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Abstract 12 

The recent democratization of high-throughput molecular phenotyping allows the rapid 13 

expansion of promising untargeted multi-dimensional approaches (e.g. epigenomics, 14 

transcriptomics, proteomics, and/or metabolomics). Indeed, these emerging omics tools, 15 

processed for ecologically relevant species, may present innovative perspectives for 16 

environmental assessments, that could provide early warning of eco(toxico)logical 17 

impairments. 18 

In a previous pilot study (Sotton et al., Chemosphere 2019), we explore by 1H NMR the bio-19 

indicative potential of metabolomics analyses on the liver of 2 sentinel fish species (Perca 20 

fluviatilis and Lepomis gibbosus) collected in 8 water bodies of the peri-urban Paris’ area 21 

(France). In the present study, we further investigate on the same samples the high potential 22 

of high-throughput UHPLC-HRMS/MS analyses. We show that the LC-MS metabolome 23 

investigation allows a clear separation of individuals according to the species, but also 24 

according to their respective sampling lakes. Interestingly, similar variations of Perca and 25 

Lepomis metabolomes occur locally indicating that site-specific environmental constraints 26 

drive the metabolome variations which seem to be influenced by the production of noxious 27 

molecules by cyanobacterial blooms in certain lakes. Thus, the development of such reliable 28 

environmental metabolomics approaches appears to constitute an innovative bio-indicative 29 

tool for the assessment of ecological stress, such as toxigenic cyanobacterial blooms, and 30 

aim at being further follow up. 31 
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1. INTRODUCTION 36 

In the past decades, the use of aquatic organisms as bio-indicator has been widely adopted 37 

to monitor and to manage the quality of water bodies worldwide (Lorenz 2003). In parallel, 38 

the difficulties and the rational limits of a direct chemical monitoring for providing sufficient 39 

information to adequately assess the risks from anthropogenic chemicals in the natural 40 

environment was progressively documented (Reyjol et al., 2014). More recently, the recent 41 

democratisation of high-throughput molecular phenotyping has allowed the rapid expansion 42 

of promising untargeted multi-dimensional approaches (e.g. epigenomics, transcriptomics, 43 

proteomics, metabolomics), that now represent promising perspectives for environmental 44 

assessments (Bahamonde et al. 2016; Cordier et al., 2020). It appears now very likely that 45 

emerging omics-based analyses, such as metabolomics, developed for ecologically relevant 46 

aquatic species, may support the development of new ecological evaluation tools, that could 47 

provide early warning of ecotoxicological impairments (Marie 2020). 48 

The metabolome is defined as the set of primary and secondary metabolites synthesized at a 49 

given time and thus represents its global metabolic chemical picture. This set of metabolites 50 

is assumed to represent a final endpoint of the phenotypic response of an organism that can 51 

potentially be modified when the ecological and environmental stress conditions change 52 

(Bundy et al., 2008). In this way, metabolomic studies have become a relevant approach to 53 

investigate physiological processes involved in the homeostatic responses of the organisms 54 

encountering environmental stresses from potentially multiple origins (Capello et al., 2016; 55 

Good et al., 2020). However, despite its high potential to support the understanding the 56 

molecular mechanisms implicated in the ecotoxicological responses of aquatic organisms 57 

(Sardans et al., 2011; Viant, 2008), such environmental metabolomics investigations remains 58 

still limited. Indeed, numerous studies have compared the metabolite profiles of individuals 59 

collecting from a limited set of environments, often including only one contaminated site 60 

and a unique reference location (e.g. Capello et al., 2016; Melvin et al., 2019; De Marco et 61 

al., 2022). As previously suggested, the selection of a unique “good” reference site may 62 

crucially orientate the results of the analyses, and larger efforts should be provided at 63 

understanding similarities and differences among various references sites (Simmons et al., 64 

2015; Marjan et al., 2017). Such approaches would gain at investigating larger sets of 65 

environments regarding their respective positions within environmental gradients of global 66 

ecotoxicological pressures (Jeffries et al., 2010; Davis et al., 2016; Meador et al., 2020). 67 
 

68 

Among several aquatic organisms, such as molluscs or arthropods, fishes present remarkable 69 

features that make them especially relevant for bio-indication purposes. In fact, they occupy 70 

almost any aquatic habitat, being capable of experiencing different and variable 71 

environmental conditions (Harris 1995). Fishes are also responsive to numerous abiotic 72 

(temperatures, water velocities, sediment loads, hypoxia, …) or biotic (famine, predation, 73 

parasitism, …) pressures, together with anthropogenic stressors, such as contaminants, that 74 

represent additional constraints that fish may experience in disturbed ecosystems 75 

(McClanahan 2019). Environmental stressors are known to affect the specific physiological, 76 



developmental and reproductive traits, that allow the different fish species to colonize and 77 

occupy various ecosystems (Hamilton et al., 2016).  78 

Nowadays, cyanobacterial blooms are one of the common sources of stress encountered by 79 

organisms living in modern freshwater lentic systems around the world (Harke et al., 2016; 80 

Burford et al., 2020). Then, various efforts have been attempted to characterize the 81 

potential effect of cyanobacteria proliferation on various fish species according to 82 

experimentation performed in the lab, in mesocosms, or from field sampling (Amado et al., 83 

2010; Ferrao-Filho et al., 2011; Sotton et al., 2017a, 2017b; Le Manach et al., 2018). To this 84 

end, we initially investigated by 1H NMR technics the liver metabolome of fish collected from 85 

different lakes of the peri-urban Paris area (France), and encountering low or high 86 

cyanobacterial proliferation (Sotton et al., 2019). This pilot study leads to the description of 87 

putative metabolite concentrations, corresponding to specific NMR signals, that were 88 

significantly correlated with higher cyanobacterial occurrence. 89 

 90 

The present study investigates the bio-indicative potential of high-throughput molecular 91 

phenotyping supported by LC-HRMS approaches on 2 sentinel fish specimens (Perca 92 

fluviatilis and Lepomis gibbosus) that were previously investigated by 1H NMR (Sotton et al., 93 

2019). We hypothesis that LC-MS-based metabolomics approach may present a higher 94 

potential for environmental diagnosis. Indeed, such investigations provide valuable multi-95 

metric characters indicative of biological or ecological conditions, together with a 96 

prospective mechanistic under-standing of the cause-effect relationships. With regard to the 97 

cyanobacterial occurrence and the associated production of bioactive metabolites in the 98 

different lakes, we compare here the metabolome of two different sentinel fish species. 99 

Indeed, these organisms could present rather different or comparable sensitivity and 100 

responsiveness to local eco(toxico)logical constraints (i.e. potentially the production of 101 

noxious molecules by cyanobacteria), and may support the general interest for omics-based 102 

environmental approach for the characterization of cyanobacterial bloom threat. 103 

 104 

 105 

2. MATERIALS AND METHODS 106 

2.1. Fish sampling 107 

Field sampling campaigns were performed during late summer 2015 (7-10th September), as 108 

this “end-of-the-bloom” period appears more appropriate to observe cyanobacterial effects 109 

on fishes. Eight peri-urban pounds around Paris’ area (Île-de-France region, France) were 110 

selected for their respective eutrophication levels and the presence or the absence of 111 

recurrent cyanobacterial blooms: Cergy-Pontoise (Cer), Champs-sur-Marne (Cha), Maurepas 112 

(Mau), Rueil (Rue), Verneuil (Ver), Varennes-sur-Seine (Var), Fontenay-sur-Loing (Fon) and 113 

