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ABSTRACT

Degeneracies among parameters of the cosmological model are known to drastically limit the information contained in the matter
distribution. In the first paper of this series, we show that the cosmic web environments, namely the voids, walls, filaments and nodes,
can be used as leverage to improve the real-space constraints on a set of six cosmological parameters, including the summed neutrino
mass. Following up on these results, we propose to investigate the extent to which constraints can be obtained with environment-
dependent power spectra in redshift space where the velocities add information to the standard two-point statistics by breaking the
isotropy of the matter density field. A Fisher analysis based on a set of thousands of Quijote simulations allows us to conclude that
a combination of power spectra computed in several cosmic web environments is able to break some degeneracies. Compared to the
matter monopole and quadrupole information alone, the combination of environment-dependent spectra improves constraints on key
parameters such as the matter density and the summed neutrino mass by up to a factor of 5.5. Additionally, while the information
contained in the matter statistic quickly saturates at mildly non-linear scales in redshift space, a combination of power spectra from
different environments appears to be a rich source of information that can be used to improve the constraints at all the studied scales
from 0.1 to 0.5 h Mpc−1 and suggests that further improvements could be attainable at even finer scales.

Key words. cosmology: theory – large-scale structure of Universe – cosmological parameters

1. Introduction

The spatial distribution of matter in the Universe is a pow-
erful probe to constrain cosmological parameters (see e.g.
Totsuji & Kihara1969;Peacock et al. 2001;Eisenstein et al. 2005;
Mandelbaum et al. 2013; Alam et al. 2017a; Hildebrandt et al.
2017; D’Amico et al. 2020; Colas et al. 2020; Ivanov et al. 2020),
test thetheoryofgravity(Alam et al.2017b,2021;Jullo et al.2019;
Blake et al. 2020), and improve our understanding of dark matter
and dark energy (Abbott et al. 2019; Drlica-Wagner et al. 2019).
All these possibilities have led numerous collaborations over
the past decades to initiate a race to map the largest num-
ber of galaxies in the sky with the highest possible accuracy.
Stage IV of these galaxy redshift surveys – notably the Dark
Energy Spectroscopic Instrument1 (DESI Collaboration 2016),
Euclid2 (Laureijs et al. 2011) and the Nancy Grace Roman space
telescope3 (Spergel et al. 2015) – promises an unprecedented
amount of data, enabling, among other things, the most accu-
rate estimate of cosmological parameters to date. However, these
expected observational achievements must be accompanied
by appropriate theoretical and numerical advances. Although
widely used in most analyses because of its simplicity, it is

1 https://www.desi.lbl.gov/
2 https://www.euclid-ec.org/
3 https://roman.gsfc.nasa.gov/

well-known that the power spectrum (or equivalently the two-
point correlation function), for example, is not a sufficient sum-
mary statistic when it comes to non-Gaussian fields such as the
late-time distribution of matter in the Universe. Another caveat
that must be taken into account when using the matter power
spectrum for cosmological analyses is the degeneracies among
parameters of the Λ cold dark matter (ΛCDM) model, which
have a similar impact over a wide range of scales, limiting the
information one can extract from the model.

Over recent years, several strategies have been proposed to
fight the degeneracies and go beyond simple power spectrum
analyses in order to optimally exploit the matter distribution.
These have included information coming from higher-order
statistics (Hahn et al. 2020; Hahn & Villaescusa-Navarro 2021;
Gualdi et al. 2021; Philcox & Ivanov 2022), velocities (Mueller
et al. 2015; Kuruvilla & Aghanim 2021; Kuruvilla 2022), marked
power spectra (Massara et al. 2021, 2022), wavelet-based statis-
tics (Allys et al. 2020; Cheng et al. 2020; Cheng & Ménard
2021; Valogiannis & Dvorkin 2022a,b; Eickenberg et al. 2022;
Wang & He 2022; Wang et al. 2022), split densities (Uhlemann
et al. 2020; Paillas et al. 2021, 2023), partial or total cosmo-
logical environments (Kreisch et al. 2022; Bayer et al. 2021;
Bonnaire et al. 2021; Woodfinden et al. 2022), or from the mini-
mum spanning tree (Naidoo et al. 2020, 2022). While the recent
literature abounds in analyses and forecasts designed to iden-
tify the optimal statistic in real space, only a few studies have
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addressed the problem in the space in which the data are actually
collected, namely redshift space. It is nonetheless well-known
that the additional information carried by velocities coming into
play in this space is non-negligible and leads to considerable
improvement of the cosmological constraints derived from the
standard matter statistics.

