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Abstract

We study word reconstruction problems. Improving a previous result by P. Fleischmann,
M. Lejeune, F. Manea, D. Nowotka and M. Rigo, we prove that, for any unknown word
w of length n over an alphabet of cardinality k, w can be reconstructed from the number
of occurrences as subwords (or scattered factors) of O(k2

√

n log
2
(n)) words. Two previous

upper bounds obtained by S. S. Skiena and G. Sundaram are also slightly improved: one
when considering information on the existence of subwords instead of on the numbers of their
occurrences, and, the other when considering information on the existence of factors.
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1 Introduction

A natural combinatorial question is to ask how much partial information on an object is needed
to reconstruct this object (see below and in our references for examples). For example, in
[2, 3], P. Fleischmann, M. Lejeune, F. Manea, D. Nowotka and M. Rigo consider the problem
of reconstructing a word w from information on the number of occurrences as subwords of w of
some words. Let us recall that a word u is a subword of a word w (or a scattered subword of w)
if u and w can be decomposed in the form u = u1 · · · uℓ and w = v0u1v1 · · · uℓvℓ for some words
u1, . . . , uℓ, v0, . . . , vℓ. Such a double decomposition marks an occurrence of u as a subword of
w. The number of occurrences of u as a subword of w is sometimes denoted as the binomial
coefficient

(

w
u

)

since this number coincides with the traditional coefficient
(|w|
|u|
)

when the words

u and w are written on a single letter (here, as usual in combinatorics on words, |w| denotes
the length of w), see for instance [8, chap. 6]. The problem addressed by Fleischmann et al.
is presented as a game in which the player has to guess an unknown word. In his task the
player asks questions in a certain form until he has enough information to uniquely determine
the word. More precisely, at each round, the player chooses a word u based on the previous
answers that he obtained and asks for the value of

(

w
u

)

. The goal of the player is to minimize the
number of questions. Fleischmann et al. proved that there is a strategy to ensure that at most
min(|w|a, |w|b) + 1 ≤ ⌊ |w|

2 ⌋ + 1 questions are needed when w is defined on the binary alphabet
{a, b} (for a letter α, |w|α =

(w
α

)

denotes the number of occurrences of α in w). For any word
w over the alphabet {1, . . . , k} they proved that the number of questions needed is bounded by
∑

i∈{1,...,k} |w|i(k + 1 − i). Our main results (Theorem 2.1 and Corollary 2.6) prove that this

number of questions is at most
(k
2

)

(

7
⌈

√

|w| log2(|w|)
⌉

+ 4
)

. For any fixed k, our upper bound

is asymptotically much stronger as the length of the word goes to infinity. For binary words in

particular, their upper bound is |w|
2 + 1 and ours is 7

⌈

√

|w| log2(|w|)
⌉

+ 4 . We also adapt this

strategy (Theorem 2.2) to provide an algorithm whose expected running time over a uniform
random binary word of length n is O(log2 n).

Let us recall that the previous game is related to another problem that seems to have been
first introduced by L. O. Kalashnik [5]: What is the smallest ℓ such that we can reconstruct
w from the values

(

w
u

)

for all words u of length ℓ? As far as we know, the best upper bound,

⌊167
√

|w|⌋+ 5, for this problem was obtained by I. Krasikov and Y. Roditty in 1997 [6] using a
link with the Prouhet-Tarry-Escott problem about Diophantine analysis. Also the best known

lower bound, 3(
√

2/3−o(1)) log
1/2
3

(|w|)), is due to [1]. Our result does not improve this upper bound
since, in the binary case, at least one query concerns a word u of length at least min(|w|0, |w|1)
which is around |w|/2 for many words w.

In a variant of the previous problem queries in the form “what is the value of
(w
u

)

?” is
replaced with queries in the form “Is

(w
u

)

≥ 1?” or equivalently “Is u a subword of w?”. More
precisely the problem is to determine the least value ℓ such that the set of subwords of length ℓ
determines uniquely a word w. This problem arose in various areas. In [8, Chap 6], it is proved
that any word w of length n over an alphabet A is uniquely determined by its set of subwords
in the form a∗b∗ of length at most ⌈|w|a + |w|b + 1/2⌉ with a and b distinct letters of A. The
problem is also studied in [7].

In [9, 10], in the context of DNA sequencing of hybridization, S. S. Skiena and G. Sundaram
consider the problem of minimizing the number of queries in the form “Is u a subword of w?”.
They prove that a word w of length n over an alphabet A of cardinality k can be reconstructed
using O(n log2(k) + k log2(n)) such queries. More precisely Theorem 15 in [10] states that
1.59n log2(k)+2k log2(n)+5k queries are sufficient to reconstruct w. Using a basic information
theory approach S. S. Skiena and G. Sundaram also provide the lower bound n log2 k for the
number of queries. In Section 3, we slightly improve S. S. Skiena and G. Sundaram’s strategy
and we provide a new upper bound, reducing the gap with the lower bound. More precisely,
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we state that at most n log2(k) + k(2 + ⌊log2(n + 1)⌋) queries are sufficient to reconstruct w,
reducing the gap between the bounds from 0.59n log2(k) +O(k log2(n)) down to O(k log2(n)).

In Section 4, we consider factors instead of subwords (a word u is a factor of a word w if
there exist words p and s such that w = pus) and the corresponding problem of minimizing
the number of queries in the form “Is u a factor of w?” needed to reconstruct an unknown
word w. In [9, 10], S. S. Skiena and G. Sundaram prove that, for an unknown word w over an
alphabet A of cardinality k, if the length n of w is known then w can be reconstructed using
a number of queries which is in (k − 1)n + 2 log2(n) + O(k). Actually their proof leads to the
upper bound (k − 1)n + log2(n) + O(k), which is n + log2(n) + O(1) in the binary case. This
more accurate upper bound was already mentioned in the binary case in [10]. A simple double
counting argument (there are kn words of length n and each question has two possible outcomes)
leads to the lower bound n log2 k. We improve their strategy and reduce the upper bound to

(k − 1)(n + 2) +
⌈

log2(n)
2

⌉

+ 3. In the binary case, this reduces the gap between the lower and

the upper bound from log2(n) +O(1) down to
⌈

log2(n)
2

⌉

+ 5.

