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Cascade learning with abstention and individualised feature selection is a class of models in high demand
in personalised medical applications. The cascade consists of sequential classifiers and rejectors, where the
classifiers estimate confidence of prediction, and the rejectors evaluate an expected cost-to-go of features
not selected yet. The number of models is exponential in the number of features and, therefore, the
challenge is to find efficient heuristics for the NP-hard problem.
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The state-of-the-art is based on complex deep neural networks. We introduce an efficient and robust ap-
proach based on a probabilistic graphical model representing a unified probabilistic classifier that can be
applied at any stage of a multi-stage sequential model. As for the rejector, we build it on the probabilistic-
based neural network that incorporates the very same probabilistic model to treat unobserved feature
values.

We illustrate the efficiency of the proposed method on several data sets, and compare our results to the

state-of-the-art.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Cascade classification with abstention is a scenario where an
algorithm can abstain from providing a class label, and ask for
more information. Usually one means a confidence-based absten-
tion where the classifier abstains, if it is uncertain about its pre-
diction, and the rejection comes with some cost. The process of
gradual feature acquisition is governed by two functions: classifier
and rejector/selector (which performs also feature selection, we re-
fer to it as rejector in the following), and is drafted on Fig. 1. At
each stage, the classifier makes prediction y € {1,...,K} where K
is the number of classes, and simultaneously estimates confidence
of this prediction, and the rejector evaluates an expected cost-to-
go for every feature unobserved at this stage.

A seminal work of [1] proposed theoretical foundations for
learning with rejection. An important aspect of multi-stage se-
quential classifiers is to learn whether to reject a decision to clas-
sify, or to label a current observation. Some recent publications
proposed solutions to this problem discussing possible scenarios
to estimate regions where a classifier is confident in its decision,
i.e., they considered how to learn a rejector efficiently [2-4]. An

* Editor: “Jiwen Lu”".
* Corresponding author.
E-mail address: nataliya.sokolovska@sorbonne-universite.fr (N. Sokolovska).

https://doi.org/10.1016/j.patrec.2021.03.029
0167-8655/© 2021 Elsevier B.V. All rights reserved.

interesting research direction is to explore feature redundancies to
reduce the cost of learning and prediction [5], and to explore struc-
ture in cost sensitive learning, using, e.g., Bayesian networks [6].

We are motivated by the challenges coming from personalised
medicine where it is crucial to find optimal — in terms of money,
time, other budget constrains, and predictive accuracy — individ-
ual diagnostic protocols. The goal of this work is to learn simul-
taneously the classifier and the rejector, and to perform person-
alised, i.e., individual for each observation, feature selection. As the
state-of-the-art methods that are particularly relevant to our work,
we can mention the cascade approaches based on the deep-Q-
network [7]. They were introduced by Clertant et al. [8] and fur-
ther developed by Janisch et al. [9].

We challenge the following crucial problems. First, how to learn
a unified classification model, and second, how to avoid learning an
exponential number of models in case of individualised feature se-
lection. In [8,9], an attempt to approximate such a unique model
was done within a neural network (NN) paradigm.

In the cascading model, all feature values can be available on
the last stage only. On all previous stages, the unobserved feature
values can be considered as missing data, and treated using meth-
ods for missing values processing. The NN-based approaches are
sensible to missing values. Both in [8,9] binary masks are used as
an extra input to the neural network to replace them. This classical
trick was discussed and criticised by Yi et al. [10] where it was re-
ported that the zero imputation is far from being the best strategy
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Classifier & Rejector

Qe

Fig. 1. Sequential process of classification. Actions ay are features selected by the
rejector/selector, action a. is the action to classify, and y € {1,..., K} is the label
predicted by the classifier. The dark features are ones selected by the cascade at
different stages.

due to biasness of the estimation. To deal with this issue, we have
got inspired from the work of [11] and build in the generalised
neuron’s activation in our cascade model.

