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The anisotropic fractional Brownian field (AFBF) is a non-stationary Gaussian random field which has been used for the modeling of textured images. In this paper, we address the open issue of estimating the functional parameters of this field, namely the topothesy and Hurst functions. We propose an original method which fits the empirical semi-variogram of an image to the semi-variogram of a turning-band field that approximates the AFBF. Expressing the fitting criterion in terms of a separable non-linear least square criterion, we design a minimization algorithm inspired from the variable projection approach. This algorithm also includes a coarse-to-fine multigrid strategy based on approximations of functional parameters. Compared to existing methods, the new method enables to estimate both functional parameters on their whole definition domain. On simulated textures, we show that it has a low estimation error, even when the parameters are approximated with a high precision. We also apply the method to characterize mammograms and sample images with synthetic parenchymal patterns.

Introduction

The anisotropic fractional Brownian field (AFBF) is a non-stationary Gaussian random field with stationary increments; see [START_REF] Bonami | Anisotropic analysis of some Gaussian models[END_REF] and Section 2 for details. When the field is defined in two dimensions, the finite-dimensional probability distributions of an AFBF Z are completely determined by a semi-variogram of the form

∀ h ∈ R 2 , v 0 (h; τ, β) = 1 2 E (Z(x + h) -Z(x)) 2 , = 1 2 R 2
1 -e i⟨h,w⟩ 2 τ (arg(w))|w| -2β(arg(w))-2 dw.

(1.1)

In this expression, the functions τ and β are the parameters of the AFBF. They are called the topothesy and Hurst functions, respectively. They are non-negative π-periodic functions whose values only depend on the direction arg(w) of w in R 2 . The Hurst function β further ranges in (0, 1). In this paper, we propose an original method to estimate these functional parameters from a single realization of a two dimensional AFBF.

The AFBF has been used for the modeling of image textures [START_REF] Biermé | Analysis of texture anisotropy based on some Gaussian fields with spectral density[END_REF][START_REF] Biermé | Anisotropic texture modeling and applications to medical image analysis, Mathematical Methods for Imaging and Inverse Problems[END_REF][START_REF] Richard | Anisotropy of Hölder Gaussian random field: characterization, estimation and application to image textures[END_REF][START_REF]Some anisotropy indices for the characterization of Brownian textures and their application to breast images[END_REF][START_REF] Richard | Analysis of anisotropic Brownian textures and application to lesion detection in mammograms[END_REF][START_REF]Tests of isotropy for rough textures of trended images[END_REF][START_REF] Richard | Statistical tests of anisotropy for fractional Brownian textures. Application to full-field digital mammography[END_REF]. Figure 1 shows some textures together with the Hurst and topothesy functions of the AFBF they are generated from. On the first column, constant topothesy and Hurst functions are associated to an isotropic texture, i.e. a texture whose properties Figure 1. Textures generated from AFBF. First row: the realization of the AFBF, second and third rows: representations of their Hurst and topothesy functions, respectively. The textures were generated using the PyAFBF package [START_REF] Biermé | A turning-band method for the simulation of anisotropic fractional Brownian field[END_REF][START_REF]PyAFBF: a Python library for sampling image textures from the anisotropic fractional Brownian field[END_REF]. are invariant to any image rotation. By contrast, as observed on other columns, nonconstant topothesy or Hurst functions result in anisotropic textures whose properties vary according to the direction. Let us also notice that the texture anisotropy manifests differently depending on the shape of the topothesy and Hurst functions.

Actually, these two functional parameters are critical to characterize the texture. Such a characterization may serve for the classification of textures. In [START_REF] Richard | Anisotropy of Hölder Gaussian random field: characterization, estimation and application to image textures[END_REF], a feature was derived from the topothesy function to measure a degree of texture anisotropy. This feature was used in conjunction with a measure of texture regularity to classify photographic films with respect to their paper type. In [START_REF]Some anisotropy indices for the characterization of Brownian textures and their application to breast images[END_REF][START_REF] Richard | Analysis of anisotropic Brownian textures and application to lesion detection in mammograms[END_REF], another measure of anisotropy depending both on the topothesy and the Hurst functions was designed and applied to detect or diagnose lesions in mammograms. The AFBF can be further extended to an heterogeneous field where the topothesy and Hurst function both vary in space [START_REF] Vu | Statistical tests of heterogeneity for anisotropic multifractional Brownian fields[END_REF][START_REF] Polisano | Texture modeling by Gaussian fields with prescribed local orientation[END_REF][START_REF] Benassi | Elliptic Gaussian random processes[END_REF]. Due to this model, we can also consider characterizing locally the texture through the topothesy and Hurst functions. Such a characterization can be used to segment images, i.e. partition the image into several regions of homogeneous textures. In [START_REF]Tests of isotropy for rough textures of trended images[END_REF], biological microscopic images were segmented using local features related to the topothesy and Hurst functions. The work presented in this paper is mainly motivated by these applications of AFBF to the classification or the segmentation of image textures. By proposing a method to estimate topothesy and Hurst functions, we enable the computation of texture descriptors that are critical to these two image-processing tasks. For instance, descriptors may include variances of the topothesy and Hurst functions that would measure a degree of anisotropy (the variance of the function is defined as the square of the L 2 -norm of the difference between the function and its average value over the interval [-π, π].).

