
HAL Id: hal-03922310
https://hal.science/hal-03922310

Submitted on 4 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Supporting conflict-free replicated data types in
opportunistic networks

Frédéric Guidec, Yves Mahéo, Camille Noûs

To cite this version:
Frédéric Guidec, Yves Mahéo, Camille Noûs. Supporting conflict-free replicated data types in op-
portunistic networks. Peer-to-Peer Networking and Applications, 2022, �10.1007/s12083-022-01404-6�.
�hal-03922310�

https://hal.science/hal-03922310
https://hal.archives-ouvertes.fr

Supporting Conflict-Free Replicated Data
Types in Opportunistic Networks

Frédéric Guidec1,2, Yves Mahéo1,2 and Camille Noûs2

1IRISA, Université Bretagne Sud, France.
2Laboratoire Cogitamus, France.

Abstract
Conflict-Free Replicated Data Types (CRDTs) are data types that can
be used in distributed systems when optimistic replication is tolerable.
Replicas can be updated locally, without coordination, and consistency is
obtained eventually by asynchronously propagating updates among replicas.
Because CRDTs can tolerate asynchronous transmissions, they can serve
as software elements in opportunistic networks (OppNets), where the
dissemination of information is dependent on unplanned transient radio
contacts between mobile nodes. In this paper we investigate the problem of
implementing operation-based, state-based, and delta-state-based CRDTs in
OppNets. A contact-driven synchronization algorithm is proposed for each
kind of CRDT, and experiments based on realistic tracesets are conducted
in order to compare how these algorithms can perform in an OppNet.
Experimental results show that delta-state-based CRDTs globally outperforms
operation-based and pure state-based CRDTs, especially when considering
the number of messages required to ensure the synchronization of replicas.

Keywords: CRDT, optimistic replication, opportunistic networking, ad hoc networks

1 Introduction
In distributed systems, data objects must often be replicated on several hosts.
Maintaining the consistency of the resulting replicas can be an issue when these
replicas can be updated concurrently. Some systems strive to maintain strong
consistency continuously, based on coordination models that prevent or at least
severely constrain concurrent updates (e.g., [13, 23]). Other systems adopt a more

2 Supporting Conflict-Free Replicated Data Types in Opportunistic Networks

add(a) rmv(a) add(a)

{ } { a } { a, b } { b } { a, b } { a, b }

R1

add(b) rmv(a)

{ } { b } { a, b } { b } { a, b }

R2

SYNC 1 SYNC 2

Fig. 1: Example of a run involving an Add-Wins Set replicated in R1 and R2

relaxed approach, allowing replicas to diverge temporarily (optimistic replication),
while ensuring eventual consistency, that is, guaranteeing that they will eventually
reach a common state.

Conflict-free Replicated Data Types (CRDTs) belong to this second category:
any replica can be updated locally, without any coordination with the others.
Synchronization occurs episodically between pairs of replicas by exchanging
information about past updates. When the same updates have been taken into
account by all the replicas, these replicas finally attain the same state.

Many kinds of CRDTs have already been described in the literature, such
as counters, registers, sets, maps, lists, graphs, etc. [26, 32]. Each CRDT is
characterized by the updates it supports, and by a concurrency semantic to be applied
when updates occur concurrently.

A Set CRDT, for example, implements a distributed set. It supports two kinds
of updates: add(x), and rmv(x). In the presence of concurrent add(x) and rmv(x)
updates applying to the same element x, several concurrency semantics are possible.
In an Add-Wins set, priority is given to add(x), while in a Remove-Wins set it is
given to rmv(x). Figure 1 shows an example where an Add-Wins set is replicated in
two replicas R1 and R2, with initial state {} on both replicas (i.e., both replicas agree
that the set is initially empty). In replica R1, element a is first added locally to the
set, while element b is added to the set in replica R2. At this stage of this execution
the state is different in the two replicas, but a synchronization occurs between these
replicas (SYNC1), after which they agree that the state of the set is now {a, b}.
In replica R1, element a is then removed, and then added again to the set, while
in replica R2 element a is only removed from the set. After these operations, both
replicas synchronize again, which leads to a situation where they agree that the state
of the set is {a,b} again. This is because the last add(a) in R1 and the last rmv(a) in
R2 occurred concurrently, and priority is given to add(a) in and Add-Wins Set. The
same scenario with a Remove-Wins set would result in a set with state {b} in both
replicas, since the priority would then be given to rmv(a).

Two main ways of implementing CRDTs are usually distinguished, resulting in
so-called operation-based CRDTs and state-based CRDTs. In an operation-based
CRDT, when an operation (update) is applied to a replica, a description of this
operation is embedded in a message and sent to all other replicas. Each recipient
can then update its own state accordingly. This approach requires a message
dissemination layer that guarantees at least reliable broadcast. If the operations that
can be applied to the CRDT are not idempotent and do not commute, then the

Supporting Conflict-Free Replicated Data Types in Opportunistic Networks 3

dissemination layer must additionally guarantee that the messages are delivered
exactly once, and (usually) in causal order.

In a state-based CRDT, an operation is applied only to the state of the local
replica. Each replica synchronizes periodically with other replicas by sending them
its entire state. Upon reception of the state of another replica, this received state
is merged with the local state, thanks to a function that deterministically computes
the join (least upper bound) of both states. The set of all states then forms a
monotonic semilattice, and the state of the CRDT must be defined such that any
update monotonically increases this state, according to the same partial order rules
as the semilattice [26, 32].

With state-based CRDTs, there is no need for each update to be transmitted to
all replicas, unlike with operation-based CRDTs. A sporadic synchronization with
a few other replicas is sufficient. If the synchronization graph is connected [26],
eventual consistency can be reached. Nevertheless, shipping entire states between
replicas can incur a major communication overhead. Delta-state CRDTs (or delta
CRDTs for short) have been proposed to alleviate this overhead by passing only
partial information about the sender’s state. This information typically consists in
a representation of the effect of the last update operations performed on the local
state [1, 21].

CRDTs are suited to distributed systems that may observe node crashes and
network partitions. Provided crashed nodes eventually recover, and partitions
merge, the replicas will ultimately converge. Opportunistic networks (OppNets)
are inherently networks that exhibit such characteristics. An OppNet is a network
whose nodes are mostly mobile, and that operates solely by exploiting temporary
direct radio contacts between pairs of nodes [25]. Most of the times these radio
contacts cannot be predicted in advance, so they must be exploited opportunistically
whenever they occur, hence the opportunistic nature of communication in such a
network. Besides, once a contact is established between two nodes, it can be broken
as soon as the nodes move away from each other.

Figure 2 illustrates the evolution of a typical OppNet, whose mobile nodes only
come into contact every now and then, depending on how they move. The nodes
depicted in this figure may be handheld devices carried by human beings, but they
may as well be carried by vehicles, animals, drones, or any combination of mobile
entities. The edges in the figure depict radio contacts between the nodes. Because
the radio transmission range is limited, this network is obviously partitioned. This
is not an exceptional situation in an OppNet, but a perfectly normal situation.

We believe that because they tolerate asynchronous communication, which is
inherent to OppNets, CRDTs can serve as perfect building blocks for distributed
applications devoted to OppNets. In traditional (Internet-like) networks, CRDTS
are typically used to implement distributed databases, collaborative editing systems,
chat systems, etc. There is no reason why similar use cases could not be
implemented in OppNets as well, using CRDTs as a means to deal with
asynchronous communication.

4 Supporting Conflict-Free Replicated Data Types in Opportunistic Networks

N02 N03
N04

N17

N01

N08

N11
N13

N12

N05

N14
N19

N18

N16

N00
N09

N06

N07

N15
N10

00:02:00

(a)

N08
N02

N03

N04
N01

N11
N13

N14
N19

N18
N16

N00
N09

N06

N12

N05 N07

N15N10

00:02:15

N17

(b)

N08
N02

N03

N04

N17

N01

N11
N13

N14
N19

N18N16

N00
N09

N06

N12

N05

N07

N15N10

00:02:30

(c)

Fig. 2: Illustration of the evolution of an opportunistic network

This does not mean that CRDTs can be used in any kind of OppNet, though.
The behavior of CRDT replicas is always guaranteed only within the limits of a
clearly defined system model (e.g., reliable broadcast is required for operation-
based CRDTs). All OppNets do not necessarily satisfy this model, so when running
experiments involving CRDTs we shall make sure that the networking scenario
considered is consistent with the use of CRDTs.

In this paper we investigate several implementations of CRDTs in OppNets,
showing how the replicas of each kind of CRDT can be synchronized in a
networking environment in which information propagation can only rely on
unpredicted pair-wise contacts between pairs of mobile nodes. Our objective is also
to determine if all kinds of CRDT can perform equally well in an opportunistic
networking setting, or if one kind should for example be preferred over the others.

The paper constitutes an original study on the synchronization of CRDTs
in OppNets that encompasses operation-based, state-based, and delta-state-based
CRDTs. Its main contributions are:

• the definition of OppNet-compatible synchronization algorithms for operation-
based, state-based, and delta-state-based CRDTs;

• the definition of a transitive mode for the synchronization of delta-state-based
CRDTs, in order to potentially accelerate the convergence of the replicas in stable
parts of the OppNet;

• the definition of an experimentation methodology for CRDT synchronization in
OppNets;

• the presentation and the analysis of experimental results produced according to
this methodology, based on several real-life contact tracesets.

It is worth mentioning that, in the literature, it is commonly assumed that an
OppNet is a network in which the main challenge is to route each unicast message
toward its destination. The work presented in this paper clearly stands out from this
vision, since in the synchronization algorithms we define for state-based and delta-
state-based CRDTs, messages are only exchanged directly between neighbor nodes,
so no routing algorithm is required to forward messages beyond direct neighbors.
Operation-based CRDTs require reliable broadcast, though, but in an OppNet this
can be obtained efficiently with an epidemic dissemination of messages.

As mentioned above, CRDTs can only be used in networking environments
that fully satisfy their system model. Although a few tracesets of real OppNets

Supporting Conflict-Free Replicated Data Types in Opportunistic Networks 5

are available in the CRAWDAD database (Community Resource for Archiving
Wireless Data At Dartmouth [31]), none of these tracesets can readily be used to
run experiments involving CRDTs. This is generally due to the fact that some of
the mobile nodes considered in a traceset behave erratically, which would prevent
CRDT replicas to ever converge. Rather than designing a purely synthetic scenario
that would satisfy the requirements of CRDTs by construction, we show in this
paper how satisfactory tracesets can be derived from the raw tracesets available on
CRAWDAD.

The remainder of this paper is organized as follows. Related work is presented
and discussed in Section 2. The system model we consider in this work is detailed
in Section 3. Synchronization algorithms for each kind of CRDT considered in
this paper (i.e., operation-based, state-based, and delta-state based) are presented
in Section 4. Section 5 presents experimental results we obtained while running
each of these algorithms to ensure the synchronization of Add-Wins Sets (AW-
Sets) in realistic opportunistic networks. A discussion on the lessons learned from
experimentation is developped in Section 6 and Section 7 concludes the paper.

