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a  b  s  t  r  a  c  t  

In  a  number  of  real  life  applications,  scientists  do  not  have  access  to  temporal  data,  since  budget  for  data  ac-  
quisition  is  always  limited.  Here  we  challenge  the  problem  of  causal  inference  between  groups  of  heterogeneous  
non-temporal  observations  obtained  from  multiple  sources.  We  consider  a  family  of  probabilistic  algorithms  for  
causal  inference  based  on  an  assumption  that  in  case  where  X  causes  Y,  P  (  X  )  and  P  (  Y  |  X  )  are  statistically  indepen-  
dent.  For  a  number  of  real  world  applications,  deep  learning  methods  were  reported  to  achieve  the  most  accurate  
empirical  performance,  what  motivates  us  to  use  deep  Boltzmann  machines  to  approximate  the  marginal  and  
conditional  probabilities  of  heterogeneous  observations  as  accurate  as  possible.  

We  introduce  a  novel  algorithm  to  infer  causal  relationships  between  blocks  of  variables.  The  proposed  
method  was  tested  on  a  benchmark  of  multivariate  cause-effect  pairs.  We  show  by  our  experiments  that  our  
method  achieves  the  state-of-the-art  empirical  accuracy,  and  sometimes  outperforms  the  state-of-the-art  meth-  
ods.  An  important  part  of  our  contribution  is  an  application  of  the  proposed  algorithm  to  an  original  medical  data  
set,  where  we  explore  relations  between  alimentary  patters,  human  gut  microbiome  composition,  and  health  sta-  
tus.  

1.  Introduction  

An  open  problem  in  many  real  world  applications  is  causal  inference  

between  two  variables  from  observational  data  in  absence  of  time  series.  
In  particular,  in  the  medical  domain,  inferring  causal  relations  between  

health  status  of  a  patient  and  treatment,  or  between  results  of  some  

medical  tests  and  nutritional  habits,  can  help  to  improve  the  quality  

of  diagnostics,  and  also  motivate  to  develop  methods  of  personalised  

medicine.  
Even  a  more  challenging  task  which  we  consider  in  this  paper,  is  

causal  inference  between  blocks  or  modules  of  variables.  As  mentioned  

by  [1]  ,  high  dimensionality  can  increase  computational  complexity,  and  

also  it  can  reduce  the  predictive  accuracy.  Moreover,  nowadays,  the  

case  of  bivariate  relationships  is  much  better  studied.  The  case  of  high-  

dimensional  variables  is  considered  in  [2,3]  only,  and  both  papers  intro-  

duce  the  IGCI-related  independence  between  probability  distributions  

and  are  based  on  the  trace  condition.  The  identifiability  via  the  trace  

condition  is  proved  [2,4]  for  relations  without  noise,  and  no  theory  ex-  

ists  for  noisy  cases  which  are  much  more  relevant  for  real-life  applica-  

tions.  
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The  relationships  between  alimentary  habits  and  our  way  of  life,  the  

composition  of  the  human  gut  metagenome  and  our  clinical  status,  are  

among  the  most  important  problems  studied  by  interdisciplinary  scien-  

tific  groups  nowadays  [5]  .  The  human  gut  microbiota  has  a  direct  influ-  

ence  on  health  and  well-being  [6]  .  The  emerging  field  of  metagenomics  

allows  to  explore  the  human  microbiome,  to  propose  and  to  test  novel  

hypotheses  related  to  a  number  of  diseases  [7]  .  Very  recent  publications  

in  leading  biological  and  medical  journals  reveal  relationships  between  

human  gut  microbiota  and  cancer  [8]  ,  gut  microbiota  and  inflamma-  

tory  colon  diseases  [9]  ,  gut  microbiota  and  heart  diseases  [10]  ,  and  gut  

microbiota  and  nutritional  habits  [5]  .  
Biological  mechanisms  of  metabolic  changes  and  drug  effects  are  ex-  

amples  of  tasks  we  can  tackle.  Nowadays,  a  number  of  drugs  and  treat-  

ments  are  prescribed  to  patients,  however,  their  mechanisms  of  action  

usually  remain  unclear.  Metformin  which  is  today  the  most  prescribed  

drug  for  the  type  2  diabetes,  is  a  typical  example.  Medical  doctors  pre-  

scribe  the  metformin,  since  there  is  some  empirical  evidence  that  it  has  

beneficial  effects  on  blood  glucose  level,  and  on  some  cardiovascular  

parameters  [11]  ,  and  this  treatment  is  also  relatively  cheap.  There  are  

several  hypotheses  of  mechanisms  of  the  metformin  action.  One  of  them  

states  that  the  drug  meditates  its  antihyperglicemic  effects  by  pathways  
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in  the  liver  [12]  .  However,  recent  research  in  gut  microbiome  confirms  

another  hypothesis  that  the  metformin  acts  through  pathways  in  the  

gut  [13]  .  
Heterogeneous  data  are  data  containing  multiple  types  of  variables  

such  as  e.g.,  unstructured  text  documents,  multi-lingual  data,  images,  
and  audios.  We  are  interested,  in  particular,  to  develop  methods  for  

real  medical  and  biological  applications,  and  we  focus  on  biomedi-  

cal  heterogeneous  data  such  as  clinical  parameters  (sex,  gender,  BMI,  
etc.),  and  “omics  ” data  (transcriptomics,  proteomics,  metagenomics,  
and  lipidomics).  

A  topical  question  is  whether  a  diet  and  environment  have  an  impact  

on  the  gut  flora  genes,  and  whether  the  gut  flora  in  its  turn  influences  

the  insuline  sensitivity,  and  other  clinical  parameters,  and  therefore,  
our  general  health  status.  It  can  also  occur  that  the  mechanisms  of  the  

mediation  are  quite  different  from  these  hypotheses.  Our  goals  are:  
• to  propose  a  novel  robust  causal  inference  method,  suitable  for  het-  

erogeneous  multiple  data  sources,  taking  into  consideration  that  real  

biological  data  are  always  limited,  due  to  high  acquisition  cost,  and  

noisy;  
• to  validate  our  approach  on  a  widely  used  (by  the  causal  infer-  

ence  community)  cause-effect  benchmark,  to  visualise  causal  graphs  

which  we  obtain,  and  to  discuss  which  hypotheses  can  be  verified  

on  an  original  rich  biomedical  data.  
Modern  data  sets  are  often  high  dimensional,  and  huge  causal  

network  reconstruction  can  be  computationally  intractable.  A  num-  

ber  of  causal  inference  methods  are  focused  on  a  case  of  two  vari-  

ables  only  [14–16]  .  Note  that  methods  based  on  Markov  equivalent  

graphs  [17,18]  will  fail  in  the  bivariate  case,  since  X  →Y  and  Y  →X  are  

