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Abstract. The anisotropic fractional Brownian field (AFBF) is a non-stationary

Gaussian random field which has been used for the modeling of textured images.
In this paper, we address the open issue of estimating the functional parameters

of this field, namely the topothesy and Hurst functions. We propose an original

method which fits the empirical semi-variogram of an image to the semi-variogram of
a turning-band field that approximates the AFBF. Expressing the fitting criterion in

terms of a separable non-linear least square criterion, we design a minimization algo-

rithm inspired from the variable projection approach. This algorithm also includes a
coarse-to-fine multigrid strategy based on approximations of functional parameters.

Compared to existing methods, the new method enables to estimate both functional
parameters on their whole definition domain. On simulated textures, we show that

it has a low estimation error, even when the parameters are approximated with a

high precision. We also apply the method to characterize mammograms and sample
images with synthetic parenchymal patterns.

1. Introduction

The anisotropic fractional Brownian field (AFBF) is a non-stationary Gaussian ran-
dom field with stationary increments; see [10] and Section 2 for details. The finite-
dimensional probabability distributions of an AFBF Z are completely determined by a
semi-variogram of the form

∀ h ∈ R2, v0(h; τ, β) =
1

2
E
(

(Z(x+ h)− Z(x))
2
)
,

=
1

2

∫
R2

∣∣∣1− ei〈h,w〉∣∣∣2 τ(arg(w))|w|−2β(arg(w))−2dw.
(1.1)

In this expression, the functions τ and β are the parameters of the AFBF. They are
called the topothesy and Hurst functions, respectively. They are non-negative π-periodic
functions whose values only depend on the direction arg(w) of w in R2. The Hurst
function β further ranges in (0, 1). In this paper, we propose an original method to
estimate these functional parameters from a single realization of an AFBF.

The AFBF has been used for the modeling of image textures [8, 9, 33, 35, 34, 36,
38]. Figure 1 shows some textures together with the Hurst and topothesy functions
of the AFBF they are generated from. On the first column, constant topothesy and
Hurst functions are associated to an isotropic texture, i.e. a texture whose properties
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Figure 1. Textures generated from AFBF. First row: the realization
of the AFBF, second and third rows: representations of their hurst and
topothesy functions, respectively. The textures were generated using the
PyAFBF package [6, 37].

are invariant to any image rotation. By contrast, as observed on other columns, non-
constant topothesy or Hurst functions result in anisotropic textures whose properties
vary according to the direction. Let us also notice that the texture anisotropy manifests
differently depending on the shape of the topothesy and Hurst functions.

Actually, these two functional parameters are critical to characterize the texture. Such
a characterization may serve for the classification of textures. In [33], a feature was de-
rived from the topothesy function to measure a degree of texture anisotropy. This feature
was used in conjunction with a measure of texture regularity to classify photographic films
with respect to their paper type. In [35, 34], another measure of anisotropy depending
both on the topothesy and the Hurst functions was designed and applied to detect or di-
agnose lesions in mammograms. The AFBF can be further extended to an heterogeneous
field where the topothesy and Hurst function both vary in space [44, 32, 5]. Due to this
model, we can also consider characterizing locally the texture through the topothesy and
Hurst functions. Such a characterization can be used to segment images, i.e. partition
the image into several regions of homogeneous textures. In [36], biological microscopic
images were segmented using local features related to the topothesy and Hurst functions.
The work presented in this paper is mainly motivated by these applications of AFBF
to the classification or the segmentation of image textures. By proposing a method to
estimate topothesy and Hurst functions, we enable the computation of texture descrip-
tors that are critical to these two image-processing tasks. For instance, descriptors may
include variances of the topothesy and Hurst functions that would measure a degree of
anisotropy.

Another important motivation concerns the simulation of textures. In [6], AFBF
were simulated with a method which was later implemented in a Python package [37].
Currently, this package enables to generate textures from AFBF whose parameters are
randomly sampled. One of our goals would be to extend this package to the simulation
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of realistic textures. Such a simulation could be obtained from AFBF whose parameters
were previously estimated from one or several real examples.

However, the realistic simulation, as well as the texture classification, require a com-
plete estimation of the Hurst and topothesy functions. Methods proposed in the literature
only give a partial solution to that estimation issue. In [7, 38], a method was developed
for the estimation of the Hurst function. It relies upon a theoretical relationship that
exists between an AFBF and its Radon projection in a direction orthogonal to θ [10]:
in dimension d = 2, this projection is a fractional Brownian motion of Hurst index
H = β(θ)+ 1

2 . Hence, by estimating the Hurst index of the projections, it is theoretically
possible to recover the Hurst function of the field. However, in practice, such an approach
is only feasible in the vertical and horizontal directions where the Radon transform can
be discretized.