Another important motivation concerns the simulation of textures. In [START_REF] Biermé | A turning-band method for the simulation of anisotropic fractional Brownian field[END_REF], AFBF were simulated with a method which was later implemented in a Python package [START_REF]PyAFBF: a Python library for sampling image textures from the anisotropic fractional Brownian field[END_REF]. Currently, this package enables to generate textures from AFBF whose parameters are randomly sampled. One of our goals would be to extend this package to the simulation of realistic textures. Such a simulation could be obtained from AFBF whose parameters were previously estimated from one or several real examples.

However, the realistic simulation, as well as the texture classification, require a complete estimation of the Hurst and topothesy functions. Methods proposed in the literature only give a partial solution to that estimation issue. In [START_REF] Biermé | Estimation of anisotropic Gaussian fields through Radon transform[END_REF][START_REF] Richard | Statistical tests of anisotropy for fractional Brownian textures. Application to full-field digital mammography[END_REF], a method was developed for the estimation of the Hurst function. It relies upon a theoretical relationship that exists between an AFBF and its Radon projection in a direction orthogonal to θ [START_REF] Bonami | Anisotropic analysis of some Gaussian models[END_REF]: in dimension d = 2, this projection is locally asymptotically self-similar of order H = β(θ) + 1 2 . Hence, by estimating the self-similarity order of the projections, it is theoretically possible to recover the Hurst function of the field. However, in practice, such an approach is only feasible in the vertical and horizontal directions where the Radon transform can be discretized.

In [START_REF] Richard | Anisotropy of Hölder Gaussian random field: characterization, estimation and application to image textures[END_REF], another method was designed for the estimation of the so-called asymptotic topothesy. This function is equal to the topothesy function in directions where the Hurst function is minimal, and vanishes elsewhere. The estimation approach is based on quadratic variations (averages of squared increments) computed from the image at different scales and in different directions. Asymptotically, the logarithm of these variations is linearly related to the Hurst index of the field (minimal value of the Hurst function). This linear relationship includes some intercepts that can be estimated by linear regression. These intercepts can further be expressed as a convolution of the asymptotic topothesy with some known functions. Due to this expression, the asymptotic topothesy can be recovered from the intercepts by solving an inverse problem.

The construction of our estimation method takes its root in the work in [START_REF] Biermé | A turning-band method for the simulation of anisotropic fractional Brownian field[END_REF]. Following [START_REF] Biermé | A turning-band method for the simulation of anisotropic fractional Brownian field[END_REF], the semi-variogram of an AFBF can be expressed in a polar form as

(1.2) v 0 (h; τ, β) = 1 2 π 2 -π 2 τ (θ)|⟨h, u(θ)⟩| 2β(θ) dθ,
where u(θ) = (cos θ, sin θ) and τ (θ) = τ (θ)

+∞ 0

1 -e iρ 2 ρ -2β(θ)-1 dρ. Given some ordered angles (θ m ) M m=1 in [-π 2 , π 2 ] and appropriate positive weights (λ m ) M m=1 (see Section 3 of the supplementary materials of [START_REF] Biermé | A turning-band method for the simulation of anisotropic fractional Brownian field[END_REF] for details), it can be further approximated by

(1.3) v(h; τ , β) = 1 2 M m=1 λ m τ (θ m )|⟨h, u(θ m )⟩| 2β(θm) .
The function v corresponds to the semi-variogram of a turning band-field defined as

Z M (x) = M m=1 λ m τ (θ m )Y m (⟨x, u(θ m )⟩),
where the random processes Y m are independent standard fractional Brownian motions of Hurst index β(θ m ). In [START_REF] Biermé | A turning-band method for the simulation of anisotropic fractional Brownian field[END_REF], it was shown that v converges to v 0 and Z M to Z as the maximal spacing between successive angles θ m tends to 0. This result justifies using the turning-band field Z M for simulating the AFBF Z and the semi-variogram v for approximating v 0 . In this work, we thus propose to estimate the topothesy and Hurst functions of an AFBF by fitting the semi-variogram v of its approximating turning-band field to the empirical semi-variogram of a textured image.