Markov  equivalent.  
A  recently  introduced  3off2  method  [19]  seeks  for  all  possible  triplets  

in  data  to  identify  colliders  in  a  graph.  The  3off2  can  not  be  applied  to  

a  bivariate  case,  since  it  needs  at  least  three  variables  to  infer  causality.  
In  this  work,  we  consider  bivariate  causal  discovery  approaches  

which  are  based  on  probabilistic  inference  [14–16]  .  This  family  of  meth-  

ods  relies  on  the  following  postulate:  if  a  cause  X  impacts  an  effect  Y  ,  
then  the  marginal  distribution  of  the  cause  and  the  conditional  distribu-  

tion  of  the  effect  given  the  cause  are  independent.  The  probabilities  are  

supposed  to  be  estimated  from  the  non-temporal  observational  data.  
Deep  learning  methods  [20]  were  reported  to  outperform  the  state-  

of-the-art  supervised  and  unsupervised  methods  in  terms  of  empiri-  

cal  accuracy  in  computer  vision  applications,  speech  (signal)  process-  

ing,  natural  language  processing,  and  biology  [21,22]  .  The  deep  mod-  

els  were  also  reported  to  be  efficient  to  combine  multiple  sources  of  

data  [23]  .  
We  decided  to  focus  on  neural  networks,  since  the  deep  probabilistic  

classifiers  model  the  probabilities  which  are  the  key  elements  of  our  

approach.  So,  the  conditional  probability  P  (  Y  |  X  )  will  be  modelled  by  a  

last  (supervised)  layer  of  the  deep  network;  and  the  P  (  X  )  can  be  also  

approximated  by  the  deep  approaches  [24,25]  .  
Deep  restricted  Boltzmann  machines  (DRBM)  were  introduced  

by  [24]  as  a  multi-layer  stochastic  approach.  The  standard  DRBM  has  

one  layer  of  observed  units  and  an  arbitrary  number  of  hidden  layers.  
If  a  task  is  supervised,  then  the  deep  architecture  has  an  additional  

layer  containing  the  classes.  A  recent  work  of  [26]  discusses  an  impor-  

tant  problem  of  overfitting  in  deep  learning  [26]  .  propose  an  efficient  

method  which  combines  unsupervised  learning  in  RBM  with  a  super-  

vised  sparsity-inducing  regularizer  to  get  the  best  from  two  worlds:  un-  

supervised  learning  using  cheap  unlabeled  data,  and  sparse  supervised  

training  to  fine-tune  the  model.  
To  our  knowledge,  the  only  existing  method  of  inferring  causal  di-  

rections  between  blocks  of  variables  is  the  trace  method  [3]  which  can  

be  unstable  in  the  presence  of  noise.  
Our  contribution  is  multifold:  

• We  introduce  an  original  robust  method  of  inferring  causal  directions  

between  blocks  of  heterogeneous  variables.  

• We  provide  all  the  details  to  approximate  the  conditional  and  

marginal  probabilities  using  the  deep  RBM.  
• The  results  of  our  experiments  on  multivariate  benchmark  data  con-  

firm  that  the  proposed  algorithm  is  computationally  efficient  and  its  

empirical  performance  is  highly  competitive  compared  to  the  state-  

of-the-art  causal  inference  methods.  
• We  illustrate  the  interest  to  use  the  proposed  method  by  a  real  med-  

ical  problem  of  revealing  causality  in  rich  original  heterogeneous  

data.  In  particular,  our  goal  is  to  explore  causal  relationships  be-  

tween  human  gut  composition,  nutritional  habits,  and  clinical  sta-  

tus,  i.e.,  clinical  parameters  indicating  whether  a  patient  is  healthy  

or  not.  
Our  work  is  organized  as  follows.  We  discuss  the  state-of-art  methods  

of  bivariate  causal  inference  in  Section  2  .  These  methods  can  be  natu-  

rally  divided  into  continuous  and  discrete  methods  for  causal  inference,  
and  we  consider  them  in  details  in  Section  3  .  We  introduce  our  method  

of  causal  inference  between  modules  of  heterogeneous  data  in  Section  4  .  
Section  5  is  dedicated  to  the  deep  restricted  Boltzmann  machines,  and  

we  also  provide  all  the  details  to  compute  the  conditional  and  marginal  

probabilities.  In  Section  6  ,  we  discuss  the  results  of  our  experiments  on  

the  multivariate  cause-effect  pairs,  and  on  an  original  medical  problem.  
We  share  our  conclusions  and  perspectives  at  the  end  of  the  paper.  

2.  Related  work  

In  this  work,  we  consider  two  families  of  methods  of  causal  infer-  

ence  focusing  on  bivariate  relations,  namely,  the  Additive  Noise  Models  

(ANM)  and  Information  Geometric  Causal  Inference  (IGCI)  [27]  .  For  a  

more  general  overview  of  causal  structure  learning  see  [4,28]  .  
Additive  noise  models  (ANM)  were  originally  introduced  by  [29,30]  .  

The  ANM  design  causal  relations  between  two  variables.  The  ANM  

model  a  dependency  between  a  cause  X  and  an  effect  Y  given  some  noise  

E  :  !  =  " (  #)  +  $.  According  to  the  hypothesis  behind  the  approach,  if  X  

and  E  are  independent,  then  it  is  possible  to  infer  causal  direction,  and  

it  is  assumed  that  X  causes  Y  .  The  ANM  are  usually  used  for  continu-  

ous  data,  and  the  approach  can  not  be  applied  directly  to  the  categori-  

cal  variables  [31]  .  However,  there  exist  a  number  of  extensions  of  the  

additive  noise  models,  and,  for  instance,  a  generalisation  called  post-  

nonlinear  models  was  proposed  by  [32]  .  
The  ANM  is  not  the  only  method  to  exploit  the  asymmetry  be-  

tween  the  cause  X  and  the  effect  Y  .  The  linear  trace  method  introduced  

by  [3]  states  that  the  trace  condition  is  fulfilled  in  the  causal  direction,  
if  X  causes  Y,  and  P  (  X  )  and  P  (  Y  |  X  )  are  independent.  Note  that  the  trace  

condition  does  not  hold  in  the  opposite  direction.  Another  method  ex-  

ploiting  the  asymmetry  is  the  information-geometric  causal  inference  

(IGCI)  [15]  .  It  verifies  whether  the  density  of  X  and  the  log  slope  of  

the  function  which  transforms  cause  to  effect  are  not  correlated.  It  was  

shown  [33]  that  the  density  of  Y  and  the  log  slope  of  the  inverse  of  

the  function  are  correlated.  Recently,  a  generalisation  of  the  IGCI  for  