In [33], another method was designed for the estimation of the so-called asymptotic
topothesy. This function is equal to the topothesy function in directions where the Hurst
function is minimal, and vanishes elsewhere. The estimation approach is based on qua-
dratic variations (averages of squared increments) computed from the image at different
scales and in different directions. Asymptotically, the logarithm of these variations is lin-
early related to the Hurst index of the field (minimal value of the Hurst function). This
linear relationship includes some intercepts that can be estimated by linear regression.
These intercepts can further be expressed as a convolution of the asymptotic topothesy
with some known functions. Due to this expression, the asymptotic topothesy can be
recovered from the intercepts by solving an inverse problem.

The construction of our estimation method takes its root in the work in [6]. Following
[6], the semi-variogram of an AFBF can be expressed in a polar form as

(1.2) v0(h; τ, β) =
1

2

∫ π
2

−π2
τ̃(θ)|〈h, u(θ)〉|2β(θ)dθ,

where u(θ) = (cos θ, sin θ) and τ̃(θ) = τ(θ)
∫ +∞

0

∣∣1− eiρ∣∣2 ρ−2β(θ)−1dρ. Given some or-

dered angles (θm)Mm=1 in [−π2 ,
π
2 ] and appropriate positive weights (λm)Mm=1, it can be

further approximated by

(1.3) v(h; τ̃ , β) =
1

2

M∑
m=1

λm τ̃(θm)|〈h, u(θm)〉|2β(θm).

The function v corresponds to the semi-variogram of a turning band-field defined as

ZM (x) =

M∑
m=1

√
λm τ̃(θm)Ym(〈x, u(θm)〉),

where the random processes Ym are independent standard fractional Brownian motions
of Hurst index β(θm). In [6], it was shown that v converges to v0 and ZM to Z as the
maximal spacing between successive angles θm tends to 0. This result justifies using
the turning-band field ZM for simulating the AFBF Z and the semi-variogram v for
approximating v0. In this work, we thus propose to estimate the topothesy and Hurst
functions of an AFBF by fitting the semi-variogram v of its approximating turning-band
field to the empirical semi-variogram of a textured image.

2. Preliminary considerations about the AFBF

A random field is a collection Z = {Z(x), x ∈ Rd} of random variables Z(x) indexed by
a position x of the space Rd of dimension d. In dimension d = 2 or d = 3, such a field can
represent an image, Z(x) being in this case the grey-level value of the image at a pixel x.
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A random field is Gaussian if any finite linear combination
∑
i λiZ(xi) of its variables is a

Gaussian random variable. The finite-dimensional probability distributions of a Gaussian
random field can be characterized by two functions: an expectation function x→ E(Z(x))
giving the mean value of the field at each position x and the auto-covariance function
(x, y) → cov(Z(x), Z(y)) describing the interactions of the field variables between pairs
(x, y) of positions.

A Gaussian random field is stationary if its expectation function is constant and its
auto-covariance function at (x, y) only depends on x − y. Such a field may describe
images whose properties are spatially homogeneous. When it is not the case, we can
resort to a weaker stationarity assumption which is stated on field increments rather
than the field itself. An increment W of a field Z is a field defined for any position
x ∈ Rd as W (x) = Z(x + h) − Z(x) given some fixed lag h ∈ Rd. We say that a
field has stationary increments whenever its increment fields are stationary. The finite-
dimensional probability distributions of such a field can be characterized by the semi-
variogram v(h) = 1

2E((Z(y + h) − Z(y))2) of the field. The AFBF forms a family of
random fields with stationary increments which is defined by semi-variograms of the
form (1.1).

3. Problem formulation

The estimation context is the following. We observe the gray-level values Y [i] of an
image Y at points i of a grid [[1, I]]2. We assume that this image can be modeled as the
sum

Y [i] = Z

(
i

I

)
+W [i]

of a turning-band field Z having a semi-variogram v of the form (1.3) and a noise W
formed by independent centered Gaussian variables W [i] of variance τ0. It follows that
the semi-variogram of the image is given by

(3.1) w(h; τ, β) = τ0 + v

(
h

I
; τ, β

)
.

In this equation, the topothesy and Hurst functions τ and β are unknown. The problem
is to estimate these functional parameters.

For that, we compute the empirical semi-variogram (ŵn)Nn=1 at some lags (hn)Nn=1 of
[[1, I]]2 (see Section 4 for the choice of these lags):

(3.2) ŵn =
1

Nn

∑
i

(Y [i+ hn]− Y [i])2,

Nn being the number of summed differences. We then propose to fit the theoretical
semi-variogram w to the empirical one ŵ by minimizing the least-square criterion

(3.3) L(τ, β) =
1

2

N∑
n=1

(w(hn; τ, β)− ŵn)2.

To minimize the least-square criterion, the topothesy and Hurst functions are ex-
panded into two finite-dimensional subspaces T and B of the space of square integrable
π-periodic functions. Given some bases (Tj)

J
j=1 and (Bk)Kk=1 of T and B, the topothesy
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and Hurst functions are represented as

τ(θ) =

J∑
j=1

τjTj(θ),

β(θ) =

K∑
k=1

βkBk(θ).

