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a b s t r a c t 

Cascade learning with abstention and individualised feature selection is a class of models in high demand 

in personalised medical applications. The cascade consists of sequential classifiers and rejectors , where the 

classifiers estimate confidence of prediction, and the rejectors evaluate an expected cost-to-go of features 

not selected yet. The number of models is exponential in the number of features and, therefore, the 

challenge is to find efficient heuristics for the NP-hard problem. 

The state-of-the-art is based on complex deep neural networks. We introduce an efficient and robust ap- 

proach based on a probabilistic graphical model representing a unified probabilistic classifier that can be 

applied at any stage of a multi-stage sequential model. As for the rejector, we build it on the probabilistic- 

based neural network that incorporates the very same probabilistic model to treat unobserved feature 

values. 

We illustrate the efficiency of the proposed method on several data sets, and compare our results to the 

state-of-the-art. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Cascade classification with abstention is a scenario where an 

lgorithm can abstain from providing a class label, and ask for 

ore information. Usually one means a confidence-based absten- 

ion where the classifier abstains, if it is uncertain about its pre- 

iction, and the rejection comes with some cost. The process of 

radual feature acquisition is governed by two functions: classifier 

nd rejector/selector (which performs also feature selection, we re- 

er to it as rejector in the following), and is drafted on Fig. 1 . At

ach stage, the classifier makes prediction y ∈ { 1 , . . . , K } where K 

s the number of classes, and simultaneously estimates confidence 

f this prediction, and the rejector evaluates an expected cost-to- 

o for every feature unobserved at this stage. 

A seminal work of [1] proposed theoretical foundations for 

earning with rejection. An important aspect of multi-stage se- 

uential classifiers is to learn whether to reject a decision to clas- 

ify, or to label a current observation. Some recent publications 

roposed solutions to this problem discussing possible scenarios 

o estimate regions where a classifier is confident in its decision, 

.e., they considered how to learn a rejector efficiently [2–4] . An 
� Editor: “Jiwen Lu”. 
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nteresting research direction is to explore feature redundancies to 

educe the cost of learning and prediction [5] , and to explore struc- 

ure in cost sensitive learning, using, e.g., Bayesian networks [6] . 

We are motivated by the challenges coming from personalised 

edicine where it is crucial to find optimal — in terms of money, 

ime, other budget constrains, and predictive accuracy — individ- 

al diagnostic protocols. The goal of this work is to learn simul- 

aneously the classifier and the rejector, and to perform person- 

lised , i.e., individual for each observation, feature selection. As the 

tate-of-the-art methods that are particularly relevant to our work, 

e can mention the cascade approaches based on the deep-Q- 

etwork [7] . They were introduced by Clertant et al. [8] and fur- 

her developed by Janisch et al. [9] . 

We challenge the following crucial problems. First, how to learn 

 unified classification model , and second, how to avoid learning an 

xponential number of models in case of individualised feature se- 

ection. In [8,9] , an attempt to approximate such a unique model 

as done within a neural network (NN) paradigm. 

In the cascading model, all feature values can be available on 

he last stage only. On all previous stages, the unobserved feature 

alues can be considered as missing data , and treated using meth- 

ds for missing values processing. The NN-based approaches are 

ensible to missing values. Both in [8,9] binary masks are used as 

n extra input to the neural network to replace them. This classical 

rick was discussed and criticised by Yi et al. [10] where it was re- 

orted that the zero imputation is far from being the best strategy 

https://doi.org/10.1016/j.patrec.2021.03.029
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2021.03.029&domain=pdf
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Fig. 1. Sequential process of classification. Actions a f i are features selected by the 

rejector/selector, action a c is the action to classify, and y ∈ { 1 , . . . , K} is the label 

predicted by the classifier. The dark features are ones selected by the cascade at 

different stages. 
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l

t

ue to biasness of the estimation. To deal with this issue, we have 

ot inspired from the work of [11] and build in the generalised 

euron’s activation in our cascade model. 

To sum up, in this work we aim to make use of a probabilis-

ic classifier, and our motivation to use a probabilistic approach is 

wo-fold. First, a probabilistic graphical model ( classifier ) provides 

s with some machinery to treat missing values naturally. Second, 

 way to treat missing values in a neural network ( rejector ) is to

pply a generalised neuron’s activation introduced by Smieja et al. 

11] which assumes that data belong to a Gaussian mixture distri- 

ution. Note, that the rejector computes cost-to-go values for all 

eatures, what can be efficiently done by a reinforcement learning 

lgorithm finding an optimal policy, and we do not aim to replace 

he rejector by a probabilistic model, but to make the rejector be 

ble to take the Gaussian parameters of the probabilistic classifier 

nto account. In this work, we consider Gaussian graphical models, 

ince one of their main advantages is that the conditional indepen- 

ence is modelled by the covariance matrix only. 

Our contribution is multi-fold: 

• We propose a unified cascade classifier with abstention that is 

more efficient than the state-of-the-art models [8,9] , and also 

than multi-stage models with an exponential number (in fea- 

tures) of classifiers and rejectors needed at each stage. A gener- 

ative graphical model plays the role of the classifier, and shares 

its parameters with the rejector (a neural network) leading to 

a computationally attractive framework for high-dimensional 

problems. 
• We derive a novel learning algorithm for the proposed cascade 

classifier , and we show that the learning time for our approach 

is up to 5 times faster than for the state-of-the-art methods. 
• The proposed probabilistic cascade classifier naturally treats 

missing values , it relies on methods that integrate them out, and 

it can have a semi-supervised flavour and incorporate some prior 

knowledge . 
• Finally, we illustrate by our experiments on benchmarks and 

real data that the proposed approach is efficient, achieves the 

state-of-the-art performance, increases the interpretability of 

the classifier, since it carries probabilistic nature and sense, and 

has an elegant form. 