non-deterministic  cases  was  proposed  by  [34]  .  
The  trace  condition  is  proved  under  the  assumption  that  the  covari-  

ance  matrix  is  drawn  from  a  rotation  invariant  prior  [14]  .  Recently,  the  

method  was  generalized  for  non-linear  cases  [35]  ,  and  it  was  shown  that  

the  covariance  matrix  of  the  mean  embedding  of  the  cause  in  reproduc-  

ing  kernel  Hilbert  space  is  free  independent  with  the  covariance  matrix  

of  the  conditional  embedding  of  the  effect  given  cause.  
Origo  [36]  is  a  causal  inference  method  that  is  based  on  a  postu-  

late  [14]  that  the  factorisation  of  the  joint  probability  of  cause  and  ef-  

fect  in  the  causal  direction  has  lower  complexity  than  in  the  anti-causal  

direction.  The  result  of  [14]  is  formulated  in  terms  of  Kolmogorov  com-  

plexity.  Origo  [36]  uses  the  Minimum  Description  Length  (MDL)  as  an  

approximation  of  Kolmogorov  complexity.  Another  recently  published  

approach  based  on  the  same  principles  was  proposed  by  [37]  ,  and  it  is  

called  Slope.  The  weakness  of  Origo  and  of  other  MDL-based  methods  is  

that  the  MDL  only  approximates  Komolgorov  complexity,  and  involves  
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unknown  metric  errors.  The  empirical  performance  is  highly  related  to  

the  dataset,  and  Origo  was  reported  to  reach  the  state-of-the-art  perfor-  

mance  on  the  multivariate  benchmarks  (Acute  inflammation,  ICDM  ab-  

stracts,  Adult  data  set),  however,  it  performs  less  accurate  than  the  ANM  

on  the  univariate  benchmark  of  cause-effect  pairs  with  known  ground  

truth  (the  Tübingen  data  set).  
MIIC  (Multivariate  Information  Inductive  Causation)  is  a  recently  in-  

troduced  algorithm  [38]  with  competitive  performance  on  real  biologi-  

cal  data.  It  is  an  information-theoretic  approach  of  learning  causal  net-  

works.  The  MIIC  algorithm  is  an  advanced  version  of  the  3off2  method  

[19]  ,  and  was  reported  to  be  efficient  both  in  terms  of  empirical  ac-  

curacy  and  in  terms  of  computational  time.  However,  the  MIIC  is  not  

adapted  for  causal  inference  between  groups  of  variables,  and  we  will  

show  by  our  experiments  that  it  fails  in  this  challenging  task.  
We  are  particularly  motivated  by  the  recent,  reported  to  be  efficient  

causality  discovery  methods  (see,  e.g.,  [14–16]  )  which  are  based  on  the  

postulate  of  the  independence  of  mechanisms.  It  tells  that  a  causal  di-  

rection  can  be  inferred  from  estimated  marginal  and  conditional  proba-  

bilities  of  two  random  variables  from  a  non-temporal  observational  data  

set.  Below,  we  investigate  this  research  avenue.  

3.  Bivariate  causal  inference  in  discrete  and  continuous  data  

This  section  is  dedicated  to  methods  which  are  based  on  the  follow-  

ing  postulate  [14–16]  and  assumptions.  
Postulate  1.  If  X  →Y  ,  then  the  marginal  distribution  of  the  cause  P  (  X  )  

and  the  conditional  distribution  of  the  effect  given  the  cause  P  (  Y  |  X  )  are  

”independent  ”,  i.e.,  the  cause  distribution  and  the  mechanism  producing  

the  effect  distribution  are  independent.  
Assumption  1.  X  and  Y  are  observed,  and  it  is  assumed  that  there  are  

not  any  confounders,  any  selection  bias,  and  no  feedback.  
Assumption  2.  According  to  the  Reichenbach’s  principle  of  common  

sense  [4]  ,  if  there  exists  a  statistical  dependency  between  two  observable  

variables  X  and  Y  ,  it  indicates  that  there  exists  a  variable  Z  which  causes  

X  and  Y  .  We  assume  here  that  Z  coincides  either  with  X  or  with  Y  what  

leads  directly  to  inferring  causality  X  →Y  or  Y  →X  .  

3.1.  Bivariate  causal  inference  with  regression  

CURE  (Causal  inference  with  Unsupervised  inverse  REgression)  in-  

troduced  by  [16]  is  one  of  the  methods  which  rely  on  the  Postulate  1.  
The  intuition  behind  the  approach  is  as  follows.  The  CURE  infers  “X  

causes  Y  ” if  the  estimation  of  the  conditional  probability  P  (  X  |  Y  )  which  

is  done  from  samples  from  P  (  Y  )  is  more  accurate  than  the  estimation  

in  the  opposite  direction.  A  natural  question  is  how  to  quantify  the  ac-  

curacy  of  the  conditional  probabilities,  and  [16]  propose  to  compare  

the  difference  between  the  unsupervised  and  supervised  log-likelihoods  

obtained  from  N  pairs  {  #  %  ,  !  %  }  &  
%  =1  of  observations:  
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The  conditional  probability  p  (  X  i  |  Y  i  ,  y  )  is  estimated  from  Y  observed  but  

X  are  not  observed,  p  (  Y  i  |  X  i  ,  x  )  is  estimated  using  observed  X  only,  and  

p  (  X  i  |  Y  i  ,  x,  y  )  are  computed  when  both  X  and  Y  are  observed.  

The  edge  orientation  in  the  CURE  is  decided  as  follows.  The  causal  

direction  is  set  to  X  →Y  ,  if  D  X  |  Y  <  D  Y  |  X  ,  otherwise  Y  →X  is  inferred.  The  

CURE  method  is  based  on  the  Markov  Chain  Monte  Carlo  (MCMC)  to  

approximate  the  posterior  distributions  what  is  computationally  con-  

suming,  and  what  can  be  computationally  intractable  in  many  real  ap-  

plications.  Therefore,  we  decided  to  consider  methods  which  are  based  

on  discrete  data  analysis.  

3.2.  Causal  discovery  with  distance  correlation  

Let  us  consider  another  approach  to  discover  causal  relations  which  

is  also  based  on  the  Postulate  1.  The  causal  discovery  using  distance  cor-  

relation  to  measure  the  distance  between  probability  distributions  was  

proposed  by  [39]  .  In  their  approach,  it  is  assumed  that  both  X  and  Y  are  

discrete,  and  it  this  case,  it  is  straightforward  to  present  the  probabil-  

ity  distributions  as  tables.  Let  us  consider  the  measure  of  the  distance  

correlation  and  how  it  can  help  to  infer  causal  direction  in  details.  
The  dependence  measures  are  defined  as  follows:  

'  !  |#  =  )  *+,  (  -  (  #  )  ,  -  (  !  |#  ))  (5)  

'  #|!  =  )*+,  (  -  (  !  )  ,  -  (  #|!  ))  ,  (6)  

where  dCor  (  a,  b  )  is  the  distance  correlation.  
We  use  the  distance  correlation  as  the  independence  measure  [39]  .  