Triel (Tri) pounds (Supplementary figure S1) (Maloufi et al., 2016; Sotton et al., 2019). These 114 

sites were sampled by the Hydrosphère company (www.hydrosphere.fr) with electric fishing 115 

device (FEG 8000, EFKO, Leutkirch, Germany) for capturing live caught fish, that were then 116 

promptly sacrificed for liver collection. The investigation of the fish guild indicates that only 117 



the perch (Perca fluviatilis) and pumpkinseed sunfish (Lepomis gibbosus) were presents in all 118 

or almost all these pounds (supplementary table S1) and were further selected as sentinel 119 

species for further molecular phenotyping analyses by metabolomics. 120 

Briefly, live caught fishes (n=5-10 young-of-the-year per pounds and per species) were 121 

briefly euthanized by neck dislocation, directly measured (12.04.8 cm), weighed (9.32.6 122 

g), and then liver of each individual was shortly sampled, flash-frozen in liquid nitrogen and 123 

kept at -80°C until analyses, in accordance with European animal ethical concerns and 124 

regulations.  125 

In every lake, sub-surface chlorophyll-a equivalent concentrations attributed to the four-126 

main phytoplankton groups (Chlorophyta, Diatoms, Cyanobacteria and Cryptophyta) were 127 

measured with an in-situ fluorometer (Fluoroprobe II, Bbe-Moldenke, Germany) 128 

(Supplementary figure S2). Sub-surface water samples filtered on 20-µm mesh size were also 129 

collected for phytoplanktonic community analysis and further metabolomics 130 

characterisation, and then kept at -80°C until analysis as previously described (Sotton et al., 131 

2019). Physico-chemical parameters of the water column (temperature, conductivity, pH, 132 

dissolved O2 and nitrate concentrations) were monitored with a YSI DSS probe, as previously 133 

described (Sotton et al., 2019). 134 

 135 

2.2. Liver metabolite extraction and metabolomics analyses 136 

The liver extraction was performed on 132 individuals (comprising 78 Perca and 54 Lepomis) 137 

with methanol/chloroform/water (ratio 2/2/1.8 – 22 mL.g-1 at 4°C) and the polar fraction 138 

was analyzed on a 600-MHz NMR spectrometer equipped with a 5-mm cryoprobe (Advance 139 

III HD Bruker, Germany) with a noesygppr1d pulse sequence as previously described (Sotton 140 

et al., 2019). 1H-NMR spectra were treated with Batman R-package for deconvolution, peak 141 

assignment and quantification of 222 putative metabolites (Hoa et al., 2014). 142 

The liver extracted polar phase was additionally injected (2 L) on C18 column (Polar 143 

Advances II 2.5 pore - Thermo), then eluted at a 300 μL.min-1 flow rate with a linear gradient 144 

of acetonitrile in 0.1% formic acid (5 to 90 % in 21 min) with an ultra-high-performance 145 

liquid chromatography (UHPLC) system (ELUTE, Bruker). Consecutively, the individual 146 

metabolite contents were analysed using an electrospray ionization hybrid quadrupole time-147 

of-flight (ESI-Qq-TOF) high-resolution mass spectrometer (Compact, Bruker) at 2 Hz speed on 148 

positive MS mode on the 50–1500 m/z range. The feature peak list was generated from 149 

recalibrated MS spectra (< 0.5 ppm for each sample, as an internal calibrant of Na formate 150 

was injected at the beginning of each sample analysis) within a 1-15 min window of the LC 151 

gradient, with a filtering of 5,000 count of minimal intensity, a minimal occurrence in at least 152 

50% of all samples, and combining all charge states and related isotopic forms using 153 

MetaboScape 4.0 software (Bruker). 154 

Additionally, five pools of six different individuals randomly selected for Perca and Lepomis 155 

(quality check samples) and the phytoplanktonic biomass extracts from the 8 lakes were 156 

similarly eluted then analysed on positive autoMS/MS mode at 2-4 Hz on the 50-1500 m/z 157 

range for further metabolite annotation. Molecular networks were performed with Global 158 



Natural Product Social network (http://gnps.ucsd.edu) and/or MetGem 159 

(http://metgem.github.io) softwares, as previously described (Kim Tiam et al., 2019; Le 160 

Manach et al., 2019) for cyanobacterial and fish metabolite annotation was assayed using in-161 

house (Le Manach et al., 2019) or CyanoMetDB (Jones et al., 2021), and GNPS, Mona, human 162 

metabolome database (HMDB) and Massbank MS/MS spectral libraries. Water samples of 163 

each lake, concentrated on a 20-µm mesh size, were also extracted with 75% methanol (2 164 

min sonication, 5 min centrifugation at 15,000 g - 4°C) and then similarly analysed in 165 

triplicates on LC-HRMS on autoMS/MS positive mode, as earlier described, and metabolite 166 

list annotated with same pipelines. 167 

 168 

2.4. Data matrix treatment 169 

The resulting the intensity data tables of the 222 metabolites (1H NMR) and 1252 analytes 170 

(LC-MS) were further treated for normalization with Pareto’s scaling, inspected data 171 

representation by PCA and heatmap with hierarchical clustering (Euclidean distance) and 172 

then analysed to investigate the influences of “Species” and “Lakes” parameters on the 173 

datasets by PERMANOVA, PLS-DA or multi-block PLS-DA using MixOmics and Mixomics 174 

DIABLO R Package (Rohart et al., 2017; Singh et al., 2019), MetaboAnalyst 5 (Chong et al., 175 

2019) and MicrobiomeAnalyst tools (Chong et al., 2020). 176 

 177 

 178 

3. RESULTS AND DISCUSSION 179 

3.1. Distinction of Perca and Lepomis liver LC-MS metabolome 180 

Figure 1 illustrates the global metabolite profiles analyzed by LC-MS for each fish (comprising 181 

Perca and Lepomis) on a heatmap with hierarchical classifications and individual plot 182 

representation of principal component analyses (PCA). A very strong and significant 183 

discrimination between the “species” was achieved (PERMANOVA F-value = 94.92; R2 = 0.43; 184 

P-value <0.001), when a slighter but still significant discrimination can be also retrieved for 185 

“lakes” (PERMANOVA F-value = 4.96; R2 = 0.22; P-value <0.001). 186 

In parallel, a molecular network performed with fragmentation data was obtained by LC-187 

MS/MS analyses of Perca and Lepomis metabolomes. This approach supports the global 188 

annotation process of the fish liver metabolites considering both structural identities and 189 

similarities (Nothias et al., 2020). The GNPS and the t-SNE representation of the molecular 190 

network highlights that most, if not all, of the known metabolites (presenting structural 191 

identity or analogy hits) are largely shared between the two species (e.g. nucleic acids, 192 

carnitines, glutathiones, lipids, saccharides, …). Moreover, numerous species-specific cluster 193 

metabolites remain uncharacterized, with relative molecules and clusters presenting no 194 

match within the public chemical databases (supplementary figure S2) (da Silva et al., 2015). 195 

Taken together, these analyses illustrate for these two species the various molecular 196 

specificities of their respective metabolomes. It also shows the substantial portion of the 197 

specific liver molecular metabolism that still remains uncharacterized and that could be 198 



related to species-specific nutritional, physiological or toxicological functions (Brusle et al., 199 