The real-space results presented in Bonnaire et al. (2021)
demonstrated the ability of simple two-point statistics derived
in the separate cosmic web environments (voids, walls, fila-
ments, and nodes) to break key degeneracies in the cosmological
model, consequently enabling the improvement of constraints on
all the parameters compared to those derived from the matter
power spectrum. In the present study, we extended our analysis
of the constraints obtained by the combination of power spec-
tra computed in several environments when considering redshift-
space distortions (RSDs). In particular, we investigated how the
combination of environment-dependant spectra in this space can
improve the cosmological constraints, and how these latter com-
pare to the real-space case without correcting the distortions at
all. To this end, we performed a Fisher forecast of the constraints
using numerous simulations with varying cosmological param-
eters in order to numerically assess the information contained
in our statistics on the cosmological parameters. The paper is
organised such that Sect. 2 presents the Quijote suite of sim-
ulations and the methodology used to extract the cosmic web
environments while Sect. 3 introduces the power-spectra esti-
mation in redshift space and in the cosmic web environments.
Section 4 then presents the forecast constraints in redshift space
but also compares these with the real space findings reported in
Bonnaire et al. (2021). Finally, Sect. 5 provides a discussion of
the obtained results in view of the recent literature, gives per-
spectives for future steps towards the use of this kind of analysis
in observational setups, and also contains a summary and our
conclusions.

2. Data and methodology

2.1. The Quijote simulations

Our analysis relies on the Quijote4 (Villaescusa-Navarro et al.
2020) suite, which provides a set of 44 100 N-body simulations.
With realisations of more than 7000 cosmological models, this
large suite of simulations was precisely designed to perform
statistical analyses and train machine learning algorithms. Ini-
tialised with the second-order Lagrangian perturbation theory
(or Zel’dovich approximation in case of massive neutrino sim-
ulations), N = 5123 dark matter particles (and 5123 neutrinos in
case there are) are evolved forward in time in an L = 1 h Gpc−1

size box from redshift z = 127 to z = 0. There are 15 000 simu-
lations available at the fiducial cosmology, which is assumed to
be a flat ΛCDM cosmology with parameters Ωm = 0.3175, Ωb =
0.049, h = 0.6711, ns = 0.9624, σ8 = 0.834, and Mν = 0, with
Mν being the summed neutrino mass. For each cosmological
parameter, 500 simulations are then individually computed with
a fixed increase and decrease, dΩm = ±0.010, dΩb = ±0.002,
dh = ±0.020, dns = ±0.020, and dσ8 = ±0.015. Because Mν is
a positive quantity, the Quijote suite provides four positive vari-
ations of this parameter with Mν =

∑
mν = {0.1, 0.2, 0.4} eV.

4 https://quijote-simulations.readthedocs.io/en/
latest/

2.2. Cosmic web classification

Among the many possible definitions of the cosmic web envi-
ronments proposed in the literature (see Stoica et al. 2007;
Aragon-Calvo et al. 2010; Cautun et al. 2013; Sousbie 2011;
Tempel et al. 2014; Bonnaire et al. 2020, 2022, to name only a
few), we resort to an implementation of the T-Web algorithm
(Hahn et al. 2007; Forero-Romero et al. 2009). We summarise
the general steps of the classification below. We first start by
computing a smooth density field ρ(x) based on the discrete set
of particles by means of a B-spline interpolation of order four
over an N3

g = 3603 three-dimensional grid. The T-Web formu-
lation relies on the tidal tensor T(x), the second derivative of
the gravitational potential, itself computed from ρ(x), and the
Poisson equation. Each of the grid cells x is classified as either
void, wall, filament, or node depending on the eigenvalues of
the tidal tensor. More precisely, a cell x is in a void if the three
eigenvalues are below λth; in a wall if only two are below λth;
in a filament if only one is below λth; and in a node if none are
below this threshold. From the classification of the N3

g cells of
the density field, we propagate the environments at the particle
level, enabling the computation of four individual overdensity
fields, δv, δw, δf , and δn, where the subscripts refer to void, wall,
filament, and node, respectively. These fields are all linked to
the full matter overdensity field δm by the linear combination
δm =