The  method  to  estimate  an  empirical  distance  correlation  from  data  was  

originally  proposed  by  [40]  ,  and  we  summarize  it  briefly.  Given  two  ran-  

dom  one-dimensional  or  high-dimensional  variables  a  and  b  ,  the  empir-  

ical  distance  covariance  C  (  a,  b  )  is  defined:  

(  .,  /  )  =  
1  

&  

√  √  √  √  √  
&  ∑

%,0=1  
2̃  %0  3̃  %0  ,  (7)  

where  

.̃  %0  =  ‖.  %  −  .  0  ‖,  .̃  %  ⋅ =  
1  

&  

&  ∑
0=1  

.  %0  ,  (8)  

.̃  ⋅0  =  
1  

&  

&  ∑
%  =1  

.  %0  ,  .̃  ⋅⋅ =  
1  

&  2  

&  ∑
%,0=1  

.  %0  ,  (9)  

and  

/̃  %0  =  ‖/  %  −  /  0  ‖,  ̃/  %  ⋅ =  
1  

&  

&  ∑
0=1  

/  %0  ,  (10)  

/̃  ⋅0  =  
1  

&  

&  ∑
%  =1  

/  %0  ,  ̃/  ⋅⋅ =  
1  

&  2  

&  ∑
%,0=1  

/  %0  ,  (11)  

and  the  matrices  2̃  and  3̃  take  the  following  form:  
2̃  %0  =  .̃  %0  −  .̃  %  ⋅ −  .̃  ⋅0  +  .̃  ⋅⋅,  (12)  

3̃  %0  =  /̃  %0  −  /̃  %  ⋅ −  /̃  ⋅0  +  /̃  ⋅⋅.  (13)  

Then  the  distance  correlation  dCor  (  a,  b  )  is  defined  as  follows  

[39,40]  :  

)*+,  (  .,  /  )  =  
(  .,  /  )  √(  .,  .  )  (  /,  /  )  

,  (14)  

and  it  can  be  computed  directly  from  data.  Note  that  )*+,  (  .,  /  )  =  0  ,  if  (  .,  .  )  =  0  or  (  /,  /  )  =  0  .  
It  is  easy  to  see  from  the  definition  of  the  distance  correlation  that  

it  can  be  directly  computed  from  observational  data.  The  algorithm  of  

[39]  uses  4 to  assess  how  close  D  X  |  Y  and  D  Y  |  X  are.  If  the  absolute  differ-  

ence  between  distance  correlations  4 is  too  small,  the  causal  direction  

can  not  be  inferred.  It  was  reported  [39]  that  the  empirical  accuracy  is  

acceptable  for  4 >  0.05,  and  this  value  was  suggested  to  be  a  reasonable  

choice.  
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4.  Causal  inference  between  groups  of  variables  

Here  we  suppose  that  X  and  Y  are  multivariate  variables.  A  matrix  

of  observations  X  is  a  matrix  of  size  N  × p  ,  Y  is  also  a  matrix  N  × q  ,  where  

N  is  the  number  of  data  points,  and  p  and  q  are  the  numbers  of  features  

of  X  and  Y  respectively.  
We  propose  to  use  an  eigenstructure  decomposition  to  transform  

original  data  into  a  data  set  suitable  for  a  block  analysis.  An  eigenvec-  

tor  is  a  weighted  average  of  variables  of  a  group,  and  we  summarize  

the  information  of  each  group  in  an  eigenvector.  This  idea  is  actively  

exploited  by  systems  biology  and  bioinformatics  communities  [41]  .  
Given  matrices  X  and  Y  ,  a  Principal  Component  Analysis  (PCA)  will  

produce  a  derived  set  of  variables  which  are  not  correlated  

#̄  ⋅6  =  #  76  ,  6  =  1  ,  … ,  (  ′,  (  ′ <  (,  (15)  

$̄  ⋅8  =  $  98  ,  8  =  1  ,  … ,  :  ′,  :  ′ <  :.  (16)  

that  are  linear  combinations  of  the  original  data,  and  that  explain  most  

of  the  variation  in  the  original  set.  #̄  and  $̄  are  the  projections  of  the  data  

onto  the  principal  components,  71  ,  … ,  7(  ′ are  the  eigenvectors  of  Σ̂#  ,  the  

sample  covariance  matrix  of  X  ,  and  91  ,  … ,  9:  ′ are  the  eigenvectors  of  Σ̂$  ,  
the  sample  covariance  matrix  of  Y  .  

The  original  high-dimensional  data  are  projected  (here  using  Prin-  

cipal  Component  Analysis)  to  a  low-dimensional  space.  The  first  Prin-  

cipal  Component  encodes  information  about  all  features  of  the  original  

space,  and  also  has  the  largest  variance  (among  the  principal  compo-  

nents).  Inferring  causality  between  original  data  can  be  approximated  

by  discovering  causal  relations  between  the  data  projected  to  the  Prin-  

cipal  Components  since  the  PCA  is  an  optimal  low-rank  approximation  

[42]  .  
We  consider  here  4  schemes  to  decide  the  direction  between  the  

groups.  
1.  Majority  vote  

{  
#  → $  ,  if  

∑
6,8  !  {  ̄#  6  →$̄  8  }  >  

∑
6,8  !  {  ̄$  8  →#̄  6  }  ,  

$  → #  ,  otherwise  .  
(17)  

2.  Majority  vote  weighted  by  the  order  of  principal  components  
{  

#  → $  ,  if  
∑

6,8  
1  
(  ′

1  
:  ′ !  {  ̄#  6  →$̄  8  }  >  

∑
6,8  

1  
(  ′

1  
:  ′ !  {  ̄$  8  →#̄  6  }  ,  

$  → #  ,  otherwise  .  
(18)  

3.  Majority  vote  weighted  by  significance  of  causal  decision  

⎧  
⎪  
⎨  
⎪  ⎩  

#  → $  ,  if  
∑

6,8  !  {  ̄#  6  →$̄  8  }  |'  #  |$  −  '  $  |#  | >  ∑
6,8  !  {  ̄$  8  →#̄  6  }  |'  #  |$  −  '  $  |#  |,  

$  → #  ,  otherwise  .  
(19)  