2017). 200 

 201 

3.2. Comparison of Perca and Lepomis LC-MS metabolome between lakes 202 

In addition, the LC-MS datasets of the two fish species considered separately show even 203 

clearer discriminations of the metabolomes of fish originating from the different lakes. The 204 

un-supervised PCA and the heatmap with hierarchical classification (Figure 2) present 205 

distinct environmental signatures that support reliable discrimination of the lake of sampling 206 

for both Perca and Leptomis (Fig. 2A-B and 2C-D, respectively). These observations strongly 207 

suggest that the locality seems to globally influence the local LC-MS metabolome 208 

composition for both species. However, the liver metabolomes of individuals from Fontenay-209 

sur-Loing lake (Fon) exhibit quite species-specific relative positions on PCA (Figure 2A and 210 

2C). Such differences of the relative position of metabolomes from Fon between the two 211 

species suggests that: i/ for most localities, the specific “lake” signature of the metabolome 212 

appears in good agreement between the two species, ii/ for some specific environments 213 

(e.g. Fon), the metabolome signatures are variable from one species to the other one. Thus, 214 

the species-specific signature of the Perca and Lepomis metabolomes in Fon lake may rather 215 

traduce the specific responsiveness and/or sensitivity to a local factor occurring at this 216 

particular location. 217 

 218 

Interestingly, the two hierarchical classifications performed on LC-MS metabolome datasets 219 

of Perca and Lepomis, respectively, overall show a global similarity of the metabolome of 220 

fish originating from the same lake, together with an overall distinction of 3 principal lake 221 

clusters. Indeed, these analyses show very similar lake relationships for both species, 222 

grouping together all fish from the lakes of ‘Cer and Mau’, from ‘Cha, Fon and Rue’, and from 223 

Tri, Var and Ver’ for Perca, or ‘Tri and Ver’ for Lepomis, as this latter was not retrieved in Var 224 

(Figure 2B and 2D). This observation suggests that these localities could somehow present 225 

comparable, if not analogous, environmental conditions. This hypothesis was firstly 226 

considered regarding NMR metabolomics and potential explicative environmental factors 227 

(physico-chemical and biological factors – supplementary table S2) and had suggested a 228 

potential influence of cyanobacterial proliferation (BBEcya and pH) (Sotton et al., 2019). 229 

Indeed, as initially shown, the Fon, Tri, Var and Ver lakes encounter remarkable high 230 

amounts of cyanobacteria belonging to the Planktothix, Pseudo-Anabaena, Aphanizomenon, 231 

Anabaena or Microcystis genera. Differently, the other lakes (Cer, Mau, Cha and Rue) exhibit 232 

phytoplanktonic biomasses principally dominated by green algae, diatoms or cryptophytes 233 

(Fig. 3A-B). A molecular network performed with LC-MS/MS data obtained from the 234 

phytoplanktonic biomass of these 8 lakes shows that noticeable amounts of cyanopeptides 235 

are observed in the water column of the cyanobacterial-rich lakes (Fon, Tri, Var and Ver), 236 

with the specific presence of most noxious cyanopeptides (microcystins, cyanopeptolins and 237 

anabaenopeptins) being detected in Tri, Var and Ver lakes. In a different manner, Fon water 238 

exhibits rather less toxic cyanopeptides (Janssen 2019), such as microginins and aeruginosins 239 



(Fig. 3C). Taken together, these observations suggest that the proliferation and the 240 

subsequent production of such potentially noxious cyanobacterial metabolites could be also 241 

considered as an explicative factor of the local metabolome singularity for the liver of Perca 242 

and Lepomis from Tri, Var and Ver lakes, as previously postulated (Sotton et al., 2019). 243 

 244 

3.3. Discriminating metabolites between the different lake groups 245 

Thus, we further investigate the fish metabolome distinctions considering together fishes 246 

from lakes presenting noxious cyanobacterial metabolites (“Tri/Var/Ver” group for Perca and 247 

“Tri/Ver” group for Lepomis), or not (“Cer/Mau/Cha/Fon/Rue” group). For this purpose, we 248 

used PLS-DA to identify metabolites that discriminate the individuals belonging to these two 249 

lake groups (Figure 4). Indeed, while unsupervised PCA were first used to evaluate the global 250 

dispersion between species and sampling groups, a supervised model such as partial least 251 

square differential analysis (PLS-DA) allows to maximize the separation between the 252 

different sample classes (e.g. “lake groups”) and to further provide information on 253 

discriminating features (variable importance on projection - VIP). For both fish species, the 254 

metabolomes present a consistent discriminant analysis scoring (Perca: accuracy = 1, 255 

performance R2 = 0.78, predictability Q2 = 0.72; Lepomis: accuracy = 0.93, R2 = 0.59, Q2 = 256 

0.29) and large sets of discriminating variables (Perca VIP>1.5=109 and Lepomis VIP>1.5=93) 257 

(Figure 4A-B). Among these metabolites, 33 components have been successfully annotated 258 

considering their respective molecular mass, the isotopic pattern, together with the 259 

fragmentation pattern of all components with GNPS and MetGem algorithms and a manual 260 

curation. Overall, the metabolite semi-quantification of the annotated best VIP reveals 261 

largely similar variations between Perca and Lepomis for these two groups of lakes (Figure 262 

4C; Supp. fig. S3). Indeed, except for the reduced-glutathione, which present higher 263 

concentrations in the livers of Perca from “Tri/Var/Ver” lakes, when livers of Lepomis 264 

exhibits lower concentrations than in the those of fish of the “Cer/Mau/Cha/Fon/Rue” 265 

group, all other metabolites present similar quantification patterns between the two 266 

species. This discrepancy suggests that glutathione-dependent redox mechanisms could be 267 

more extensive in Perca than in Lepomis livers. 268 

Globally, the main differences in the different metabolite concentration between these two 269 

lake groups show that fishes collected from the “Cer/Mau/Cha/Fon/Rue” present higher 270 

energetic, anti-oxidant/detoxification and lipids reserves (e.g. various nucleic acids, 271 

glutathiones, flavonoids and lipo-phosphocholines) than in “Tri/Var/Ver” lakes. In addition, 272 

higher amounts of amino acids, di-peptides and acylcarnitines in the liver of fish originating 273 

from the “Tri/Var/Ver” lakes could be related to higher protein catabolism and beta-274 

oxidation, that could denote of higher energetic requirements for those specific organisms. 275 

Interestingly, the “Tri/Var/Ver” lakes present much more cyanobacteria and related noxious 276 

metabolites, that may represent a patent stress source for fishes colonizing those 277 

environments. Taken together, these observations are in agreement to the hypothesis of an 278 

occurrence of higher stress conditions locally occurring in the Tri, Var and Ver lakes, that 279 

could be associated with the local production of potentially noxious metabolites by 280 



cyanobacterial proliferation (Sotton et al., 2017a, 2017b; Le Manach et al., 2018). 281 

 282 

In general, various genetic or phenotypic factors (such as development stages, 283 

contamination levels, predator/parasite pressures, food availability, …) could influence and 284 

explain the local discrepancy of the metabolome of fishes collected from different 285 

environments (reviewed in Marie 2020). However, in the present case, the fact that Perca 286 

and Lepomis metabolomes analyzed in parallel present similar metabolite variations clearly 287 

indicates that local environmental constraints may drive such phenotypic co-variations. 288 

Then, these present results claim for the high informativeness of LC-MS-based metabolomic 289 

imprints for molecular phenotyping on sentinel species and the exploration of 290 

environmental stresses (Lohr et al., 2019). 291 

 292 

3.4. Comparison of 1H NMR and LC-MS metabolomics for fish livers 293 

Considering the previous 1H NMR metabolomics datasets retrieved from the same samples 294 

on these two fish species (Sotton et al., 2019), the liver metabolome analyzed by NMR 295 

shows more limited specificity according to “species” or “lakes” factor than those analyzed 296 

by LC-MS. Although the 222 potential metabolites quantified by NMR on 132 fish (78 Perca 297 

and 54 Lepomis) present no obvious structuration of the individual dataset according to 298 