(3.4)

Using these representations, the semi-variogram of the image may be written as

(3.5) w(hn; τ, β) = τ0 +
1

2

J∑
j=1

τj

M∑
m=1

Tj(θm)λm

∣∣∣∣〈hnI , u(θm)

〉∣∣∣∣2β(θm)

= F (β)nτ,

where τ is a notation abuse for the column-vector (τj)
J
j=0 and Fn is a row-vector-valued

function whose components are

(3.6) F (β)nj =
1

2

M∑
m=1

Tj(θm)λm

∣∣∣∣〈hnI , u(θm)

〉∣∣∣∣2β(θm)

= v(hn;Tj , β),

for j = 1, · · · , J and F (β)n0 = 1. We will denote F (β) the matrix of terms F (β)nj .
Consequently, the least-square criterion can be reformulated as

(3.7) L(τ, β) =
1

2

N∑
n=1

(εn(τ, β))2.

where εn(τ, β) are residuals defined by

(3.8) εn(τ, β) = Fn(β)τ − ŵn.

In the optimization literature, such a criterion is known as a separable nonlinear least
square (SNLLS) criterion [16].

4. Problem resolution

There is a wide literature devoted to the minimization of SNLLS criteria such as
the one defined by Equations (3.7) and (3.8); see, for instance, [16, 24, 17, 39, 29].
The construction of minimization algorithms is based on the variable projection method
introduced in [16]. Let

K(β) = L(τ∗(β), β),

where τ∗(β) minimizes L for a fixed β,

τ∗(β) ∈ arg min
τ
L(τ, β).

The variable projection method consists in reducing the minimization of L with respect
to the couple (τ, β) to the minimization of K with respect to the single variable β.

The function K is usually minimized using some variants of the Newton algorithm
involving approximations of the Hessian of K (e.g. the Gauss-Newton algorithm or
the Levenberg-Marquardt algorithm [26, 27]). The approximation of the Hessian are
specifically derived according to the form of the Hessian of a SNLLS [16, 24, 17, 39, 29].
Here, the Hessian of K can be written as follows (see Sections A and B of the appendix
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for the computation details). Denote

A11(β) =

N∑
n=1

Fn(β)TFn(β),

A22(β) = (τ∗(β))T

(
N∑
n=1

DFn(β)DFn(β)T

)
τ∗(β),

E22(β) =

N∑
n=1

εn(τ∗(β), β)
∑
j=1

∇2Fnj(β)τ∗(β)j ,

A12(β) =

N∑
n=1

Fn(β)T DFn(β)T τ∗(β),

E12(β) =

N∑
n=1

εn(τ∗(β), β)DFn(β).

(4.1)

where εn are residuals given by Equation (3.8), Fn(β) is the function defined by Equation
(3.6), DFn(β) its Jacobian and ∇2Fnj(β) the Hessian of its j component Fnj . Then, the
Hessian of K can be expressed as

(4.2) ∇2K(β) = A22(β) + E22(β)− (A12(β) + E12(β))T (A11(β))−1(A12(β) + E12(β)),

Approximations of the Hessian usually exclude terms that depends on the second
derivatives of the function (here, the term E22). In our algorithm, we use a simple
approximation of K by the matrix A22(β) + λI; for λ = 0, this corresponds to the
Algorithm III pointed out in [39]. The minimization algorithm was implemented in
Python using the method least squares of the optimization toolbox of the Scipy library
[43]. At iteration t+ 1, the algorithm updates the current value β(t) of β by computing

β(t+1) = β(t) −
(
A22(β(t)) + λI

)−1

∇K(β(t)),

where λ is a non-negative damping factor adjusted at each iteration, and the gradient of
K is given by

(4.3) ∇K(β) =

N∑
n=1

DFn(β)T τ∗(β) εn(τ, β).

Besides, the solution τ∗(β) minimizes a linear least square problem, and is character-
ized as the solution of the linear system:

F (β)TF (β)τ = F (β)T ŵ.

In our implementation, it is found using the method lsq linear of the Scipy library, which
is robust to ill-conditioned systems.

To design our algorithm, we set up a coarse-to-fine multigrid strategy: the parameters
(τ, β) are successively approximated in a series of embedded subspaces (Ts × Bs)Ss=0. In
the current implementation of the algorithm, the subspaces Ts and Bs are both defined
as the space of piecewise constant functions on the intervals{[

−π
2

+
m

2s
π,−π

2
+
m+ 1

2s
π

)
,m = 0, · · · , 2s − 1

}
.

Moreover, some constraints are added to these spaces to ensure that the topothesy
function is non-negative and the Hurst function ranges in (0, 1). This is directely imple-
mented in the least squares and lsq linear methods that use a Trust-Region-Reflective
algorithm to deal with these constraints [11].
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Set the algorithm parameters S, T and η (by default, S = 3, T = 10000 and η = 1e−3).
Initialization:
Set L0 = +∞
for h ∈ {0.1, · · · , 0.9} do

Set β ∈ B0 equal to h.
Find

τ∗(β) = arg min
τ∈T0
L(τ, β)

using lsq linear (method TRF) .
if L(τ∗(β), β) < L0 then

Set L0 = L(τ∗(β), β),
Set τ0 = τ∗(β) and β0 = β.

end if
end for
Main iterations:
Set τ = τ0 and β = β0.
Set iter = 0.
for s = 0 to S do

Project the current functions τ, β into the space Ts × Bs.
Set iter = 0.
repeat

iter ← iter + 1.
Set τ0 = τ and β0 = β
Fix β and find

τ∗(β) = arg min
τ∈Ts
L(τ, β).

using lsq linear (method TRF).
Fix τ = τ∗(β) and approach

arg min
β∈Bs

K(β).

using a few iterations of the algorithm least squares (method TRF).

until L(τ0,β0)−L(τ,β)
L(τ0,β0) < η or iter > T .

end for

Figure 2. Algorithm for the estimation of the topothesy and Hurst functions.