∑
α∈{v,w, f ,n} fαδα, where fα = Nα/N denotes the mass frac-

tion5 of the environment α.
The classification scheme relies on three parameters. The

first two are related to the coarseness of the smooth gravita-
tional potential estimation, N3

g , the number of grid cells, and
σN , the scale of the Gaussian with which the potential is being
smoothed before performing the classification. The last param-
eter, λth, corresponds to the threshold used for the classification
of the environments based on the amplitudes of the eigenval-
ues of the tidal tensor. In Bonnaire et al. (2021), we explored
the impact of the parameters and ultimately set N3

g = 3603

cells and a value of σN = 2 h Mpc−1 for the smoothing scale.
This yields an effective smoothing of 3.4 h Mpc−1, which cor-
responds to the physical size of the structures, such as galaxy
clusters or filament widths (see Cautun et al. 2014). The eigen-
value threshold is set to λth = 0.3 in order to obtain a cos-
mic web that is consistent with the use of such a methodology
in the literature and in which the voids start to percolate (see
e.g. Hahn et al. 2007; Martizzi et al. 2019; Libeskind et al. 2017;
Bonnaire et al. 2021). We refer the reader to the first paper of
the series (Bonnaire et al. 2021) for details on the analysis and
assessment of these choices of parameter values.

3. Redshift space

3.1. Redshift-space distortions

When dealing with observational data, the redshift is used as a
measure of the distance. However, this quantity is the combina-
tion of the proper motion of the source due to its peculiar veloc-
ity, u, and the expanding Universe. Considering xr, the position
of a source in the comoving space, xs, its position in the redshift
space, and n̂, a unit vector in the line of sight (LoS) direction,

5 As all the particles have the same mass in the simulation, the ratio
between Nα, the number of particles in the environment α, and the total
number of particles N gives the mass fraction.
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we can obtain the mapping relation

xs = xr +

(
u · n̂
aH

)
n̂, (1)

where a is the scale factor and H the Hubble constant. This shift
distorts the spatial distribution of the tracers, and is known as
redshift-space distortion (RSD), which leads to two dominant
effects: The first is the finger-of-God (FoG) effect (Jackson 1972),
which makes overdense clustered regions appear elongated in the
LoS direction due to the high velocity of the sources, and the
second, observed on larger scales, is a squashing effect of dense
regions along the LoS known as the Kaiser effect (Kaiser 1987).

While Bonnaire et al. (2021) focused on the information
content of power spectra in cosmic web environments computed
in real space, with the current work we propose to investigate
the information in redshift space, which is therefore expected
to more closely resemble observations. To do so, we mimic the
effect of RSDs in each individual simulation by displacing all
particles (dark matter particles and neutrinos if any) according
to Eq. (1) along one Cartesian axis of the box, and therefore
assume that the plane-parallel approximation holds.

3.2. Power-spectra estimation in redshift-space

In a general manner, the cross-power spectrum is defined as the
covariance of Fourier transformed overdensity fields δα and δβ
and is given by

P`
s,αβ(k) =

2` + 1
2

∫ 1

−1
Pαβ(k, µ)L`(µ)dµ, (2)

where µ = k · n̂/k, which is the angle with the line of sight,
Pαβ(k, µ) is the 2D power spectrum obtained by binning both in
k and µ, and L` are the Legendre polynomials. In real space,
the isotropy of the density field implies that all the ` > 0
terms cancel out, leaving the monopole alone to carry all the
information. In redshift space, the peculiar velocities of parti-
cles induce a dependence of the power spectrum on the LoS,
which leads to the breaking of the density field isotropy and
consequently spreads the power over the multipoles `. Through-
out the present paper, we write Pαβ(k) to denote the cross- or
auto-spectra monopole in real space and keep the subscript s to
denote statistics computed in redshift space, together with the
superscript `, which refers to the multipole. To characterise spec-
tra in redshift space, we rely on the three first non-zero multi-
poles, namely P`=0

s,αβ(k), P`=2
s,αβ(k), and P`=4

s,αβ(k), respectively, which
are called the monopole, quadrupole, and hexadecapole. These
` ≤ 4 orders are the only non-vanishing moments in the linear
approximation of the distortions and encode the full 2D informa-
tion at linear scales (Kaiser 1987). The corresponding Legendre
polynomials are

L`(µ) =


1 if ` = 0,(
3µ2 − 1

)
/2 if ` = 2,(

35µ4 − 30µ2 + 3
)
/8 if ` = 4.