To sum up, in this work we aim to make use of a probabilis-
tic classifier, and our motivation to use a probabilistic approach is
two-fold. First, a probabilistic graphical model (classifier) provides
us with some machinery to treat missing values naturally. Second,
a way to treat missing values in a neural network (rejector) is to
apply a generalised neuron’s activation introduced by Smieja et al.
[11] which assumes that data belong to a Gaussian mixture distri-
bution. Note, that the rejector computes cost-to-go values for all
features, what can be efficiently done by a reinforcement learning
algorithm finding an optimal policy, and we do not aim to replace
the rejector by a probabilistic model, but to make the rejector be
able to take the Gaussian parameters of the probabilistic classifier
into account. In this work, we consider Gaussian graphical models,
since one of their main advantages is that the conditional indepen-
dence is modelled by the covariance matrix only.

Our contribution is multi-fold:

o We propose a unified cascade classifier with abstention that is
more efficient than the state-of-the-art models [8,9], and also
than multi-stage models with an exponential number (in fea-
tures) of classifiers and rejectors needed at each stage. A gener-
ative graphical model plays the role of the classifier, and shares
its parameters with the rejector (a neural network) leading to
a computationally attractive framework for high-dimensional
problems.

o We derive a novel learning algorithm for the proposed cascade
classifier, and we show that the learning time for our approach
is up to 5 times faster than for the state-of-the-art methods.

e The proposed probabilistic cascade classifier naturally treats

missing values, it relies on methods that integrate them out, and

it can have a semi-supervised flavour and incorporate some prior
knowledge.

Finally, we illustrate by our experiments on benchmarks and

real data that the proposed approach is efficient, achieves the

state-of-the-art performance, increases the interpretability of
the classifier, since it carries probabilistic nature and sense, and
has an elegant form.

The paper is organised as follows. We discuss the related state-
of-the-art methods in Section 2. The problem we challenge in this
work is formalised in Section 3. The ideas how to integrate prior
knowledge are considered in Section 4. We introduce our approach
and discuss the learning procedure in Section 5. Section 6 is ded-
icated to the results of our numerical experiments. Concluding re-
marks and perspectives close the paper. To facilitate the reading,
we decided to put our results on structure learning, as well as sup-
plementary results on data imputation methods in the Supplemen-
tary Material.
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2. Related work

There are several recent approaches to learn models with ab-
stention [3,12-14], and they are motivated by different practical
needs. A number of methods are focused on learning the reject
regions, assuming the classifiers are already trained. One work to
mention is of [2] that proposes a multi-stage sequential classi-
fier which is formulated as a Markov Decision Process (MDP), to
learn regions where the classifier is uncertain and prefers to ab-
stain from making a decision.

In this work, we build our approach on the method of learn-
ing cascade classifiers with abstention which is introduced in [8].
It is a Partially Observable Markov Decision Process (POMDP)-
based framework to estimate cost-sensitive heterogeneous multi-
stage classifiers. The cascade classifier of [8] consists of two neural
networks, a classifier neural network which returns a probability
of belonging to each class, and a rejector/selector neural network
which returns a cost-to-go for each feature, and that helps to de-
cide whether to return a label at the current stage of the cascade,
or to pay for a new feature acquisition. The problem of learning
dynamic diagnostic protocols where an optimal order of features
for each individual is essential, is closely related to feature selec-
tion.

As we show below, in an individualised cascade learning, a clas-
sifier faces a problem of missing values processing, since not all
features are acquired and explored on all its stages. To deal with
the missingness, a number of approaches have been proposed. The
most commonly used approach is data imputation, which is a class
of methods to complete complex data containing missing entries.
Among the discriminative methods, the most used are probably
MICE [15], matrix completion [16], and MissForest [17]. The gen-
erative methods are based either on the Expectation-Maximisation
algorithm [18], or on deep learning [19]. GAIN [19] is an approach
to impute data using generative adversarial networks. Due to the
space limitations, we do not focus on the imputation approaches.
However, we tested some of the state-of-the-art data imputation
methods, and these results can be found in the appendix.

Processing of missing values by neural networks.

In the neural networks setup, features with missing values
serve as an input layer of the rejector and the classifier. In [8,9],
the problem of missing values was treated by substituting them
by zeros and adding binary masks for features available and not
available. This pre-processing is rather ad-hoc and can be avoided.
The authors of [11] propose a natural approach to deal with miss-
ing data for several types of neural networks (e.g., neural networks
where the first layer has a ReLU activation function).