Queries in the form “What is the number of occurrences of a word u as a factor of w”
have also been considered by S.S. Skiena et G. Subraman [10]. Their lower bound nk/4− o(n)
on the number of queries needed is, up to our knowledge, the best known. One can deduce
whether a word u occurs as a factor in a word w from the number of occurrences of u in w.
This observation allows them to obtain the same upper bounds for this fourth problem than for
the previous problem. Similarly, our bound applies. Hence, we also slightly improve the upper
bound in this case, but this improvement is negligible compared to the size of the gap between
the lower bound and the upper bound.

Basic definitions and notations have already been recalled (following [8]). Let us observe
that #S denotes the cardinality of a set S. Moreover, given a word w over an alphabet A, we
will simply use n to denote the length |w| of w and k to denote the cardinality #A of A.

2 How-many-subwords queries

In this section, we focus on queries in the form “How many occurrences of u as a subword does
w contains?” or equivalently “What is the value of

(w
u

)

?”. We call such a query a #-subword
query. Our main result regarding this kind of query is the following. Of course, as it will be
the case for other queries in the next sections, we assume that such a query can be answered
without knowing w.

Theorem 2.1. The number of #-subword queries needed to reconstruct a word of length n over
{0, 1} is at most 7

⌈√
n log n

⌉

+ 4 whether n is known or not.

A word w that contains m occurrences of 1, can always be written as w = 0s010s11 . . . 10sm

where the si are nonnegative integers. Since m =
(w
1

)

, it only requires one query to find m. Our
goal is to find the values of all the si. Our strategy relies on the fact that if we know which of
the si are “large” and if we know their values then we can determine multiple others si with a
single query (this is shown in Lemma 2.4). On the other hand since we cannot have too many
“large” si we have an efficient strategy to find all these si (see Lemma 2.5). Using these two
facts together and optimizing the meaning of “large” we get the desired result.

Actually, in a uniform random word we do not expect to have any si larger than O(log n)
and this leads to a more efficient average case algorithm.

Theorem 2.2. There is a deterministic strategy that, given any integer n, reconstructs in av-
erage in O(log2(n)) queries any word w taken uniformly at random among all binary words of
length n.

The next lemma allows to prove Lemma 2.4.
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Lemma 2.3. Let r, ℓ, s1, . . . , sr be non-negative integers such that 1 ≤ r ≤ ℓ + 1 and for all
j ∈ {1, . . . , r}, sj < ℓ+1

r . The values of s1, . . . , sr are uniquely determined by the values of
(0sr10sr−11···0s210s11ℓ

01ℓ

)

, r and ℓ.

Proof. Let us first express the number of occurrences of 01ℓ as subword in 0sr10sr−11 · · · 0s11ℓ.
By considering separately the different possible positions of the 0 in the occurrence we obtain

(

0sr10sr−11 · · · 0s210s11ℓ
01ℓ

)

=
r

∑

j=1

sj

(

ℓ+ j − 1

ℓ

)

=
r

∑

j=1

sj

(

ℓ+ j − 1

j − 1

)

. (1)

Let β = maxj sj. We first show that for all t ∈ {1, . . . , r},
t

∑

j=1

sj

(

ℓ+ j − 1

j − 1

)

≤ β

(

ℓ+ t

t− 1

)

. (2)

We proceed by induction on t. It is easily verified for t = 1. Now if (2) holds for t, then

t+1
∑

j=1

sj

(

ℓ+ j − 1

j − 1

)

=
t

∑

j=1

sj

(

ℓ+ j − 1

j − 1

)

+ st+1

(

ℓ+ t

t

)

≤ β

(

ℓ+ t

t− 1

)

+ st+1

(

ℓ+ t

t

)

≤ β

((

ℓ+ t

t− 1

)

+

(

ℓ+ t

t

))

= β

(

ℓ+ t+ 1

t

)

which concludes the inductive proof of (2).
Moreover, for all t ∈ {1, . . . , r}, β

(

ℓ+t
t−1

)

< ℓ+1
r

(

ℓ+t
t−1

)

≤ ℓ+1
t

(

ℓ+t
t−1

)

=
(

ℓ+t
t

)

. Together with (2), it
implies that for all t ∈ {1, . . . , r},

0 ≤
t

∑

j=1

sj

(

ℓ+ j − 1

j − 1

)

<

(

ℓ+ t

t

)

. (3)

Observe that, for all t ∈ {1, . . . , r − 1},

st+1 =

∑t+1
j=1 sj

(ℓ+j−1
j−1

)

−∑t
j=1 sj

(ℓ+j−1
j−1

)

(

ℓ+t
t

) .

But st+1 is an integer and by equation(3) the right part of the fraction in the left-hand-side is
in [0, 1[ we deduce

st+1 =

⌊
∑t+1

j=1 sj
(ℓ+j−1

j−1

)

(ℓ+t
t

)

⌋

. (4)

By Equations (1) and (4), we can deduce the value of sr from r, l and
∑r

j=1 sj
(ℓ+j−1

j−1

)

which is it-

self deduced from
(0sr10sr−11···0s210s11ℓ

01ℓ

)

. From the value of sr, we can now deduce
∑r−1

j=1 sj
(ℓ+j−1

j−1

)

and thus sr−1 by (4). Thus, by an “inverse induction” from r − 1 to 1, we deduce the values of
all the sj .

Lemma 2.3 allows us to determine the length of multiple consecutive 0-blocks with only one
query under some strong hypothesis, but we can relax these hypotheses as follows. The idea is
that if we have some large si and a prefix, it is enough to know the value of these si and of the
prefix in order to remove their contribution before applying the previous lemma.