(3)

Similarly to Bonnaire et al. (2021), we deconvolve the fields δα
before estimating the power spectra to remove the biasing effect
in the estimation introduced by the smoothing of the fourth-
order B-spline interpolation to obtain the density fields. For addi-
tional robustness to any bias provoked by aliasing effects, the
maximum Fourier bin, which we set at kmax = 0.5 h Mpc−1

by default, is below half of the Nyquist frequency defined as
kNyq = πNg/L = 0.57 h Mpc−1.

10-2 10-1 100

k [h/Mpc]

100

P
`
=

0
s,
α
α
(k

)/
P
α
α
(k

)

Matter
Void
Wall
Filament
Node

Fig. 1. Ratio between the redshift-space and real-space monopoles com-
puted in the cosmic web environments. The grey shaded region shows
the scales k > 0.5 h Mpc−1, which are unused in this analysis.

3.3. Cosmic web environments and redshift space

Figure 1 shows the ratios between the real-space and redshift-
space monopoles obtained from the average of 7000 fiducial sim-
ulations. It is worth mentioning that the spectra are not weighted
by the mass fraction of the environments, which in particular
means that the matter multipoles cannot be recovered by sum-
ming the auto- and cross-spectra obtained in the environments,
that is, P`

s,mm(k) ,
∑
αβ P`

s,αβ(k). As expected, all the spectra are
boosted at large scales (small k values) due to the coherent motion
of matter escaping from voids and moving towards dense regions
because of the Kaiser effect. On the other hand, a decrease in
power is observed at smaller scales where the FoG effect dom-
inates, spreading particles initially residing in spherical overden-
sities along the line of sight. FoG mostly impacts the node envi-
ronment where the highest velocities are found. Beyond the shape
of the spectra in redshift space, the individual impact of each cos-
mological parameter is also different, as illustrated in Fig. 2. As
an example, decreasing σ8 does not imply a simple shift of the
matter power spectrum monopole in redshift space but is boost-
ing the power at small scales (large k values) due to the FoG effect.
This is illustrated by the dashed lines of the top-left panel, which
show the monopole residuals P`=0

s,mm(k)θi/P`=0
s,mm(k)fid − 1 with θi

being either σ−8 , Ω−m, or M+
ν . These effects can then cause degen-

eracies between cosmological parameters. It has been shown
for instance that the effect of massive neutrinos can be mim-
icked by a decrease in σ8 on the redshift-space monopole at
small scales k > 0.1 h Mpc−1 (see e.g. Villaescusa-Navarro et al.
2018; Hahn et al. 2020; Bayer et al. 2022), which in turn has
a similar impact to a decrease in Ωm. Comparing with the
bottom-left panels of Fig. 2, we see that the monopoles com-
puted in the cosmic web environments have various depen-
dencies when decreasing the three parameters. Consequently, a
change in σ8 can no longer be reproduced by increasing the
summed neutrino mass, illustrating the breaking of degeneracies
that we expect by analysing the several environments separately.
However, the anisotropic nature of the matter density field in
redshift space leads to nonzero ` > 0 multipoles that already have
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Fig. 2. Residuals of the matter monopole (upper left panel) or quadrupole (upper right panel) and environment-dependent monopoles (lower left
panel) or quadrupoles (lower right panel) when varying either σ8, Ωm, or Mν. Residuals are defined as P`

s,αα(k)θi/P`
s,αα(k)fid − 1 with θi = M+

ν (solid
line), σ−8 (dashed line), or Ω−m (dashed dotted line).

various shapes when varying these parameters, as illustrated in
the upper right panel of Fig. 2 for ` = 2. This suggest that com-
bining the two first multipoles of the matter density field should
allow us to break some degeneracies already. However, the mea-
surements of the multipoles are noisier when going to larger ` and
it might be interesting to measure the achievable accuracy of the
environment monopoles only. The right-bottom panels also show
that the environments themselves have different shapes for ` = 2,
suggesting further potential for imposing tighter constraints using
the statistics drawn from combining the four monopoles and the
four quadrupoles derived in the different environments.

The effects of the distortions are also clearly rooted in the
classification itself, where we expect for instance the FoG to
lead to a leakage of some cells classified in nodes in real space
to filaments in redshift space. These effects are quantified in
Table 1, which reports the confusion matrix averaged over ten
simulations at fiducial cosmology when considering the real-

Table 1. Averaged confusion matrix obtained from ten boxes of the
Quijote simulations with the fiducial cosmology when considering the
absence of RSD as a ground truth.