In brief, the idea of [11] is to replace the standard neuron’s
response in the first hidden layer by its expected value. So, the
output of the first layer is an expected value of the ReLU func-
tion given a probabilistic model. During the learning procedure, the
Gaussian mixture model’s (GMM) weights are updated altogether
with the weights of the neural network. For more details take a
look at [11].

As our classifier relies on a Gaussian probabilistic model, we
will take an advantage of the similar nature of these two models
and use the parameters of the Gaussian models both for the rejec-
tor and the classifier. So, we can alternate between the updates of
the classifier and the rejector during the parameter learning pro-
cedure.

3. Problem formulation: a POMDP framework for cascade
learning

We challenge to learn cascade classifiers, and we solve
this problem from graphical models perspective using deep Q-
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learning [7]. We follow mainly the notations also used by Clertant
et al. [8].

points x, € X =Xy x --- x Xp and the coyrresponding labels y, €
{1.....K}. Here we assume that all feature values are available
for each observation. On each step t of the cascade classifier, we
choose an action a; that can be either to acquire a new previously
unseen feature from {1,...,D}, or to stop and make a prediction,
i.e., assign a class from {1, ..., K}. Note that at a stage t, the model
has access to all features x;) collected prior to t.

A state of the model can be expressed as s; = (a[t], x[t]),
and we call it historic state, since it contains all previous ob-
servations x) and previous decisions ap;. A decision ar € A=
{-D,..., -1,1,..., K}, whether to extract a new feature, or to clas-
sify and stop, can be taken according to the following rule:

af = argmin |1 F(ac|s:— I R(a;|s,_
t gateA[[ar>0] (tl t l)+ [a;<0] (t| ¢ 1)]

(1)

(2)

where F(a¢|s;_q) is called classifier and evaluates the classification
mistake of the prediction y = a;, and R(a;|s;_q) is called rejector
and computes the cost-to-go for each possible feature —a; not se-
lected yet. Overall, our policy 7 and the whole trajectory of actions
is defined by:

Q7 (arls;—1) = {;; Ii_%:(?ttft—l),

where §_g, is the cost of feature —a;, and V™ (s) is an expected
cost from state s under policy 7. In [8,9], the function Q7 (ar|s;_1)
is approximated by two deep neural networks, one for selec-
tor/rejector R(a;|s;_1) and one for classifier F(a¢|s;_1).

We are intended, in particular, to learn another function
F(ar|s¢_1) which applies at any t of the cascade for any observa-
tion. In addition, we are going to modify the rejector R(a;|s;_1) to
relate it to the classifier through the same graphical model. Below, we
focus on how to learn this unique classifier and the corresponding
rejector using probabilistic graphical models.

=argmin Q™ (a|s;—1) = 7 (s¢-1),
a;eA

for a; > 0
for a; <0,

(3)

4. A semi-supervised generalised neural response

In a number of applications, in particular in such domains as
medicine and biology, scientists have access to cheap prior knowl-
edge, e.g., KEGG (Kyoto Encyclopedia of Genes and Genomes),
GO (Gene Ontology). The problem of prior knowledge integration
which is closely related to semi-supervised learning, is known to
be challenging, and a big number of research papers report neg-
ative results [20]. We focus on probabilistic classifiers where the
prior knowledge can be integrated in the form of the marginal
probability of observations [21].

We propose a semi-supervised extension of the generalised neural
response [11], and our approach is expected to be more efficient in
terms of empirical predictive performance, in particular for cases
where the number of labeled observations is small. Note, the im-
plementation of our method is simple.

Following the notations of [11], an observation with missing
data is denoted by (x,m), x e RP, and m c {1, ..., D} are features
ids with missing values. We are in a semi-supervised setting, and
we assume that we have access to huge (possibly infinite) number
of observations that allows us to approximate (or to compute the
true values) of the D-dimensional probability distribution g. So, the
missing data at random in a given data set are generated by this
(unknown) distribution gq.