Preliminary considerations about the AFBF

A random field is a collection Z = {Z(x), x ∈ R d } of random variables Z(x) indexed by a position x of the space R d of dimension d. In dimension d = 2 or d = 3, such a field can represent an image, Z(x) being in this case the grey-level value of the image at a pixel x.

A random field is Gaussian if any finite linear combination i λ i Z(x i ) of its variables is a Gaussian random variable. The finite-dimensional probability distributions of a Gaussian random field can be characterized by two functions: an expectation function x → E(Z(x)) giving the mean value of the field at each position x and the auto-covariance function (x, y) → cov(Z(x), Z(y)) describing the interactions of the field variables between pairs (x, y) of positions.

A Gaussian random field is stationary if its expectation function is constant and its auto-covariance function at (x, y) only depends on x -y. Such a field may describe images whose properties are spatially homogeneous. When it is not the case, we can resort to a weaker stationarity assumption which is stated on field increments rather than the field itself. An increment W of a field Z is a field defined for any position

x ∈ R d as W (x) = Z(x + h) -Z(x)
given some fixed lag h ∈ R d . We say that a field has stationary increments whenever its increment fields are stationary. The finitedimensional probability distributions of such a field can be characterized by the semi-

variogram v(h) = 1 2 E((Z(y + h) -Z(y)) 2
) of the field. The AFBF forms a family of random fields with stationary increments which is defined by semi-variograms of the form (1.1).

Problem formulation

The estimation context is the following. We observe the gray-level values

Y [i] of an image Y at points i of a grid [[1, I]] 2 .
We assume that this image can be modeled as the sum

Y [i] = Z i I + W [i]
of a turning-band field Z having a semi-variogram v of the form (1.3) and a noise W formed by independent centered Gaussian variables W [i] of variance τ 0 . It follows that the semi-variogram of the image is given by

(3.1) w(h; τ, β) = τ 0 + v h I ; τ, β .
In this equation, the topothesy and Hurst functions τ and β are unknown. The problem is to estimate these functional parameters.

For that, we compute the empirical semi-variogram ( Section 4 for the choice of these lags):

w n ) N n=1 at some lags (h n ) N n=1 of [[1, I]] 2 (see
(3.2) w n = 1 ν n i (Y [i + h n ] -Y [i]) 2 ,
where ν n is the number of sum terms depending on h n .

We then propose to fit the theoretical semi-variogram w to the empirical one w by minimizing the least-square criterion

(3.3) L(τ, β) = 1 2 N n=1 (w(h n ; τ, β) -w n ) 2 .
To minimize the least-square criterion, the topothesy and Hurst functions are expanded into two finite-dimensional subspaces T and B of the space of square integrable π-periodic functions. Given some bases (T j ) J j=1 and (B k ) K k=1 of T and B, the topothesy and Hurst functions are represented as

τ (θ) = J j=1 τ j T j (θ), β(θ) = K k=1 β k B k (θ). (3.4)
Using these representations, the semi-variogram of the image may be written as

(3.5) w(h n ; τ, β) = τ 0 + 1 2 J j=1 τ j M m=1 T j (θ m )λ m h n I , u(θ m ) 2β(θm) = F (β) n τ,
where τ is a notation abuse for the column-vector (τ j ) J j=0 and F n is a row-vector-valued function whose components are

(3.6) F (β) nj = 1 2 M m=1 T j (θ m )λ m h n I , u(θ m ) 2β(θm) = v(h n ; T j , β), for j = 1, • • • , J and F (β) n0 = 1.
We will denote F (β) the matrix of terms F (β) nj . Consequently, the least-square criterion can be reformulated as

(3.7) L(τ, β) = 1 2 N n=1 (ϵ n (τ, β)) 2 .
where ϵ n (τ, β) are residuals defined by

(3.8) ϵ n (τ, β) = F n (β)τ -w n .
In the optimization literature, such a criterion is known as a separable nonlinear least square (SNLLS) criterion [START_REF] Golub | The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate[END_REF].