“species” or “lakes” variables, when observed on PCA or hierarchical classification, slight but 299 

significant relations are however supported by PERMANOVA (F-values = 4.15 and 3.63; R2 = 300 

0.03 and 0.17; P-values < 0.01 and 0.01, for “species” and “lakes” respectively, Supp. fig. S4). 301 

Indeed, according to the relatively lower performances of the hierarchical classifications and 302 

PERMANOVA and the PLS-DA (Supp. fig. S4 and S5), the NMR liver metabolomes exhibit a 303 

limited discrimination on “lakes” for both species, when compared to LC-MS metabolomics 304 

performances.  305 

Overall, regarding both hierarchical classification, individual plots of PCA or PERMANOVA 306 

performances, the dataset obtained from the LC-MS metabolome analysis presents a clearer 307 

discriminant pattern between the two species or the 8 lakes, than the NMR dataset 308 

generated on the same samples (with the same extraction procedure) (Fig. 1 and 2; Supp. 309 

fig. S4 and S5). This observation is further confirmed by direct comparison of the NMR and 310 

LC-MS metabolome dataset using MixOmics Diablo tool for multi-block PLS-DA (Supp. fig. S6 311 

and S7). Indeed, although the two datasets appear mostly congruent, the individual plot 312 

distribution carries much more variance on the PLS-DA projection for the LC-MS analysis 313 

than for the NMR, considering both fish species.  314 

 315 

On one side, the 1H NMR metabolomics allows the reliable quantification of main liver 316 

metabolites (belonging principally to amino acids, sugars, TCA metabolites, …), by detecting 317 

characteristic chemical groups, with regards to their respective position within the 318 

molecules (Martin et al., 2015). These primary metabolites are key contributors to the 319 

cellular metabolism and are supposed to be responsive to variable physiological conditions 320 

of fish encountering peculiar biological outcomes and/or environmental constraints (Roques 321 



et al., 2020). However, this approach remains focused on few principal metabolites involved 322 

in main cellular pathways which measured cellular contents (expressed in ppm) can be 323 

globally involved in multiple regulation processes, and not being specific of subtle molecular 324 

regulation processes. On the other hand, 1H NMR presents only low sensitivity and an overall 325 

limited discrimination capability for molecules presenting similar chemical structures, such 326 

as lipids, that exhibits an aggregated and unspecific signal on NMR spectra (Emwas et al., 327 

2019). For this reason, it is supposed to present lower discriminating power than more 328 

selective and less qualitative, but more sensitive, high-resolution mass spectrometry-based 329 

metabolomics approaches.  330 

On the other side, although LC-MS-based metabolomic remains a largely selective analytical 331 

approach (according to both LC separation and ionisation respective properties of each 332 

molecule), it presents un-precedent analytical capabilities in terms of sensitivity, dynamic 333 

range and number of characterized components and offer now unprecedented perspectives 334 

for the investigation for molecular phenotyping applied to environmental sciences (Beyoglu 335 

and Idle, 2020). We assume, that a single LC-MS fingerprint analyse does not embed the 336 

whole metabolite picture of the biological compartment (the fish liver, in the present case), 337 

especially because of its selectivity performances (Gika et al., 2019). Indeed, this noticeable 338 

selectivity can have multifactorial origin along the analytical procedures and be related to 339 

both the extraction solvent, the selected chromatographic gradient and column, together 340 

with the ionisation principle and mode. However, it provided specific and precise 341 

measurements of a large number of components that can endorse high-throughput and in-342 

depth phenotyping. For comparison, 1H NMR metabolomics allow the global quantification 343 

of the CH2-CH2 or CH2-CH=CH fatty acid bounds (Marchand et al., 2018), when LC-MS 344 

metabolomics can discriminate and characterize hundreds of different lipids belonging to 345 

various sub-classes (Dreier et al., 2020), providing undoubtedly more informative and 346 

discriminant features. For these reasons, recent efforts are still been performed in order to 347 

compared the inputs of both NMR- and LC-MS-based metabolomics in order to explore the 348 

respective advantages and caveats of both approaches for environmental investigations 349 

(Ameline et al., 2019; Hayden et al., 2019; Labine et al., 2020). In addition, multi-omics 350 

integration tools, such as MixOmics DIABLO (Singh et al., 2019), also provides innovative 351 

solutions for the comparison of heterogeneous dataset joint matrices obtained from a single 352 

set of samples or individuals (supplementary figures S6-S7). 353 

However, the robustness and the repeatability of the operational analytical pipeline 354 

constitute key requirements of first order for environmental metabolomics, as recently 355 

experienced by clinic development of environmental toxicology (Silva et al., 2020). 356 

Nowadays, it also appears even more crucial to carefully take into account the socio-357 

economic and the environmental costs when considering the development of different 358 

pipelines for operational and sustainable metabolomic applications (Jones et al., 2013). 359 

 360 

 361 

3.5. Use of LC-MS metabolomics fingerprint for environmental assessment? 362 



Although the value of LC-MS metabolomics for investigating the impacts of environmental 363 

stressors or contaminants, and their respective mode of action has been well-explored in 364 

medical sciences (Beyoğlu et al., 2020; Zhang et al., 2020) or in ecotoxicology laboratory-365 

based studies on aquatic models (Le Manach et al., 2018; Huang et al., 2017; Ekman et al., 366 

2015; Gil-Solsona et al., 2017), such methods have been used only faintly in field research so 367 

far (Bundy et al., 2009; Lankadurai et al., 2013). Apart from a limited number of evidence of 368 

the utility of NMR-based metabolomics in environmental fish studies (Capello et al., 2016; 369 

Sotton et al., 2019; Wei et al., 2018), few other examples indicate that field-based LC-MS 370 

metabolomics constitutes an emerging and powerful, but still underused, approach for 371 

increasing our understanding of in situ biological, physiological, ecological or ecotoxicological 372 

processes (Meador et al., 2020; Reverter et al., 2017; Goode et al., 2020). 373 

So far, aquatic ecotoxicology has been widely using fishes as reference models to investigate 374 

both physical or chemical contaminants (Li et al., 2021; Mallik et al., 2021), and their 375 

deleterious effects on diverse biological mechanisms including their behaviour (Almroth et 376 

al., 2021) or specific enzymatic activities (Villeneuve et al., 2021), on short or longer terms 377 

(Thoré et al., 2021). Among the large list of the characters of interest on which 378 

ecotoxicological studies aim at being dedicated, the metabolome appears as one of the main 379 

promising functional traits (Martynuik et al., 2016). Indeed, metabolomics seem to present 380 

many key advantages for environmental studies, such as its immediate connexion with the 381 

global physiology of the organisms (Rosato et al., 2018), its pertinence for all model or non-382 

model organisms (Hillyer et al., 2022; Reverter et al., 2017), the multi-variable character of 383 

the dataset and its statistical strength (Chu et al., 2019; Mendez et al., 2019), and its 384 

appliance for non-lethal and minimal-stress approaches (Colette et al., 2016). However, 385 

applying metabolomics to ecotoxicological questions is still currently limited by a lack of 386 

conceptual, technical and data frameworks, which require to be tailored to reach its full 387 

potential for applied environmental purposes (Walker et al., 2022). 388 

 389 

Our analysis constitutes one of the first attempts to push forward the potential of high-390 

throughput molecular phenotyping, and especially through LC-MS-based metabolomics, for 391 

environmental assessment. Indeed, this organism molecular phenotyping supported by 392 

multi-variable chemometric investigation offers rich biological information that serves at 393 

describing specific phenotypic plasticity. Moreover, this molecular variability/responsiveness 394 

can further be confronted to local environmental factors (such as noxious cyanobacterial 395 

metabolites in the present case) in order to demonstrate correlation or causality 396 

relationships. 397 

 398 

As described by Pompfret and co-workers (2019), environmental metabolomics exhibit very 399 

promising perspectives for operational bio-monitoring applications, according to its 400 

reliability, its reproducibility, and its high predictive potential. However, these authors also 401 

point out that the responsiveness and robustness of the bio-indicative object, which is 402 

characterized through the analytical prism of the metabolomics, remains crucial and have to 403 



be carefully evaluated and tested with an appropriate experimental design (Pompfret et al., 404 