Comparing the proposed semi-supervised approach and Eq. (1)
of [11], the density conditioned on the observed features is re-
placed by q(x) which is either approximated from an external big

10
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data set, or provided as a ground truth by human experts:

q(x), if x is missing,
0, otherwise.

Fx) = { (4)

Then, the result of the generalised neuron response activa-
tion holds also for the semi-supervised setting. Suppose that x ~
N(u, X), and

Wx+b~NWx+b w Zw). (5)

If x comes from a Gaussian mixture x ~ Z?il piN (ug, ;) with M
components, then

M

WX+ b~ pNW i+ b wZw). (6)
i=1

Theorem 1. Given w and b, where w € RP and b are parameters of a

neuron, and where F(x) for missing data is completed using Eq. (4),

then
wh i + b)
JwlZw 7

where NR (neuron’s response) = ReLU(W (w, 1)).

M
ReLU(F)up =Y p,NR(
i=1

(7)

1 exp ( w2 N
V2 2 \/E
where w = % and can be calculated for the each compo-
nent and each dimension separately, and erf(z) = % foz exp(—a?)da.
See [11] for more details.

NR(w) =

w w
5 (1 rerf(—0))).

5. Learning a unified cascade classifier with abstention

At each stage of the heterogeneous cascade, we have values
missing at random (MAR). This situation arises, since at various
stages of the cascade learning, different features are decided to be
explored for different observations. So, a classifier gets a data ma-
trix X = (Xs, X™Mis) which contains a lot of missing values in the
beginning of the cascade learning, and starts to be full when all
features are explored.

5.1. Gaussian graphical models

Classifier. We can build our classifier function F(a¢|s;_q) based
on a probabilistic model in the following way:

F(alse—1) = 1 - P(y = a¢[x™®),

where xS is the part of the signal that we observe, y is the pre-
dicted label, and F(a¢|s;_1) represents the probability of misclassi-
fication.

It is worth noting, that we have to evaluate probability P(y =
a|x°%) at any step of the cascade, i.e., for signals x°» with dif-
ferent number of observed elements. This fact conceals the main
challenge of the learning task: our model should be able to pro-
vide a probability value for any subvector or any subset of fea-
tures. Our idea is to introduce a Gaussian probabilistic model P(y =
at|x) for fully-observed signal x, and, second, use the tools of the
graphical models theory to derive the expressions for all possible
P(y = a¢|x°»). A Gaussian graphical model P(x|y = k, 8) is fully de-
fined by the parameter 6 = (4. Z)X_,. where K is the number of
classes and 6 is the parameter to be estimated. The challenge is
to use the probability values as training instances. For the classi-
fier, it can be done via weighted likelihood estimation considered
in Section 5.4.

We can not fit a generative Gaussian classifier using all features
in advance, since the feature selection in the cascade classifier is
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fit assign
—_— 6(2i+1)
' (0) R (0)
<— 2i+2) <——
assign fit

Fig. 2. An alternative view of the learning procedure sketched as Algorithm 1.

cost-dependent. However, we can apply a warm start based on
some prior knowledge available, as we discussed in Section 4.

Rejector Our rejector is a neural network similar to the state-
of-the-art approaches. One of the reasons why we do not apply a
Gaussian model for the rejector, is that it is not obvious how to de-
sign a rejector via probabilistic graphical models (PGM). Attempt-
ing to do it, we can try to express R(a|s;_;) through P(x;|x°)
for each i. A conditional probability P(x;|x®>) can be re-written
through the known values of probabilistic graphical model, how-
ever, it is impossible to compute the cost-to-go values for the fea-
tures. So, we apply a neural network - the deep Q-learning to com-
pute the cost-to-go for all features — with the PGM-based general-
ized neuron’s response.

5.2. Sharing parameters between classifier and rejector

The classifier in our architecture are Gaussian graphical models
with parameters 6 = (1., i)k _,. one model per class k. The rejec-
tor is a neural network with a generalised neuron’s response which
can be either identical to one proposed by Smieja et al. [11], or a
semi-supervised neuron’s activation described in Section 4. In both
cases, the Gaussian mixtures with parameters 6’ = (u}, % f:1 are
used in the rejector for the neuron’s activation response.