Lemma 2.4. Let p and v be words, r and s1, . . . , sr be nonnegative integers such that 1 ≤ r ≤
|v|1 + 2 and let w = p0sr10sr−1 . . . 10s11v. Suppose that p, |v|1 and r are known and that for all

j, either sj is known or sj < |v|1+2
r , then the value of

( w
011+|v|1

)

uniquely determines the values
of all the unknown sj for j ∈ {1, . . . , r}.
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Proof. For all j ∈ {1, . . . , r}, let s′j be such that if sj <
|v|1+2

r , then s′j = sj and s′j = 0 otherwise.

Then sj − s′j is known for all j (it is sj if sj is known and 0 otherwise) and for all j, s′j <
|v|1+2

r .

Now, by considering the possible positions of the 0 in the occurrences of 011+|v|1 , we get

(

w

011+|v|1

)

=

(

p1r+|v|1

011+|v|1

)

+

(

0sr10sr−1 . . . 10s111+|v|1

011+|v|1

)

=

(

p1r+|v|1

011+|v|1

)

+
r

∑

j=1

sj

(

j + |v|1
1 + |v|1

)

=

(

p1r+|v|1

011+|v|1

)

+

r
∑

j=1

(sj − s′j)

(

j + |v|1
1 + |v|1

)

+

r
∑

j=1

s′j

(

j + |v|1
1 + |v|1

)

=

(

p1r+|v|1

011+|v|1

)

+

r
∑

j=1

(sj − s′j)

(

j + |v|1
1 + |v|1

)

+

(

0s
′
r10s

′
r−1 . . . 10s

′
111+|v|1

011+|v|1

)

.

It implies that,

(

0s
′
r10s

′
r−1 . . . 10s

′
111+|v|1

011+|v|1

)

=

(

w

011+|v|1

)

−
(

p1r+|v|1

011+|v|1

)

−
r

∑

j=1

(sj − s′j)

(

j + |v|1
1 + |v|1

)

.

By assumption,
(

w
011+|v|1

)

, p, r, |v|1 and for all j, (sj − s′j) are known. Hence, the quantity
(0s

′
r10

s′r−1 ...10s
′
111+|v|1

011+|v|1

)

is uniquely determined. For all j, s′j <
|v|1+2

r and we deduce from Lemma
2.3 that the values of all the s′j are uniquely determined which concludes our proof.

For any word w over {0, 1} decomposed as w = 0s010s11 · · · 0st−110st , we call i the index of
the 0-block 0si . If we want to use the previous lemma to reconstruct a word, we first need to
determine the indices of all the 0-blocks that are longer than some predetermined length.

Lemma 2.5. Let w ∈ {0, 1}∗ and m be an integer. Let I be the set of indices of 0-blocks of w
of length at least m. Suppose that we know |w| and |w|0 (and so also |w|1 = |w| − |w|0), then
the number of #-subword queries needed to determine I is at most

2|w|0⌈log2(|w|1 + 1)⌉
m

.

Proof. We use Algorithm 1 to determine I calling it with ℓ = 0 and u = |w|1. Note that
|w|1 = |w| − |w|0 is known.

Algorithm 1 An algorithm that prints the indices i ∈ {ℓ, . . . , u} of the 0-blocks of length at
least m that occur in w
procedure Recblocks(w, m, ℓ, u)

if
( w
1ℓ0m1|w|1−u

)

≥ 1 then

if u = ℓ then
Print ℓ

else

Recblocks(w, m, ℓ, ⌊ ℓ+u
2 ⌋)

Recblocks(w, m, ⌊ ℓ+u
2 ⌋+ 1, u)

The condition of the main “if” verifies that the lengths of the 0-blocks whose indices are in
{ℓ, . . . , u} sum to at least m. If it doesn’t then we know that none of these blocks can have
length at least m so we do not need to call the function recursively on any of them. From this,
verifying the correctness of the algorithm is rather straightforward.
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Let us now bound the total number of queries. For this, we consider the tree of recursive calls
to Recblocks defined as follows: the root of the tree is the initial call with ℓ = 0 and u = |w|1;
a call a is the child of another call b if the call a was made in b. The depth of a call is its
distance to the root. The weight of a call is the quantity u + 1 − ℓ. For any call of weight x,
the weights of its children are ⌈x/2⌉ or ⌊x/2⌋ (and the sum of the weights of the two children
is x). Let f be the function such that f : x → ⌈x2 ⌉. The root has weight |w|1 + 1 and f is a
non-decreasing function, so any call of depth d has weight at most fd(|w|1 +1). For any integer

x, f(x) ≤ x+1
2 , and, in particular, for all d ≥ 1, fd(|w|1 + 1) ≤ fd−1(|w|1+1)+1

2 . By induction on

d, fd(|w|1 +1) < |w|1+1
2d

+1. Any call of depth ⌈log2(|w|1 +1)⌉ has weight at most 1 (the weight
is an integer smaller than 2) and is a leaf of the tree. Hence, the depth of any call is at most
⌈log2(|w|1 + 1)⌉.

Moreover, one easily verifies by induction on the depth that for any two different calls c and
c′ at the same depth the corresponding intervals [ℓ, u] and [ℓ′, u′] are disjoint. We say that a
call with the values ℓ and u owns the occurrences of 0 that belongs to all the blocks of indices
between ℓ and u. Then by the previous remark, the set of occurrences of 0 owned by two calls
at the same depth are disjoint. Since the condition of the first “if” is true if the call owns at
least m occurrences of 0, we deduce that there are at most |w|0

m such calls on any given depth.
Since each such call has two children, we deduce that the number of calls at any depth is at
most 2 |w|0

m . Hence the total number of calls, is at most
2|w|0⌈log2(|w|1+1)⌉

m . Since we ask one query
by call this concludes the proof.