The overall algorithm is summarized in Figure 2.
In practice, we observed that the choice of the lags where the semi-variograms are

evaluated had an influence on the minimization. In particular, we believe that having
two orthogonal lags with a same module can make the problem ill-posed with permutable
solutions. So we arranged the lags to avoid such pathological configuration. Moreover,
we spread the lags uniformly in all directions to avoid privileging a few directions. A
typical set of lags is shown on Figure 3.

Besides, we set angles θm of the turning-band field representation using the dynamic
programming algorithm described in [6] with M = 657 and set λm = θm − θm−1.

5. Numerical study

In order to assess the performance of the proposed method, we conducted experiments
on field realizations generated by the PyAFBF package [6, 37]. The topothesy and Hurst
functions of the simulated fields were represented as piecewise constant functions on
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Figure 3. Lags where the semi-variograms are computed.

uniformly spaced intervals of ] − π
2 ,

π
2 ]. In a first series of experiments, we made the

number of constants vary so as to study the effect of the model complexity on the
estimation precision. We built seven sets of hundred realizations. Realizations were
images of size 1024× 1024. On each set, they were obtained from different fields having
a same number of parameters. Depending on the set, the number of parameters was
M = 2m for m = 0, · · · , 6 for the topothesy and Hurst functions. These parameters
correspond to the constants of the topothesy and Hurst functions. The higher the number
of these constants, the more precise is the directional description of the field. To account
for this precision, we defined a so-called radial precision, expressed in percent, as

r = (1− 1/M) ∗ 100,

with 0 corresponding to the worst precision and 100 to the best one. The estimation
error was evaluated on the Hurst function using a L1 error, expressed in percent, as

e =
100

π

∫ π
2

−π2
|β(s)− β̂(s)|ds,

β and β̂ being the true and estimated Hurst functions, respectively. We averaged the
estimation errors over the hundred realizations of each set. To obtain the estimates, we
applied the method with the coarse-to-fine multigrid strategy (see Section 4), making
the size parameter s vary from 0 to m. The maximal number of iterations and the
tolerance were set to T = 10000 and η = 1e − 3, respectively. All experiments can be
reproduced or modified using the PyAFBF package. The results are shown on Figure 4.
The estimation error was quite low (below 10 percent), even when the radial precision
was high. The method outperformed the one in [7, 38] which could only achieved the



FULL INFERENCE FOR THE ANISOTROPIC FRACTIONAL BROWNIAN FIELD 9

Figure 4. Estimation error on the Hurst function as a function of the
radial precision.

estimation with a low radial precision of 50 % (4 parameters) and with an error above
10 %. The coarse-to-fine multigrid strategy was critical for the estimation procedure.
Without this strategy, the estimation error was above 10 % for a radial precision of 87.5
%.

Besides, the estimation error depended on the error made when estimating the field
semi-variogram with the empirical semi-variogram (see Equation (3.2)): after having re-
placed the empirical semi-variogram by the field one in the fitting criterion, the estimation
error dropped down below 2 % for a radial precision of 87.5%. The estimation quality of
the empirical semi-variogram depends on the size of the field realizations. Hence, to see
the effect of this size on the estimation of model parameters, we conducted some other
experiments on several sets of hundred realizations of a same size M ×M with a radial
precision of 87.5%. On Figure (5), estimation errors are reported as a function of the
parameter size M .

Figure 5. Estimation error on the Hurst function with respect to the
realization size.

We notice that the error significantly increased as the size of the image decreased. For
a radial precision of 87.5%, a realization larger than 512 is required to ensure that the
estimation error remains below 10 %.
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6. Illustration

To illustrate the interest of our estimation procedure, we applied it to mammograms.
Mammograms are projective images of the breast obtained by capturing part of an X-ray
beam that passes through the adipose and fibro-glandular tissues organized in hierarchi-
cal matrix of fibrous compartments. Radiographic projections of this matrix create the
mammographic texture, so called, parenchymal pattern. Mammographic texture has a
critical effect on cancer detection, as it can hide early tumors (causing missed cancers)
or mimic tumors (causing false positive findings). The statistical nature of the parenchy-
mal pattern was acknowledged by several authors. In [12, 20, 23], a power-law noise
model was proposed to characterize mammogram textures and study either the lesion
detectability or assess the breast cancer risk. This model accounts for the self-similarity
of mammographic textures, but it is global and stationary. In [25, 1], another model was
design using a wavelet-based multifractal formalism to locally characterize mammogram
textures. In [38], the AFBF were applied to mammograms to account for and analyze
their anisotropy.