In our classifier and our rejector, the input of the models coin-
cide (it is the observed features of each data point). Therefore, we
can consider the following model:

0 = (i Ek)§<(=1 = (M;w ZIQ)L(:] =0, (8)

where the rejector and the classifier share and update the same
set of parameters. In this way, we accelerate the learning proce-
dure and profit from the double source of information for the same
shared parameters 6. Note that the rejector being a neural net-
work, has much more parameters than 6’, we also estimate ma-
trices of weights and intercepts for each layer of the deep network
(we use the ReLU and the softmax layers).

5.3. Learning procedure

The learning procedure we propose is drafted as Algorithm 1.
It relies on the deep Q-learning procedure [7]. We perform E
episodes (one episode considers one randomly sampled observa-
tion) and T iterations, where each iteration corresponds to a new
feature acquisition, or to the decision to classify the current obser-
vation. To update the parameters 6, on each episode e, we sample
a minibatch of fixed size J, and either perform one step of the gra-
dient descent for the NN-based rejector, or update the parameters
0 of the graphical model depending on the current number (odd
or even) of the episode. The sketch of this iterative process is pre-
sented on Fig. 2.

In the following section, we describe how we update the pa-
rameters of the model using the weighted log-likelihood.

5.4. Weighted log-likelihood

The cascade learning procedure drafted in Algorithm 1 has to
deal with non categorical class values y. It comes from the fact that
the classifier F, approximated by a neural network or by a proba-
bilistic model, returns conditional probabilities of a class given an

1
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Algorithm 1 Learning probabilistic personalised cascade with ab-
stention
fore=1,...,E do
Initialise sq
fort=1,...,T do
Take an action: af = arg 2?3 Q7 (ar|s;_1,0®)

Update and store in memory the historic state:

st = (A, Xpep)
end for

Update labels for minibatch data (aj,s;,y;) sampled from
memory:

Y¥j =84, + minQ" (als;_1,6)
acA

if e is odd then
Update parameter 0(®) of the classifier F() using the
weighted log-likelihood (eq. 9)

else
Update parameter 6 of the rejector R() using the mini-
batch data and the gradient descent

end if

end for

observation. The parameters 6, for each class (6 = [, Z¢]) are
updated using P(y = k|x, 6;), and not hard labels.

We interpret this probability as a degree of sureness. To explore
this knowledge, we can use a weighted likelihood approach [22],
where the dataset now consists of {x,, vy}, where v, € [0, 1] rep-
resents the soft label. In this case, the objective has the following
form for each 6,:

N
m@axz UnlogP(xaly = k. 6)). (9)
k=1

Note that in a hard labels case where v, € {0, 1}, the expression
(9) reproduces the standard maximum likelihood objective.

6. Experiments

In this section, we illustrate the performance of the proposed
approach on simulated and real-world benchmark data. We com-
pare our approach — the POMDP framework with the unified prob-
abilistic classifier that shares its parameters with the rejector —
with the state-of-the-art approaches of [8,9] (https://github.com/
jaromiru/cwcf), and also several baselines. Our primary motiva-
tion are small sample size problems where generative learning
approaches are more promising compared to discriminative ap-
proaches.

Overall, we will present the results for the following competi-
tive methods:

1. The state-of-the-art cascade classifier of [8] based on two
neural networks;

2. A baseline model where the classifier is a Gaussian graphi-
cal model and the covariance matrix is diagonal, i.e., we as-
sume all features are independent; rejector is a neural net-
work taken from Clertant et al. [8];

3. Another baseline model where the classifier is a Gaussian
graphical model and the covariance matrix is not diagonal;
the rejector is neural network taken from Clertant et al. [8];
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4. The rejector is the neural network with the generalised neu-
ron activation from Smieja et al. [11]; classifier is neural net-
work taken from Clertant et al. [8];

5. Our probabilistic cascade classifier described in Section 5,
where the rejector is the neural network with the gener-
alised neuron activation from Smieja et al. [11] and the clas-
sifier is a Gaussian graphical model;

6. Another recently published state-of-the-art method of [9];
similarly to the approach of [8], it is also based on the deep
Q-learning.