2019). However, for ethical concerns, fish bio-monitoring would also gain at been less 405 

invasive and deleterious for the organisms. To this end, non-lethal mucus sampling has been 406 

investigated by LC-MS and have demonstrated the remarkable informativeness of this 407 

approach for environmental studies (Reverter et al. 2017), but these efforts still remain 408 

explorative and require additional investigations. 409 

 410 

 411 

4. Conclusions 412 

The main challenge facing us remains to be able to develop more integrative approaches to 413 

connect chemical, biological and ecological assessment, in the context of anthropized 414 

natural environments confronting multi-stressor pressures. A major caveat of the use of fish 415 

environmental bio-indication by metabolomics remains maybe the lack of standardized 416 

methodology and, overall, of dedicated databases (Viant et al., 2019) fulfilled by studies 417 

considering together different species, populations, development stages, seasons and 418 

environments. These data could be used to provide baseline reference values that would 419 

further support machine learning or artificial neural network tools for the training of 420 

decision-making models (Mendez et al., 2019). 421 

 422 

 423 

Author contributions 424 

B.M. designed experiment, and performed sample analysis. B.M. and A.G. analysed data. 425 

B.M. wrote the manuscript. All authors have given approval to the final version of the 426 

manuscript. 427 

 428 

Notes 429 

The authors declare not conflict of interest 430 

 431 

ACKNOWLEDGMENTS 432 

We would like to thanks B. Sotton for his collaboration on NMR data acquisition and 433 

treatment. We are also greatful to A. Paris for its support and prolific discussions. This work 434 

was supported by grants from CNRS (Défi ENVIROMICS “Toxcyfish” project). The NMR and 435 

the MS spectra were respectively acquired at the Plateau technique de Résonance 436 

Magnétique Nucleaire and the Plateau technique de spectrométrie de masse bio-organique, 437 

Muséum National d’Histoire Naturelle, Paris, France. This work benefitted from the French 438 

GDR "Aquatic Ecotoxicology" framework which aims at fostering stimulating scientific 439 

discussions and collaborations for more integrative approaches. 440 

 441 

 442 

REFERENCES 443 



Almroth, B. C., Cartine, J., Jönander, C., Karlsson, M., Langlois, J., Lindström, M., ... & Sturve, 444 

J. (2021). Assessing the effects of textile leachates in fish using multiple testing 445 

methods: From gene expression to behavior. Ecotoxicology and Environmental 446 

Safety, 207, 111523. 447 

Amado, L., Monserrat, J., 2010. Oxidative stress generation by microcystins in aquatic 448 

animals: Why and how. Environment International 36, 226–235. 449 

Ameline, A., Garnier, D., Gheddar, L., Richeval, C., Gaulier, J. M., Raul, J. S., & Kintz, P. (2019). 450 

Identification and analytical characterization of seven NPS, by combination of 1H 451 

NMR spectroscopy, GC–MS and UPLC–MS/MS®, to resolve a complex toxicological 452 

fatal case. Forensic science international, 298, 140-148. 453 

Bahamonde, P. A.; Feswick, A.; Isaacs, M. A.; Munkittrick, K. R.; Martyniuk, C. J. (2016) 454 

Defining the role of omics in assessing ecosystem health: Perspectives from the 455 

Canadian environmental monitoring program. Environmental toxicology and 456 

chemistry 35(1), 20-35. 457 

Beyoğlu, D.; Idle, J. R. (2020). Metabolomic and lipidomic biomarkers for premalignant liver 458 

disease diagnosis and therapy. Metabolites 10(2), 50. 459 

Brusle, J., & i Anadon, G. G. (2017). The structure and function of fish liver. In Fish 460 

morphology (pp. 77-93). Routledge. 461 

Bundy, J. G.; Davey, M. P.; Viant, M. R. (2009) Environmental metabolomics: a critical review 462 

and future perspectives. Metabolomics 5(1), 3. 463 

Burford, M. A., Carey, C. C., Hamilton, D. P., Huisman, J., Paerl, H. W., Wood, S. A., & Wulff, 464 

A. (2020) Perspective: Advancing the research agenda for improving understanding of 465 

cyanobacteria in a future of global change. Harmful Algae, 91, 101601. 466 

Cappello, T.; Brandão, F.; Guilherme, S.; Santos, M. A.; Maisano, M.; Mauceri, A.; … Pereira, 467 

P. (2016) Insights into the mechanisms underlying mercury-induced oxidative stress 468 

in gills of wild fish (Liza aurata) combining 1H NMR metabolomics and conventional 469 

biochemical assays. Science of the Total Environment 548, 13-24. 470 

Chong, J.; Wishart, D. S.; Xia, J. (2019) Using metaboanalyst 4.0 for comprehensive and 471 

integrative metabolomics data analysis. Current protocols in bioinformatics 68(1):e86. 472 

Chong, J.; Liu, P.; Zhou, G.; Xia, J. (2020) Using MicrobiomeAnalyst for comprehensive 473 

statistical, functional, and meta-analysis of microbiome data. Nature Protocols 15, 474 

799-821. 475 

Chu, S. H., Huang, M., Kelly, R. S., Benedetti, E., Siddiqui, J. K., Zeleznik, O. A., ... & 476 

Consortium of Metabolomics Studies Statistics Working Group. (2019). Integration of 477 

metabolomic and other omics data in population-based study designs: An 478 

epidemiological perspective. Metabolites, 9(6), 117. 479 

Collette, T. W., Skelton, D. M., Davis, J. M., Cavallin, J. E., Jensen, K. M., Kahl, M. D., ... & 480 

Ekman, D. R. (2016). Metabolite profiles of repeatedly sampled urine from male 481 

fathead minnows (Pimephales promelas) contain unique lipid signatures following 482 

exposure to anti-androgens. Comparative Biochemistry and Physiology Part D: 483 

Genomics and Proteomics, 19, 190-198. 484 



Cordier T., Alonso‐Sáez L., Apothéloz‐Perret‐Gentil L., Aylagas E.; Bohan D. A., Bouchez A.;,... 485 

Keeley, N. (2021) Ecosystems monitoring powered by environmental genomics: a 486 

review of current strategies with an implementation roadmap. Molecular Ecology 30, 487 

2937-58. 488 

da Silva, R. R.; Dorrestein, P. C.; Quinn, R. A. (2015) Illuminating the dark matter in 489 

metabolomics. Proceedings of the National Academy of Sciences 112(41), 12549-490 

12550. 491 

Davis, J. M., Ekman, D. R., Teng, Q., Ankley, G. T., Berninger, J. P., Cavallin, J. E., ... & Collette, 492 