In this part, we propose to revisit the study of [38] by taking the same dataset. This
dataset was provided by the Department of Radiology of the University of Pennsylvania.
Images of this dataset were acquired in medio-lateral oblique position using a Senographe
2000D (General Electric Medical Systems, Milwaukee, WI), with a spatial resolution of
0.1 mm × 0.1 mm per pixel (image size: 1914 Ö 2294 pixels). In each image of the
database, a region of interest of size 512 Ö 512 was manually extracted within the densiest
region of the breast. Originally, the dataset included a total of 58 cases, each case being
composed of the left and right breasts of a woman. For this study, we removed 12 images
that contained a part of the background (area outside the breast), causing an estimation
failure.

We applied to these images our procedure to estimate the Hurst and topothesy func-
tions represented as piecewise constant functions with 16 parameters each. We then
studied several field features extracted from these functional estimates.

(a) (b)

Figure 6. Histograms of (a) the Hurst index and (a) Hurst function
range computed on the mammogram dataset.

The first feature was the minimal value H of the Hurst function (called the Hurst
index), that measures a degree of texture regularity. The repartitions of this index over
the mammograms of left and right breasts are shown on histograms of Figure 6 (a). These
histograms are similar to the ones published in [38]: the Hurst index is also distributed
in a same way on left and right breasts. The mean value is around 0.3; it is of 0.28 with
the standard deviation of 0.11. In the previous distributions of [38], there were much
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fewer index values in the interval (0.3, 0.5) than in the present distributions. Contrarily
to the approach proposed in this paper, the model used in [38] did not take into account
the image noise. This probably led to an underestimation of the Hurst index.

The second feature was the length of the Hurst function range measured by the dif-
ference between its maximal and minimal values. In [38], such a feature could not be
precisely computed due to the fact that the estimation of the Hurst function was limited
to a few directions. It could only be underestimated by taking the difference between the
maximum of the hurst values in vertical and horizontal directions and the Hurst index
(histogram (c) of Figure 4). The distribution of this previously estimated index was
concentrated around the value of 0.2 with very few values exceeding 0.3. This is in sharp
constrast with the distribution of the new length estimates shown on Figure 6 (b). We
can see that the length is more uniformly distributed over the interval (0, 1), and often
above 0.3. This length is an indicator of the degree of texture anisotropy: the larger this
length, the more anisotropic the texture. Hence, the result obtained in this study shows
that the degree of anisotropy of mammograms is even larger than expected in [38].

(a) (b)

(c) (d)

Figure 7. Histograms of (a) the standard deviation and (a) TV-norm of
the Hurst function computed on the mammogram dataset. Histograms
of (c) the standard deviation and (d) TV-norm of the topothesy function.

We further propose to describe the mammogram anisotropy through some original
features that could not have been computed nor approached in the previous work [38].
These features are the standard deviations of the Hurst and topothesy functions, and their
TV-norms. The standard deviation accounts for the importance of function variations
and the TV-norm for the sharpness of these variations. For the topothesy function, these
features were normalized by the mean function value to make these features independent
of a linear contrast change of the image. According to histograms on Figure 7 (a) and
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(b), variations of the Hurst function can be large (standard variation often reaches values
around of 0.15) but are rather smooth than sharp (the TV-norm remains quite low). As
observed on Figure 7 (c) and (d), variations of the topothesy function can be large and
seems to be sharper than those of the Hurst functions.

On Figure 8, some images of the datasets are shown together with their corresponding
topothesy and Hurst functions. We can observe a typical form of the Hurst function
which is peaked in one direction. The peak location indicates a direction where image
variations have lowest frequencies. The peaks are also present in the topothesy functions
at a same place as the ones of the Hurst function. The peaks of the Hurst and topothesy
functions seem to vary in sharpness and height depending on the image anisotropy.

On Figure 9, we further show simulations of several original images sampled from
the estimated AFBF. These illustrations account for the ability of the simulated model
to reproduce the mammogram aspect, including its regularity, directionality, anisotropy,
trends and details. We observe that some fine structures present for instance in the fifth
example could not be reproduced truthfully.

7. Comparison with state-of-the-art methods

In this section, we investigate the ability of state-of-the art texture models based on
stationary Gaussian field to estimate and characterize mammograms.

7.1. Methods. As argued in [14], there exist mainly two approaches to simulate sta-
tionary Gaussian fields: Random Phase Noise (RPN) and Asymptotic Discrete Spot
Noise (ADSN). Even though these two approaches generate different types of stochastic
process, they provide similar results for most textures.

The presentations of each method is inspired from [14]. Both methods assume that

textures are periodic images and require an input image u ∈ RI2 for the estimation of the
field. They rely upon a so-called texton ψ of size L× L (with L ≤ I) which a subimage
selected from the original image and represents the underlying stationary field.

To do our experiments, we used the code provided by authors of [15].