We are now ready to show our main result. We will first use the algorithm from Lemma 2.5
to find all the blocks that are of length

⌈√
n log n

⌉

and then we use Lemma 2.4 to determine all
the other blocks.

Proof of Theorem 2.1.
Phase 1. Let w be the unknown word. It costs two queries to get |w|0 =

(w
0

)

and |w|1 =
(w
1

)

.
Then n = |w| = |w|0 + |w|1 is known. Suppose without loss of generality that

(w
0

)

≥ n/2 ≥
(w
1

)

(otherwise simply exchange the role of 0 and 1 in the following).
Phase 2. Let m =

⌈√
n log n

⌉

. We use the algorithm from Lemma 2.5 to locate all the
0-blocks of length at least m. There are at most n

m such blocks and we can use one query
for each of them to determine their respective length: Indeed if the block is at index i with
i ∈ {0, . . . , |w|1}, its length is

(

w
1i01|w|1−i

)

. Thus locating 0-blocks of length at least m together

with their lengths require at most 2|w|0⌈log(|w|1+1)⌉
m + n

m queries. This number of queries is less

than 3n logn
m ≤ 3

√
n log n.

Phase 3. We now need to determine the lengths of 0-blocks of length at most m. We first

determine the 0-blocks occurring before the
⌈

|w|1
2

⌉

last occurrences of 1. Secondly, we determine

the 0-blocks occurring after the
⌈

|w|1
2

⌉

first occurrences of 1. After this, the lengths of all the

0-blocks are known and we know w. We describe only how to determine the first half of the
blocks, since reconstructing the second half of the blocks can be done symmetrically.

There are
⌈

|w|1
2

⌉

+ 1 0-blocks before the
⌈

|w|1
2

⌉

last occurrences of 1. We determine the

unknown blocks among them in at most m steps from left to right considering, at each step, at

most r =
⌊

|w|1
2m

⌋

blocks. Since mr ≥ |w|1
2 −m, we might miss up to m+1 blocks after this, that

we can recover one by one for up to m+ 1 extra queries. At one step w = p0sr10sr−1 · · · 10s11v
with p an already known prefix of w (initially p is the empty word) and |v|1 ≥

⌈

|w|1
2

⌉

. For each

i ∈ {1, . . . , r}, if si is unknown then si < m = |w|1/2
|w|1/(2m) <

|v|1+2
r . By Lemma 2.4, only one query

is needed to know the r blocks. Hence, we determine the 0-blocks occurring before the
⌈

|w|1
2

⌉

last occurrences of 1 in at most 2m + 1 = 1 + 2
⌈√

n log n
⌉

queries (and similarly to know the

6



0-blocks occurring after the
⌈

|w|1
2

⌉

last occurrences of 1).

In total, our strategy uses 2 + 3
⌈√

n log n
⌉

+ 2(1 + 2
⌈√

n log n
⌉

) = 7
⌈√

n log n
⌉

+ 4.

For any alphabets A and B ⊆ A and any word u over A, the projection of u onto B is the
word obtained by removing from u any letter that does not belong to B. We denote it πB(u). For
instance, π{0,1}(0120201) = 01001. Over an alphabet of cardinality k if we know the projections
over all the binary sub-alphabets, we can uniquely determine the whole word [8, Lemma 6.2.19].
So Theorem 2.1 has the following corollary.

Corollary 2.6. The number of #-subword queries needed to reconstruct a word of length n over
an alphabet of cardinality k is at most

(k
2

)

(7
⌈√

n log n
⌉

+ 4) .

In Theorem 2.1 and Corollary 2.6, we did not try to optimize the multiplicative constant,
because we believe that the

√
n log n bound is not “sharp up to a multiplicative constant”. As

suggested by Theorem 2.2, the number of required queries in Theorem 1 and Corollary 6 might
be in O(log n).

As we will see in Lemma 2.7, the probability that there is a 0-block of length more than
⌈2 log2(n)⌉ is small.

Lemma 2.7. Let w be a word taken uniformly at random among all binary words of length n.
The probability that w contains the factor 0⌈2 log2(n)⌉ is at most 1/n.

Proof. Let m = ⌈2 log2(n)⌉. Let w1, . . . , wn ∈ {0, 1} be such that w = w1 · · ·wn. For all
i ∈ {1, . . . , n − m + 1}, let Ei be the event that wiwi+1 . . . wi+m−1 = 0m. Then for all i,
P(Ei) = 2−m ≤ 1/n2. By union bound,

P(0m is a factor of w) = P(∪n−m+1
i=1 Ei) ≤

n−m+1
∑

i=1

P(Ei) ≤
1

n

as desired.

Proof of Theorem 2.2. First, we determine the number of 0 and 1 in w in 2 queries. Let m =
⌈2 log2(n)⌉. We first assume that there is no factor 0m in w. We can now apply Lemma 2.4 as
in Phase 3 of the proof of Theorem 2.1, but with m = ⌈2 log2(n)⌉. We now have a candidate
word w′ and we can ask one more question,

(

w
w′

)

, to verify if w = w′ (this might not be the case,
if our starting assumption was false). All of this take O(log2(n)) queries.

If we did not obtain the correct word, we know that our assumption was false and we
use Theorem 2.1 to find w in O(

√

n log2(n)) extra queries. By Lemma 2.7, this happens
with probability at most 1/n, so the expected number of queries of this procedure is at most
O(log2(n)) +O(

√

n log2(n)/n) = O(log2(n)).

3 Exists-subword queries

In this section, we focus on queries in the form “Is u a subword of w?” or equivalently “Is
(

w
u

)

≥ 1?”. We call such a query an ∃-subword query. The reconstruction problem using ∃-
subword queries of a word w of unknown length n over an alphabet A of cardinality k was
solved by S. S. Skiena and G. Sundaram [9, 10] using 1.59n log2(k) + 2k log2(n) + 5k queries.
We improve the main coefficient of the bound, replacing 1.59 by 1 which is optimal (any such
algorithm requires at least n log2(k) queries in the worst case [9, 10]).