4.  Double  weighted  majority  vote  

⎧  
⎪  
⎨  
⎪  ⎩  

#  → $  ,  if  
∑

6,8  
1  
(  ′

1  
:  ′ !  {  ̄#  6  →$̄  8  }  |'  #  |$  −  '  $  |#  | >  

∑
6,8  

1  
(  ′

1  
:  ′ !  {  ̄$  8  →#̄  6  }  |'  #  |$  −  '  $  |#  |,  

$  → #  ,  otherwise  .  
(20)  

In  many  applications,  and  in  biological  applications  in  particular,  we  

have  multiple  data  sources,  and  usually  their  number  is  bigger  than  2.  
Algorithm  1  generalizes  the  bivariate  approach  which  we  presented  for  

two  heterogeneous  data  sources  only,  X  and  Y  .  Let  us  consider  that  we  

have  K  sources  of  information,  and  K  matrices  X  k  ,  <  ∈ {1  ,  … ,  =}  gener-  

ated  by  them.  We  propose  a  procedure  to  establish  causal  relationships  

between  the  multiple  data  sources  applying  the  pairwise  causal  infer-  

ence.  The  learning  procedure  is  drafted  as  Algorithm  1  .  

5.  Deep  restricted  boltzmann  machines  

A  deep  restricted  Boltzmann  machine  (DRBM)  proposed  by  [24]  is  an  

energy-based  model  which  contains  a  layer  of  observed  variables  v  ∈ {0,  

Algorithm  1  Causal  Inference  between  Multiple  Sources  of  Heteroge-  

neous  Observations.  
Input:  Matrices  of  observations  #  <  issued  from  =  data  sources  

Output:  Causal  directions  between  #  %  and  #  0  for  all  %,  0  =  {1  ,  … ,  =}  

STEP  1:  Perform  PCA  for  all  data  sources  #  <  for  <  ∈ {1  ,  … ,  =}  

STEP  2:  Project  #  <  on  principal  components  and  get  

#̄  <  for  <  ∈ {1  ,  … ,  =}  

STEP  3:  Use  deep  restricted  Boltzmann  machines  to  approximate  the  

probabilities  

-  (  ̄#  0  
⋅6  )  and  -  (  ̄#  %  ⋅8  |#̄  0  

⋅6  )  ,  (20)  

-  (  ̄#  %  
⋅8  )  and  -  (  ̄#  0  

⋅6  |#̄  %  ⋅8  )  ,  for  all  8,  6,  %,  0  (20)  

STEP  4:  Infer  causal  directions  

Using  one  of  the  criteria  eq.  (17)  – eq.  (20)  

1}  D  ,  and  an  arbitrary  number  of  layers  of  hidden  units  h  ∈ {0,  1}  P  .  A  su-  

pervised  DRBM  includes  also  an  output  layer;  in  case  of  a  binary  task,  
this  layer  has  two  units.  We  aim  to  model  conditional  and  marginal  

probabilities  as  accurate  as  possible,  and  we  are  not  interested  to  design  

a  joint  probability  distribution  of  X  and  Y  .  It  explains  our  choice  to  use  

the  DRBM  which  is  an  undirected  graphical  model  and  a  special  case  of  

Markov  random  fields.  It  allows  to  model  P  (  Y  |  X  )  directly.  In  this  con-  

tribution,  we  do  not  consider  Deep  Belief  Networks  (DBN)  which  can  

efficiently  design  P  (  Y,  X  ).  
With  model  parameter  w  ,  the  energy  of  state  (  v,  h  )  is  given  as  fol-  

lows:  
E(  %  ,  &  ,  >  )  =  −  %  ?  >  &  ,  (21)  

(  (  %  ,  >  )  =  
1  

@(  >  )  

∑
&  

exp  (−E[  %  ,  &  ,  >  ])  ,  (22)  

@(  >  )  =  
∑
%  

∑
&  

exp  (−E[  %  ,  &  ,  >  ])  .  (23)  

The  conditional  distributions  over  observed  and  hidden  variables  are  

defined  as:  

(  
(
ℎ  0  =  1  |%  ,  &  −  0  

)
=  B

(  '  ∑
%  =1  

>  %0  C  %  

)  

,  (24)  

(  
(
C  %  =  1  |&  ,  %  −  %  

)
=  B

(  -  ∑
0=1  

>  %0  ℎ  0  

)  

,  (25)  

B(  .  )  =  
1  

1  +  exp  (−  .  )  
,  (26)  

where  B is  the  logistic  (sigmoid)  function.  The  first  derivative  is  used  in  

the  optimisation  procedure,  and  it  takes  the  following  form:  
Δ>  =  7

(
E  -).D.  

[
%&  ?  ] −  E  -6+)E8  

[
%&  ?  ]),  (27)  

where  7 is  the  learning  rate.  The  first  term  of  the  gradient  is  the  expec-  

tation  with  respect  to  the  completed  data  distribution,  and  the  second  

term  is  the  expectation  with  respect  to  the  distribution  defined  by  the  

model.  
In  case  of  a  DRBM  which  contains  two  hidden  layers,  the  energy  of  

a  state  can  be  computed  as  follows:  
E  
[
%  ,  &  1  ,  &  2  ,  >  

]
=  −  %  ?  >  1  &  1  −  &  1  >  2  &  2  ,  (28)  
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where  >  =  {  >  1  ,  >  2  }  are  the  parameters  (weights  associated  with  the  

layers)  of  the  model,  and  

(  (  %  ,  >  )  =  
1  

@(  >  )  

∑

&  1  ,  &  2  
exp  

(
−E  

[
%  ,  &  1  ,  &  2  ,  >  

])
.  (29)  

The  conditional  distributions  over  the  hidden  and  observed  layers  are  

defined:  

(  
(
ℎ  1  
0  =  1  |%  ,  &  2  

)
=  B

(  ∑
%  
>  1  

%0  C  %  +  
∑
6  

>  2  
06  ℎ  2  

0  

)  

,  (30)  

(  
(
ℎ  2  
6  =  1  |&  1  ) =  B

(  ∑
%  
>  2  

%6  ℎ  1  
%  

)  

,  (31)  

(  
(
C  %  =  1  |&  1  ) =  B

(  ∑
0  
>  1  

%0  ℎ  2  
0  

)  

.  (32)  

Pre-training  .  Pre-training  is  a  step  of  the  learning  procedure  to  ini-  

tialise  the  weights  with  some  reasonable  values.  The  greedy  layerwise  

pre-training  [43]  is  a  standard  method.  It  consists  in  learning  stacked  re-  

stricted  Boltzmann  machines  in  an  unsupervised  manner.  It  was  demon-  

strated  [24,43]  that  the  pre-training  procedure  fastens  the  supervised  

training.  To  initialise  the  weights,  we  set:  

(  
(
ℎ  1  
0  =  1  |%  

)
=  B

(  ∑
%  
>  1  

%0  C  %  +  
∑
%  
>  1  

%0  C  %  

)  