2 Related work

2.1 Operation-based CRDTs in OppNets
Opportunistic computing has been introduced by Conti et al. as an emerging
paradigm that moves forward from simple message forwarding in OppNets,
with the aim of enabling collaborative computing in such networks where long
disconnections and network partitions are the rule [9].

Since they can tolerate asynchronous communication and occasional network
partitions, CRDTs are natural candidates to be used in OppNets, in which they could
be used to implement opportunistic computing applications. Yet implementing and
using CRDTs in OppNets has not been addressed much in the literature so far.
Costea et al. formulate two propositions, [10] and [11], in which a CRDT derived
from Logoot [34] is used as a means to obtain total order in OppNets. In both
of these papers the authors implement operation-based CRDTs, assuming that an
opportunistic communication layer is available to ensure the causal dissemination of
operations network-wide. Two protocols are considered to ensure this dissemination
(pure epidemic [33], and socially-aware interest-based dissemination [8]), and
causal order is obtained based either on CBCAST (Causal Broadcast) [10] or on
causal barriers [11]. The experimental results presented in both of these papers show
that implementing operation-based CRDTs in OppNets puts significant pressure
on the caches maintained on each node to store messages. Recognizing this fact,
the authors assume that when messages get purged from the caches before being
delivered to all potential receivers, there is still a chance for replicas to synchronize
during pair-wise contacts, based on data maintained directly in the application layer.

A collaborative editing system for Android that targets delay-tolerant networks
is presented in [28]. This work constitutes a first attempt to fully implement a
CRDT for OppNets, using IBR-DTN [30] to handle intermittent connections. As it is

6 Supporting Conflict-Free Replicated Data Types in Opportunistic Networks

derived from Logoot [34] (which defines an operation-based CRDT), the presented
prototype also suffers from the scalability drawbacks mentioned above.

2.2 The potential of state-based CRDTs in OppNets
Although the implementation of operation-based CRDTs in OppNets has already
been considered in a few papers, the case of state-based CRDTs has not been
investigated as yet, to the best of our knowledge. Some papers describe opportunistic
computing algorithms that could typically rely on state-based CRDTs, though. For
example, in [20] the authors investigate the problem of counting how many mobile
nodes are present in an enclosed area, using a distributed algorithm, and based on
pair-wise radio contacts only. A GO-Counter (Grow-Only Counter) is a CRDT that
can be implemented efficiently as a state-based CRDT, and that could typically be
used to count the number of nodes in a network.

The advantage of state-based CRDTs is that, unlike operation-based CRDTs,
they can be synchronized over unreliable communication channels. The drawback
is that they require shipping the entire state of a replica, which can yield significant
communication overhead for container CRDTs (e.g., sets, maps, graphs), which can
store large amounts of data [26]. Delta-state based CRDTs (δ-CRDTs) mitigate this
issue by only shipping in a synchronization message the change that has been made
recently to a replica, rather than its full state [1, 2, 15]. This change is expressed as
the join of multiple fine-grained states called deltas. Several deltas can be joined in
a delta-group, and shipped together to a remote replica.

This approach requires that each replica keeps track of all the other replicas
it is connected to at any time. Besides, the replica must maintain for each peer
a communication buffer (δ-buffer) that contains the deltas that have not yet been
passed to (and acknowledged by) the peer, thus ensuring FIFO communication
between any pair of replicas. When a connection is established between two replicas
for the first time, or after the last connection has been disrupted, the replicas must
exchange their full state before they can start exchanging deltas.
Δ-CRDTs are a variant of δ-CRDTs that does not resort to delta buffers, and

that does not require that pairs of replicas communicate continuously to synchronize
their state [21]. Instead, it is assumed that each replica maintains the causal context,
typically, as a version vector, that replicas can exchange. By comparing its own
causal context with a received one, a replica can determine the minimal delta (Δ)
of its state that is missing on the remote replica, and send only thisΔ rather than its
full state. With the synchronization algorithm described in [21], a replica sends its
version vector to a randomly selected peer, either periodically (pull model), or after
an update has been applied locally (push model). Several forms of δ-CRDTs have
been proposed in the literature, enhancing the original synchronization algorithm
proposed in [2] for specific data structures like JSON [5, 27] or text [24].

In most papers dealing with CRDTs, details about the communication layer are
usually not discussed much. It is often assumed that the hosts where CRDT replicas
are maintained belong to a P2P network, that each replica is somehow aware of its
peers at any time, and that connections between peer nodes are available whenever

Supporting Conflict-Free Replicated Data Types in Opportunistic Networks 7

Code 1 Definitions of basic functions and events offered by the communication
layer [Brown code: definition only required for operation-based synchronization]

01 def ID: String # or IMEI, MACaddr, etc.
02 def MSG: ...

03 Initialization:
04 static ID self.id # id of the local host

05 event new_neighbor(ID neigh_id)
06 # Raised by the networking layer when a new neighbor
07 # has been detected

08 function current_neighbors(): Set<ID>
09 # Returns the identifiers of the current neighbors
10 # of the local host

11 function send(ID dest_id, MSG msg)
12 # Sends the specified msg to the specified destination
13 # (which must be a neighbor of the sender)

14 function broadcast(MSG msg)
15 # Broadcasts the specified msg network-wide

16 event receive(ID src_id, MSG msg)
17 # Called by the networking layer when a msg
18 # has been received from a neighbor

needed, although transmissions may actually fail. As a consequence, in most
synchronization algorithms, each replica periodically selects one or several peer
replicas (usually randomly), and initiates a synchronization session with this/these
peer(s). In an OppNet, the situation is quite different, since mobile devices can only
communicate during transient contacts, which are usually unexpected and may be
broken at any time. Any synchronization algorithm designed for OppNets should
take these constraints into account, considering that pair-wise synchronization
between replicas must be contact-driven rather than being attempted randomly.

3 System model
In an opportunistic network, interactions are based solely on pair-wise radio contacts
between neighbor devices. As a general rule, a radio contact between two devices
cannot be planned in advance, so when such a contact occurs it constitutes a
transient opportunity for these devices to exchange messages. Likewise, once a
contact is established between two nodes it is usually not possible to predict how
long this contact will last, so any opportunistic interaction protocol must tolerate
communication disruptions.

The synchronization algorithms defined in the next section are meant to run on
top of a basic communication layer, whose characteristics are detailed below.

The functions and events offered by the communication layer are presented in
Code 1. A mobile device must be able to detect its neighbors, that is, other devices
that are in its radio range. In addition, it must be able to exchange messages with
any of these neighbors.

8 Supporting Conflict-Free Replicated Data Types in Opportunistic Networks

Event new_neighbor() is raised by the communication layer whenever a
contact is established with a new neighbor. As illustrated in Fig. 2, a mobile
device may have several neighbors simultaneously, so function current_neighbors()
can be called to obtain a list of the current neighbors, as perceived by the
communication layer. Neighbor discovery may actually be performed in several
ways in the communication layer, depending on the characteristics of the actual
underlying transmission technology. With Bluetooth, for example, an event is raised
automatically whenever a channel is established (or broken) between two peers, so
discovering a neighbor is quite straightforward. With Wi-Fi running in ad hoc mode,
a neighbor discovery protocol (typically based on the periodic broadcast of “hello”
messages) must be implemented in the communication layer.

Function send() serves to transmit a message to a direct neighbor of the sender.
A number of reasons may incur a transmission failure, for instance if the targeted
neighbor has just moved out of range. It should be noticed that function send() does
not return a status, for it is not assumed that transmission failures can be detected
(a missing acknowledgment, for example, is not a guarantee that a message has not
reached its destination).

Event receive() is automatically raised by the communication layer when
a message has been received from a neighbor device. We assume that the
communication layer automatically discards corrupted messages.

Note that send() and receive() are only meant to support message exchange
between direct neighbors. With state-based and delta-state-based CRDTs there is no
need to propagate messages beyond direct neighbors, since the synchronization of
replicas only occurs between neighbor nodes. There is thus no need for a routing
algorithm supporting multi-hop message forwarding.

Operation-based CRDTs require that updates disseminate in the whole network,
though. For such CRDTs —and only for these— the communication layer must
implement a broadcast protocol that makes it possible to send a message to all
nodes in the network, via function broadcast(). A dissemination protocol operating
according to the ”store, carry and forward” principle is thus required: each node
maintains a cache in which messages can be stored, carried for a while, and
forwarded later to neighbor nodes. Epidemic forwarding is typically an effective
method to perform this dissemination [12, 33], but other dissemination algorithms
may be used, for example in networks where mobility or radio contacts follow
regular patterns.

4 Synchronization algorithms for CRDTs in OppNets
A synchronization algorithm designed for opportunistic networks must use radio
contacts between mobile nodes as opportunities for these nodes to synchronize the
CRDT replicas they hold. In this section we present three algorithms that are meant
to support the synchronization of operation-based CRDTs, state-based CRDTs,
and delta-state-based CRDTs respectively. We also propose an extension for the
synchronization of delta-state-based CRDTs, using transitive forwarding as a means
to speed up the dissemination of delta states in an OppNet.

Supporting Conflict-Free Replicated Data Types in Opportunistic Networks 9

Code 2 Operation-based (OB) synchronization algorithm
01 function generate_effector(MUTATOR m): EFFECTOR
02 # Generates the effector of update m

03 function apply_effector(EFFECTOR m)
04 # Applies effector m on the local replica

05 upon update(MUTATOR m)
06 m’ = generate_effector(m)
07 broadcast(m’)
08 apply_effector(m’)

09 upon receive(ID src_id, EFFECTOR m’)
10 apply_effector(m’)

4.1 Operation-based synchronization
In an operation-based CRDT, whenever an operation (update) is performed on a
replica, information about this operation is embedded in a message and sent to all
other replicas, which can then update their own state accordingly [32].

In practice, any operation-based CRDT must define a generator function and an
effector function [26]. The generator function is meant to be executed only in the
replica where the update is originally applied (see lines 01-02 in Code 2). It returns
an effector that encodes the side-effects of the update. This effector must eventually
be executed in all replicas of the CRDT, thus updating each replica state.

In Code 2 we define the signatures of functions generate_effector() and
apply_effector(). How these functions are implemented depends on the kind of
CRDT considered.

In any case, once such functions are available, the synchronization of replicas
is straightforward, provided a broadcast service is available to propagate effectors
between replicas. Whenever an update is applied to a replica (line 05), an effector is
created locally on this replica (line 06), and broadcast to all other replicas (line 07).
This effector is eventually applied in each replica, regardless of whether it has been
produced locally (line 08) or received from another replica (lines 09-10).