Theorem 3.1. The number of ∃-subword queries needed to reconstruct an unknown word w of
unknown length n over an alphabet A of cardinality k is at most

n⌈log2(k)⌉ + k (2 + ⌊log2(n+ 1)⌋) .
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Actually, our approach is similar to the method used in [9, 10]. We act essentially by
dichotomy on the alphabet but when reconstructing words from their projections on a smaller
alphabet we improve the bound on the number of queries. Also on small alphabets we use a
linear decomposition instead of a binary decomposition in order to reduce the number of queries
needed to deduce the number of occurrences of some letters.

To prove Theorem 3.1 we use the next two lemmas. The first one considers the reconstruction
problem in the one letter alphabet case. The second one describes upper bounds on the number
of queries needed to reconstruct a word from projections on disjoint alphabets.

Lemma 3.2. Given an unknown nonempty word w of length n over an alphabet A and a letter
α ∈ A, the value |w|α can be determined using

• at most 2⌊1 + log2(|w|α + 1)⌋ ∃-subword queries if n is unknown and

• at most ⌈log2(n+ 1)⌉ ∃-subword queries if n is known.

The proof of this Lemma is a simple binary search. The details can be found in Appendix A.
In the next Lemma we explain how to reconstruct a word w from its projections on two disjoint
complementary alphabets. Note that [10, Lemma 14], is almost the same result with a number
of queries 2.18|πB(w)|+ |πC(w)|+5 instead of |πB(w)|+ |πC(w)|+1. The main difference is that
instead of using a binary search we simply go greedily from left to right when combining the two
words. This lemma almost exclusively explains the improvement we obtain over [10, Theorem
2].

Lemma 3.3. Let w be an unknown word of length n over an alphabet A. Let B and C be two
disjoint alphabets such that A = B ∪ C, then

1. if we know both projections πB(w) and πC(w), then the word w can be reconstructed using
at most n− 1 ∃-subword queries,

2. if we know the word πB(w) and #C = 1, then the word w can be reconstructed using at
most n+ 1 ∃-subword queries.

It may be observed that in item 1 of Lemma 3.3, the length of w can be determined without
asking any query since it is equal to |πB(w)| + |πC(w)|. This is not the case in item 2. In both
cases, the length is not directly used in the proof.

For any word x = x1 · · · xℓ ∈ {0, 1}ℓ and integers i, j ∈ {1, . . . , ℓ}, let x[i . . . j] = xixi+1 · · · xj
when i ≤ j. By extension, if i > j (and possibly i = |x|+1 or j = 0), then x[i . . . j] is the empty
word.

Proof of Lemma 3.3. Assume first that u = πB(w) and v = πC(w) are known. The first letter
of w is either u1 or v1. More precisely, u1v is a subword of w if and only if u1 is the first letter
of w, otherwise v1 is the first letter of w. Thus in one question we can determine the first letter
of w, and the projections πB(w[2 . . . n]) and πC(w[2 . . . n]). We can repeat this process and after
each new query we obtain the next letter of w and the two projections of the rest of w over B
and C.

Hence Algorithm 2 allows to reconstruct w from u and v. In this algorithm i and j store
respectively the successive length of πB(w[1 . . . i+ j]) and πC(w[1 . . . i+ j]): at the beginning of
each while loop, we know p = w[1 . . . i+ j].

From the preliminary comments, it is straightforward that at the end of the algorithm p = w
and that the number of ∃-subword queries asked is at most n− 1.

From now on assume that we only know the word πB(w) and the fact that C = {a} for some
letter a. We use a strategy similar to the previous case, that is, we try to insert occurrences of
the letter a between the letters of πB(w) in a greedy way. Once the places of all letters of πB(w)
are known, one has to determine the remaining occurrences of a at the end of w. This leads to

8



Algorithm 2 An algorithm that returns an unknown word w over B ∪ C with B ∩ C = ∅ from
u = πB(w) and v = πC(w)
p← ε ; i← 0 ; j ← 0
while i < |u| and j < |v| do

if pui+1v[j + 1..|v|] is a subword of w then

p← pui+1 ; i← i+ 1
else

p← pvj+1 ; j ← j + 1

p← pu[i+ 1..|u|]v[j + 1..|v|]
return p

the variant Algorithm 3 for which the number of ∃-subword queries asked is exactly n+1: there
is one query by letter of πB(w) and πC(w) and one additional query needed to determine when
there is no more letter in πC(w).

Algorithm 3 An algorithm that returns an unknown word w over B ∪ {a} with a 6∈ B from
u = πB(w)
p← ε ; i← 0
while i < |u| do

if pau[i+ 1..|u|] is a subword of w then

p← pa
else

p← pui+1 ; i← i+ 1

while pa is a subword of w do

p← pa

return p

The proof of the next result explains the strategy to solve the reconstruction problem using
∃-subword queries. The length of w may be unknown.

Proposition 3.4. Let w be an unknown word over an alphabet of cardinality k. For any B ⊆ A
with #B ≥ 2, the number of ∃-subword queries needed to reconstruct the word πB(w) is at most

⌈log2(#B)⌉|πB(w)| +#B
(

2 + max
α∈B
⌊log2(|w|α + 1)⌋

)

.

Proof. We proceed by induction on the cardinality of B with the two base cases being #B = 2
and #B = 3.