Problem resolution

There is a wide literature devoted to the minimization of SNLLS criteria such as the one defined by Equations (3.7) and (3.8); see, for instance, [START_REF] Golub | The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate[END_REF][START_REF] Kaufman | A variable projection method for solving separable nonlinear least squares problems[END_REF][START_REF]Separable nonlinear least squares: the variable projection method and its applications[END_REF][START_REF] Ruhe | Algorithms for separable nonlinear least squares problems[END_REF][START_REF] O'leary | Variable projection for nonlinear least squares problems[END_REF]. The construction of minimization algorithms is based on the variable projection method introduced in [START_REF] Golub | The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate[END_REF]. Let

K(β) = L(τ * (β), β), where τ * (β) minimizes L for a fixed β, τ * (β) ∈ arg min τ L(τ, β).
The variable projection method consists in reducing the minimization of L with respect to the couple (τ, β) to the minimization of K with respect to the single variable β.

The function K is usually minimized using some variants of the Newton algorithm involving approximations of the Hessian of K (e.g. the Gauss-Newton algorithm or the Levenberg-Marquardt algorithm [START_REF] Levenberg | A method for the solution of certain non-linear problems in least squares[END_REF][START_REF] Marquardt | An algorithm for least-squares estimation of nonlinear parameters[END_REF]). The approximation of the Hessian are specifically derived according to the form of the Hessian of a SNLLS [START_REF] Golub | The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate[END_REF][START_REF] Kaufman | A variable projection method for solving separable nonlinear least squares problems[END_REF][START_REF]Separable nonlinear least squares: the variable projection method and its applications[END_REF][START_REF] Ruhe | Algorithms for separable nonlinear least squares problems[END_REF][START_REF] O'leary | Variable projection for nonlinear least squares problems[END_REF]. Here, the Hessian of K can be written as follows (see Sections A and B of the appendix for the computation details). Denote

A 11 (β) = N n=1 F n (β) T F n (β), A 22 (β) = N n=1 DF n (β) T τ * (β)τ * (β) T DF n (β), E 22 (β) = N n=1 ϵ n (τ * (β), β) j=1 ∇ 2 F nj (β)τ * j (β), A 12 (β) = N n=1 F n (β) T τ * (β) T DF n (β), E 12 (β) = N n=1 ϵ n (τ * (β), β) DF n (β). (4.1)
where ϵ n are residuals given by Equation (3.8), F n (β) is the function defined by Equation (3.6), DF n (β) its Jacobian and ∇ 2 F nj (β) the Hessian of its j component F nj . Then, the Hessian of K can be expressed as

(4.2) ∇ 2 K(β) = A 22 (β) + E 22 (β) -(A 12 (β) + E 12 (β)) T (A 11 (β)) -1 (A 12 (β) + E 12 (β)),
Approximations of the Hessian usually exclude terms that depends on the second derivatives of the function (here, the term E 22 ). In our algorithm, we use a simple approximation of K by the matrix A 22 (β) + λI; for λ = 0, this corresponds to the Algorithm III pointed out in [START_REF] Ruhe | Algorithms for separable nonlinear least squares problems[END_REF]. The minimization algorithm was implemented in Python using the method least squares of the optimization toolbox of the Scipy library [START_REF] Virtanen | SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python[END_REF]. At iteration t + 1, the algorithm updates the current value β (t) of β by computing

β (t+1) = β (t) -A 22 (β (t) ) + λI -1 ∇K(β (t) ),
where λ is a non-negative damping factor adjusted at each iteration, and the gradient of K is given by

(4.3) ∇K(β) = N n=1 DF n (β) T τ * (β) ϵ n (τ * (β), β).
Besides, the solution τ * (β) minimizes a linear least square problem, and is characterized as the solution of the linear system:

F (β) T F (β)τ = F (β) T w.
In our implementation, it is found using the method lsq linear of the Scipy library, which is robust to ill-conditioned systems.

To design our algorithm, we set up a coarse-to-fine multigrid strategy: the parameters (τ, β) are successively approximated in a series of embedded subspaces (T s × B s ) S s=0 . In the current implementation of the algorithm, the subspaces T s and B s are both defined as the space of piecewise constant functions on the intervals

- π 2 + m 2 s π, - π 2 + m + 1 2 s π , m = 0, • • • , 2 s -1 .
Moreover, some constraints are added to these spaces to ensure that the topothesy function is non-negative and the Hurst function ranges in (0, 1). This is directely implemented in the least squares and lsq linear methods that use a Trust-Region-Reflective algorithm to deal with these constraints [START_REF] Branch | A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems[END_REF].