On the figures below, the tested methods are presented in the
same order.

We introduce the shared cost § = 1/(d - D) for all features simi-
larly to [8]. In the cost expression, D is the number of features in a
data set, and d is a hyper-parameter that we vary to simulate sce-
narios with various costs. We considered d in range [1,2,...,9].
The more expensive a feature is, less accurate result is expected,
since smaller costs encourage feature exploration. On all our fig-
ures illustrating performance, on the horizontal axis we show the
average number of selected features by the corresponding models,
and on the vertical axis we show test accuracy. We also show the
standard deviation divided by 10 to facilitate the plots reading.

All the hyper-parameters were fixed by 10-fold cross valida-
tions. We used the code of [8], and we used the same hyper-
parameters as in his implementation. We also performed the grid
search among the parameters for the Q-learning and neural net-
works: the number of iterations (episodes) from 1000 to 5000
with the step 1000, exploration rate decay in range [0.9, 0.995,
0.999], learning rate in range [0.1, 0.01, 0.001, 0.0001].

It is an interesting point that curves have different number of
points. Similarly to [9], in the cost-accuracy plane, we use the test
set to select the most accurate model instances, which form a con-
vex hull over all tested models. Also, all considered methods per-
forming feature exploration, stop the feature acquisition earlier or
later, and do not continue (on the test set) until no features are
left.

6.1. Simulated data

For the simulated setup, we sampled two different 2-
dimensional binary classification problems. One is a general clas-
sification problem (we used make_classification function
of sklearn), and isotropic Gaussian blobs (make_blobs func-
tion) with default parameters. In both scenarios we generate
data for a classification problem with two classes. Our motiva-
tion was to consider a data set, which is not separable if one
feature (dimension) is selected, but can be easily separated in a
two-dimensional space. We also add three extra white noise fea-
tures to make it challenging for our cascade models to select
proper features. To be precise, we considered a 5-dimensional data
set, where 2 features are drawn using the scikit-learn package,
make_classification function, and the other 3 features are
white noise, and are sampled from the standard Gaussian distribu-
tion.

The performance on the simulated data sets - accuracy as a
function of the number of selected features - is shown on Figs. 3
and 4. It is easy to see that the proposed POMDP with the gen-
eralised neuron activation (rej:GNR on the figures) and the in-
troduced probabilistic cascade classifier (classif:indNB+rej:GNR) are
highly competitive compared to the state-of-the-art methods.

6.2. Real-world benchmarks

The benchmark data we considered can be downloaded from
the UCI Machine Learning Repository. They are binary prediction
tasks:

12
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Fig. 5. Heart data, 90% for train.

o Heart Disease data set contains information about 303 patients
and 13 features.

Mammographic mass data set is dedicated to discrimination of
benign and malignant mammographic masses. There are 6 at-
tributes and 961 patients in the original data. We transformed
the categorical variables into binary via the one-hot-encoding,
and we obtained a data set with 14 variables.

Breast Cancer Wisconsin (Prognostic). The data set contains 30
variables describing characteristics of the cell nuclei for 569 pa-
tients.

Figs. 5-7 illustrate our results on the Heart Disease data set,
Figs. 8-10 - on the Mammography data, and Figs. 11-13 on the
Breast Cancer data set. Figs. 5, 8, 11 represent the scenario where
we do the 10-fold cross validation, and we use 90% data for train-
ing and 10% for test. We observe that the state-of-the-art meth-
ods of [8,9], as well as our approach where the rejector uses the
generalised neuron activation, achieve the state-of-the-art perfor-
mance. It is interesting that the behavior of the estimators depends
heavily on the number of observations provided for learning, what
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Fig. 9. Mammo; 10% for train (semi-supervised scenario).

is quite easy to explain: the more observations are provided to a
learning algorithm, the higher the predictive performance. For the
semi-supervised setting (described in Section 4), we initialise the
Gaussian parameters using all data, and take less data for training
(we try 10% and 50% of data available). The proposed probabilistic
scenario achieves quite reasonable results in cases where the num-
ber of observations is not high (50%), and the generalised neuron
activation seems to always achieve the state-of-the-art precision.