,  (33)  

(  
(
C  %  =  1  |&  1  ) =  B

(  ∑
0  
>  1  

%0  ℎ  0  

)  

,  (34)  

(  
(
ℎ  1  
0  =  1  |&  2  

)
=  B

(  ∑
6  

>  2  
06  ℎ  2  

6  +  
∑
6  

>  2  
06  ℎ  2  

6  

)  

,  (35)  

(  
(
ℎ  2  
6  =  1  |&  1  ) =  B

(  ∑
0  
>  2  

06  ℎ  1  
0  

)  

,  (36)  

where  the  input  is  doubled  to  get  rid  of  the  double-counting  problem  

when  we  perform  top-down  and  bottom-up  inferences.  Putting  together  

the  Eqs.  (33)  – (36)  ,  we  get:  

(  
(
ℎ  1  
0  =  1  |%  ,  &  2  

)
=  B

(  ∑
%  
>  1  

%0  C  %  +  
∑
6  

>  2  
06  ℎ  2  

6  

)  

.  (37)  

Training  .  Let  

F  (  %  )  =  −  log  
∑

&  1  ,  &  2  
exp  

(
−  $  

[
%  ,  &  1  ,  &  2  ]),  (38)  

and  

−  G  log  (  (  %  ,  >  )  

G>  
=  

GF  (  %  )  

G>  
−  
∑
C̃  

(  (  ̃C  )  
GF  (  ̃C  )  

G>  
.  (39)  

During  the  training  of  the  DRBM,  the  first  term  of  Eq.  (39)  is  supposed  to  

increase  the  probability  of  training  data  (the  so-called  positive  phase).  
The  second  term  of  the  equation  decreases  the  probability  of  generated  

samples  (negative  phase).  The  expectation  over  all  possible  configura-  

tions  which  is  the  second  term  of  the  gradient,  can  be  computationally  

intractable  in  many  real  applications.  A  sampling  method  such  as  MCMC  

can  be  applied  to  approximate  it.  Another  way  to  compute  the  approxi-  

mation,  is  to  use  Annealed  Importance  Sampling  (AIS)  with  variational  

inference  [24,25]  .  The  approximation  takes  the  following  form:  

E  (  

[ GF  (  %  )  

G>  

]
=  

1  

||
∑
C̄  ∈  

GF  (  ̄C  )  

G>  
,  (40)  

where  C̄  ∈  are  generated  samples.  
Prediction  .  In  a  supervised  learning  scenario,  the  classification  is  

done  as  follows  [44]  :  
(  (  H  |%  )  =  

∑
&  

(  (  H  |&  )  (  (  &  |%  )  =  E  (  (  &  |%  )  (  (  H  |&  )  .  (41)  

6.  Experiments  

In  this  section,  we  show  the  results  of  our  experiments  on  a  stan-  

dard  benchmark  which  includes  multivariate  cause-effect  pairs,  and  on  

an  original  biomedical  data  set  gathered  and  maintained  at  the  Pitié-  

Salpêtrière  hospital,  Paris,  France.  

6.1.  Benchmark  of  multivariate  cause-Effect  pairs  

The  causal  inference  benchmark  which  is  publicly  available  from  

http://webdav.tuebingen.mpg.de/cause-effect  (version  1.0)  contains  

100  pairs  of  causes  and  their  effects  from  different  scientific  domains.  
The  ground  truth  is  given.  For  our  experiments,  we  extract  the  cause-  

effect  pairs  which  are  multivariate  problems,  namely,  pairs  52–55,  and  

71.  
• Pair  52.  X  and  Y  are  both  four-dimensional  variables  for  day  51  and  

50  of  year  2000.  The  measurements  are  temperature,  pressure,  sea  

level  pressure,  and  relative  humidity.  The  ground  truth  tells  that  day  

50  influences  day  51.  
• Pair  53.  The  task  is  to  verify  whether  wind  speed,  global  radiation,  
and  temperature  cause  changes  in  ozone  concentration.  

• Pair  54.  The  data  concerns  city-cycle  fuel  consumption.  The  X  group  

includes  displacement,  horsepower,  and  weight  of  a  car,  and  Y  vari-  

able  contains  information  about  mpg  and  acceleration.  The  ground  

truth  tells  than  X  causes  Y.  
• Pair  55.  The  problem  is  to  reveal  causality  between  ozone  values  and  

temperature  at  16  different  places.  The  ground  truth  states  that  the  

temperature  has  an  impact  on  the  ozone.  
• Pair  71.  The  task  concerns  an  acute  inflammation  of  urinary  bladder.  
From  the  clinical  literature  it  is  known  that  such  symptoms  as  tem-  

perature  of  patient,  occurence  of  nausea,  lumbar  pain,  urine  push-  

ing,  micturition  pains,  and  burning  of  urethra  predict  the  state  of  

a  patient  which  can  be  either  inflammation  of  urinary  bladder,  or  

nephritis.  

Here,  to  simplify  the  analysis  of  the  obtained  results,  we  read  the  data  

in  such  a  way  that  the  ground  truth  is  X  →Y  for  all  pairs.  So,  ideally,  we  

expect  that  for  all  considered  cause-effect  pairs  the  distribution  X  →Y  

contains  bigger  values  then  Y  →X  .  
First,  we  perform  a  PCA  on  the  original  X  and  Y  data,  and  consider  

their  projections  for  the  further  causal  analysis.  The  data  are  discretized  

using  the  equal  frequency  algorithm  into  5  bins.  The  choice  of  deep  ar-  

chitecture  is  an  engineering  problem.  We  fixed  the  number  of  hidden  

layers  and  the  number  of  latent  variables  in  them  by  10-fold-cross  vali-  

dation.  The  best  empirical  accuracy  on  the  validation  set  was  obtained  

using  3  hidden  layers,  each  containing  5  units.  In  our  experiments,  25  

epochs  were  enough  to  converge  to  an  optimal  solution.  
We  test  the  criteria  Eq.  (17)  – Eq.  (20)  ,  and  boxplot  the  correspond-  

ing  distributions.  Fig.  1  shows  the  results  for  the  four  tested  criteria.  To  

compare  our  approach  to  the  state-of-the-art,  we  consider  the  perfor-  

mance  of  the  MIIC  approach,  and  apply  it  also  to  the  projections  on  the  

principal  components  with  Eq.  (17)  – Eq.  (18)  .  The  criteria  Eq.  (19)  –
Eq.  (20)  can  not  be  tested  with  the  MIIC,  since  the  causal  directions  are  

not  quantified.  The  output  of  the  MIIC  algorithm  is  a  direction  → or  ←  

between  two  egdes.  In  case  where  the  MIIC  did  not  infer  any  direction  

between  two  edges,  the  edge  is  undirected.  The  results  obtained  with  the  