If B = {x, y} ⊆ A with x 6= y, we can apply Lemma 3.2 to determine π{x}(w) = x|w|x in at
most 2⌊1 + log2(|w|x + 1)⌋ queries. Case 2 of Lemma 3.3 implies that we can then determine
π{x,y}(w) in at most |π{x,y}(w)|+ 1 extra queries. The total number of queries is at most

|π{x,y}(w)| + 1 + 2⌊1 + log2(|w|x + 1)⌋ ≤ ⌈log2(#B)⌉|πB(w)| +#B
(

2 +max
α∈B
⌊log2(|w|α + 1)⌋

)

as desired.
If B = {x, y, z} for some distinct letters x, y, z ∈ A, we use the strategy of the previous

paragraph to determine π{x,y}(w) and we use case 2 of Lemma 3.3 once again to obtain π{x,y,z}(w)
in at most |π{x,y,z}(w)| + 1 extra queries. The total number of queries is then at most

|π{x,y}(w)|+|πB(w)|+2+2⌊1+log2(|w|x+1)⌋ ≤ ⌈log2(#B)⌉|πB(w)|+#B
(

2 + max
α∈B
⌊log2(|w|α + 1)⌋

)

9



as desired.
We now have to deal with the induction. Assume #B ≥ 4. Let C, C′ ⊆ B be two disjoint

alphabets such that B = C ∪ C′, #C = ⌊#B
2 ⌋ and #C′ = ⌈#B

2 ⌉. The two last conditions imply

⌈log2#C⌉ ≤ ⌈log2 #C′⌉ = ⌈log2#B⌉ − 1 .

By induction hypothesis, the number of queries to determine πC(w) and πC′(w) is at most

⌈log2(#C)⌉|πC(w)| +#C
(

2 + max
α∈C
⌊log2(|w|α + 1)⌋

)

+⌈log2(#C′)⌉|πC′(w)|+#C′
(

2 + max
α∈C′
⌊log2(|w|α + 1)⌋

)

≤ (⌈log2(#B)⌉ − 1)(|πC(w)| + |πC′(w)|) + (#C′ +#C)
(

2 + max
α∈C′∪C

⌊log2(|w|α + 1)⌋
)

≤ (⌈log2(#B)⌉ − 1)(|πB(w)|) + #B
(

2 + max
α∈B
⌊log2(|w|α + 1)⌋

)

.

By case 1 of Lemma 3.3, we only need |πB(w)| extra queries to determine πB(w). In total, we

used at most ⌈log2(#B)⌉(|πB(w)|) + #B
(

2 + max
α∈B
⌊log2(|w|α + 1)⌋

)

queries as required.

Proof of Theorem 3.1. Theorem 3.1 is an immediate consequence of Proposition 3.4 taking B =
A and using max

α∈B
⌊log2(|w|α + 1)⌋ ≤ ⌊log2(|w| + 1)⌋

4 Exists-factor queries

In this section, we focus on queries in the form “Is u a factor of w?”. Our aim is to prove
Theorem 16. As for the result from [10] that we improve here, we assume in this section that
the length of the word to determine is known.

A factor u is said right-extendable in a word w if there exists a letter a such that ua is also
a factor of w. The word ua is a right extension of u. A non-right-extendable factor u of w is a
suffix of w but the converse does not hold. For instance the word u = a is a suffix of the word
w = aa but it is right-extendable. Actually it can be straightforwardly checked that a factor u
is not right-extendable in w if and only if u is a suffix of w which has only one occurrence as a
factor of w. The notions of left-extendability and left extensions are defined similarly.

The global strategy to reconstruct an unknown word w using queries on factors is to apply
the following three steps. First we find a long block of a fixed letter α (proof of Lemma 4.4).
Second we determine a non-right-extendable factor of w having this long block of α as a prefix.
Two different approaches are developed in the proof of Lemmas 4.2 and 4.3. Depending on the
length of the previously found long block of α, one or the other of the two approaches reveals
to be more efficient. Finally we determine w from the previous non-right-extendable factor
(Lemma 4.1). Let us first explain this last step.

Lemma 4.1. Let w be an unknown word of known length n over an alphabet of cardinality
k. If we know a non-right-extendable factor s of w then we can reconstruct w with at most
(k − 1)(n − |s|) ∃-factor queries.

Proof. Assume that |s| < n. Then s is a proper suffix of w. Fix a letter α. We can ask “is βs
a factor of w?” for each letter β different from α. If the answer is positive for some β then we
know that βs is a non-right-extendable factor of w and if the answer is negative for all β then
we know that αs is a non-right-extendable factor of w. We then repeat the same process until
we reach a word of length n (this word necessarily is w). It costs us at most k − 1 queries by
letter that we have to determine, that is, (k − 1)(n − |s|) queries.

10



We now explain how to efficiently find a non-right-extendable factor of w. For this a letter
α is fixed and we assume that we know the greatest t such that αt occurs as a factor in w. And
we will present two different strategies that we will use for different values of t in the proof of
Theorem 4.5. The first strategy will be used when t is not too large. It is described in the proof
of the following result.

Lemma 4.2. Let w be an unknown word of known length n over an alphabet A of cardinality
k. Let α ∈ A. If we know the largest integer t such that αt is a factor of w, then a non-right-
extendable factor s of w can be determined with at most (k − 1)(|s|+ 2) ∃-factor queries.

Proof. Let σ be a variable that aims to contain the searched non-right-extendable factor of w.
We initialize σ with the word αt. We search for successive right extensions of σ asking the query
“is σβ a factor of w?” for each letter β 6= α. If the answer is “yes” for some β 6= α then we
know that σβ is a factor of w and we set σβ to be the new value of σ.

If the answer is “no” for all β 6= α, then either σα is a factor of w or σ is non-right-extendable.
If σ does not end with the suffix αt, we set σα to be the new value of σ. It is possible that σ is
no longer a factor of w (and so σ is not a non-right-extendable factor of w), in particular, when
the previous value of σ already was the searched non-right-extendable factor of w. But if later,
while trying to add a letter β 6= α, we get “yes” as an answer we deduce that we were right for
every previous assumption. If we obtain the answer “no” t+ 1 consecutive times then we have
added t+1 occurrences of α at the end of σ. This implies that we were wrong since by definition
of t, αt+1 is not a factor of w. At this point σ = vαt+1 for some word v that ends with a letter
different from α and there exists r ≤ t such that vαr is a suffix of w and both vαr+1 and all
words vαrβ with β 6= α are not factors of w: vαr is the searched non-right-extendable factor of
w. We can determine r by asking “is vαr+1 a factor of w?” from r = 0 and until a negative
answer.