Operation-based synchronization requires a broadcast service that guarantees
at least reliable broadcast: all effectors must reach all replicas, and be executed
there. If the operations (updates) that can be applied to the CRDT considered
are not idempotent or do not commute (or both), then the broadcast service must
additionally guarantee that the messages carrying effectors are delivered exactly
once, and (usually) in causal order.

Broadcasting messages in an OppNet requires resorting to the “store, carry, and
forward” principle [16]: each mobile node must serve as a “data mule” for messages
it has either produced itself or received recently, storing these messages in a local
cache, and carrying them for a while, so they can be forwarded to other nodes
whenever new contacts occur. Epidemic forwarding is a broadcasting approach that
relies on this general principle [33]. Whenever two mobile nodes get into contact,
they first exchange summary vectors. A summary vector is basically a manifest
of what is contained in the sender’s cache. Upon receiving a neighbor’s summary

10 Supporting Conflict-Free Replicated Data Types in Opportunistic Networks

Code 3 Basic state-based (SB) synchronization algorithm
01 def ID: String # or MACaddr, or IMEI, etc.

02 static ID self.id # local host’s id

03 REPLICA self.state←↩ ⊥

04 function merge(REPLICA tL, REPLICA tR): REPLICA

05 # Returns the LUB (Least Upper Bound) oftL and tR

06 upon new_neighbor(neigh_id) do
07 if (self.id < neigh_id) then
08 send(neigh_id, self.state)
09 fi

10 upon receive(neigh_id, neigh_state) do
11 if (neigh_state ̸= self.state) then
12 if (self.id > neigh_id) then
13 send(neigh_id, self.state)
14 fi
15 self.state←↩ merge(self.state, neigh_state)
16 fi

vector, the receiver can either request copies of messages that are not yet in its own
cache (pull mode), or send copies of messages that are not yet in the neighbor’s
cache (push mode). In variants of this model, each node can be made selective
regarding the kind of messages it is willing to store in its cache [12].

Epidemic forwarding per se does not guarantee that messages are delivered
in causal order. This can however be obtained with very little overhead, for
example by piggy-backing causal barriers in the messages submitted to epidemic
dissemination [17].

4.2 State-based synchronization
State-based CRDTs do not necessitate that each update be sent to all other replicas.
It is sufficent that each replica synchronizes frequently enough with a few other
replicas. Under the assumption that the synchronization graph is connected, eventual
consistency is ensured [26].

A basic state-based (SB) synchronization algorithm is presented in Code 3.
This algorithm is contact-driven: the synchronization process between two nodes is
initiated when these nodes get into radio contact. Whenever such a contact occurs,
one of the nodes initiates the synchronization by sending its full state to the peer
node (lines 07-08). Upon reception, the receiver compares it with its own local
state (line 11). If both states are distinct, and if this node had not initiated the
synchronization procedure, it sends its own state to the peer node (line 13). In any
case, the received state is merged with the local state (line 15). The implementation
of function merge(), which returns the LUB (Least Upper Bound) of both states,
depends on the kind of CRDT considered.

Supporting Conflict-Free Replicated Data Types in Opportunistic Networks 11

Code 4 Signatures of functions required by the delta-state-based synchronization
algorithm
01 def ID: String # or MACaddr, or IMEI, etc.
02 def DIGEST: xxx # Version Vector

03 static ID self.id # id of the local host

04 REPLICA self.state←↩⊥

05 function merge(REPLICA tL, REPLICA tR): REPLICA

06 # Returns the LUB (Least Upper Bound) of tL and tR

07 function get_digest(REPLICA t): DIGEST
08 # Returns the digest of t

09 function generate_delta(MUTATOR m): REPLICA
10 # Returns the effect of m, expressed as a delta state

11 function get_missing(DIGEST d, REPLICA s): REPLICA
12 # Determines what part of state s would strictly inflate
13 # the remote replica whose digest is d

4.3 Delta-state-based synchronization
The problem with state-based CRDTs is that shipping entire states between replicas
can yield a major communication overhead. When dealing with CRDTs whose size
remains constant or does not grow much, such as counters and registers, state-based
synchronization is sufficient. But for container-like CRDTs that can aggregate large
amounts of data, such as sets, maps or lists, a better option is to design a more
frugal synchronization protocol, that avoids to transmit entire states every time it is
possible. In [14] two techniques, namely state-driven synchronization and digest-
driven synchronization, have been proposed to reduce the need for bidirectional full
state transmission. The algorithm we present in this section typically leverages these
techniques, shipping either digests or deltas (partial states) in order to synchronize
replicas.

Some functions must be defined for processsing the replica on a node. Their
signatures are presented in Code 4. The actual implementation of these functions
depends on the kind of CRDT considered.

Function merge() must be called to merge the local replica’state with the delta
state received from a neighbor. More formally, this function returns the LUB (Least
Upper Bound) of both states. It is similar to the function used in Code 3, except
that the state passed as argument tR is a delta state, whose internal representation is
similar to that of a full state.

Function get_digest() is intended to return the digest of the state of a replica. A
digest should express the state concisely, so that the cost of its transmission is far
lower than that of the entire state. In the case where the internal representation of
a CRDT includes causal context medadata, the digest generally takes the form of a
version vector. With this digest, the missing part in each replica can be identified, or,
more formally, one can determine the part of a replica’s state that would be needed
to strictly inflate the other replica’s state.

12 Supporting Conflict-Free Replicated Data Types in Opportunistic Networks

Code 5 Delta-state-based (Δ-SB) synchronization algorithm
01 upon new_neighbor(neigh_id) do
02 if (self.id < neigh_id) then
03 send(neigh_id, self.digest)
04 fi

05 upon receive(neigh_id, digest) do
06 D ←↩ get_missing(digest, self.state)
07 if (D ̸= ⊥) then
08 send(neigh_id, D)
09 fi
10 if (digest after self.digest) then
11 send(neigh_id, self.digest)
12 fi

13 upon receive(neigh_id, delta) do
14 ∆in ←↩ get_missing(self.digest, delta)
15 if (∆in ̸=⊥) then
16 self.state←↩ merge(self.state, ∆in)
17 self.digest←↩ get_digest(self.state)
18 fi

19 upon update(m) do
20 self.digest←↩ get_digest(self.state)

21 function get_missing(DIGEST d, CRDT s): M

22 M←↩ { m ∈ s.state, m.timestamp > d }

When an update (more formally, a mutator) is applied to the local replica,
function generate_delta() is executed. It returns a delta that is the expression of the
effect of the mutation. The computed delta is intended to be transmitted to another
replica, so that this replica can merge it with its own local state.

Function get_missing() is meant to be invoked when the digest d of a remote
replica has been received. It compares this digest to the local replica’s state s, and
determines what part of s would be required to strictly inflate the state of the remote
replica. The result is a delta state, which captures the data required to inflate the
remote replica’s state, or ⊥ if there is no possibility to inflate that state based on s.
This function can also be used when a delta state has been received from a remote
replica, in order to determine whether all or part of this delta is indeed an inflation
to the local state.

A CRDT featuring these functions is actually a ∆-CRDT, as defined in [21].

Code 5 presents the delta-state-based synchronization algorithm we propose.
This algorithm is quite similar to that presented in [21]. The main difference is
that in [21] the synchronization of replicas is assumed to be performed periodically
(pull model), and any update to the local replica’s state is pushed immediately to a
randomly selected remote replica. In Code 5, synchronization between replicas is
only triggered by contacts between mobile nodes. Thus, when two nodes get into
contact, and only at that time, one of the nodes sends its current digest to the peer
node (lines 01–04).

Upon receiving this digest, the peer node invokes function get_missing() to
compare the received digest to the local one, and determine if part of the local state

Supporting Conflict-Free Replicated Data Types in Opportunistic Networks 13

can be sent to the neighbor (line 06 and lines 21-22). If the delta state returned by
get_missing() is not empty, it is sent to the peer node (lines 07-09).

The local version vector is also compared to that of the peer node. If the local
vector is late compared to that of the peer, then this means that the local state could
also be inflated based on information available in the peer node. In that case the
local digest is sent to the peer (lines 10–12), so it can compute the delta to send back
to the local node.

Upon receiving a delta state from a peer node (line 13), the local node uses this
digest to determine what part of the received delta can be merged with the local state
(line 14). This test may appear as being redundant with respect to that performed in
line 06, but since a node may be in contact with several neighbors simultaneously
(as shown in Fig. 2), it may occasionally receive deltas whose content overlaps
from several neighbors. The test performed in line 14 prevents any attempt to merge
redundant information with the local state.

Note that the local digest is adjusted whenever the local state is modified, that
is, when an update operation is applied locally (line 20), or when there is a merge
between the local state and another state (line 17).

4.4 Enabling transitivity in delta-state-based synchronization
In Code 5, two nodes synchronize their replicas only when they get into contact,
that is, when event new_neighbor() is raised. But as long as a contact between
two neighbor nodes is maintained, these nodes do not attempt to synchronize
their replicas anymore. When an update is applied on a node, this node does not
attempt to propagate this information to its current neighbors. Likewise, when a
node synchronizes its replica with a new neighbor (thus obtaining new information
from that neighbor), it does not attempt to propagate this information to its other
neighbors either.

Depending on the mobility scenario considered in an OppNet, some mobile
nodes may occasionally find themselves in relatively “stable” parts of the
network, that is, parts where each node maintains long-lasting contacts with a
few neighbors, while no new contact is observed for long periods of time. In
such circumstances, it may be interesting to enable the transitive propagation of
information between neighbors. The brown lines in Code 6 show how the delta-
state-based synchronization algorithm presented in Code 5 can be extended along
that line.

At each update operation on the local replica, a delta is produced based on the
operation m (formally, the mutator) applied locally (line 20b). This delta is conveyed
at once to all the current neighbors of the local host (line 20c). Likewise, when a
node has received an input from a neighbor node and determined that all or part this
input allows it to inflate its local replica, the inflation is propagated to all its current
neighbors, except the one from which the input has just been received, thus avoiding
the retro-propagation of information between replicas (lines 17b-17c).

Intuitively, enabling the transitive forwarding of delta states among neighbor
nodes should be a way to speed up their dissemination in the network. A side-effect

14 Supporting Conflict-Free Replicated Data Types in Opportunistic Networks

Code 6 Delta-state-based synchronization algorithm with transitive forwarding (Δ-
SBT) [Brown code: additional lines to the ∆-SB algorithm]

13 upon receive(neigh_id, delta) do
14 ∆in ←↩ get_missing(self.digest, delta)
15 if (∆in ̸=⊥) then
16 self.state←↩ merge(self.state, ∆in)
17 self.digest←↩ get_digest(self.state)
17b targets = current_neighbors() \ neigh_id
17c disseminate(targets, ∆in)
18 fi

19 upon update(m) do
20 self.digest←↩ get_digest(self.state)
20b ∆out ←↩ generate_delta(m)
20c disseminate(current_neighbors(), ∆out)

23 function disseminate(targets, output):
24 forall id in targets do
25 send(id, output)
26 done

of this approach is that a host may receive the same input several times from distinct
neighbors. For example, in Fig. 2b, an update applied locally on node N03 may be
sent as a small delta to nodes [N02, N01, N17], and nodes N01 and N17 may in turn
forward this delta to node N08 (which would thus receive the same delta twice).
This is the reason why function get_missing() must systematically be invoked when
processing an input (line 14), so as to discard any redundant information, and thus
prevent this redundant information to disseminate further in the network.