Set the algorithm parameters S, T and η (by default, S = 3, T = 10000 and η = 1e-3). Initialization:

Set L 0 = +∞ for h ∈ {0.1, • • • , 0.9} do Set β ∈ B 0 equal to h. Find τ * (β) = arg min τ ∈T0
L(τ, β) using a few iterations of the algorithm least squares (method TRF). until L(τ0,β0)-L(τ,β) L(τ0,β0) < η or iter > T . end for Figure 2. Algorithm for the estimation of the topothesy and Hurst functions.

using lsq linear (method TRF) . if L(τ * (β), β) < L 0 then Set L 0 = L(τ * (β), β), Set τ 0 = τ * (β
The overall algorithm is summarized in Figure 2. In practice, we observed that the choice of the lags where the semi-variograms are evaluated had an influence on the minimization. In particular, we believe that having two orthogonal lags with a same modulus can make the problem ill-posed with permutable solutions. So we arranged the lags to avoid such pathological configuration. Moreover, we spread the lags uniformly in all directions to avoid privileging a few directions. To do so, we picked up lags in a set composed by points of [[0, L]] × [[-L, L]] within a disk of radius L. Points of this set having a given argument φ are in a subset {ρ k (cos φ, sin φ), k = 1, • • • , K φ } defined by some ordered sequence of moduli ρ k . Similarly, points having the orthogonal argument φ + π 2 are in the set {ρ k (cos φ, -sin φ), k = 1, • • • , K φ }. For each pair of orthogonal arguments (φ, φ + π 2 ), we selected lags with different modulus as

{ρ 2k-1 (cos φ, sin φ), k = 1, • • • , K φ } ∪ {ρ 2k (cos φ, -sin φ), k ∈ 1, • • • , K φ }.
A typical set of lags is shown on Figure 3 for L = 40. Besides, we set angles θ m of the turning-band field representation using the dynamic programming algorithm described in [START_REF] Biermé | A turning-band method for the simulation of anisotropic fractional Brownian field[END_REF] with M = 657 and set λ m = θ m -θ m-1 .

Numerical study

In order to assess the performance of the proposed method, we conducted experiments on field realizations generated by the PyAFBF package [START_REF] Biermé | A turning-band method for the simulation of anisotropic fractional Brownian field[END_REF][START_REF]PyAFBF: a Python library for sampling image textures from the anisotropic fractional Brownian field[END_REF]. The topothesy and Hurst functions of the simulated fields were represented as piecewise constant functions on uniformly spaced intervals of ] -π 2 , π 2 ]. In a first series of experiments, we made the number of constants vary so as to study the effect of the model complexity on the estimation precision. We built seven sets of hundred realizations. Realizations were images of size 1024 × 1024. On each set, they were obtained from different fields having a same number of parameters. Depending on the set, the number of parameters was M = 2 m for m = 0, • • • , 6 for the topothesy and Hurst functions. These parameters correspond to the constants of the topothesy and Hurst functions. The higher the number of these constants, the more precise is the directional description of the field. To account for this precision, we defined a so-called radial precision, expressed in percent, as r = (1 -1/M ) * 100, with 0 corresponding to the worst precision and 100 to the best one. The estimation error was evaluated on the Hurst function using a L 1 error, expressed in percent, as

e = 100 π π 2 -π 2 |β(s) -β(s)|ds,
β and β being the true and estimated Hurst functions, respectively. We averaged the estimation errors over the hundred realizations of each set. To obtain the estimates, we applied the method with the coarse-to-fine multigrid strategy (see Section 4), making the size parameter s vary from 0 to m. The maximal number of iterations and the tolerance were set to T = 10000 and η = 1e -3, respectively. All experiments can be reproduced or modified using the PyAFBF package. The results are shown on Figure 4. The estimation error was quite low (below 10 percent), even when the radial precision was high. The method outperformed the one in [START_REF] Biermé | Estimation of anisotropic Gaussian fields through Radon transform[END_REF][START_REF] Richard | Statistical tests of anisotropy for fractional Brownian textures. Application to full-field digital mammography[END_REF] which could only achieved the estimation with a low radial precision of 50 % (4 parameters) and with an error above 10 %. The coarse-to-fine multigrid strategy was critical for the estimation procedure. Without this strategy, the estimation error was above 10 % for a radial precision of 87.5 %.