T. W. (2016). Linking field‐based metabolomics and chemical analyses to prioritize 493 

contaminants of emerging concern in the Great Lakes basin. Environmental 494 

toxicology and chemistry, 35(10), 2493-2502. 495 

De Marco, G., Brandão, F., Pereira, P., Pacheco, M., & Cappello, T. (2022). Organ-Specific 496 

Metabolome Deciphering Cell Pathways to Cope with Mercury in Wild Fish (Golden 497 

Grey Mullet Chelon auratus). Animals, 12(1), 79. 498 

Dreier, D. A.; Bowden, J. A.; Aristizabal-Henao, J. J.; Denslow, N. D.; Martyniuk, C. J. (2020) 499 

Ecotoxico-lipidomics: An emerging concept to understand chemical-metabolic 500 

relationships in comparative fish models. Comparative Biochemistry and Physiology 501 

Part D: Genomics and Proteomics 36, 100742. 502 

Ekman, D. R.; Skelton, D. M.; Davis, J. M.; Villeneuve, D. L.; Cavallin, J. E.; Schroeder, A.; ... 503 

Collette, T. W. (2015) Metabolite profiling of fish skin mucus: a novel approach for 504 

minimally-invasive environmental exposure monitoring and surveillance. 505 

Environmental Science & Technology 49(5), 3091-3100. 506 

Emwas, A. H.; Roy, R.; McKay, R. T.; Tenori, L.; Saccenti, E.; Gowda, G. A.; ... Wishart, D. S. 507 

(2019) NMR spectroscopy for metabolomics research. Metabolites 9(7), 123. 508 

Ferrão-Filho, A. da S., Kozlowsky-Suzuki, B., 2011. Cyanotoxins: bioaccumulation and effects 509 

on aquatic animals. Marine drugs 9(12), 2729–2772. 510 

Gika, H.; Virgiliou, C.; Theodoridis, G.; Plumb, R. S.; Wilson, I. D. (2019) Untargeted LC/MS-511 

based metabolic phenotyping (metabonomics/metabolomics): The state of the art. 512 

Journal of Chromatography B 1117, 136-147. 513 

Gil-Solsona, R., Nácher-Mestre, J., Lacalle-Bergeron, L., Sancho, J. V., Calduch-Giner, J. A., 514 

Hernández, F., & Pérez-Sánchez, J. (2017) Untargeted metabolomics approach for 515 

unraveling robust biomarkers of nutritional status in fasted gilthead sea bream 516 

(Sparus aurata). PeerJ 5, e2920. 517 

Goode, K. L.; Dunphy, B. J.; Parsons, D. M. (2020) Environmental metabolomics as an 518 

ecological indicator: Metabolite profiles in juvenile fish discriminate sites with 519 

different nursery habitat qualities. Ecological Indicators 115, 106361. 520 

Hamilton, P.; Cowx, I.; et al.; Tyler, C. R. (2016) Population‐level consequences for wild fish 521 

exposed to sublethal concentrations of chemicals–a critical review. Fish and Fisheries 522 

17(3), 545-566. 523 

Hao, J.; Liebeke, M.; Astle, W.; De Iorio, M.; Bundy, J. G.; Ebbels, T. M. D. (2014) Bayesian 524 

deconvolution and quantification of metabolites in complex 1D NMR spectra using 525 



BATMAN. Nature protocols 9(6), 1416–1427. 526 

Harke, M. J., Steffen, M. M., Gobler, C. J., Otten, T. G., Wilhelm, S. W., Wood, S. A., & Paerl, 527 

H. W. (2016). A review of the global ecology, genomics, and biogeography of the toxic 528 

cyanobacterium, Microcystis spp. Harmful algae, 54, 4-20. 529 

Harris, J. H. (1995) The use of fish in ecological assessments. Australian Journal of Ecology 530 

20(1), 65-80. 531 

Hayden, H. L., Rochfort, S. J., Ezernieks, V., Savin, K. W., & Mele, P. M. (2019). Metabolomics 532 

approaches for the discrimination of disease suppressive soils for Rhizoctonia solani 533 

AG8 in cereal crops using 1H NMR and LC-MS. Science of the Total Environment, 651, 534 

1627-1638. 535 

Hillyer, K. E., Raes, E., Karsh, K., Holmes, B., Bissett, A., & Beale, D. J. (2022). Metabolomics as 536 

a tool for in situ study of chronic metal exposure in estuarine invertebrates. 537 

Environmental Pollution, 292, 118408. 538 

Huang, S. S.; Benskin, J. P.; Veldhoen, N.; Chandramouli, B.; Butler, H.; Helbing, C. C.; 539 

Cosgrove, J. R. (2017) A multi-omic approach to elucidate low-dose effects of 540 

xenobiotics in zebrafish (Danio rerio) larvae. Aquatic toxicology 182, 102-112. 541 

Janssen, E. M. L. (2019) Cyanobacterial peptides beyond microcystins–A review on co-542 

occurrence, toxicity, and challenges for risk assessment. Water Research, 151, 488-543 

499. 544 

Jeffries, K. M., Jackson, L. J., Ikonomou, M. G., & Habibi, H. R. (2010). Presence of natural and 545 

anthropogenic organic contaminants and potential fish health impacts along two 546 

river gradients in Alberta, Canada. Environmental Toxicology and Chemistry, 29(10), 547 

2379-2387. 548 

Jones, O. A., Maguire, M. L., Griffin, J. L., Dias, D. A., Spurgeon, D. J., & Svendsen, C. (2013). 549 

Metabolomics and its use in ecology. Austral Ecology, 38(6), 713-720. 550 

Jones, M. R., Pinto, E., Torres, M. A., Dörr, F., Mazur-Marzec, H., Szubert, K., ... & Janssen, E. 551 

M. L. (2021). CyanoMetDB, a comprehensive public database of secondary 552 

metabolites from cyanobacteria. Water Research, 196, 117017. 553 

Jousse, C., Dalle, C., Abila, A., Traïkia, M., Diogon, M., Lyan, B., ... & Delbac, F. (2020). A 554 

combined LC-MS and NMR approach to reveal metabolic changes in the hemolymph 555 

of honeybees infected by the gut parasite Nosema ceranae. Journal of Invertebrate 556 

Pathology, 176, 107478. 557 

Kim Tiam, S.; Gugger, M.; Demay, J.; Le Manach, S.; Duval, C.; Bernard, C.; Marie, B. (2019) 558 

Insights into the Diversity of Secondary Metabolites of Planktothrix Using a Biphasic 559 

Approach Combining Global Genomics and Metabolomics. Toxins 11(9), 498. 560 

Labine, L. M., & Simpson, M. J. (2020). The use of nuclear magnetic resonance (NMR) and 561 

mass spectrometry (MS)–based metabolomics in environmental exposure 562 

assessment. Current Opinion in Environmental Science & Health, 15, 7-15. 563 

Lankadurai, B. P.; Nagato, E. G.; Simpson, M. J. (2013) Environmental metabolomics: an 564 

emerging approach to study organism responses to environmental stressors. 565 

Environmental Reviews 21(3), 180-205. 566 



Le Manach, S.; Sotton, B.; Huet, H.; Duval, C.; Paris, A.; Marie, A.; ... ; Marie, B. (2018) 567 

Physiological effects caused by microcystin-producing and non-microcystin producing 568 

Microcystis aeruginosa on medaka fish: A proteomic and metabolomic study on liver. 569 

Environmental pollution 234, 523-537. 570 

Le Manach, S., Duval, C., Marie, A., Djediat, C., Catherine, A., Edery, M., ... & Marie, B. (2019) 571 

Global metabolomic characterizations of Microcystis spp. highlights clonal diversity in 572 

natural bloom-forming populations and expands metabolite structural diversity. 573 