Another expected side-effect of forwarding deltas transitively is that the number
of delta messages exchanged between neighbors is increased significantly, while the
amount of information contained in each delta message is reduced. For example, the
delta sent to all neighbors via line 20c will only contain information about the last
update applied to the local replica.

5 Experimentation

5.1 Definition of experimentation scenarios
In order to observe how the algorithms presented in Section 4 can perform
in realistic conditions, we used LEPTON (Lightweight Emulation PlaTform for
Opportunistic Networks [29]) to run experiments involving different kinds of
CRDTs we implemented in Java, and different opportunistic networking scenarios.
Each experiment requires combining a contact scenario (i.e., how the nodes get into
contact) with an application scenario (i.e., what kind of CRDT is considered, and
what is the timeline of updates applied to its replicas).

5.1.1 Contact scenarios

Operation-based synchronization is only possible in a network that supports reliable
broadcast, while state-based or delta-state-based synchronization requires that the

Supporting Conflict-Free Replicated Data Types in Opportunistic Networks 15

synchronization graph is connected (i.e., each update is eventually accounted for by
each replica) [26].

In a network that relies on the “store, carry, and forward” principle, both kinds
of requirements actually amount to the same thing: any message broadcast by a
node must disseminate asynchronously in the network, and reach eventually all other
nodes.

All opportunistic networking scenarios are not able to meet this constraint,
though. In an OppNet the dissemination of any piece of information can only rely on
successive contacts between pairs of nodes. Sometimes, there is simply no possible
“journey” that would allow a piece of information produced at time t on node n1 to
ever reach another specific node n2 [6].

Running experiments involving CRDTs in an OppNet that cannot support
reliable dissemination would simply not make sense. Special attention must thus be
paid to defining networking scenarios that fit the needs of CRDTs.

Experiments involving OppNets are often conducted based on mobility or
contact tracesets that have been collected in real-world settings. Several of these
tracesets are available in the CRAWDAD database1. Yet a thorough analysis of these
tracesets shows that they are usually not suitable to run experiments requiring the
reliable broadcast (or dissemination) of messages. An alternative approach consists
in using a purely synthetic mobility model based on a random walk (e.g., random
waypoint, Levy walk), whose parameters can be twisted so as to guarantee that any
message can eventually reach any node in the network. But such an approach is often
deemed as not being “realistic enough”, so an intermediate approach consists in
using real contact traces as much as possible, while ensuring that reliable broadcast
is indeed possible for all nodes over a reasonably long timespan.

The cambridge/haggle dataset is one of the datasets available in the CRAWDAD
database [31]. This dataset includes traces of Bluetooth sightings collected
by groups of users carrying small devices (iMotes) over several days, on
different occasions and settings (in and around laboratories, during conference
events, etc.). In the following we focus on traceset Exp3 (also referred to as
cambridge/haggle/imote/infocom), which contains data about sightings recorded
during the INFOCOM conference in 2005.

This traceset contains the data collected by 41 iMote devices over 3 days. The
iMotes were configured to scan the radio channels for about 10 seconds every 2
minutes. A sighting in the traceset therefore characterizes a time event when a
Bluetooth device detected the presence of another device in its surroundings. Based
on this kind of raw information, it is necessary to extrapolate radio contacts, which
are time intervals (a contact has a beginning and an end) rather than just time events.
We therefore pre-processed the Exp3 traceset, assuming that a contact between two
devices is established as soon as any of these devices detects the presence of the
other device, that this contact is maintained as long as subsequent sightings between
the same devices are not more than 2 minutes apart, and that the contact is broken
shortly after the last sighting event (with a randomly chosen trailing latency).

1https://www.crawdad.org

https://www.crawdad.org

16 Supporting Conflict-Free Replicated Data Types in Opportunistic Networks

Metrics Values (* = min / max / avg / stdev values)

Duration of the scenario 70h37’27”

Nb of nodes Nn = 38

Number of contacts Nc = 14 820

Durations of contacts 1” / 14h49’19” / 4’51” / 18’18” (*)

Number of inter-contacts 14 124

Durations of inter-contacts 1” / 64h48’42” / 2h33’11” / 6h49’03” (*)

Table 1: Statistics about the Exp3-RB contact scenario (derived from the
cambridge/haggle/imote/infocom2005 traceset)

The result of this kind of pre-processing defines a time-varying graph (TVG)
whose nodes model radio-enabled devices, and whose edges model radio contacts
between these devices. Such a time-varying graph can be played by a mobile
network simulator (e.g, the ONE simulator [19]), or by a mobile network emulator
(e.g., LEPTON [29]).

As mentioned above, a contact scenario such as that derived from the Exp3
traceset does not necessarily guarantee that every node can at any time send
information (typically, a message) to all other nodes, even if the “store, carry and
forward” model is used on all nodes. Once a scenario is modelled as a time-varying
graph, it is possible to use this graph to calculate the horizon of any node at any time.
The horizon of a node ni at time t (noted Hn(t)) is, basically, the set of nodes that
could eventually receive a message sent by n at time t [7]. If Hn(t) does not include
all the other nodes in the graph, then it means that n cannot reliably broadcast a
message at time t (or at any time after t).

By computing the horizons of all nodes in the Exp3 contact scenario, it is
possible to identify nodes that should not be considered in any experiment requiring
the reliable broadcast of messages. This if for example the case for nodes 36 and 38,
which both disappear from the horizon of node 41 at time t1=03h34’53”. Note that
this does not necessarily mean that these nodes disappear entirely from the network
at that time. It simply means that after t1, any message broadcast by node 41 will
never reach nodes 36 and 38, although these nodes may still be able to receive
messages sent by other nodes. As a consequence, nodes 36 and 38 should not be
considered as possible targets for reliable broadcast after t1 (unless node 41 is itself
discarded).

It can likewise be determined that the horizon of node 31 loses 15 other nodes
at time t2=17h06’27”, so this node should not be considered as a possible source for
reliable broadcast after t2.

Using this approach iteratively, it is possible to discard nodes that are not fit to
take part in reliable broadcast over a long timespan. The remaining nodes constitute
a subset of nodes among which reliable broadcast remains possible. Based on the
original Exp3 scenario, we thus determined that by removing nodes {31, 36, 38}
from the original set of 41 nodes, the remaining subset of 38 nodes can support
reliable broadcast from time ts = 0 to time t f =48h01’30”.

Supporting Conflict-Free Replicated Data Types in Opportunistic Networks 17

0

200

400

600

800

1000

16:00 00:00 08:00 16:00 00:00 08:00 16:00 00:00

co

nt
ac

ts
 /

60
' s

lo
t

hh:mm

Fig. 3: Evolution of the number of contacts per 60’ slot in the Exp3-RB contact
scenario

In the remainder of this paper we call Exp3-RB (which stands for Exp3-Reliable-
Broadcast) the contact scenario derived from Exp3 that only involves these 38
nodes, among which reliable broadcast is possible over 48h01’. Statistics about
contact and inter-contact durations in this scenario are given in Table 1, and the
evolution of the number of contacts observed over time in this scenario is shown in
Fig. 3.

It is worth mentioning that, to the best of our knowledge, none of the
opportunistic networking datasets available in the CRAWDAD database is readily
suitable to run experiments involving reliable broadcast. Some doctoring of the
original traceset (such as that described above) is always required in order to produce
a contact scenario in which reliable broadcast is indeed possible over a reasonably
long timespan.

We therefore used the same pre-processing method to derive scenarios suitable
for reliable broadcast from other traces contained in various datasets, two of which
are also considered in this paper:

• The upmc/rollernet traceset [3] contains Bluetooth sightings collected during a
roller tour in Paris in 2006. From this traceset we derived a Rollernet-RB contact
scenario that involves 60 nodes among which reliable broadcast is possible over
a 2h32’ timespan.

• The ubs/vbn dataset [18] contains data about the mobility of buses in the
urban area of Vannes2, France. Information about bus lines has been extracted
automatically from OpenStreetMap and from the bus company’s timetables.
From this dataset we derived a VBN-RB contact scenario that involves 49 buses
among which reliable broadcast is possible (assuming a transmission range of
200 meters) over a 14h14’ timespan.

The Exp3-RB, Rollernet-RB, and VBN-RB contact scenarios are all included in
the archive file associated with this paper3.

2VBN: Vannes Bus Network.
3http://casa-irisa.univ-ubs.fr/download/ACS_1.zip

http://casa-irisa.univ-ubs.fr/download/ACS_1.zip

18 Supporting Conflict-Free Replicated Data Types in Opportunistic Networks

Metrics AW-Set/Exp3-RB

Nb of add events 5 396

Nb of rmv events 5 396

Total nb of events Nu = 10 792

First event 00h00’22”

Last event 47h49’20”

Table 2: Statistics about the application scenario defined for the Exp3-RB contact
scenario

5.1.2 Application scenarios

An application scenario determines what kind of CRDT is considered during an
experiment, and what is the timeline of the updates applied to each replica in this
experiment. Without loss of generality, in the following we consider scenarios that
only involve AW-Sets (Add-Wins Sets). Other kinds of CRDTs (i.e., other kinds of
sets, maps, lists, graphs, etc.) would not behave much differently than AW-Sets in
the experiments whose results are presented below.

An AW-Set is a distributed set to which items can either be added or
removed [26]. Since add and remove operations do not commute, the causal context
must be maintained in the metadata in order to preserve the causality of events.
Besides, a rule must be defined to arbitrate between concurrent add and remove. In
an Add-Wins Set, the rule is that add takes precedence (i.e., wins) over remove. A
typical approach to ensure causal ordering in such a CRDT consists in maintaining
a version vector in each replica, and tagging each new event with the current value
of this vector. The version vector can also serve as a digest of the replica state: by
comparing the state of a local replica with the digest (version vector) received from
a remote replica, it is possible to determine which events stored in the local replica
occurred before, after, or concurrently with the events stored in the remote replica.

Whatever the application scenario considered, it is important to make sure that
any update applied to a replica has a chance to propagate fully in the network,
and thus reach any other replica. As mentioned in the former section, the Exp3-RB
contact scenario supports reliable broadcast for 48h01’. Any update applied to a
replica after that deadline will reach only a fraction of the other replicas.