Random Phase Noise (RPN): The generation of new textures from an input

texton ψ ∈ RL2

through the RPN approach consists in simulating the field Z ∈
RI2 with Fourier transform defined as Ẑ = |ψ̂|eiθ where θ is a random odd vector

in (−π, π]I
2

and ψ̂ ∈ CI2 is the Fourier transform of ψ zero-padded. In other
words, new textures are simulated by keeping the modulus of ψ but using random
phases.

Asymptotic Discrete Spot Noise (ADSN): This simulation method consists

in simulating the field Z = ψ ? Y where Y ∼ N (0, IdI2) and ψ ∈ RL2

is a
user-determined texton with mean 0 and properly normalized.

It is worth mentioning that the autocovariance of the processes Z are fully determined

by ψ and is given by ĉ = |ψ̂|2. The estimation of the texton ψ from the input image u
is a crucial step and is performed using the method of [15]. In practice, the input image
u may not be periodic, which leads to estimation artifacts due to the implicit periodic
extension of the domain. We will therefore run each method on the periodic component
of u obtained via the periodic+smooth decomposition of [28].

7.2. Estimation of mammograms. The textons associated to each mammogram are
estimated with sizes L = 63 and L = 255. The ADSN processes associated to each
texton are then simulated and are displayed on Figure 10. The results with the RPN
are not displayed here since very similar to the one obtained with the ADSN (see next
subsection).
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H = 0.33, Hl = 0.23, βstd = 0.08, βtv = 0.03, τstd = 0.63, τtv = 0.32.

H = 0.46, Hl = 0.11, βstd = 0.04, βtv = 0.01, τstd = 0.19, τtv = 0.23.

H = 0.31, Hl = 0.51, βstd = 0.14, βtv = 0.06, τstd = 2.07, τtv = 1.09.

H = 0.18, Hl = 0.69, βstd = 0.22, βtv = 0.02, τstd = 1.8, τtv = 0.26.

H = 0.005, Hl = 0.86, βstd = 0.18, βtv = 0.12, τstd = 3.38, τtv = 1.79.

Figure 8. Estimation of the topothesy (τ) and Hurst (β) functions
from some mammograms. First column: image ROI, second and third
columns, the graphs of τ and β estimated from the ROI of the same
row. Below the graphs, the values of the different field features are also
reported: H is Hurst index, Hl the range of τ ; βstd and βtv are the
standard deviation and the TV-norm of β respectively. Similarly, τstd
and τtv are the standard deviation and the TV-norm of τ respectively.
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Figure 9. Simulations of mammograms: First column: the original
image, second to fourth column: three synthetic images sampled from
the AFBF estimated from the original image of the same row.

This illustration shows that state-of-the-art methods are not able to characterize real
textures from mammograms. In order to understand this failure, we may wonder if
these state-of-the-art methods are able to correctly approximate AFBFs. This question
is investigated in the next paragraph.

7.3. Estimation of AFBFs. In order to illustrate the performance of the RPN and
ADSN on AFBFs, we generate three different AFBF realizations u of size 512 × 512
displayed on Figure 11:
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Original ψ (63× 63) ADSN ψ (255× 255) ADSN

Figure 10. Realization of the ADSN for each mammogram of Section 6.
First column: the periodic component of the mammogram on a 512×512
grid. Second and third column: the estimated texton ψ of size 63 × 63
(resp. 255× 255) and one realization of the associated process.

Iso1: An isotropic AFBF with its Hurst parameter β < 1/2 i.e. without long-range
dependency.

Iso2: An isotropic AFBF with its Hurst parameter β > 1/2 i.e. with long-range
dependencies.

Aniso: An anisotropic AFBF with its Hurst function β(θ1) > 1/2 in direction θ1

and β(θ2) < 1/2 in the other direction.

The texton are estimated with sizes L = {63, 255, 512} from which the RPN and
ADSN processes are simulated and displayed on Figures 12, 13 and 14 respectively.

When the AFBF contains long-range dependencies (Iso2 and Aniso), its estimation
can only be performed with a texton of size L = I = 512. However, when the AFBF
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Figure 11. The three AFBFs used: Iso1, Iso2, and Aniso form top to
bottom. First column: the periodic component of one realization of the
AFBF u on a 512× 512 grid. Second and third columns: the Hurst and
topothesy functions, respectively.

does not contain long-range dependencies (Iso1), a relatively small L is enough to obtain
a visually good estimation (L = 63).