MIIC  are  illustrated  on  Fig.  2  ,  and  we  see  that  for  some  pairs  the  values  

are  equal  to  0  what  means  that  the  MIIC  did  not  provide  any  direction.  
The  question  whether  the  prediction  is  stable  or  not  is  very  impor-  

tant.  In  the  experiments,  we  split  the  data  into  10  parts,  and  in  each  run  

we  use  9  parts  to  infer  the  causal  directions,  and  we  repeat  the  experi-  

ment  10  times.  
To  answer  the  important  question  about  the  accuracy  and  the  num-  

ber  of  bins,  we  tested  various  numbers  of  bins,  and  we  also  tested  the  

logistic  regression  to  estimate  the  probability  distributions.  Fig.  3  shows  
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Fig.  1.  Multivariate  cause-effect  pairs.  Performance  of  the  proposed  criteria  for  causal  inference:  obtained  distributions  and  accuracy.  

Fig.  2.  Performance  of  the  MIIC  algorithm  on  the  multivariate  cause-effect  pairs.  
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Fig.  3.  The  difference  between  the  predictive  accuracies  where  the  probabilities  
are  estimated  by  the  DRBM  and  by  the  logistic  regression  for  five  multi-variate  
pairs  of  the  cause-effect  data  set.  

the  difference  between  the  predictive  accuracies  of  causal  directions  us-  

ing  the  DRBM  and  the  logistic  regression  for  five  multi-variate  pairs  

of  the  cause-effect  data  set.  If  the  difference  is  positive,  the  DRBM  esti-  

mates  the  probabilities  more  accurately  than  the  logistic  regression,  and  

it  leads  to  a  more  accurate  prediction  of  causal  directions.  If  the  values  

are  negative,  these  are  the  cases  where  the  logistic  regression  performs  

better.  
We  observe  that  the  criteria  Eq.  (18)  and  Eq.  (20)  which  take  into  

consideration  the  absolute  difference  and  the  order  of  the  principal  com-  

ponents,  are  quite  accurate,  and  outperform  others.  

6.2.  Microobes  data  

The  MicroObes  corpus  [5]  contains  heterogeneous  biomedical  data  

of  obese  patients.  Clinicians  of  the  NutriOmics  team,  Pitié-Salpêtrière  

hospital,  Paris,  France,  examined  49  patients.  Parameters  which  can  be  

called  environmental,  include  alimentary  patterns  reflecting  nourishing  

habits  of  subjects,  and  also  information  about  their  physical  activity.  The  

host  data  contain  measurements  of  glucose  homeostasis  markers,  blood  

lipids,  inflammatory  markers  and  adipokines,  body  composition,  kidney  

function,  and  subcutaneous  adipose  tissue  (AT)  markers.  We  have  also  

access  to  the  abundance  matrices  of  gut  flora  genes,  namely,  bacterial  

quantification  (qPCR),  and  abundance  of  bacterial  clusters  (MGS)  of  in-  

dividual  patients.  The  challenge  is  to  reveal  causal  relations  between  

the  groups  of  variables.  
The  parameters  of  the  MicroObes  data  can  be  naturally  divided  

into  several  groups.  After  discussions  with  the  clinicians  of  the  Pitié-  

Salpêtrière  hospital,  we  decided  to  consider  two  scenarios:  

1.  Find  causal  relations  between  3  groups  (environment,  host,  and  bac-  

teria)  

2.  Find  causal  directions  between  10  groups  (glucose  homeosta-  

sis  markers,  blood  lipids,  inflammatory  markers  and  adipokines,  
body  composition,  kidney  function,  subcutaneous  AT  markers,  food  

groups,  nutrients,  physical  activity,  and  gut  flora  bacteria).  

The  experiments  on  the  cause-effect  pairs  benchmark  confirmed  that  

the  criterion  Eq.  (20)  is  the  best  one  in  terms  of  accuracy  of  causal  direc-  

tions.  We  have  chosen  it  for  the  MicroObes  data  exploration.  The  DRBM  

have  a  random  element,  since  the  weights  are  initialised  randomly,  and  

the  result  on  the  same  data  can  vary.  We  run  the  experiments  10  times  

to  make  a  decision  which  is  robust.  
Fig.  4  on  the  left,  demonstrates  the  distributions,  similar  to  what  we  

produced  for  the  cause-effect  pairs,  for  the  scenario  with  three  groups.  
We  can  construct  a  directed  graph,  and  Fig.  4  on  the  right  visualizes  the  

causal  relations  between  the  three  heterogeneous  groups  learnt  purely  

from  the  data.  
We  run  the  same  experiments  for  the  second  scenario  which  in-  

cludes  10  groups,  and  we  visualize  the  obtained  graph  as  Fig.  5  .  We  

observe  that  food  has  an  important  impact  on  the  level  of  blood  lipids,  
on  the  composition  of  the  human  gut,  on  the  markers  of  the  adipose  

tissue,  on  body  composition,  on  physical  activity,  on  glucose  level,  on  

the  inflammation  markers,  and  on  the  kidney  function.  The  width  of  an  

edge  is  equal  to  an  average  taken  over  10  runs  of  the  absolute  values  

|'  #|!  −  '  !  |#  |.  Such  a  heuristic  can  be  a  reasonable  indicator  of  signif-  

icance  of  a  causal  direction.  We  kept  all  edges  whose  strength  is  bigger  

than  0.1.  To  provide  more  details  on  the  edge  statistics,  we  show  the  

values  for  all  edges  in  Table  1  in  Appendix.  Note  that  the  node  Nutr  

stands  for  nutrition  and  includes  nutritional  values,  calculated  by  clini-  

cians  from  the  food  questionnaires,  and,  therefore,  the  causal  direction  

Food  →Nutr  was  expected.  The  hypothesis  that  the  gut  flora  (  Bacteria  )  

can  have  an  important  impact  on  the  inflammatory  status  is  verified  in  

the  data.  

Fig.  4.  Causal  inference  on  the  MicroObes  data  with  three  groups  of  heterogeneous  data  sources.  
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Fig.  5.  Resulting  causal  graph  for  the  MicroObes  data  with  10  groups  of  het-  
erogeneous  observations.  