Taking this constraint into account, we defined an application scenario whereas
all nodes considered in Exp3-RB implement an AW-Set. A new item is added by
each node to its own replica every 20 minutes, starting as soon as the node appears
in the network, but not later than 48h01’. For every add event, a corresponding
remove event occurs 30 minutes later. The resulting application scenario includes
5 396 pairs of add/remove events (142 pairs per node), distributed regularly over the
48h01’ timespan. The combination of this application scenario with the Exp3-RB
contact scenario is referred to as scenario AW-Set/Exp3-RB in the remainder of this
paper. Table 2 provides details about this scenario.

Using the same approach, we also produced application scenarios to be run with
the Rollernet-RB and VBN-RB contact scenarios. Details about these scenarios are

Supporting Conflict-Free Replicated Data Types in Opportunistic Networks 19

available in the appendices (Tables 5 and 8). These three application scenarios are
included in the archive file associated with this paper.

5.2 Metrics considered
In order to compare how the synchronization algorithms defined in Section 4
can perform when running the above-mentioned scenarios, we will focus on the
following metrics:

• Number of messages: the number of messages exchanged by neighbor nodes will
be considered for each message type, that is:

– summary vector and effectors when running the OB algorithm;
– full state messages when running the SB algorithm;
– digests and delta state messages when running the ∆-SB and ∆-SBT algorithms.

• Size of messages: for each message type, the size of a message will be expressed
in terms of the number of items it contains. This is because container CRDTs
such as sets, maps, lists, etc. can be used to store any kind of items (e.g.,
numerical values, character strings, structured types). Thus, instead of expressing
for example the size of an effector message in bytes (which clearly depends on
the particular kind of items stored in the CRDT), we consider that this effector
carries one item, which is the transcription of the effect of applying one update
to the sender’s replica. The size of a full state or delta state message will likewise
be expressed in terms of the number of updates it contains. Digest messages will
be considered as being of constant size (typically O(N) for a digest based on a
version vector in a network of N nodes). The size of a summary vector will be
expressed as the number of message identifiers it contains, which itself depends
on the number of effector messages stored in the sender’s cache.

• Cumulated amount of data transferred during an experiment: for each message
type, the cumulated amount of data is simply the total number of items transferred
via messages of that type during the experiment.

• Time to convergence: for each experiment we will observe how long it takes for
all replicas to converge. The idea is to determine if any of the four synchronization
methods considered allows the replicas to converge faster.

5.3 Experimentation with the Exp3-RB scenario
Figure 4 presents the results observed when running the AW-Set/Exp3-RB
scenario with the operation-based (OB), state-based (SB), and delta-state-based
synchronization algorithms. In the latter case, two variants of delta-state-based
synchronization are considered, depending on whether transitive forwarding is
disabled (∆-SB) or enabled (∆-SBT).

For each synchronization algorithm the figure shows the evolution of the
cumulated number of messages transferred over time (e.g., Fig. 4-OB-a), the size
of each message (e.g., Fig. 4-OB-b), and the statistical distribution of message size
(e.g., Fig. 4-OB-c, note the log scale along the x axis).

20 Supporting Conflict-Free Replicated Data Types in Opportunistic Networks

(OB-a) Evolution of the number of messages
exchanged by neighbor nodes (cumulated)

(OB-b) Evolution of message size
over time

(OB-c) CDF of message size

Operation-based synchronization (OB)

(SB-a) Evolution of the number of messages
exchanged by neighbor nodes (cumulated)

(SB-b) Evolution of message size
over time

(SB-c) CDF of message size

State-based synchronization (SB)

(Δ-SB-a) Evolution of the number of messages
exchanged by neighbor nodes (cumulated)

(Δ-SB-b) Evolution of message size
over time

(Δ-SB-c) CDF of message size

Delta-State-based synchronization (Δ-SB)

(Δ-SBT-a) Evolution of the number of messages
exchanged by neighbors nodes (cumulated)

(Δ-SBT-b) Evolution of message size
over time

(Δ-SBT-c) CDF of message size

Delta-State-based synchronization with transitivity enabled (Δ-SBT)

Fig. 4: Synchronizations with the AW-Set/Exp3-RB scenario

Supporting Conflict-Free Replicated Data Types in Opportunistic Networks 21

Metrics OB SB ∆-SB ∆-SBT
summary vectors 22 980 - - -

effectors 399 304 - - -
digests - - 22 967 17 005

full states - 22 860 - -
delta states - - 16 365 48 300

Total 422 284 22 860 39 332 65 305

Table 3: Number of messages exchanged while running the AW-Set/Exp3-RB
scenario with each kind of synchronization method

Metrics OB SB ∆-SB ∆-SBT
items transferred in effectors 399 304 - - -

items transferred in full state messages - 126 591 078 - -
items transferred in delta state messages - - 399 304 403 154

Total 399 304 126 591 078 399 304 403 154

Table 4: Number of items transferred via each kind of message (effector, full
state, or delta state) while running the AW-Set/Exp3-RB scenario with each kind of
synchronization method

Details about the number of messages transferred with each synchronization
method are available in Table 3, and details about the amount of data transferred
via each method are available in Table 4. The same information is also presented
graphically in Fig. 5.

The convergence of replicas is shown in Fig. 6. More specifically, Fig. 6a shows
the evolution of the number of effector messages received by each node when
running the operation-based synchronization algorithm, and Fig. 6a shows how long
it takes for each node (each replica) to converge. Similar figures are not presented
for the SB and ∆-SB algorithms, because they are very similar to what is depicted in
Fig. 6. Indeed, the algorithm used to synchronize replicas has very little influence on
how fast the replicas converge, as long as the pace of information dissemination in
the network is determined by contacts between neighbor nodes. The use of transitive
forwarding in the ∆-SBT algorithm can have an influence, though. This is discussed
later in this section.

5.3.1 Operation-based synchronization

In the AW-Set/Exp-3RB scenario, the last update applied to a replica occurs at
47h49’20” (see Table 2). In Fig. 4-OB-a it can be observed that the number of
messages carrying effectors grows steadily until that time, as new updates are
applied to replicas, and effectors are sent accordingly in the network. Once all
effectors have been sent, the nodes keep exchanging effectors for a while because
the epidemic dissemination of these effectors is still in progress in the network.
Once all nodes have received all effectors (which occurs around 66h29’ in this
particular scenario), the nodes stop exchanging effectors: all replicas of the AW-
Set have converged. In fact it can be observed in Fig. 6 that most replicas converge

22 Supporting Conflict-Free Replicated Data Types in Opportunistic Networks

0

50000

100000

150000

200000

250000

300000

350000

400000

OB SB Δ-SB Δ-SBT

m

sg
s

tr
an

sf
er

re
d

Effectors

Full states

Delta states

(a) Number of messages

0

2x107

4x107

6x107

8x107

1x108

1.2x108

1.4x108

OB SB Δ-SB Δ-SBT

ite

m
s

tr
an

sf
er

re
d

Effectors

Full states

Delta states

(b) Number of items

Fig. 5: Number of messages and number of items exchanged while running the
AW-Set/Exp3-RB scenario with each kind of synchronization method

(a) Evolution of the number of effectors received by each
node

(b) Time to convergence for each node

Fig. 6: Convergence of replicas when running the AW-Set/Exp3-RB scenario

shortly after 62h30. A few nodes require up to two additional hours to receive all the
effectors, and only two nodes (5 and 35) requires far longer delays before they reach
convergence. In any case, the delay between the last update is applied to a replica
(47h49’20”) and the time a replica converges (62h30 or later) is at least 15 hours
in this particular scenario. Such delays are not unusual in an opportunistic network,
since they are simply the consequence of the way information disseminates in such
a network. With a different contact scenario this delay may be significantly shorter,
but it may also be far longer.

Supporting Conflict-Free Replicated Data Types in Opportunistic Networks 23

In Fig 4-OB-a and 4-OB-b it can also be observed that the exchange of effectors
between neighbor nodes stops increasing once all replicas have converged, while
the traffic pertaining to summary vectors continues in the background.

Operation-based synchronization yields the dissemination of a large number of
small messages (effectors). Since each effector message must eventually be received
by each node, the number of receive events for effectors is O(Nn×Nu), where Nn is
the number of nodes and Nu the number of updates applied to replicas.

The number of summary vectors exchanged by neighbor nodes is O(Nc), as
it depends only on the number of contacts Nc observed in the scenario. The size
of summary vectors grows as new effector messages are deposited in each node’s
cache, but this size is bounded by the number of updates applied to replicas, O(Nu).
This is confirmed in Fig. 4-OB-b: the size of summary vectors grows as long as new
effectors are sent in the network. Besides, this size does not decrease, for once an
effector message is stored in a node’s cache, it remains there.

Discussion
While running experiments involving the operation-based (OB) synchronization
algorithm, we used a basic epidemic forwarding algorithm that operates in “push”
mode. Once a node has received the summary vector of a new neighbor, it
determines which effector messages (available in its local cache) can be sent to
this neighbor, and then attempts to push all these messages in sequence towards
the neighbor. This approach requires very little control traffic, but since each node
can be in contact with several neighbors simultaneously, a node may occasionally
receive the same message several times from several neighbors. Another approach
consists for each node to “pull” the messages it needs from its neighbors. A request
is sent specifically for each message, so the requester node can avoid requesting
the same message from several neighbors. This approach helps prevent duplicate
transmissions, but control traffic is increased significantly.

In the basic epidemic forwarding algorithm we used, the exchange of summary
vectors between neighbor nodes occurs whenever two nodes get into contact. This
yields background traffic that is maintained even when all replicas have converged.
Besides, the size of a summary vector is roughly proportional to the number of
messages stored in its sender’s cache. As long as new updates are applied to replicas
(and thus new effector messages broadcast in the network), the number of messages
stored in each node’s cache keeps increasing, and the size of summary vectors
increases accordingly.

Many variants of the epidemic forwarding algorithm have been proposed in the
literature in order to mitigate these problems. The cost of exchanging summary
vectors can for example be reduced significantly by having each node maintain a list
of the messages it has already exchanged with every other node. Upon a new contact,
a node can thus decide what to put exactly in the summary vector sent to its new
neighbor. Another approach to reduce the cost of epidemic forwarding is to devise
strategies to reduce the number of messages stored in each cache. Each message
sent in the network can for example be assigned a set lifetime. Once the lifetime of

24 Supporting Conflict-Free Replicated Data Types in Opportunistic Networks

a message is over, all copies of this message are purged from the network. Such an
approach must however be used with caution, since setting a lifetime too short can
prevent a message from reaching all the expected targets. Since the synchronization
of operation-based CRDTs requires that all effector messages reach all replicas,
assigning a lifetime to these messages is a delicate issue, for this could prevent some
of the replicas to ever converge.

5.3.2 State-based synchronization

With state-based synchronization, the only messages exchanged between neighbor
nodes when they get into contact are messages that contain the full state of the
sender’s replica. In Fig. 4-SB-a it can be observed that the nodes keep exchanging
the states of their replicas, even after the last update has been applied (47h49’20”).
This is because, with pure state-based synchronization, there is no attempt to reduce
either the number or the size of the full state messages exchanged by replicas.
Indeed, the size of the full state messages exchanged between neighbors grows
steadily until all updates have been applied to the AW-Set, afterwards this size
stabilizes (see Fig. 4-SB-b).