Frontiers in microbiology, 10, 791. 574 

Li, H., Jing, T., Li, T., Huang, X., Gao, Y., Zhu, J., ... & Mu, W. (2021). Ecotoxicological effects of 575 

pyraclostrobin on tilapia (Oreochromis niloticus) via various exposure routes. 576 

Environmental Pollution, 285, 117188. 577 

Lohr, K. E.; Khattri, R. B.; Guingab-Cagmat, J.; Camp, E. F.; Merritt, M. E.; Garrett, T. J., 578 

Patterson, J. T. (2019) Metabolomic profiles differ among unique genotypes of a 579 

threatened Caribbean coral. Scientific reports 9(1), 1-11. 580 

Lorenz, C. M. (2003) Bioindicators for ecosystem management, with special reference to 581 

freshwater systems. In Trace Metals and other Contaminants in the Environment (Vol. 582 

6, pp. 123-152). Elsevier. 583 

Mallik, A., Xavier, K. M., Naidu, B. C., & Nayak, B. B. (2021). Ecotoxicological and 584 

physiological risks of microplastics on fish and their possible mitigation measures. 585 

Science of The Total Environment, 779, 146433. 586 

Maloufi, S.; Catherine, A.; Mouillot, D.; Louvard, C.; Couté, A.; Bernard, C.; Troussellier, M. 587 

(2017) Environmental heterogeneity among lakes promotes hyper β‐diversity across 588 

phytoplankton communities. Freshwater Biology, 61(5), 633-645. 589 

Marchand, J.; Martineau, E.; Guitton, Y.; Le Bizec, B.; Dervilly-Pinel, G.; Giraudeau, P. A 590 

(2018) multidimensional 1H NMR lipidomics workflow to address chemical food 591 

safety issues. Metabolomics 14(5), 60. 592 

Marie, B. (2020) Disentangling of the ecotoxicological signal using “omics” analyses, a lesson 593 

from the survey of the impact of cyanobacterial proliferations on fishes. Science of 594 

The Total Environment 736, 139701. 595 

Marjan, P., Bragg, L. M., MacLatchy, D. L., Servos, M. R., & Martyniuk, C. J. (2017). How does 596 

reference site selection influence interpretation of omics data?: Evaluating liver 597 

transcriptome responses in male rainbow darter (Etheostoma caeruleum) across an 598 

urban environment. Environmental science & technology, 51(11), 6470-6479. 599 

Martin, J. C.; Maillot, M.; Mazerolles, G.; Verdu, A.; Lyan, B.; Migne, C.; ... ; Manach, C. (2015) 600 

Can we trust untargeted metabolomics? Results of the metabo-ring initiative, a large-601 

scale, multi-instrument inter-laboratory study. Metabolomics 11(4), 807-821. 602 

Martyniuk, C. J., & Simmons, D. B. (2016). Spotlight on environmental omics and toxicology: 603 

a long way in a short time. Comparative Biochemistry and Physiology Part D: 604 

Genomics and Proteomics, 19, 97-101. 605 

McClanahan, T. R.; Schroeder, R. E.; Friedlander, A. M.; Vigliola, L.; Wantiez, L.; Caselle, J. E.; 606 

...; Oddenyo, R. M. (2019) Global baselines and benchmarks for fish biomass: 607 



comparing remote reefs and fisheries closures. Marine Ecology Progress Series, 612, 608 

167-192. 609 

Meador, J. P.; Bettcher, L. F.; Ellenberger, M. C.; Senn, T. D. (2020) Metabolomic profiling for 610 

juvenile Chinook salmon exposed to contaminants of emerging concern. Science of 611 

The Total Environment 747, 141097. 612 

Melvin, S. D., Lanctôt, C. M., Doriean, N. J., Bennett, W. W., & Carroll, A. R. (2019). NMR-613 

based lipidomics of fish from a metal (loid) contaminated wetland show differences 614 

consistent with effects on cellular membranes and energy storage. Science of the 615 

Total Environment, 654, 284-291. 616 

Mendez, K. M., Reinke, S. N., & Broadhurst, D. I. (2019). A comparative evaluation of the 617 

generalised predictive ability of eight machine learning algorithms across ten clinical 618 

metabolomics data sets for binary classification. Metabolomics, 15(12), 1-15. 619 

Nothias, LF., Petras, D., Schmid, R. et al. (2020) Feature-based molecular networking in the 620 

GNPS analysis environment. Nat Methods 17, 905–908. 621 

Pomfret, S. M.; Brua, R. B.; Izral, N. M.; Yates, A. G. (2020) Metabolomics for biomonitoring: 622 

an evaluation of the metabolome as an indicator of aquatic ecosystem health. 623 

Environmental Reviews, 28(1), 89-98. 624 

Reverter, M.; Sasal, P.; Banaigs, B.; Lecchini, D.; Lecellier, G.; Tapissier-Bontemps, N. (2017) 625 

Fish mucus metabolome reveals fish life-history traits. Coral Reefs 36(2), 463-475. 626 

Rohart, F.; Gautier, B.; Singh, A.; Lê Cao, K. A. (2017) mixOmics: An R package for ‘omics 627 

feature selection and multiple data integration. PLoS computational biology 13(11), 628 

e1005752. 629 

Roques, S.; Deborde, C.; Richard, N., Marchand; Y., Larroquet, L.; Prigent, S.; ...; Fauconneau, 630 

B. (2020) Proton-NMR Metabolomics of Rainbow Trout Fed a Plant-Based Diet 631 

Supplemented with Graded Levels of a Protein-Rich Yeast Fraction Reveal Several 632 

Metabolic Processes Involved in Growth.  J. Nutrition 150(9), 2268-2277. 633 

Rosato, A., Tenori, L., Cascante, M., Carulla, P. R. D. A., Dos Santos, V. A. M., & Saccenti, E. 634 

(2018). From correlation to causation: analysis of metabolomics data using systems 635 

biology approaches. Metabolomics, 14(4), 1-20. 636 

Sardans, J., Peguelas, J., Rivas-Ubach, A., 2011 Ecological metabolomics: Overview of current 637 

developments and future challenges. Chemoecology 21(4), 191–225. 638 

Silva, R. A., Pereira, T. C., Souza, A. R., & Ribeiro, P. R. (2020). 1H NMR-based metabolite 639 

profiling for biomarker identification. Clinica Chimica Acta, 502, 269-279. 640 

Simmons, D. B., Benskin, J. P., Cosgrove, J. R., Duncker, B. P., Ekman, D. R., Martyniuk, C. J., & 641 

Sherry, J. P. (2015). Omics for aquatic ecotoxicology: Control of extraneous variability 642 

to enhance the analysis of environmental effects. Environmental toxicology and 643 

chemistry, 34(8), 1693-1704. 644 

Singh, A.; Shannon, C. P.; Gautier, B.; Rohart, F.; Vacher, M.; Tebbutt, S. J.; Lê Cao, K. A. 645 

(2019) DIABLO: an integrative approach for identifying key molecular drivers from 646 

multi-omics assays. Bioinformatics 35(17), 3055-3062. 647 



Sotton, B., Paris, A., Le Manach, S., Blond, A., Lacroix, G., Millot, A., ... & Marie, B. (2017a) 648 

Metabolic changes in Medaka fish induced by cyanobacterial exposures in 649 

mesocosms: an integrative approach combining proteomic and metabolomic 650 

analyses. Scientific reports, 7(1), 1-13. 651 

Sotton, B., Paris, A., Le Manach, S., Blond, A., Lacroix, G., Millot, A., ... & Marie, B. (2017b) 652 