Redshift space
Real space Void Wall Filament Node

Void 0.813 0.179 0.007 0.001
Wall 0.018 0.809 0.166 0.006
Filament 0.001 0.082 0.809 0.107
Node 0.002 0.042 0.367 0.587

space classification as the ground truth. The non-diagonal terms
of this matrix therefore correspond to the fraction of change in
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Table 2. Marginalised 1σ constraints obtained from the analysis of power-spectra monopoles and quadrupoles computed in the different environ-
ments for all cosmological parameters.

Statistics σΩm σΩb σh σns σσ8 σMν

Pmm 0.0969 0.0413 0.5145 0.5019 0.0132 0.8749

P`=0
s,mm 0.0081 0.0144 0.1495 0.0786 0.0115 0.3611

P`={0,2}
s,mm 0.0046 0.0133 0.1396 0.0719 0.0020 0.0834

P`=0
s,comb 0.0033 (1.4) 0.0105 (1.3) 0.0877 (1.6) 0.0346 (2.1) 0.0026 (0.8) 0.0482 (1.7)

P`={0,2}
s,comb 0.0027 (1.7) 0.0097 (1.4) 0.0773 (1.8) 0.0295 (2.4) 0.0020 (1) 0.0304 (2.7)

P`={0,2}
s,comb + P`={0,2}

s,mm 0.0011 (4.1) 0.0091 (1.5) 0.0716 (2.0) 0.0279 (2.6) 0.0015 (1.4) 0.0151 (5.5)

Notes. Improvement factors (in parentheses) are relative to the matter case in redshift space, namely P`={0,2}
s,mm in the third row. σMν is in units of eV.

the environment classification when going from real to redshift
space and a perfect match would lead to the identity matrix. The
matrix shows for instance that 36.7% of the particles classified
in nodes in real space are found in filaments when the classifi-
cation is performed in redshift space. We note that the leakage
mostly occurs between one environment and another of directly
higher local dimension (i.e. voids to walls, walls to filaments,
and filaments to nodes), while very little leakage occurs between
environments of higher dimensions. We interpret this effect as a
result of our plane-parallel approximation, which forces the dis-
tortions to occur along one spatial axis only. It is worth underlin-
ing that, apart from nodes, the classification is quite stable to the
distortions, with about 80% of the particles in each environment
(voids, walls, and filaments) keeping the same classification in
real and redshift spaces.

4. Cosmological constraints

To quantify the amount of information carried by the spectra
computed in the cosmic web environments, we make use of a
Fisher analysis (details can be found in Appendix A). Briefly,
this latter allows us to derive a lower bound on the constraints
that one would achieve when relying on a given statistic, in our
case either the spectra in the cosmic web environments or the full
matter power spectrum. The derivation of the constraints mostly
relies on two elements, both of which we derive numerically
from the Quijote simulations: (i) the covariance matrix between
Fourier amplitudes and (ii) the derivatives of the statistic with
respect to the six cosmological parameters Ωm,Ωb, h, ns, σ8, and
Mν. The covariance matrices used in the Fisher forecast are
shown in Appendix B.

The first row of Table 2 gives the constraints obtained
from the real-space matter power spectrum presented in
Bonnaire et al. (2021), while the second and third rows show
the redshift-space constraints from the matter monopole P`=0

s,mm

and the combination of the monopole and quadrupole P`={0,2}
s,mm ,

respectively. It is particularly striking that the redshift-space con-
straints obtained from just the monopole allow us to improve
those in real space for Ωm by a factor of up to 12 and those for
Mν by a factor of up to 2.4. These gains even reach 21.1 and 10.5,
respectively, when adding the information of the quadrupole in
the P`={0,2}

s,mm statistic. Such results are expected when moving from
real to redshift space due to the additional velocity information
coming into play in the breaking of the density field isotropy.
It is also interesting to note that only σσ8 and σMν

are drasti-

cally reduced when adding the quadrupole information to the
matter monopole, while the error on other parameters remains
roughly the same, quantifying the expected breaking of degen-
eracy between these two parameters discussed in Sect. 3.3 and
illustrated in the top panels of Fig. 2.