Discussion
The cost of exchanging full states whenever two nodes meet is clearly visible in
Table 4 and in Fig. 5b. Although the number of messages exchanged with the state-
based approach is significantly smaller than with the operation-based approach, the
total amount of data transferred is far larger. Besides, the nodes keep exchanging
full state messages upon every contact, even after all replicas have converged, so if
the nodes keep running for a long time, they will also keep exchanging full state
messages. The size of each full state message is actually bounded by O(Nu), where
Nu is the number of updates applied to replicas, and the total amount of items
transferred while running the scenario is O(Nu×Nc), where Nc is the number of
contacts.

5.3.3 Delta-state-based synchronization (no transitive forwarding)

With a delta-state-based CRDT, the synchronization of replicas requires that
neighbor nodes exchange digest messages and delta state messages.

In Fig. 4-∆-SB-a it can be observed that the nodes keep exchanging digest
messages after the last update has been applied (47h49’20”). However, since the
digest of an AW-Set is typically a version vector, a digest message is a very
small control message, as shown in Fig. 4-∆-SB-b. The exchange of delta state
messages stops shortly after the last update has been applied, though. This is the
consequence of having the nodes exchange digests prior to any actual delta state
message. Besides, the messages carrying delta states are usually far smaller than
those carrying full states (in state-based synchronization).

The advantage of using the delta-state-based approach is obvious. First, the
number of delta state messages transferred between neighbor nodes is smaller than

Supporting Conflict-Free Replicated Data Types in Opportunistic Networks 25

the number of full state messages transferred with the state-based approach (see
Table 4). Second, delta state messages are far smaller than full state messages, as it
can be seen when comparing Fig. 4-SB-b and Fig. 4-∆-SB-b.

With the state-based (SB) approach, about 99% of the state messages exchanged
by neighbor nodes contain more than 30 items (each item being the consequence of
an update), and about 84% of these messages contain more than 1 000 items (see
Fig. 4-SB-c). With the delta-state-based (∆-SB) approach, 31% of the state messages
contain only one item, 78% of these messages contain less than 10 items, and only
4% of them contain more than 100 items (see Fig. 4-∆-SB-c).

Finally, the total amount of items transferred via delta state messages with the ∆-
SB approach is the same as the amount of effectors transferred with the OB approach
(see Table 4). The delta-state-based approach is therefore as effective as operation-
based approach as far as transmissions are concerned (i.e., no duplicate transmission
of items), while requiring a far smaller number of messages (about 9.3% with that
particular scenario).

Discussion
The advantage of allowing neighbor nodes to exchange digests (version vectors)
before any delta state is transferred is that it prevents the nodes from exchanging
duplicate information. This is especially true once all replicas have converged (see
Fig. 4-∆-SB-b), for in that case the only remaining traffic between neighbor nodes
is the background traffic composed of digest messages. Before all nodes have
converged, the exchange of delta states (instead of full states) also contributes to
reduce the amount of data exchanged by neighbor nodes (see Table 4 and Fig. 5b).

The number of digest messages exchanged by neighbor nodes is O(Nc). The
number of delta state messages is O(Nu). The size of each delta state message is
O(Nu), but in practice delta state messages are far smaller than full state messages,
as shown in Fig. 4-∆-SB-b).

5.3.4 Delta-state-based synchronization with transitive forwarding

The last two columns in Table 3 show the difference in the number of messages
transferred between neighbor nodes, depending on whether transitive forwarding
is used or not. The number of digest messages exchanged by neighbor nodes is
slightly lower with transitive forwarding. This is because of the faster dissemination
of deltas, which reduces the probability that when a node receives a digest from a
new neighbor, it also needs to send its own digest to this neighbor (lines 10-12 in
Code 5). The number of delta state messages is increased significantly, since many
small deltas are exchanged whenever updates are applied to replicas. About 82% of
the deltas contain only one item when using transitive forwarding, while it is only
31% when transitive forwarding is not used (see Fig. 4-∆-SB-c and 4-∆-SBT -c).
Overall, the total number of messages exchanged while running the AW-Set/Exp3-
RB scenario is increased by about 66% when transitive forwarding is used, while
the total number of items transferred is only increased by 1% (meaning that only
1% of these items are duplicates).

26 Supporting Conflict-Free Replicated Data Types in Opportunistic Networks

Fig. 7: Influence of transitive forwarding on the time to convergence for each node
while running the AW-Set/Exp3-RB scenario

Although transitive forwarding is meant to speed up the dissemination of deltas
in the network, thus allowing the replicas to converge faster, it turns out that the
benefit of this approach is actually quite limited. Figure 7 shows the difference
observed for each node. In most cases, the time to convergence is similar: it
takes exactly the same time for a node’s local replica to converge, whether deltas
are propagated transitively or not. For only a few nodes, a difference can be
observed: the local replica reaches the final state a few minutes earlier with transitive
forwarding. The difference remains small, though, considering that in this scenario
the delay to convergence after the last update is at least 15 hours for all replicas.

5.4 Results observed with the AW-Set/RollerNet-RB and
AW-Set/VBN-RB scenarios

The results presented above have been produced with a single contact scenario
(namely Exp3-RB). It would be legitimate to assume that the conclusions drawn
from these results are not necessarily generalizable. In order to check if similar
conclusions can be drawn with other contact scenarios, experiments similar to those
conducted with the AW-Set/Exp3-RB scenario have also been conducted using the
RollerNet-RB and VBN-RB tracesets mentioned in Section 5.1.

Details about the AW-Set/RollerNet-RB and the AW-Set/VBN-RB experiments
are available in Appendices A and B respectively. The three contact scenarios
considered in these experiments are quite different in terms of total duration,
contacts durations, number of nodes, and frequency and number of events (updates).
Yet the general observations made with scenario AW-Set/Exp3-RB can also be made
with the two other scenarios. As a general rule, the number of messages exchanged
by mobile nodes is far greater with operation-based synchronization than with state-
based and delta-state-based synchronization, while the number of items (and thus
the amount of data) exchanged by these nodes is exceedingly large with state-based
synchronization (see Fig. 11 and 14).

The influence of transitive forwarding in delta-state-based synchronization is
clearly negligible with scenario AW-Set/VBN-RB (as shown in Fig. 13). With

Supporting Conflict-Free Replicated Data Types in Opportunistic Networks 27

scenario AW-Set/RollerNet-RB it may seem at first glance that transitive forwarding
has a significant impact (see Fig. 10). Yet it should be noticed that the time to
convergence with this scenario is reduced by about 1 minute for most replicas, while
the duration of the entire scenario is over 150 minutes.

6 Discussion
The experimental results presented above confirm that the use of CRDTs in an
OppNet is indeed doable and practical. This paves the road for the development of
distributed applications that rely not only on plain message passing, but also on data
sharing

Operation-based synchronization is easy to implement on top of an opportunistic
communication layer that supports reliable causal broadcast. Its main advantage
is that the total amount of data transferred in the network is kept at a minimum,
since each effector produced when applying an update to a replica is eventually
received once and once only by every other replica. In contrast, since a new
effector message is broadcast for each new update, the number of messages that
propagate in the network can be very large. Besides, the information maintained
in a CRDT is actually stored twice on each node: once in the local replica’s
internal state, and once again in the local cache of effector messages maintained
by the communication middleware. This may be an issue when the items stored
in the CRDT are large (e.g., images, audio files). This space overhead could be
mitigated by implementing a communication layer that would directly access the
data maintained in the local replica, rather than maintain copies of these data
in a message cache. But this approach would prevent application designers from
leveraging existing opportunistic communication middleware such as DoDWAN
(Document Dissemination in Wireless Ad hoc Networks [22]), IBR-DTN [30], or
aDTN (active Delay Tolerant Network [4]).

Pure state-based synchronization should be avoided in opportunistic networks,
because the exchange of full state messages whenever two nodes get into contact
yields significant transmission overhead. In networks whose topology is relatively
stable, such as those based on the standard Internet, the synchronization of replicas
can usually be application-driven: the periodicity of full state transmissions is
therefore adjusted based on the needs of the application itself. In an opportunistic
network, though, the synchronization of replicas must essentially be driven by
the contacts between mobile nodes. When these contacts are frequent, state-based
synchronization leads to an overuse of the transmission channels.

State-based synchronization can however be a viable approach for simple
CRDTs whose size does not grow over time, such as GO-Counters (Grow-Only
Counters). For such CRDTs, exchanging the entire state of two replicas when their
hosts get into contact is not necessarily more costly than exchanging summary
vectors (with the OB approach) or digests (with the ∆-SB approach) upon every
contact.

Delta-state-based synchronization provides a good tradeoff between reducing
the number of messages exchanged by neighbor nodes and reducing the global

28 Supporting Conflict-Free Replicated Data Types in Opportunistic Networks

amount of data exchanged by these nodes. It compares with operation-based
synchronization as far as the global amount of data (number of items) transferred is
concerned, while requiring much fewer messages.

The use of transitive forwarding in delta-state-based synchronization only yields
limited benefits. The time to convergence can indeed be reduced for a few replicas,
but most of the time this reduction is marginal. Transitive forwarding should only
be used for use cases in which it is of prime importance that all nodes reach
convergence as soon as possible, or for use cases in which the intermediate states
reached by a replica present an interest for the application and should therefore be
updated as early as possible.

The experiments reported in this section have been conducted using
opportunistic networking scenarios that have been specially tuned so as to guarantee
the network-wide dissemination of messages, since this is a formal and explicit
requirement of conflict-free replicated datatypes. In future work it would however
be interesting to consider relaxing this constraint, investigating how CRDTs (or
data structures strongly inspired from CRDTs) could be used in scenarios where
all replicas cannot necessarily reach the same final state, though a subset of them
actually reach the same state, or get “close enough” to the same state. It would
likewise be interesting to consider data structures that do not necessarily ever reach
a final state because they are updated continuously over time, but that pass by the
same succession of intermediate states.

7 Conclusion
In this paper we have addressed the problem of synchronizing CRDTs (Conflict-
Free Replicated Datatypes) in an opportunistic network (OppNet), leveraging
transient contacts between mobile nodes to synchronize the replicas maintained on
these nodes. Several types of CRDTs have been considered (namely, operation-
based, state-based, and delta-state-based CRDTs), and for each type a specific
synchronization algorithm has been proposed. For delta-state-based CRDTs, the
algorithm can optionally propagate information transitively between neighbor
nodes.