Besides, the estimation error depended on the error made when estimating the field semi-variogram with the empirical semi-variogram (see Equation (3.2)): after having replaced the empirical semi-variogram by the field semi-variogram in the fitting criterion, the estimation error dropped down below 2 % for a radial precision of 87.5%. The estimation quality of the empirical semi-variogram depends on the size of the field realizations. Hence, to see the effect of this size on the estimation of model parameters, we conducted some other experiments on several sets of hundred realizations of a same size M ×M with a radial precision of 87.5%. On Figure [START_REF] Benassi | Elliptic Gaussian random processes[END_REF], estimation errors are reported as a function of the parameter size M .

We notice that the error significantly increased as the size of the image decreased. For a radial precision of 87.5%, a realization larger than 512 is required to ensure that the estimation error remains below 10 %.

Illustration

To illustrate the interest of our estimation procedure, we applied it to mammograms. Mammograms are projective images of the breast obtained by capturing part of an X-ray beam that passes through the adipose and fibro-glandular tissues organized in hierarchical matrix of fibrous compartments. Radiographic projections of this matrix create the mammographic texture, so called, parenchymal pattern. Mammographic texture has a critical effect on cancer detection, as it can hide early tumors (causing missed cancers) or mimic tumors (causing false positive findings). The statistical nature of the parenchymal pattern was acknowledged by several authors. In [START_REF] Burgess | Human observer detection experiments with mammograms and power-law noise[END_REF][START_REF] Heine | On the statistical nature of mammograms[END_REF][START_REF] Heine | Spectral analysis of full field digital mammography data[END_REF], a power-law noise model was proposed to characterize mammogram textures and study either the lesion detectability or assess the breast cancer risk. This model accounts for the self-similarity of mammographic textures, but it is global and stationary. In [START_REF] Kestener | Wavelet-based multifractal formalism to assist in diagnosis in digitized mammograms[END_REF][START_REF] Arneodo | A wavelet-based multifractal image analysis: from theoretical concepts to experimental applications[END_REF], another model was design using a wavelet-based multifractal formalism to locally characterize mammogram textures. In [START_REF] Richard | Statistical tests of anisotropy for fractional Brownian textures. Application to full-field digital mammography[END_REF], the AFBF were applied to mammograms to account for and analyze their anisotropy.

In this part, we propose to revisit the study of [START_REF] Richard | Statistical tests of anisotropy for fractional Brownian textures. Application to full-field digital mammography[END_REF] by taking the same dataset. This dataset was provided by the Department of Radiology of the University of Pennsylvania. Images of this dataset were acquired in medio-lateral oblique position using a Senographe 2000D (General Electric Medical Systems, Milwaukee, WI), with a spatial resolution of 0.1 mm × 0.1 mm per pixel (image size: 1914 × 2294 pixels). In each image of the database, a region of interest of size 512 × 512 was manually extracted within the densiest region of the breast. Originally, the dataset included a total of 58 cases, each case being composed of the left and right breasts of a woman. For this study, we removed 12 images that contained a part of the background (area outside the breast), causing an estimation failure.

We applied to these images our procedure to estimate the Hurst and topothesy functions represented as piecewise constant functions with 16 parameters each. We then studied several field features extracted from these functional estimates.

The first feature was the minimal value H of the Hurst function (called the Hurst index), that measures a degree of texture regularity. The repartitions of this index over the mammograms of left and right breasts are shown on histograms of Figure 6 (a). These histograms are similar to the ones published in [START_REF] Richard | Statistical tests of anisotropy for fractional Brownian textures. Application to full-field digital mammography[END_REF]: the Hurst index is also distributed in a same way on left and right breasts. The mean value is around 0.3; it is of 0.28 with the standard deviation of 0.11. In the previous distributions of [START_REF] Richard | Statistical tests of anisotropy for fractional Brownian textures. Application to full-field digital mammography[END_REF], there were much fewer index values in the interval (0.3, 0.5) than in the present distributions. Contrarily to the approach proposed in this paper, the model used in [START_REF] Richard | Statistical tests of anisotropy for fractional Brownian textures. Application to full-field digital mammography[END_REF] did not take into account the image noise. This probably led to an underestimation of the Hurst index.

The second feature was the length of the Hurst function range measured by the difference between its maximal and minimal values. In [START_REF] Richard | Statistical tests of anisotropy for fractional Brownian textures. Application to full-field digital mammography[END_REF], such a feature could not be precisely computed due to the fact that the estimation of the Hurst function was limited We can see that the length is more uniformly distributed over the interval (0, 1), and often above 0.3. This length is an indicator of the degree of texture anisotropy: the larger this length, the more anisotropic the texture. Hence, the result obtained in this study shows that the degree of anisotropy of mammograms is even larger than expected in [START_REF] Richard | Statistical tests of anisotropy for fractional Brownian textures. Application to full-field digital mammography[END_REF]. On Figure 7, some mammograms are shown together with their corresponding topothesy and Hurst functions. We can observe a typical form of the Hurst function which is peaked in one direction. The peak location indicates a direction where image variations have lowest frequencies. The peaks are also present in the topothesy functions at a same place as the ones of the Hurst function. The peaks of the Hurst and topothesy functions seem to vary in sharpness and height depending on the image anisotropy.