Let us now provide an upper-bound for the number of queries. Let vαt+1 be the value of σ
obtained after t+1 consecutive negative queries and let r+1 be the number of additional queries
asked to determine the final value s of σ. Observe that v was determined using (k − 1)(|v| − t)
queries. Then we use (k−1)(t+1) queries to get vαt+1 and finally we use r+1 queries to determine
the final value. The total amount of queries is thus bounded by (k−1)((|v|−t)+(t+1)+(r+1)).
Since |s| = |v|+ r, this number of queries is bounded by (k − 1)(|s| + 2).

Let us illustrate in an example the strategy used in the proof of Lemma 4.2. Assume that
the word to reconstruct is w = 00011100111011 and that we use α = 1. We have t = 3 and
initially σ = 111. The answer to the two first queries are positive and we get σ = 11100.
Then the answers to the next three queries are negative and we assume that σ = 11100111 is
a prefix of the expected result. This is confirmed by the next query that sets v = 111001110.
The next four negative queries on v0, v10, v110 and v1110 imply that the non-right-extendable
factor is v, v1, v11, or v111. After three additional queries, we know that 11100111011 is a
non-right-extendable factor (hence a suffix) of w.

If t is large (essentially if t ≥ ⌈4√n ⌉; see the proof of Theorem 4.5), then a better strategy
is to verify slightly more often that our assumptions are correct when building the non-right-
extendable factor. Doing so leads to the alternative strategy provided in the proof of the next
result.

Lemma 4.3. Let w be an unknown word of known length n over an alphabet A of cardinality
k. Let α ∈ A be a letter with at least one occurrence in w. Assume that we know n and the
largest positive integer t such that αt is a factor of w. A non-right-extendable factor s of w can
be determined using at most (k − 1)(|s| − t) + k ⌈√n ⌉+ 1 ∃-factor queries.

Proof. The strategy is almost identical to the previous one. We initialize σ with the word αt

and we try to extend it by asking whether σβ for some β 6= α is a factor of w and we proceed
as previously.
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If we obtain the answer “no” r consecutive times then we added r occurrences of α at the
end of s. In this case, every ⌈√n ⌉ new consecutive occurrences of α, we verify if our current
value of σ is a factor of w. If this holds we keep going. Otherwise letting v be the word such

that σ = vα⌈
√
n ⌉, vα⌈

√
n⌉ is not a factor of w. We need to find the largest r such that vαr is a

factor of w. This can be done by setting σ = v and asking the query “is σαi a factor of w ?”,
where i starts at 1 and increases until we receive the answer “no”.

Let us now count the number of queries. In the first phase, until reaching vα⌈
√
n⌉, the

length of σ increases from t to |vα⌈
√
n⌉|. Each new letter requires at most k − 1 queries, but

each ⌈√n ⌉ query a verification query is done. So the number of queries in this first phase is at
most (remember t ≥ 1)

(k − 1)(|vα⌈
√
n ⌉| − t) +

⌊

|vα⌈
√
n ⌉| − t

⌈√n⌉

⌋

≤ (k − 1)(|vα⌈
√
n⌉| − t) + 1 +

⌊ |w| − 1

⌈√n⌉

⌋

which is upper-bounded by (k − 1)(|v| − t) + k⌈√n⌉ .
In the second phase there is one verification query and every other query increases the value

of i from 1 to r + 1. So there are at most 1 + r = 1 + |s| − |v| ≤ 1 + (k − 1)(|s| − |v|) other
queries in this second phase. Summing the queries of the first and second phase, we deduce that
at most (k − 1)(|s| − t) + k ⌈√n ⌉+ 1 queries are used.

Before using Lemma 4.2 or Lemma 4.3 we need to determine the greatest power of a letter
in a word w. This can be done using a binary search with queries in the form “Is at a factor of
w?” for 1 ≤ t ≤ n. A negative answer to the query “Is a1 a factor of w?” shows that the letter
a does not occur in w. The next result holds for arbitrary alphabets. Its proof specifies how the
binary search is done.

Lemma 4.4. Let w be an unknown word. Let a be a letter, x, y be two known integers and t
be the largest integer such that at is a factor of w. If we know that x ≤ t ≤ y then at most
⌈log2(y + 1− x)⌉ ∃-factor queries are needed to determine the value of t.

Once again the idea of this Lemma is to use a binary search and the details of the proof can
be found in Appendix B.

Applying successively Lemma 4.4, then Lemma 4.2 or Lemma 4.3 and finally Lemma 4.1,
we get the next result.

Theorem 4.5. An unknown nonempty word w of known length n over an alphabet of cardinality
k ≥ 2 can be reconstructed in at most (k − 1)(n + 2) + ⌈ log2 n2 ⌉+ 3 ∃-factor queries.

Proof. We start with the query “is α⌈4√n ⌉ a factor of w?”.
If we obtain a positive answer, we use Lemma 4.4 (with x = ⌈4√n ⌉ and y = n (n ≥ 1)) to

compute the largest t such that αt is a factor of w in at most ⌈log2 n⌉ queries. Then we apply
Lemma 4.3 to find a non-right-extendable factor s in at most (k−1)(|s|− t)+k⌈√n ⌉+1 queries.
Since t ≥ ⌈4√n ⌉ ≥ 4⌈√n ⌉ − 3,

(k − 1)(|s| − t) + k⌈√n ⌉+ 1 ≤ (k − 1)(|s| + 3)− (3k − 4)⌈√n⌉+ 1 .

We finally apply Lemma 4.1 to find w in (k−1)(n−|s|) queries. In this case, including the initial
query, we need a total of at most (k − 1)(n+ 3) + ⌈log2 n⌉ − (3k − 4)⌈√n ⌉+ 2 ≤ (k − 1)(n+ 2)
queries (we use k ≥ 2 and n ≥ 1 for this inequality).