Experiments have been conducted by running these algorithms to synchronize
Add-Wins Sets in an emulated opportunistic networking setting, using contact
scenarios derived from several realistic tracesets. The results show that all forms of
synchronization ensure the convergence of replicas in the same time frame. Delta-
state-based synchronization globally outperforms operation-based and pure state-
based synchronization, though. It compares with operation-based synchronization
as far as the global amount of data (number of items) transferred is concerned, while
requiring much fewer messages. State-based synchronization yields significant
transmission overhead, because it requires exchanging entire states whenever two
mobile nodes get into contact. It should therefore only be used for CRDTs whose
size is small and almost stable over time, such as GO-Counters.

Using transitive forwarding in delta-state-based synchronization was expected
to speed up the convergence of replicas, but results show that it actually only brings

Supporting Conflict-Free Replicated Data Types in Opportunistic Networks 29

very little benefit: the time to convergence of replicas is only reduced marginally,
while the number of delta messages exchanged by neighbor nodes is increased
significantly. Transitive forwarding should therefore only be enabled in application
that require that replicas converge as fast as possible.

Declarations

Competing interests
The authors have no competing interests to declare that are relevant to the content
of this article.

Funding
This work was supported by the French ANR (Agence Nationale de la Recherche)
under grant number ANR-16-CE25-0005-02.

Data Availability statement
The datasets generated during and/or analyzed during this study are included in this
published article and its supplementary information file “Application and contact
scenarios for the Exp3-RB, Rollernet-RB, and VBN-RB experiments” available at
https://casa-irisa.univ-ubs.fr/download/ACS_1.zip.

References
[1] Almeida PS, Shoker A, Baquero C (2015) Efficient State-Based CRDTs

by Delta-Mutation. In: International Conference on Networked Systems
(NETYS 2015), Agadir, Morroco. Springer, pp 62–76, https://doi.org/10.1007/
978-3-319-26850-7_5

[2] Almeida PS, Shoker A, Baquero C (2018) Delta State Replicated Data Types.
Journal of Parallel and Distributed Computing 111:162–173. https://doi.org/
https://doi.org/10.1016/j.jpdc.2017.08.003

[3] Benbadis F, Leguay J (2009) CRAWDAD Dataset upmc/rollernet (v. 2009-02-
02). CRAWDAD Wireless Network Data Archive. https://crawdad.org/upmc/
rollernet/20090202

[4] Borrego C, Robles S, Fabregues A, et al (2015) A Mobile Code Bundle
Extension for Application-Defined Routing in Delay and Disruption Tolerant
Networking. Computer Networks 87:59–77. https://doi.org/10.1016/j.comnet.
2015.05.017

[5] Brocco A (2021) The Document Chain: a Delta CRDT Framework for
Arbitrary JSON Data. In: 29th Italian Symposium on Advanced Database

https://casa-irisa.univ-ubs.fr/download/ACS_1.zip
https://doi.org/10.1007/978-3-319-26850-7_5
https://doi.org/10.1007/978-3-319-26850-7_5
https://doi.org/https://doi.org/10.1016/j.jpdc.2017.08.003
https://doi.org/https://doi.org/10.1016/j.jpdc.2017.08.003
https://crawdad.org/upmc/rollernet/20090202
https://crawdad.org/upmc/rollernet/20090202
https://doi.org/10.1016/j.comnet.2015.05.017
https://doi.org/10.1016/j.comnet.2015.05.017

30 Supporting Conflict-Free Replicated Data Types in Opportunistic Networks

Systems (SEBD21), Pizzo Calabro (VV), Italy, vol 2994. CEUR Workshop
Proceedings, https://doi.org/10.1109/ICTA.2017.8336061

[6] Casteigts A, Chaumette S, Ferreira A (2010) Characterizing Topological
Assumptions of Distributed Algorithms in Dynamic Networks. In: Structural
Information and Communication Complexity (SIROCCO 2010), Sirince,
Turkey, LNCS, vol 5869. Springer, pp 126–140, https://doi.org/10.1007/
978-3-642-11476-2_11

[7] Casteigts A, Flocchini P, Santoro N, et al (2012) Time-Varying Graphs
and Dynamic Networks. International Journal of Parallel, Emergent and
Distributed Systems 27(5):387–408. https://doi.org/10.1080/17445760.2012.
668546

[8] Ciobanu RI, Marin RC, Dobre C, et al (2014) ONSIDE: Socially-aware
and Interest-based Dissemination in Opportunistic Networks. In: Network
Operations and Management Symposium (NOMS), Krakow, Poland. IEEE,
https://doi.org/10.1109/NOMS.2014.6838390

[9] Conti M, Giordano S, May M, et al (2010) From Opportunistic Networks to
Opportunistic Computing. IEEE Communications Magazine 48(9):126–139.
https://doi.org/10.1109/MCOM.2010.5560597

[10] Costea M, Ciobanu RI, Marin RC, et al (2016) Causal and Total Order in
Opportunistic Networks, IGI Global, chap Emerging Innovations in Wireless
Networks and Broadband Technologies, pp 221–262. https://doi.org/10.4018/
978-1-4666-9941-0.ch010

[11] Costea M, Ciobanu RI, Marin RC, et al (2017) Total Order in Opportunistic
Networks. Concurrency and Computation: Practice and Experience 29(10).
https://doi.org/10.1002/cpe.4056

[12] Datta A, Quarteroni S, Aberer K (2004) Autonomous Gossiping: a Self-
Organizing Epidemic Algorithm for Selective Information Dissemination in
Mobile Ad-Hoc Networks. In: 1st International Conference on Semantics of
a Networked World (ICSNW’04). Springer, Paris, France, no. 3226 in LNCS,
pp 126–143, https://doi.org/10.1007/978-3-540-30145-5_8

[13] Dragojević A, Narayanan D, Nightingale EB, et al (2015) No Compromises:
Distributed Transactions with Consistency, Availability, and Performance.
In: 25th Symposium on Operating Systems Principles (SOSP’15), Copper
Mountain Resort, CO, USA. ACM, pp 54–70, https://doi.org/10.1145/
2815400.2815425

[14] Enes V, Baquero C, Almeida PS, et al (2016) Join Decompositions for
Efficient Synchronization of CRDTs after a Network Partition: Work in

https://doi.org/10.1109/ICTA.2017.8336061
https://doi.org/10.1007/978-3-642-11476-2_11
https://doi.org/10.1007/978-3-642-11476-2_11
https://doi.org/10.1080/17445760.2012.668546
https://doi.org/10.1080/17445760.2012.668546
https://doi.org/10.1109/NOMS.2014.6838390
https://doi.org/10.1109/MCOM.2010.5560597
https://doi.org/10.4018/978-1-4666-9941-0.ch010
https://doi.org/10.4018/978-1-4666-9941-0.ch010
https://doi.org/10.1002/cpe.4056
https://doi.org/10.1007/978-3-540-30145-5_8
https://doi.org/10.1145/2815400.2815425
https://doi.org/10.1145/2815400.2815425

Supporting Conflict-Free Replicated Data Types in Opportunistic Networks 31

Progress Report. In: 1st Workshop on Programming Models and Languages
for Distributed Computing (PMLDC’16), Rome, Italy, https://doi.org/10.1145/
2957319.2957374

[15] Enes V, Almeida PS, Baquero C, et al (2019) Efficient Synchronization of
State-Based CRDTs. In: 35th International Conference on Data Engineering
(ICDE’19), Paris, France. IEEE, pp 148–159, https://doi.org/10.1109/ICDE.
2019.00022

[16] Fall K (2004) Messaging in Difficult Environments. Tech. Rep. IRB-TR-04-
019, Intel Research Berkeley

[17] Guidec F, Launay P, Mahéo Y (2021) Causal and Delta-Causal Broadcast in
Opportunistic Networks. Future Generation Computer Systems 118:142–156.
https://doi.org/10.1016/j.future.2020.12.024

[18] Guidec F, Launay P, Mahéo Y (2021) CRAWDAD Dataset ubs/vbn (v. 2021-
12-16). CRAWDAD Wireless Network Data Archive. https://crawdad.org/ubs/
vbn/2021-12-16/vbn_200

[19] Keränen A, Ott J, Kärkkäinen T (2009) The ONE Simulator for DTN
Protocol Evaluation. In: 2nd International Conference on Simulation Tools
and Techniques (SIMUTools’09), Rome, Italy. ICST, https://doi.org/10.4108/
ICST.SIMUTOOLS2009.5674

[20] Li T, Kouyoumdjieva ST, Karlsson G, et al (2019) Data Collection and Node
Counting by Opportunistic Communication. In: IFIP Networking Conference
(Networking 2019), Warsaw, Poland. IEEE, pp 1–9, https://doi.org/10.23919/
IFIPNetworking.2019.8816851

[21] van der Linde A, Leitão J, Preguiça N (2016) Delta-CRDTs: Making delta-
CRDTs Delta-based. In: 2nd Workshop on the Principles and Practice of
Consistency for Distributed Data (PaPoC 2016), London, United Kingdom.
ACM, https://doi.org/10.1145/2911151.2911163

[22] Mahéo Y, Le Sommer N, Launay P, et al (2012) Beyond Opportunistic
Networking Protocols: a Disruption-Tolerant Application Suite for
Disconnected MANETs. In: 4th Extreme Conference on Communication
(ExtremeCom’12). ACM, Zürich, Switzerland, pp 1–6

[23] Moniz H, Leitão J, Dias RJ, et al (2017) Blotter: Low Latency Transactions
for Geo-Replicated Storage. In: 26th International Conference on World
Wide Web (WWW’17), Perth, WA, Australia. ACM, https://doi.org/10.1145/
3038912.3052603

https://doi.org/10.1145/2957319.2957374
https://doi.org/10.1145/2957319.2957374
https://doi.org/10.1109/ICDE.2019.00022
https://doi.org/10.1109/ICDE.2019.00022
https://doi.org/10.1016/j.future.2020.12.024
https://crawdad.org/ubs/vbn/2021-12-16/vbn_200
https://crawdad.org/ubs/vbn/2021-12-16/vbn_200
https://doi.org/10.4108/ICST.SIMUTOOLS2009.5674
https://doi.org/10.4108/ICST.SIMUTOOLS2009.5674
https://doi.org/10.23919/IFIPNetworking.2019.8816851
https://doi.org/10.23919/IFIPNetworking.2019.8816851
https://doi.org/10.1145/2911151.2911163
https://doi.org/10.1145/3038912.3052603
https://doi.org/10.1145/3038912.3052603

32 Supporting Conflict-Free Replicated Data Types in Opportunistic Networks

[24] Nicolaescu P, Jahns K, Derntl M, et al (2016) Near Real-Time Peer-to-Peer
Shared Editing on Extensible Data Types. In: 19th International Conference
on Supporting Group Work (GROUP’16), Sanibel Island, FL, USA. ACM, pp
39–49, https://doi.org/10.1145/2957276.2957310

[25] Pelusi L, Passarella A, Conti M (2006) Opportunistic Networking:
Data Forwarding in Disconnected Mobile Ad Hoc Networks. IEEE
Communications Magazine 44(11):134–141. https://doi.org/10.1109/MCOM.
2006.248176