8. Discussion

We designed a method for the estimation of the functional parameters of the anisotropic
fractional Brownian field, namely the topothesy and Hurst functions. This method con-
sisted of fitting the empirical semi-variogram computed from an image to the semi-
variogram of a turning-band field that approximates the AFBF. The fitting criterion was
formulated in terms of a separable non-linear least square criterion, the linear part re-
lating to the topothesy function and the non-linear part to the Hurst function. We then
proposed an algorithm relying on a variable projection to minimize this criterion. This
algorithm was combined with a coarse-to-fine multigrid strategy to improve its conver-
gence. We presented a numerical study of the algorithm on simulated textures. In this
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Iso1 Iso2 Aniso

Figure 12. Realizations of the RPN and ADSN processes for each of
the AFBFs of Figure 11 and their estimated texton ψ of size 63 × 63.
From top to bottom: the texton ψ, the RPN realization and the ADSN
one.

study, the estimation error was evaluated as a function of a radial precision, directly re-
lated to the number of parameters appearing in the discrete representations of the Hurst
and topothesy functions. This error was below ten percent for the finest radial precision,
when the empirical semi-variogram was computed on large images. This error increased
as the image size descreased. It reached values above 10 % when the image size was
below 400×400. For illustration, the estimation method was applied to mammograms of
a private dataset studied in a previous work. From the estimated functional parameters,
we derived some field features that described the mammogram texture. We also sampled
the estimated fields to generate some realistic simulations of mammograms.

This work represents a breakthrough concerning the estimation of parameters of
AFBF, which had only been partly and inaccurately achieved. Features can now be
derived from the estimated field and used to classify textures. In applications to mam-
mograms, we plan to develop features that could help assessing a breast cancer risk, or
evaluate the BIRADS grade of breast density [21, 22], which is a well-known cancer risk
factor. Following the approach in [35, 34], we also envisage to use features to detect
lesions in mammograms or breast tomosynthesis. However, the actual method is not
accurate enough to envisage its application to small-image classification or texture seg-
mentation. Indeed, such an application require estimating model parameters in a local
way on small neighborhoods of image pixels. One way to overcome this limitation would
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Iso1 Iso2 Aniso

Figure 13. Realizations the RPN and ADSN processes for each of the
AFBFs of Figure 11 and their estimated texton ψ of size 256 × 256.
From top to bottom: the texton ψ, the RPN realization and the ADSN
one.

be to introduce penalizations of parameters within the fitting criterion. Such an ap-
proach was adopted for the estimation of the local Hurst index in [31, 30]. Penalty terms
would constrain the model parameters in shape or space. For instance, they could be
a TV-norm on topothesy and Hurst functions that would regularize the shape of these
functions. As the penalty terms could be non-differentiable, our algorithm would no
longer be appropriate for the minimization of the fitting criterion. It could however be
adapted following the approach developed in [42] for separable non-linear least square cri-
terion or, alternately, specifying generic algorithms for the minimization of non-smooth
functions [45].

Besides, the facility brought by this work to sample realistic textures from AFBF
is also of interest for applications. For instance, synthetic textures could be used for
data augmentation in machine learning [40]: they could supply examples for learning
the neural network architectures in domains where there is a lack of data to achieve
this task. This could be the case in the medical domain of breast images where, to our
knowledge, there are a few public database [41, 19, 18] and, within these database, even
fewer cases representing rare lesion types. As shown by illustrations, AFBF seems to be
appropriate to randomly reproduce mammograms. However, it fails to reproduce some
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Iso1 Iso2 Aniso

Figure 14. Realizations of the RPN and ADSN processes for each of
the AFBFs of Figure 11 and their estimated texton ψ of size 512× 512.
From top to bottom: the texton ψ, the RPN realization and the ADSN
one.

fine structured details of the image. To remove this limitation, the AFBF simulation
could be combined with simulation methods based on a physical modeling of breast
tissues and image acquisition [2, 3, 4, 13].

Synthetic mammograms generated from the AFBF model had a better aspect than
those simulated with the state-of-the-art methods ADSN and RPN. Contrarily to these
texton-based methods, the AFBF simulation could render long-range field dependencies
which occur in mammograms. Fields with long range dependencies are non-stationary
and have a variogram which tends to infinity as the lag module tends to infinity. Texton-
based methods are not well suitable to simulate such fields. Their application is limited
to stationary fields, whose variograms are bounded. On the other hand, the AFBF model
is not appropriate for the modeling of fields with bounded variograms. Hence, the AFBF
model should be used in complement to state-of-the-art methods for simulating images
which do not fulfill the stationary assumption.
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Appendix A. Derivatives of L.

Let εn(τ, β) = Fn(β)τ − ŵn be the n-th residual of the function L.
Gradients of εn with respect to τ and β are

∇τ εn(τ, β) = Fn(β)T ,

∇βεn(τ, β) = DFn(β)T τ.
(A.1)

where DFn(β) is the jacobian matrix of Fn(β) whose terms are
(A.2)

DFnjk(β) =
∂Fnj
∂βk

(β) =
1

2

M∑
m=1

Tj(θm)Bk(θm) log
(
|〈xn, u(θm)〉|2

)
|〈xn, u(θm)〉|2β(θm).
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The Hessians of εn are given by

∇2
ττ εn(τ, β) = 0,

∇2
ββεn(τ, β) =

∑
j=1

∇2Fnj(β)τj ,

∇2
βτ εn(τ, β) = DFn(β)T ,

∇2
τβεn(τ, β) = DFn(β),

(A.3)

where ∇2Fnj(β) is the Hessian matrix of Fnj whose terms are

∇2Fnjkl(β) =
∂2Fnj
∂βl∂βk

(β)

=
1

2

M∑
m=1

Tj(θm)Bk(θm)Bl(θm)
∣∣log

(
|〈xn, u(θm)〉|2

)∣∣2 |〈xn, u(θm)〉|2β(θm).