The Figure 7 also contains a simulation sampled from the estimated AFBF. These illustrations account for the ability of the simulated model to reproduce the mammogram aspect, including its regularity, directionality, anisotropy, trends and details. We observe that some fine structures present for instance in the fifth example could not be reproduced truthfully. Our simulation method is alternative to physic-based methods designed in [START_REF] Bakic | Mammogram synthesis using a 3D simulation. I. breast tissue model and image acquisition simulation[END_REF][START_REF]Mammogram synthesis using a 3D simulation. II. evaluation of synthetic mammogram texture[END_REF][START_REF]Mammogram synthesis using a 3D simulation. III. modeling and evaluation of the breast ductal network[END_REF][START_REF] Carton | Development of a physical 3D anthropomorphic breast phantom[END_REF].

Discussion

We designed a method for the estimation of the functional parameters of the anisotropic fractional Brownian field, namely the topothesy and Hurst functions. This method consisted of fitting the empirical semi-variogram computed from an image to the semivariogram of a turning-band field that approximates the AFBF. The fitting criterion was formulated in terms of a separable non-linear least square criterion, the linear part relating to the topothesy function and the non-linear part to the Hurst function. We then proposed an algorithm relying on a variable projection to minimize this criterion. This algorithm was combined with a coarse-to-fine multigrid strategy to improve its convergence. We presented a numerical study of the algorithm on simulated textures. In this study, the estimation error was evaluated as a function of a radial precision, directly related to the number of parameters appearing in the discrete representations of the Hurst and topothesy functions. This error was below ten percent for the finest radial precision, when the empirical semi-variogram was computed on large images. This error increased as the image size descreased. It reached values above 10 % when the image size was below 400 × 400. For illustration, the estimation method was applied to mammograms of a private dataset studied in a previous work. From the estimated functional parameters, we derived some field features that described the mammogram texture. We also sampled the estimated fields to generate some realistic simulations of mammograms. This work represents a breakthrough concerning the estimation of parameters of AFBF, which had only been partly and inaccurately achieved. Features can now be derived from the estimated field and used to classify textures. However, the actual method is not accurate enough to envisage its application to small-image classification or texture segmentation. Indeed, such an application require estimating model parameters in a local way on small neighborhoods of image pixels. One way to overcome this limitation would be to introduce penalizations of parameters within the fitting criterion. Such an approach was adopted for the estimation of the local Hurst index in [START_REF] Pascal | Automated data-driven selection of the hyperparameters for total-variation-based texture segmentation[END_REF][START_REF] Pascal | Strongly convex optimization for joint fractal feature estimation and texture segmentation[END_REF]. Penalty terms would constrain the model parameters in shape or space. For instance, they could be a TV-norm on topothesy and Hurst functions that would regularize the shape of these functions. As the penalty terms could be non-differentiable, our algorithm would no longer be appropriate for the minimization of the fitting criterion. It could however be adapted following the approach developed in [START_REF] Van Leeuwen | Variable projection for nonsmooth problems[END_REF] for separable non-linear least square criterion or, alternately, specifying generic algorithms for the minimization of non-smooth functions [START_REF] Wang | Global convergence of ADMM in nonconvex nonsmooth optimization[END_REF].

Fields with long range dependencies are non-stationary and have a semi-variogram which tends to infinity as the lag module tends to infinity. State-of-the art texture models [START_REF] Galerne | Random phase textures: Theory and synthesis[END_REF][START_REF] Galerne | A texton for fast and flexible gaussian texture synthesis[END_REF] are based on stationary Gaussian fields, whose variograms are bounded, and are therefore unable to simulate fields with long-range dependencies. Despite the ability of the AFBF model to render long-range dependencies, it is not appropriate for the modeling of fields with bounded variograms. Hence, the AFBF model should be used in complement to state-of-the-art methods for simulating images which do not fulfill the stationary assumption.