Another important point to mention is that some approaches
stop and predict labels earlier than the others. It is related to the
cost value, and to the trade-off between the cost and the classifiers
confidence.

Figs. 14-16 show the training time as a function of cost for the
considered benchmarks. It is easy to see that the proposed proba-
bilistic cascade classifier is the most efficient in terms of learning
time. The simple Gaussian model where we consider independent
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Fig. 13. Breast; 50% for train (semi-supervised scenario).

features, is quite close to it in computational efficiency but note
that the performance of it is not optimal.

We can observe that the proposed methods are comparably ac-
curate, and sometimes they outperform the state-of-the-art cas-
cade with abstention [8]. We also observe that our approach
achieves a very reasonable performance for the data that match
the Gaussian distribution assumption, and can meet some difficul-
ties for some real data sets where this assumption does not hold.

The question of the computational time is one of main moti-
vations for our method. Our method is computationally efficient,
compared to other state-of-the-art methods, including [9]. The re-
sults (Figs. 14-16) illustrate that our method achieves the best
learning time compared to all other considered approaches. We
would like to precise that the neural network of [8] is rather sim-
ple (2 hidden layers, 6 neurons in each), however, the network of
[9] is more complex (64 neurons in each layer, and 3 hidden lay-
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ers), resulting in longer learning time. We test the smallest (sim-
plest) neural network used by Janisch et al. [9], and their learning
time is still always bigger than for our method. The approach of
[9] implements an early stopping, where an error rate on a vali-
dation set is used to decide when to stop. This procedure (testing
on the validation test), takes additional time during the training
procedure.

The method of [9] outperforms all other methods on the Mam-
mography data set (although it is still longer to train compared
to other approaches). Our intuition why [9] is so accurate on the
Mammography, is that it relies on quite a big neural network. The
data set is also big (compared to other tested benchmarks), and the
number of predictive features in the data set is relatively small: the
method stops the feature exploration quite early. This configuration
is beneficial for their method.

To run the computations, we used the Google Colab online
server which is well-known by practitioners. For each launch it al-
locates 13GB RAM and 50 GB of the disk. Our implementation in
Python, as well as our code for all the experiments reported here
will be made publicly available.

7. Conclusion

Our goal was to develop and test a novel heterogeneous cas-
cade classifier with a unified classification model. We propose a
cascade classifier with abstention where the classifier and the re-
jector communicate and share parameters.

One of important constraints in real applications is computa-
tional efficiency what explains our motivation to estimate only one
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model which applies at any stage and for any observation of the
cascade classifier. The need for efficiency has also motivated us
to focus on multivariate Gaussian models where the unobserved,
missing values and prior knowledge can be treated naturally.

The proposed method is much faster than the state-of-the-
art cascade classifiers. In general, we observed that the proposed
method is always faster, however, it can (potentially) perform
worse that other state-of-the-art methods in some setups, since
our method can be viewed as a simplified version of the NN-based
methods.

Our method is based on the simple (Gaussian) graphical mod-
els, using the independence assumption between the features, and
it learns fast (but more elaborate methods can perform better). The
method of [9] achieves the state-of-the-art performance, however,
it takes much longer to train, since the method relies on a rather
big neural network, and it makes use of the early stopping, testing
an error rate on a validation set.

We also considered the case of prior knowledge integration,
and we propose an extension that belongs to the family of semi-
supervised learning approaches.

Currently we investigate other generative graphical models as
candidates for cascades with abstention with the goal to extend
the area of applicability of our method, despite the fact that it can
increase its computational complexity. Another interesting research
avenue is introduction of discriminative graphical models into the
cascades, however, this is a challenging task, since the problem of
missing data imputation and the integration over unobserved data
need to be solved and, moreover, solved efficiently. Another open
issue is the introduction and detailed theoretical analysis of novel
data imputation methods. We provide some ideas on it in the ap-
pendix.
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