7.  Conclusions  

We  proposed  a  principled  approach  to  causal  discovery  from  purely  

observational  non-temporal  blocks  of  heterogeneous  data.  In  this  work,  
we  developed  an  improved  version  of  the  causal  inference  algorithm  

with  distance  correlation  method,  by  incorporating  Principal  Compo-  

nent  Analysis  and  Deep  Restricted  Boltzmann  machines.  Our  approach  

enables  causal  inference  in  wider,  namely  in  high-dimensional,  applica-  

tion  scenarios.  We  showed  by  numerical  experiments  that  the  approach  

is  computationally  efficient.  Note  that  its  implementation  is  simple.  The  

method  does  not  rely  on  any  hyper-parameters  which  are  needed  to  be  

adjusted.  
The  proposed  causal  inference  algorithm  was  compared  to  the  state-  

of-the-art  methods.  The  results  of  the  experiments  on  the  multivari-  

ate  cause-effect  pairs  (discrete  or  discretized)  show  that  our  algorithm  

reaches  the  best  performance  in  terms  of  empirical  performance.  We  

have  also  demonstrated  that  the  proposed  approach  is  efficient  for  real  

applications,  and  can  help  clinicians  and  researchers  doing  fundamental  

biological  research  to  verify  complex  mechanistic  hypotheses.  
Currently  we  are  planning  to  extend  the  proposed  method  for  con-  

founding  variables.  An  important  research  avenue  is  to  find  an  op-  

timal  discretization  method,  in  particular,  an  adaptive  discretization,  
since  empirical  performance  is  highly  data  dependent.  A  promising  

research  direction  are  information  theoretic  causal  inference  methods  

based  on  Kolmogorov  complexity.  They  use  the  minimum  description  

length  assuming  that  the  probability  distribution  is  simpler  in  causal  

direction.  

Code  

Code  for  the  proposed  method  is  available  at  the  following  link:  
https://integromics.fr/~nsokolovska/code.html  .  
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Appendix  

Table  1  
Edge  Statistics  for  the  MicroObes  Data.  
Source  Target  Strength  Source  Target  Strength  

Bacteria  AT_markers  0.068523  Blood_lipids  AT_markers  0.065421  
AT_markers  Body_Comp  0.087794  Food  AT_markers  0.10483  
Glucose  AT_markers  0.070102  Infl AT_markers  0.073882  
AT_markers  Kidney  0.089233  Nutr  AT_markers  0.099515  
AT_markers  Phys_Act  0.13261  Blood_lipids  Bacteria  0.098889  
Bacteria  Body_Comp  0.22556  Food  Bacteria  0.070223  
Bacteria  Glucose  0.16729  Bacteria  Infl 0.10617  
Bacteria  Kidney  0.044709  Bacteria  Nutr  0.074261  
Bacteria  Phys_Act  0.060303  Blood_lipids  Bacteria  0.15581  
Blood_lipids  Body_Comp  0.13514  Food  Blood_lipids  0.22781  
Blood_lipids  Glucose  0.071551  Blood_lipids  Infl 0.29245  
Blood_lipids  Kidney  0.11803  Blood_lipids  Nutr  0.075615  
Blood_lipids  Phys_Act  0.087583  Bacteria  Body_Comp  0.15825  
Blood_lipids  Body_Comp  0.11272  Food  Body_Comp  0.19478  
Body_Comp  Glucose  0.086518  Body_Comp  Infl 0.046299  
Body_Comp  Kidney  0.16786  Nutr  Body_Comp  0.11126  
Phys_Act  Body_Comp  0.070197  Food  Bacteria  0.13606  
Food  Blood_lipids  0.23331  Food  Body_Comp  0.19441  
Food  Glucose  0.083089  Food  Infl 0.10574  
Food  Kidney  0.27788  Food  Nutr  0.16854  
Food  Phys_Act  0.13919  Bacteria  Glucose  0.121  
Blood_lipids  Glucose  0.066414  Body_Comp  Glucose  0.096817  
Food  Glucose  0.11026  Glucose  Infl 0.063315  
Kidney  Glucose  0.05642  Nutr  Glucose  0.13963  
Phys_Act  Glucose  0.075443  Bacteria  Infl 0.20479  
Blood_lipids  Infl 0.22789  Body_Comp  Infl 0.0505  
Food  Infl 0.090273  Glucose  Infl 0.10894  
Kidney  Infl 0.093364  Nutr  Infl 0.079415  
Infl Phys_Act  0.068262  Bacteria  Kidney  0.070516  
Blood_lipids  Kidney  0.12113  Body_Comp  Kidney  0.13921  
Food  Kidney  0.28229  Kidney  Glucose  0.053427  
Kidney  Infl 0.090114  Nutr  Kidney  0.15269  
Phys_Act  Kidney  0.12751  Bacteria  Nutr  0.1242  
Blood_lipids  Nutr  0.12295  Nutr  Body_Comp  0.096798  
Food  Nutr  0.19157  Nutr  Glucose  0.11799  
Nutr  Infl 0.070178  Nutr  Kidney  0.21011  
Nutr  Phys_Act  0.11041  Phys_Act  Bacteria  0.050546  
Blood_lipids  Phys_Act  0.067077  Body_Comp  Phys_Act  0.071918  
Food  Phys_Act  0.17273  Phys_Act  Glucose  0.075065  
Phys_Act  Infl 0.066928  Phys_Act  Kidney  0.12567  
Nutr  Phys_Act  0.075765  

Supplementary  material  

Supplementary  material  associated  with  this  article  can  be  found,  in  

the  online  version,  at  doi:  10.1016/j.inffus.2018.11.016  .  
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Résumé

Une question importante en microbiologie est de savoir si le traitement provoque des modifi-
cations de la flore intestinale et s’il a↵ecte également le métabolisme. La reconstruction de re-
lations causales purement à partir de données d’observation non temporelles est di�cile. Nous
abordons le problème de l’inférence causale dans un cas multivarié, où la distribution jointe de ces
variables est observée. Nous nous attaquons ici au problème de l’inférence causale entre groupes
d’observations hétérogènes non temporelles obtenues à partir de sources multiples. Les méthodes
d’inférence causale de l’état de l’art pour les données continues sou↵rent d’une grande complexité
de calcul. Certaines approches modernes ne conviennent pas aux données catégorielles, tandis que
d’autres nécessitent d’estimer et de fixer plusieurs hyper-paramètres.

Dans cette contribution, nous introduisons une nouvelle méthode d’inférence causale qui est
basée sur l’hypothèse largement utilisée que siX cause Y , alors P (X) et P (Y |X) sont indépendantes.
Nous proposons d’explorer une approche semi-supervisée dans laquelle P (Y |X) et P (X) sont estimés
à partir de données étiquetées et non étiquetées, alors que la probabilité marginale est estimée
potentiellement à partir de données plus grandes mais non étiquetées.

Nous validons la méthode proposée sur les paires cause à e↵et standard. Nous illustrons par des
expériences avec des tâches de la reconstruction des réseaux biologiques que l’approche proposée est
très compétitive en termes de temps de calcul et de précision par rapport a des méhodes existantes.
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