[26] Preguiça N (2018) Conflict-free Replicated Data Types: an Overview. Arxiv
Preprint. https://arxiv.org/abs/1806.10254

[27] Rinberg A, Solomon T, Shlomo R, et al (2022) DSON: JSON CRDT Using
Delta-Mutations for Document Stores. Proceedings of the VLDB Endowment
15(5):1053–1065. https://doi.org/10.14778/3510397.3510403

[28] Robin CEA, Romero VM (2018) DTNDocs: A Delay Tolerant Peer-to-
Peer Collaborative Editing System. In: 32nd International Conference on
Information Networking (ICOIN), Chiang Mai, Thailand, pp 92–97, https:
//doi.org/10.1109/ICOIN.2018.8343092

[29] Sánchez-Carmona A, Guidec F, Launay P, et al (2018) Filling in the Missing
Link between Simulation and Application in Opportunistic Networking.
Journal of Systems and Software 142:57–72. https://doi.org/10.1016/j.jss.
2018.04.025

[30] Schildt S, Morgenroth J, Pöttner WB, et al (2011) IBR-DTN: A Lightweight,
Modular and Highly Portable Bundle Protocol Implementation. Electronic
Communications of the EASST 37:1–11

[31] Scott J, Gass R, Crowcroft J, et al (2009) CRAWDAD Dataset
cambridge/haggle (v. 2009-05-29). CRAWDAD Wireless Network Data
Archive. https://crawdad.org/cambridge/haggle/20090529/imote

[32] Shapiro M, Preguiça N, Baquero C, et al (2011) A Comprehensive Study of
Convergent and Commutative Replicated Data Types. Tech. Rep. 7506, INRIA

[33] Vahdat A, Becker D (2000) Epidemic Routing for Partially Connected Ad Hoc
Networks. Tech. Rep. CS-200006, Duke University, Durham, USA

[34] Weiss S, Urso P, Molli P (2009) Logoot: A Scalable Optimistic Replication
Algorithm for Collaborative Editing on P2P Networks. In: 29th International
Conference on Distributed Computing Systems (ICDCS’09), Montreal,
Canada. IEEE, pp 404–412, https://doi.org/10.1109/ICDCS.2009.75

https://doi.org/10.1145/2957276.2957310
https://doi.org/10.1109/MCOM.2006.248176
https://doi.org/10.1109/MCOM.2006.248176
https://arxiv.org/abs/1806.10254
https://doi.org/10.14778/3510397.3510403
https://doi.org/10.1109/ICOIN.2018.8343092
https://doi.org/10.1109/ICOIN.2018.8343092
https://doi.org/10.1016/j.jss.2018.04.025
https://doi.org/10.1016/j.jss.2018.04.025
https://crawdad.org/cambridge/haggle/20090529/imote
https://doi.org/10.1109/ICDCS.2009.75

Supporting Conflict-Free Replicated Data Types in Opportunistic Networks 33

A AW-Set/RollerNet-RB scenario

0

500

1000

1500

2000

2500

14:40 15:00 15:20 15:40 16:00 16:20 16:40 17:00

co

nt
ac

ts
 /

5'
 s

lo
t

hh:mm

Fig. 8: Evolution of the number of contacts per 15 minute slot in the Rollernet-RB
contact scenario

Metrics Values (* = min / max / avg / stdev)

Duration of the scenario 02h46’30”

Nb of nodes 60

Number of contacts 51 355

Durations of contacts 1” / 8’09” / 0’14” / 0’16” (*)

Number of inter-contacts 49 616

Durations of inter-contacts 1” / 1h53’17” / 3’42” / 8’03” (*)

AW-Set/Rollernet-RB

Nb of add events 1 740

Nb of rmv events 1 740

Total nb of events 3 480

First event 5”

Last event 2h32’31”

Table 5: Statistics about the Rollernet-RB contact scenario (derived from the
upmc/rollernet traceset) and details about the defined application scenario

Metrics OB SB ∆-SB ∆-SBT

summary vectors 74 166 - - -

effectors 205 320 - - -

digests - - 73 896 55 130

full states - 74 152 - -

delta states - - 45 366 110 602

Total 279 486 74 152 119 262 165 732

Table 6: Number of messages exchanged while running the AW-Set/Rollernet-RB
scenario with each kind of synchronization method

34 Supporting Conflict-Free Replicated Data Types in Opportunistic Networks

(OB-a) Evolution of the number of messages
exchanged by neighbor nodes (cumulated)

(OB-b) Evolution of message size
over time

(OB-c) CDF of message size

Operation-based synchronization (OB)

(SB-a) Evolution of the number of messages
exchanged by neighbor nodes (cumulated)

(SB-b) Evolution of message size
over time

(SB-c) CDF of message size

State-based synchronization (SB)

(Δ-SB-a) Evolution of the number of messages
exchanged by neighbor nodes (cumulated)

(Δ-SB-b) Evolution of message size
over time

(Δ-SB-c) CDF of message size

Delta-State-based synchronization (Δ-SB)

(Δ-SBT-a) Evolution of the number of messages
exchanged by neighbors nodes (cumulated)

(Δ-SBT-b) Evolution of message size
over time

(Δ-SBT-c) CDF of message size

Delta-State-based synchronization with transitivity enabled (Δ-SBT)

Fig. 9: Synchronizations with the AW-Set/RollerNet-RB scenario

Supporting Conflict-Free Replicated Data Types in Opportunistic Networks 35

Metrics OB SB ∆-SB ∆-SBT

items transferred in effectors 205 320 - - -

items transferred in full state messages - 134 284 645 - -

items transferred in delta state messages - - 205 320 205 340

Total 205 320 134 284 645 205 320 205 340

Table 7: Number of items transferred via each kind of message (effector, full state,
or delta state) while running the AW-Set/Rollernet-RB scenario with each kind of
synchronization method

Fig. 10: Influence of transitive forwarding on the time to convergence for each node
while running the AW-Set/Rollernet-RB scenario

0

50000

100000

150000

200000

OB SB Δ-SB Δ-SBT

m

sg
s

tr
an

sf
er

re
d

Effectors

Full states

Delta states

(a) Number of messages

0

2x107

4x107

6x107

8x107

1x108

1.2x108

1.4x108

OB SB Δ-SB Δ-SBT

ite

m
s

tr
an

sf
er

re
d

Effectors

Full states

Delta states

(b) Number of items

Fig. 11: Number of messages and number of items exchanged while running the
AW-Set/Rollernet-RB scenario with each kind of synchronization method

36 Supporting Conflict-Free Replicated Data Types in Opportunistic Networks

B AW-Set/VBN-RB scenario

0
20
40
60
80

100
120
140
160
180
200

04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00

co

nt
ac

ts
 /

15
' s

lo
t

hh:mm

Fig. 12: Evolution of the number of contacts per 15 minute slot in the VBN-RB
contact scenario

Metrics Values (* = min / max / avg / stdev)

Duration of the scenario 14h14’00”

Nb of nodes 49

Number of contacts 7351

Durations of contacts 1” / 4h54’57” / 1’41” / 5’37” (*)

Number of inter-contacts 6 270

Durations of inter-contacts 1” / 12h06’19” / 1h14’52” / 1h34’07” (*)

AW-Set/VBN-RB

Nb of add events 28 493

Nb of rmv events 28 493

Total nb of events 56 986

First event 0’04”

Last event 10h09’59”

Table 8: Statistics about the VBN-RB contact scenario (derived from the ubs/vbn
traceset) and details about the defined application scenario

Metrics OB SB ∆-SB ∆-SBT

summary vectors 12 189 - - -

effectors 2 735 328 - - -

digests - - 12 078 10 570

full states - 12 167 - -

delta states - - 9 583 88 658

Total 27 747 517 12 167 21 661 99 228

Table 9: Number of messages exchanged while running the AW-Set/VBN-RB
scenario with each kind of synchronization method

Supporting Conflict-Free Replicated Data Types in Opportunistic Networks 37

Metrics OB SB ∆-SB ∆-SBT

items transferred in effectors 2 735 328 - - -

items transferred in full state messages - 310 833 438 - -

items transferred in delta state messages - - 2 735 328 2 737 483

Total 2 735 328 310 833 438 2 735 328 2 737 483

Table 10: Number of items transferred via each kind of message (effector, full
state, or delta state) while running the AW-Set/VBN-RB scenario with each kind of
synchronization method

Fig. 13: Influence of transitive forwarding on the time to convergence for each node
while running the AW-Set/VBN-RB scenario

0

500000

1x106

1.5x106

2x106

2.5x106

OB SB Δ-SB Δ-SBT

m

sg
s

tr
an

sf
er

re
d

Effectors

Full states

Delta states

(a) Number of messages

0

5x107

1x108

1.5x108

2x108

2.5x108

3x108

OB SB Δ-SB Δ-SBT

ite

m
s

tr
an

sf
er

re
d

Effectors

Full states

Delta states

(b) Number of items

Fig. 14: Number of messages and number of items exchanged while running the
AW-Set/VBN-RB scenario with each kind of synchronization method

38 Supporting Conflict-Free Replicated Data Types in Opportunistic Networks

(OB-a) Evolution of the number of messages
exchanged by neighbor nodes (cumulated)

(OB-b) Evolution of message size
over time

(OB-c) CDF of message size

Operation-based synchronization (OB)

(SB-a) Evolution of the number of messages
exchanged by neighbor nodes (cumulated)

(SB-b) Evolution of message size
over time

(SB-c) CDF of message size

State-based synchronization (SB)

(Δ-SB-a) Evolution of the number of messages
exchanged by neighbor nodes (cumulated)

(Δ-SB-b) Evolution of message size
over time

(Δ-SB-c) CDF of message size

Delta-State-based synchronization (Δ-SB)

(Δ-SBT-a) Evolution of the number of messages
exchanged by neighbors nodes (cumulated)

(Δ-SBT-b) Evolution of message size
over time

(Δ-SBT-c) CDF of message size

Delta-State-based synchronization with transitivity enabled (Δ-SBT)

Fig. 15: Synchronizations with the AW-Set/VBN-RB scenario

	Introduction
	Related work
	Operation-based CRDTs in OppNets
	The potential of state-based CRDTs in OppNets

	System model
	Synchronization algorithms for CRDTs in OppNets
	Operation-based synchronization
	State-based synchronization
	Delta-state-based synchronization
	Enabling transitivity in delta-state-based synchronization

	Experimentation
	Definition of experimentation scenarios
	Contact scenarios
	Application scenarios

	Metrics considered
	Experimentation with the Exp3-RB scenario
	Operation-based synchronization
	State-based synchronization
	Delta-state-based synchronization (no transitive forwarding)
	Delta-state-based synchronization with transitive forwarding

	Results observed with the AW-Set/RollerNet-RB and AW-Set/VBN-RB scenarios

	Discussion
	Conclusion
	AW-Set/RollerNet-RB scenario
	AW-Set/VBN-RB scenario