If we obtain a negative answer, we use Lemma 4.4 (with x = 0 and y = ⌈4√n ⌉ − 1) to

compute the largest t such that αt is a factor of w in at most ⌈log2(4
√
n)⌉ = ⌈ log2 n2 ⌉+2 queries.

Then we apply Lemma 4.2 to find a non-right-extendable factor s in (k− 1)(|s|+2) queries and
we finally apply Lemma 4.1 to find w in (k − 1)(n− |s|) queries. In this case we need a total of

(k − 1)(n + 2) + ⌈ log2 n2 ⌉+ 3 queries including the initial query.
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5 Conclusion

We have studied three reconstruction problems and, for each of them, we have improved upper
bounds on the number of necessary queries. For reconstruction of a word w of length n over
an alphabet of cardinality k using ∃-subword queries, we have a lower bound n log2(k) and in
Section 3, we reduce the gap between the lower and the upper bound to an O(k log2(n)). An
open question is whether this gap can be further reduced to an O(k) number of queries or even
lower.

For the reconstruction using #-subword queries as considered in Section 2, up to our knowl-
edge, no lower bound is known. Our upper bound is much lower than the previous one, but
it could still be far from the truth. In particular, we showed that there exists a deterministic
algorithm that requires in average O(log n) queries to reconstruct a uniform random binary word
of length n, but this algorithm requires Θ(

√
n log n) queries in the worst case. This might be

possible to find a deterministic algorithm that requires O(log n) queries in the worst case. We
were not able to find a simple proof that this cannot be done in constant time only depending
on the size of the alphabet.

For the reconstruction using ∃-factor queries as considered in Section 4, a simple counting
argument yields the lower bound n log2(k) on the number of queries. S. S. Skiena and G. Sun-
daram provide in [10] a lower bound in kn/4− o(n) queries which is better for large alphabets.
In the binary case, we were able to improve the gap between the lower and the upper bound,

reducing it to
⌈

log2(n)
2

⌉

+5. In the general case, even if our result improves the gap between the

lower and upper bounds, this gap is still important. As already mentioned in the introduction,
the lower bound kn/4−o(n) given by S. S. Skiena and G. Sundaram is also valid if one considers
queries in the form “What is the number of occurrences of u as a factor of w?”. In some sense,
considering the numbers of occurrences of factors does not bring a significant amount of extra-
information for reconstruction comparatively to information on the existence of factors. This
contrasts with the subword case where the number of occurrences gives much more information
than the existence of occurrences.

To end, let us mention the existence, in the binary case, of a deterministic algorithm that
requires, in average, n+O(1) ∃-factor queries over a uniform random word [4] which is optimal
up to an additive constant. The main idea of this algorithm is similar to the approach used in
Section 4, but the length t of the longest block of 0 is determined faster. Indeed, for a binary
word of length n taken uniformly at random, the average value of |t− log2(n)| is in O(1). The
existence of a deterministic algorithm using an n+O(1) number of ∃-factor queries in the worst
case is open.
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A Proof of Lemma 3.2

Proof of Lemma 3.2. Assume first that n is unknown. We start by findingM the smallest power
of 2 larger than |w|α. This can be done asking whether αi is a subword of w starting from i = 1
and doubling i while the answer is positive. The upper bound is reached by M = i when the
answer is negative.

If M = 1, then |w|α = 0 and exactly one query was asked (and 1 ≤ 2⌊1 + log2(|w|α + 1)⌋
as desired). Otherwise, M = 2⌊log2 |w|α⌋+1 is found in ⌊log2 |w|α⌋ + 2 queries. In this case we
know, M/2 ≤ |w|α < M , and we can find the value of |w|α by binary search. The interval
{M/2, . . . ,M − 1} contains 2⌊log2 |w|α⌋ values, hence the binary search requires ⌊log2 |w|α⌋ ∃-
subword queries. In the whole process |w|α can be found using 2⌊1+log2 |w|α⌋ ≤ 2⌊1+log2(|w|α+
1)⌋ ∃-subword queries as desired.

When n is known, n is an upper bound on |w|α and the binary search can be done in the
interval [0, n]. Hence |w|α can be determined using at most ⌈log2(n+1)⌉ ∃-subword queries.

B Proof of Lemma 4.4

Proof of Lemma 4.4. We proceed by induction on the value y + 1 − x. If x = y then we know
the value of t and no more queries are needed as expected. If y > x, then we ask the query “is
a⌈(x+y)/2⌉ a factor of w?”.

We deduce x′ ≤ t ≤ y′ where, if the answer is “yes”, x′ = ⌈(x+ y)/2⌉ and y′ = y and, if the
answer is “no”, x′ = x and y′ = ⌈(x+ y)/2⌉ − 1. In the two cases,

y′ − x′ + 1 ≤ 1 + ⌊(y − x)/2⌋ . (5)

The map f : z 7→ ⌊z−1
2 ⌋ + 1 is non-decreasing over the non-negative reals and for all integers

n, f(2n) = 2n−1, thus for all z ≤ 2n, we have f(z) ≤ 2n−1. Since (5) can be rewritten,
y′−x′+1 ≤ f(y+1−x), we deduce that for all integers n, if y+1−x ≤ 2n then y′+1−x′ ≤ 2n−1.
In particular, choosing n = ⌈log2(y + 1− x)⌉ yields, y′ + 1− x′ ≤ 2⌈log2(y+1−x)⌉−1, hence

⌈log2(y′ + 1− x′)⌉ ≤ ⌈log2(y + 1− x)⌉ − 1 .

By induction hypothesis, it implies that we need at most ⌈log2(y + 1 − x)⌉ − 1 other queries
to determine the value of t. With the initial query, this is a total of at most ⌈log2(y + 1 − x)⌉
queries as desired.
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