Global metabolome changes induced by cyanobacterial blooms in three 653 

representative fish species. Science of the Total Environment, 590, 333-342. 654 

Sotton, B.; Paris, A.; Le Manach, S.; Blond, A.; Duval, C.; Qiao, Q.; ...; Marie, B. (2019) 655 

Specificity of the metabolic signatures of fish from cyanobacteria rich lakes. 656 

Chemosphere 226, 183-191. 657 

Thoré, E. S., Philippe, C., Brendonck, L., & Pinceel, T. (2021). Towards improved fish tests in 658 

ecotoxicology-efficient chronic and multi-generational testing with the killifish 659 

Nothobranchius furzeri. Chemosphere, 129697. 660 

Viant, M. R.; Ebbels, T. M.; Beger, R. D.; Ekman, D. R.; Epps, D. J.; Kamp, H.; ...; Rocca-Serra, 661 

P. (2019) Use cases, best practice and reporting standards for metabolomics in 662 

regulatory toxicology. Nature communications 10(1), 1-10. 663 

Villeneuve, D. L., Blackwell, B. R., Cavallin, J. E., Cheng, W. Y., Feifarek, D. J., Jensen, K. M., ... 664 

& Ankley, G. T. (2021). Case Study in 21st Century Ecotoxicology: Using In Vitro 665 

Aromatase Inhibition Data to Predict Short‐Term In Vivo Responses in Adult Female 666 

Fish. Environmental Toxicology and Chemistry, 40(4), 1155-1170. 667 

Walker, T. W., Alexander, J. M., Allard, P. M., Baines, O., Baldy, V., Bardgett, R. D., ... & 668 

Salguero‐Gómez, R. (2022). Functional Traits 2.0: The power of the metabolome for 669 

ecology. Journal of Ecology, 110(1), 4-20. 670 

Wei, F.; Sakata, K.; Asakura, T.; Date, Y.; Kikuchi, J. (2018) Systemic homeostasis in 671 

metabolome, ionome, and microbiome of wild yellowfin goby in estuarine 672 

ecosystem. Scientific reports 8(1), 1-12. 673 

Zhang, X. W.; Li, Q. H.; Dou, J. J. (2020) Mass spectrometry-based metabolomics in health 674 

and medical science: a systematic review. RSC Advances 10(6), 3092-3104.  675 



Legends of figures 676 

 677 

Figure 1. Visualization of the dataset structuration for LC-MS metabolomics (comprising 132 678 

fish and 1252 analytes) on PCA (A) and heatmap with hierarchical clustering (B) for Perca 679 

(n=78) and Lepomis (n=54) fish collected during the 7-10th of September 2015 within 8 680 

pounds of the peri-urban Paris’ area. 681 

 682 

Figure 2. Individual plot of PCA (A and C) and heatmap with hierarchical classification (B and 683 

D) of LC-MS liver metabolomes of Perca (n=78; A-B) and Lepomis (n=54; C-D) collected 684 

during the 7-10th of September 2015 within 8 pounds of the peri-urban Paris’ area. 685 

 686 

Figure 3. Phytoplankton composition estimated by BBE measurment of the 8 lake sub-687 

surface water (A), corresponding cyanobacteria relative composition for Fon, Tri, Var and 688 

Ver (B), and molecular networking of metabolites extracted from the filtered biomass of the 689 

respective water of the 8 lakes generated with t-SNE algorithm, with cyanobacteria peptide 690 

clusters indicated in bold and potentially more noxious family clusters (microcystin, 691 

cyanopeptolmin and anabaenopeptin) indicated in red (C). 692 

 693 

Figure 4. Individual plots of PLS-DA, testing the difference between the different lake groups 694 

presenting, or not, high content of potentially noxious cyanobactérial metabolites 695 

(Cha/Cer/Fon/Mau/Rue and Tri/Var/Ver, respectively) according to the LC-MS metabolomes of Perca 696 

(A) and Lepomis (B), and corresponding list of annotated best VIP list (metabolite score > 1.5) of 697 

Perca and Lepomis metabolomes (C). Accuracy, predictability and quality performances and number 698 

of VIP metabolite score > 1.5) for sampling lake discrimination are indicated for each species. Dots 699 

between brackets indicate when the metabolite concentration is more important in the 700 

Cha/Cer/Fon/Mau/Rue (green) or Tri/Var/Ver (red) lake group. * indicates that this metabolite was 701 

also observed as being negatively correlated with cyanobacteria occurrence within the different lake 702 

according to NMR analysis (Sotton et al., 2019). 703 
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Figure 4. 712 
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PLS-DA_Perca

PLS-DA_Lepomis

A C

B

MW Annotation Comp. 1_Perca Comp. 1_Lepomis
267.09601 Adenosine 9.33 (●<●) 14.3 (●<●)
347.06212 Adenosine 5’-mono-phosphate 2.02 (●<●) 7.64 (●<●)
307.08355 Glutathione (reduced) 7.49 (●<●) 5.28 (●<●)
335.11488 Trp-Met 5.64 (●<●) 0.17
203.11734 Acetyl-carnitine 5.27 (●<●) 2.25 (●<●)
284.13698 Analog: Isoflavonoid 4.84 (●<●) 1.53 (●<●)
463.07428 Adenylosuccinic acid 4.06 (●<●) 0.07
612.15076 Glutathione (oxidized) 3.82 (●<●) 0.05
245.16244 Valeryl-carnitine* 3.76 (●<●) 1.64 (●<●)
463.07419 Adenylosuccinic acid 3.46 (●<●) 1.99 (●<●)
383.10736 Analog: Cyanidin arabonosine 3.41 (●<●) 0.41
567.33206 Lysophosphatidylcholine 22:6 3.34 (●<●) 1.60 (●<●)
626.16765 Analog: N-acetylglutamic acid 1.51 (●<●) 3.08 (●<●)
181.07481 Tyr 1.55 (●<●) 2.67 (●<●)
250.02948 Analog: N-acetylglutamic acid 2.57 (●<●) 0.03
300.13247 Analog: Hydroxyflavanone 2.50 (●<●) 1.03
559.07138 Adenosine 5'-diphosphoribose 2.49 (●<●) 0.59
404.00264 Uridine 5'-diphosphate 2.40 (●<●) 0.55
135.05505 Adenine 1.77 (●<●) 2.38 (●<●)
607.08199 Uridine-5-diphosphoacetylgalactosamine 2.37 (●<●) 0.14
363.05757 Guanosine 5-monophosphate 2.33 (●<●) 1.59 (●<●)
324.10545 Analog: 6-O-α-D-glucopyranosyl-D-fructose 1.89 (●<●) 2.30 (●<●)
392.16974 Trp-Trp 0.02 2.29 (●<●)
321.06967 Cytidine triphosphate 2.28 (●<●) 0.19
278.15223 Tyr-Pro 2.21 (●<●) 0.02
521.19585 sn-glycero-3-phosphocholine 1.69 (●<●) 2.21 (●<●)
665.12496 1,4-Dihydronicotinamide adenine dinucleotide 1.54 (●<●) 2.16 (●<●)
204.07959 Trp 2.13 (●<●) 0.10
242.06799 Thymidine 2.12 (●<●) 0.36
283.09143 Guanosine 0.44 2.08 (●<●)
429.14971 Analog: Adenosine 5'-monophosphate 1.54 (●<●) 2.06 (●<●)
257.10277 sn-glycero-3-phosphocholine 2.04 (●<●) 0.60
325.37028 N-Oleoylethanolamine 2.03 (●<●) 0.77
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