Concerning the environment-dependent spectra, we report
the following in rows four to six of Table 2:

– Using the combination of environment monopoles (fourth
line of Table 2) already provides tighter constraints than the com-
bination of the first two multipoles of the full matter density
field, P`={0,2}

s,mm (third line of Table 2), with improvement factors
of up to 2.1 and 1.7 for ns and Mν, respectively.

– Adding the ` = 2 information brings down the
constraints to even lower values with improvement fac-
tors of {1.7, 1.4, 1.8, 2.4, 1, 2.7} on cosmological parameters
{Ωm,Ωb, h, ns, σ8,Mν}with respect to the matter analogue in red-
shift space, as shown in the fifth row of Table 2. Similarly to what
is observed in the matter case, adding up the ` = 2 information
mostly breaks the degeneracy on Mν without greatly impacting
the set of other parameters.

– The constraints imposed by the combination of envi-
ronment statistics highly depend on the maximum scale of
the spectra included in the analysis. Many panels of Fig. 3
indeed indicate that the matter monopole+quadrupole satu-
rates at mildly non-linear scales, a feature already exhibited in
the real space analysis from Bonnaire et al. (2021) and previ-
ously pointed out by Takahashi et al. (2010), Blot et al. (2015),
Chan & Blot (2017). This saturation, which is mainly due to
the degeneracies among parameters of the cosmological model,
is not observed for the combination of environment-dependent
spectra, and is a particular encouragement for us to push the lim-
iting scale of the analyses further in order to fully capitalise on
the potential of the cosmic web split.

– Unlike the real-space case, the improvement factors of the
individual environments are below one for all parameters when
kmax = 0.5 h Mpc−1 (see Table C.1). This observation is not true
at all scales, as illustrated by Fig. 3, where the environments per-
form individually better than the matter statistics when restrict-
ing the analysis to very large scales, that is, below 0.15 h Mpc−1

in practice, except for σ8 and Mν for which the full matter is
always more attractive than individual environments.

– The absolute values of the constraints derived from indi-
vidual environments and their combination in redshift space are
similar to the constraints derived from real space (comparing
Table C.1 to Table C.1 in Bonnaire et al. 2021), and are even
tighter for Ωm and Mν.
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Fig. 3. Evolution of the marginalised constraint σθi given by P`={0,2}
αα on cosmological parameters {Ωm,Ωb, h, ns, σ8} and the sum between neutrino

mass Mν and the maximum scale used for the Fisher analysis, kmax. Here, σMν is in units of eV.

– The non-negligible improvements of the constraints drawn
from P`={0,2}

s,comb are amplified when the analysis is reduced to large
scales only (i.e. small values of k), especially for parameters such
as Ωm, Ωb, σ8, and Mν, reaching a factor 5 improvement over the
matter statistic, as represented in Fig. 3.

– The overall information brought by the combination of
environment-dependant spectra can still be completed by the
matter multipoles to further improve the constraint by factors
of up to 5.5 and 4.1 on Mν and Ωm, respectively (see the last
row of Table 2). From inspection of the confidence ellipses in
Fig. B.2, it indeed appears that P`={0,2}

s,comb and P`={0,2}
s,mm bring com-

plementary information in relations such as Mν−σ8 or σ8−Ωm,
which explains the tighter constraints obtained when merging
this information in the analysis.

– Including the cross spectra in the combination, and there-
fore considering the statistic P`={0,2}

s,αβ for (α, β) ∈ {v, w, f , n}2,
allows us to boost the gains on some parameters, such as Mν

and Ωm by factors of 2.2 and 3.5, respectively. All these gains
are summarised in Fig. 4 and this statistic notably involves the
information from auto-spectra and accounts for a total of 800
elements in the summary statistic.

We also checked that including the hexadecapole (` = 4)
in our analysis does not lead to any further improvement of the
constraints over the ` = {0, 2} statistics, neither for the matter nor
for the environment-dependant spectra, or their combination.

