267, 2003.
[BM17] Joppe W. Bos and Peter L. Montgomery. Montgomery arithmetic from a software perspective. Cryptology ePrint Archive, Report 2017/1057, 2017. https://eprint.iacr.org/2017/1057.
$\left[\mathrm{BPH}^{+}\right]$Gautam Botrel, Thomas Piellard, Youssef El Housni, Arya Tabaie, and Ivo Kubjas. Go library for finite fields, elliptic curves and pairings for zeroknowledge proof systems.
[dR95] Peter de Rooij. Efficient exponentiation using procomputation and vector addition chains. LNCS, pages 389-399, 1995.
[EG20] Youssef El Housni and Aurore Guillevic. Optimized and secure pairing-friendly elliptic curves suitable for one layer proof composition. LNCS, pages 259-279, 2020.
[EG22] Youssef El Housni and Aurore Guillevic. Families of SNARK-friendly 2-chains of elliptic curves. LNCS, pages 367-396, 2022.
[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. LNCS, pages 305-326, 2016.
[GW20] Ariel Gabizon and Zachary Williamson. Proposal: The turbo-plonk program syntax for specifying snark programs. https://docs.zkproof.org/pages/ standards/accepted-workshop3/proposal-turbo_plonk.pdf, 2020.
[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permutations over lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint Archive, Report 2019/953, 2019. https: //eprint.iacr.org/2019/953.
[Hop20] Daira Hopwood. The pasta curves for halo 2 and beyond. https: //electriccoin.co/blog/the-pasta-curves-for-halo-2-and-beyond/, 2020.
[HWCD08] Hüseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, and Ed Dawson. Twisted Edwards curves revisited. LNCS, pages 326-343, 2008.
[Kos21] Dmitrii Koshelev. Batch point compression in the context of advanced pairingbased protocols. Cryptology ePrint Archive, Report 2021/1446, 2021. https: //eprint.iacr.org/2021/1446.
[Mih07] Preda Mihailescu. Dual elliptic primes and applications to cyclotomy primality proving. arXiv 0709.4113, 2007.
[MO90] François Morain and Jorge Olivos. Speeding up the computations on an elliptic curve using addition-subtraction chains. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, 24(6):531-543, 1990.
[Mon85] Peter L. Montgomery. Modular multiplication without trial division. Mathematics of Computation, 44(170):519-521, 1985.
[Mon87] Peter L. Montgomery. Speeding the pollard and elliptic curve methods of factorization. Mathematics of Computation, 48:243-264, 1987.
[Pip76] Nicholas Pippenger. On the evaluation of powers and related problems (preliminary version). In $1^{\text {rth }}$ Annual Symposium on Foundations of Computer Science, Houston, Texas, USA, 25-27 October 1976, pages 258-263. IEEE Computer Society, 1976.
[Pol71] J. M. Pollard. The Fast Fourier Transform in a finite field. Math. Comp., 25(114):365-374, April 1971.
[Sil09] Joseph H Silverman. The Arithmetic of Elliptic Curves. Graduate texts in mathematics. Springer, Dordrecht, 2009.
[SS11] Joseph H. Silverman and Katherine E. Stange. Amicable Pairs and Aliquot Cycles for Elliptic Curves. Experimental Mathematics, 20(3):329-357, 2011.
[Str64] Ernst G. Strauss. Addition chains of vectors (problem 5125). American Mathematical Monthly, 70(114):806-808, 1964.