(A.4)

The first-order derivatives of L are

∂L
∂τj

(τ, β) =

N∑
n=1

∂εn
∂τj

(τ, β) εn(τ, β),

∂L
∂βk

(τ, β) =

N∑
n=1

∂εn
∂βk

(τ, β) εn(τ, β).

(A.5)

The corresponding gradients of L with respect to the two variables (τ, β) are

∇τL(τ, β) =

N∑
n=1

∇τ εn(τ, β) εn(τ, β),

∇βL(τ, β) =

N∑
n=1

∇βεn(τ, β) εn(τ, β).

(A.6)

Using Equation (A.1), it follows that

∇τL(τ, β) =

N∑
n=1

Fn(β)T εn(τ, β),

∇βL(τ, β) =

N∑
n=1

DFn(β)T τ εn(τ, β).

(A.7)

The second-order partial derivatives of L are

∂2L
∂τm∂τk

(β) =

N∑
n=1

(
∂εn
∂τm

(τ, β)
∂εn
∂τk

εn(τ, β) +
∂2εn

∂τm∂τk
(τ, β) εn(τ, β)

)
,

∂2L
∂βm∂βk

(β) =

N∑
n=1

(
∂εn
∂βm

(τ, β)
∂εn
∂βk

εn(τ, β) +
∂2εn

∂βm∂βk
(τ, β) εn(τ, β)

)
,

∂2L
∂τm∂βk

(β) =

N∑
n=1

(
∂εn
∂τm

(τ, β)
∂εn
∂βk

εn(τ, β) +
∂2εn

∂τm∂βk
(τ, β) εn(τ, β)

)
.

(A.8)

The Hessians of L with respect to the two variables (τ, β) are thus given by
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∇2
ττL(τ, β) =

N∑
n=1

∇τ εn(τ, β)T∇τ εn(τ, β) + εn(τ, β)∇2
ττ εn(τ, τ),

∇2
ββL(τ, β) =

N∑
n=1

∇βεn(τ, β)T∇βεn(τ, β) + εn(τ, β)∇2
ββεn(τ, β),

∇2
τβL(τ, β) =

N∑
n=1

∇τ εn(τ, β)T∇βεn(τ, β) + εn(τ, β)∇2
τβεn(τ, β).

(A.9)

Therefore, the Hessians of L are

∇2
ττL(τ, β) =

N∑
n=1

Fn(β)TFn(β),

∇2
ββL(τ, β) = τT

(
N∑
n=1

DFn(β)DFn(β)T

)
τ +

N∑
n=1

εn(τ, β)
∑
j=1

∇2Fnj(β)τj ,

∇2
τβL(τ, β) =

N∑
n=1

Fn(β)T DFn(β)T τ +

N∑
n=1

εn(τ, β)DFn(β).

(A.10)

Appendix B. Derivatives of K.

Using the chain-rule, the first-order partial derivatives of K are

∂K
∂βk

(β) =

J∑
j=1

∂L
∂τj

(τ∗(β), β)
∂τ∗j
∂βk

(β) +
∂L
∂βk

(τ∗(β), β).

But, since τ∗(β) minimizes L(·, β), we have

∇τL(τ∗(β), β) = 0.

So,

∂K
∂βk

(β) =
∂h

∂βk
(τ∗(β), β).

Hence, the gradient of K is given by

(B.1) ∇K(θ) = ∇βL(τ∗(θ), θ).

Using Equation (A.7), the expression of the gradient given in Equation (4.3) follows.
Furthermore, second-order partial derivatives of K are given by

∂2K
∂βm∂βk

(β) =

J∑
j=1

∂2L
∂τj∂βk

(τ∗(β), β)
∂τ∗j
βm

(β) +
∂2L

∂βm∂βk
(τ∗(β), β).

Hence, the Hessian of K is

∇2K(θ) = ∇2
ββL(τ∗(θ), θ) +∇2

τβL(τ∗(θ), θ)Dτ∗(β)T ,

where Dτ∗(β) is the Jacobian of τ∗ at β.
Moreover, since

u(β) = ∇τL(τ∗(β), β) = 0,
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we have ∇u(β) = 0. Hence, using the chain-rule,

∇2
ττL(τ∗(β), β)Dτ∗(β)T +∇2

βτL(τ∗(β), β) = 0

Therefore,

Dτ∗(β)T = (∇2
ττL(τ∗(β), β))−1∇2

βτL(τ∗(β), β).

Consequently, the Hessian of K can be expressed as

(B.2) ∇2K(θ) = ∇2
ββL(τ∗(θ), θ)−∇2

τβL(τ∗(θ), θ)(∇2
ττL(τ∗(β), β))−1∇2

βτL(τ∗(β), β).

Using Equation (A.10), the expression of the Hessian of K given by Equation (4.2)
follows.
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