5. Discussion and conclusion

It is well known that by analysing the matter distribution in red-
shift space through its power spectrum, we can greatly improve
cosmological constraints. This is thanks to the velocity infor-
mation contained in the anisotropy of the density fields, which
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Fig. 4. Improvement factors of the several studied statistics over the
redshift-space matter monopole+quadrupole constraints for each of the
six cosmological parameters at kmax = 0.5 h Mpc−1. The horizontal
black line shows the unity improvement. We note that these statistics
exclude the combination with the matter multipoles and only concern
the several cosmic web environments and their combination (therefore
excluding the last line of Table 2 for instance).

breaks key degeneracies between parameters. Our results show
that we can attain even tighter constraints by performing sta-
tistical analyses in identified cosmic web environments. In this
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configuration, the constraints on cosmological parameters, such
as the initial spectral index, the matter density, the Hubble
parameter, and most notably the summed neutrino mass, can
be improved by up to a factor of two. Improvement factors can
even reach five when combining these analyses with full mat-
ter statistics. Our approach therefore opens up a new avenue
for the derivation of cosmological constraints via the analysis
of the observed distribution of tracers. In particular, it shows that
conditioning the correlations on the cosmic web environments
improves constraints on the cosmological parameters compared
to the direct correlation of all tracers, in agreement with previous
findings (e.g. Uhlemann et al. 2020; Paillas et al. 2021, 2023).

The present study was performed in a theoretical context in
which we built matter density fields from numerical simulations.
Firstly, within this idealised context and with the studied statis-
tics, it appears that constraining the cosmological parameters
in redshift space yields similar constraints to those obtained in
real space, if not tighter, despite the fact that we do not handle
the distortions in the classification. This therefore suggests that
reconstruction of the particles from redshift to real space (e.g.
Jasche & Wandelt 2013; Bos et al. 2014; Leclercq et al. 2015) is
not necessary in the present setting and can even deteriorate the
accuracy of the derived constraints. Secondly, this context allows
us to explore the full range of scales including non-linear ones.
The combination of auto-spectra computed in the different envi-
ronments up to kmax = 0.5 h Mpc−1 leads to tighter constraints
in redshift than real space for most parameters, which is even
more emphasised when adding information from the full matter
monopole and quadrupole.

With this second paper of the series, we therefore go beyond
showing how to use the cosmic web environments as leverage
in order to improve the cosmological constraints in real space,
and present the benefits of using a cosmic web classification
to improve redshift-space constraints over the traditional mat-
ter power-spectrum multipoles. In a third paper, we will com-
plete our comprehensive analysis of the cosmological content
of the cosmic web environments with the analysis of the direct
higher order statistic, namely the bispectrum. The next steps
and challenges will consist in adapting and optimising our anal-
ysis – which is currently performed in a theoretical and ide-
alised setup of large number density provided by particles in
simulations – to more realistic cases of observed sparse trac-
ers of the density field, such as halos or galaxies, as performed
in other works (such as Hahn et al. 2020; Naidoo et al. 2022;
Kreisch et al. 2022; Paillas et al. 2023). In this context, simula-
tions will represent a major endeavour. Adapting our analysis so
that it can be applied to actual data from galaxy surveys requires
the exploitation of simulations with a higher mass resolution,
enabling the definition of galaxy-type halos and with realistic
baryonic physics models Vogelsberger et al. (2014). Such simu-
lations will also allow us to bypass the difficulty of a theoretical
modelling of covariance matrices and the building of likelihoods,
which can be achieved with the use of simulation-based infer-
ence (e.g., Cranmer et al. 2020; Lemos et al. 2023). The infor-
mation that can be gained on the cosmological content of cosmic
web environments, as demonstrated by the results of the present
study, will certainly justify the effort involved. The work pre-
sented here therefore constitutes a step towards an optimal and
interpretable summary statistics that will allow us to take full
advantage of the future Stage IV experiments (Laureijs et al.
2011; Spergel et al. 2015; DESI Collaboration 2016).
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Appendix A: Fisher formalism

The Fisher formalism allows the forecast of constraints we will
get on our set of parameters θ = {Ωm,Ωb, h, ns, σ8,Mν} based
on a statistical summary of the density fields. In our case, this
summary is given by the set of environment-dependent (cross-
or auto-)power spectra in Fourier bins, s = {Pαβ(k)}. Assuming a
Gaussian likelihood with a covariance matrix that is independent
of cosmology (Carron 2013; Kodwani et al. 2019), we can derive
elements of the Fisher information matrix as

[I(θ)]i, j =

(
∂s̄
∂θi

)T

Σ−1
(
∂s̄
∂θ j

)
· (A.1)

The first ingredient in the computation of the Fisher infor-
mation matrix is the unbiased estimate of the inverse covariance
matrix Σ−1, which is given, still under the Gaussian assumption,
by (Kaufman 1967; Hartlap et al. 2007)

Σ−1 =
Nfid − n − 2

Nfid − 1
Σ̂
−1
, (A.2)

where Nfid is the number simulations at the fiducial cosmol-
ogy, n is the length of the summary statistics vector s, and
Σ = (s − s̄) (s − s̄)T / (Nfid − 1) is the unbiased estimate of the
covariance matrix.