Besides, the facility brought by this work to sample realistic textures from AFBF is also of interest for applications. For instance, synthetic textures could be used for data augmentation in machine learning [START_REF] Shorten | A survey on image data augmentation for deep learning[END_REF]: they could supply examples for learning the neural network architectures in domains where there is a lack of data to achieve this task. 
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 3 Figure 3. Lags where the semi-variograms are computed.
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 4 Figure 4. Estimation error on the Hurst function as a function of the radial precision.
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 5 Figure 5. Estimation error on the Hurst function with respect to the realization size.

Figure 6 .

 6 Figure 6. Histograms of (a) the Hurst index and (a) Hurst function range computed on the mammogram dataset.
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 7 Figure 7. Estimation of the topothesy (τ ) and Hurst (β) functions from some mammograms. First column: original image ROI, second and third columns, the graphs of τ and β estimated from the ROI of the same row. Below the graphs, the values of the different field features are also reported: H is Hurst index, H l the range of β. Last column: a synthetic image sampled from the AFBF estimated from the original image.

∇

  τ L(τ, β) = N n=1 ∇ τ ϵ n (τ, β) ϵ n (τ, β), ∇ β L(τ, β) = N n=1 ∇ β ϵ n (τ, β) ϵ n (τ, β).

(A. 6 )

 6 Using Equation (A.1), it follows that∇ τ L(τ, β) = N n=1 F n (β) T ϵ n (τ, β), ∇ β L(τ, β) = N n=1 DF n (β) T τ ϵ n (τ, β).

(A. 7 )F∇ 2 F

 72 The second-order partial derivatives of L are∂ 2 L ∂τ m ∂τ k (β) = N n=1 ∂ϵ n ∂τ m (τ, β) ∂ϵ n ∂τ k ϵ n (τ, β) + ∂ 2 ϵ n ∂τ m ∂τ k (τ, β) ϵ n (τ, β) , k ϵ n (τ, β) + ∂ 2 ϵ n ∂β m ∂β k (τ, β) ϵ n (τ, β) , k ϵ n (τ, β) + ∂ 2 ϵ n ∂τ m ∂β k (τ, β) ϵ n (τ, β) . (A.8)The Hessians of L with respect to the two variables (τ, β) are thus given by∇ 2 τ τ L(τ, β) = N n=1 ∇ τ ϵ n (τ, β)∇ τ ϵ n (τ, β) T + ϵ n (τ, β) ∇ 2 τ τ ϵ n (τ, τ ), ∇ 2 ββ L(τ, β) = N n=1 ∇ β ϵ n (τ, β)∇ β ϵ n (τ, β) T + ϵ n (τ, β) ∇ 2 ββ ϵ n (τ, β), ∇ 2 τ β L(τ, β) = N n=1 ∇ τ ϵ n (τ, β)∇ β ϵ n (τ, β) T + ϵ n (τ, β) ∇ 2 τ β ϵ n (τ, β). n (β) T F n (β), ∇ 2 ββ L(τ, β) = N n=1 DF n (β) T τ τ T DF n (β) + N n=1 ϵ n (τ, β) j=1 nj (β)τ j , ∇ 2 τ β L(τ, β) = N n=1 F n (β) T τ T DF n (β) + N n=1ϵ n (τ, β) DF n (β).
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Appendix A. Derivatives of L.

Let ϵ n (τ, β) = F n (β)τ -w n be the n-th residual of the function L. Gradients of ϵ n with respect to τ and β are

where DF n (β) is the jacobian matrix of F n (β) whose terms are (A.2)

The Hessians of ϵ n are given by

where ∇ 2 F nj (β) is the Hessian matrix of F nj whose terms are

The first-order derivatives of L are

The corresponding gradients of L with respect to the two variables (τ, β) are Appendix B. Derivatives of K.

Using the chain-rule, the first-order partial derivatives of K are

But, since τ * (β) minimizes L(•, β), we have

Hence, the gradient of K is given by

Using Equation (A.7), the expression of the gradient given in Equation ( 4.3) follows. Furthermore, second-order partial derivatives of K are given by

Hence, the Hessian of K is

, where Dτ * (β) is the Jacobian of τ * at β. Moreover, since u(β) = ∇ τ L(τ * (β), β) = 0, we have ∇u(β) = 0. Hence, using the chain-rule,

Consequently, the Hessian of K can be expressed as

ββ L(τ * (β), β) -∇ 2 βτ L(τ * (β), β)(∇ 2 τ τ L(τ * (β), β)) -1 ∇ 2 τ β L(τ * (β), β). Using Equation (A.10), the expression of the Hessian of K given by Equation (4.2) follows.