The second ingredient of Eq. (A.1) are the derivatives with
respect to the parameters of the model θ. These latter can be
estimated numerically from the Nderiv = 500 realisations of the
variation of individual parameters in the Quijote suite as

∂s̄
∂θi
'

s̄(θi + dθi) − s̄(θi − dθi)
2dθi

· (A.3)

However, we note that the above definition does not apply for Mν

being a positive quantity with a fiducial value at 0.0 eV. For this
parameter, we therefore rely on the four-point forward approxi-
mation of the derivative

∂s̄
∂Mν

'
s̄(4M+

ν ) − 12s̄(2M+
ν ) + 32s̄(M+

ν ) − 21s̄(Mν = 0.0)
12M+

ν

,

(A.4)

where M+
ν = 0.1 eV. For consistency, we use a set of simula-

tions initialised using the Zel’dovich approximation to compute
s̄(Mν = 0) in the previous equation because all the other terms
are initialised this way. The presented results are obtained by
making use of Nderiv = 500 and Nfid = 7000 realisations to
respectively compute the derivatives and the covariance matrix.

Appendix B: Covariance matrices, derivatives, and
confidence ellipses

While discussed in the main text Sect. 4, we report in this section
the two ingredients of the Fisher quantification of information,
which are: (i) the correlation matrices between the several ele-
ments of the statistic vector in Fig. B.1 and (ii) the derivatives
of the redshift-space monopoles and quadrupoles with respect to
the six cosmological parameters. Figure B.2 shows the corner
plot with the several confidence ellipses obtained for the P`={0,2}

s,αα
statistics for all six cosmological parameters, namely Ωm, Ωb, h,
ns, σ8, and Mν.
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C
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Fig. B.1. Correlation coefficients Ci j obtained from Nfid = 7000 simula-
tions for (top) the matter power spectrum, and (bottom) from the auto-
spectra Pαα(k) computed in the different environments. Each submatrix
goes from k = 0.1 h/Mpc to k = 0.5 h/Mpc.
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Fig. B.2. 1σ confidence ellipses for all the pairs of cosmological parameters (Ωm,Ωb, h, ns, σ8,Mν) obtained from the several statistics (either the
matter monopole+quadrupole or the ones from the environments and their combination) in redshift space. The normalised probability density
functions for each parameter are shown on the diagonal.
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Appendix C: Constraints from spectra in the
several environments

Here, we provide the individual constraints obtained from the
monopole and quadrupole power spectra computed in the dif-
ferent cosmic web environments in Table C.1. As discussed

in Sect. 4, they all lead to much weaker constraints than the
full matter statistic in redshift-space when kmax = 0.5 h/Mpc.
However, their combination leads to tighter constraints with an
improvement by a factor of up to 2.7 for the summed neutrino
mass and 2.4 for ns.

Table C.1. Marginalised 1σ constraints obtained from the analysis of power-spectra monopoles and quadrupoles computed in the different envi-
ronments for all cosmological parameters.

Statistics σΩm σΩb σh σns σσ8 σMν

P`={0,2}
s,vv 0.0244 (0.2) 0.0157 (0.8) 0.1478 (0.9) 0.0773 (0.9) 0.0060 (0.3) 0.1657 (0.5)

P`={0,2}
s,ww 0.0117 (0.4) 0.0213 (0.6) 0.1893 (0.7) 0.0772 (0.9) 0.0039 (0.5) 0.1069 (0.8)

P`={0,2}
s,ff 0.0081 (0.6) 0.0141 (0.9) 0.1485 (0.9) 0.0895 (0.8) 0.0051 (0.4) 0.1294 (0.6)

P`={0,2}
s,nn 0.0096 (0.5) 0.0210 (0.6) 0.2350 (0.6) 0.1523 (0.5) 0.0139 (0.1) 0.5397 (0.2)

P`={0,2}
s,comb 0.0027 (1.7) 0.0097 (1.4) 0.0773 (1.8) 0.0295 (2.4) 0.0020 (1) 0.0304 (2.7)

Notes. All the improvement factors (in parentheses) are relative to the matter case in redshift-space, namely P`={0,2}
s,mm given in the third row of

Table 2. σMν is in units of eV.
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