The paper is organised as follows. We discuss the related state- 

f-the-art methods in Section 2 . The problem we challenge in this 

ork is formalised in Section 3 . The ideas how to integrate prior 

nowledge are considered in Section 4 . We introduce our approach 

nd discuss the learning procedure in Section 5 . Section 6 is ded- 

cated to the results of our numerical experiments. Concluding re- 

arks and perspectives close the paper. To facilitate the reading, 

e decided to put our results on structure learning, as well as sup- 

lementary results on data imputation methods in the Supplemen- 

ary Material. 
9 
. Related work 

There are several recent approaches to learn models with ab- 

tention [3,12–14] , and they are motivated by different practical 

eeds. A number of methods are focused on learning the reject 

egions, assuming the classifiers are already trained. One work to 

ention is of [2] that proposes a multi-stage sequential classi- 

er which is formulated as a Markov Decision Process (MDP), to 

earn regions where the classifier is uncertain and prefers to ab- 

tain from making a decision. 

In this work, we build our approach on the method of learn- 

ng cascade classifiers with abstention which is introduced in [8] . 

t is a Partially Observable Markov Decision Process (POMDP)- 

ased framework to estimate cost-sensitive heterogeneous multi- 

tage classifiers. The cascade classifier of [8] consists of two neural 

etworks, a classifier neural network which returns a probability 

f belonging to each class, and a rejector/selector neural network 

hich returns a cost-to-go for each feature, and that helps to de- 

ide whether to return a label at the current stage of the cascade, 

r to pay for a new feature acquisition. The problem of learning 

ynamic diagnostic protocols where an optimal order of features 

or each individual is essential, is closely related to feature selec- 

ion. 

As we show below, in an individualised cascade learning, a clas- 

ifier faces a problem of missing values processing, since not all 

eatures are acquired and explored on all its stages. To deal with 

he missingness, a number of approaches have been proposed. The 

ost commonly used approach is data imputation, which is a class 

f methods to complete complex data containing missing entries. 

mong the discriminative methods, the most used are probably 

ICE [15] , matrix completion [16] , and MissForest [17] . The gen- 

rative methods are based either on the Expectation-Maximisation 

lgorithm [18] , or on deep learning [19] . GAIN [19] is an approach

o impute data using generative adversarial networks. Due to the 

pace limitations, we do not focus on the imputation approaches. 

owever, we tested some of the state-of-the-art data imputation 

ethods, and these results can be found in the appendix. 

Processing of missing values by neural networks. 

In the neural networks setup, features with missing values 

erve as an input layer of the rejector and the classifier. In [8,9] ,

he problem of missing values was treated by substituting them 

y zeros and adding binary masks for features available and not 

vailable. This pre-processing is rather ad-hoc and can be avoided. 

he authors of [11] propose a natural approach to deal with miss- 

ng data for several types of neural networks (e.g., neural networks 

here the first layer has a ReLU activation function). 

In brief, the idea of [11] is to replace the standard neuron’s 

esponse in the first hidden layer by its expected value. So, the 

utput of the first layer is an expected value of the ReLU func- 

ion given a probabilistic model. During the learning procedure, the 

aussian mixture model’s (GMM) weights are updated altogether 

ith the weights of the neural network. For more details take a 

ook at [11] . 

As our classifier relies on a Gaussian probabilistic model, we 

ill take an advantage of the similar nature of these two models 

nd use the parameters of the Gaussian models both for the rejec- 

or and the classifier. So, we can alternate between the updates of 

he classifier and the rejector during the parameter learning pro- 

edure. 

. Problem formulation: a POMDP framework for cascade 

earning 

We challenge to learn cascade classifiers, and we solve 

his problem from graphical models perspective using deep Q- 
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earning [7] . We follow mainly the notations also used by Clertant 

t al. [8] . 

We consider a dataset D = (x n , y n ) n =1 , ... ,N which consists of data

oints x n ∈ X = X 1 × · · · × X D and the corresponding labels y n ∈ 

 1 , . . . , K} . Here we assume that all feature values are available

or each observation. On each step t of the cascade classifier, we 

hoose an action a t that can be either to acquire a new previously 

nseen feature from { 1 , . . . , D } , or to stop and make a prediction,

.e., assign a class from { 1 , . . . , K} . Note that at a stage t, the model

as access to all features x [ t] collected prior to t . 

A state of the model can be expressed as s t = (a [ t] , x [ t] ) ,

nd we call it historic state, since it contains all previous ob- 

ervations x [ t] and previous decisions a [ t] . A decision a t ∈ A = 

−D, . . . , −1 , 1 , . . . , K} , whether to extract a new feature, or to clas-

ify and stop, can be taken according to the following rule: 

 

∗
t = arg min 

a t ∈ A 

[
I [ a t > 0] F (a t | s t−1 ) + I [ a t < 0] R (a t | s t−1 ) 

]
(1) 

= arg min 

a t ∈ A 
Q 

π (a t | s t−1 ) = π(s t−1 ) , (2) 

here F (a t | s t−1 ) is called classifier and evaluates the classification 

istake of the prediction ˆ y = a t , and R (a t | s t−1 ) is called rejector

nd computes the cost-to-go for each possible feature −a t not se- 

ected yet. Overall, our policy π and the whole trajectory of actions 

s defined by: 

 

π (a t | s t−1 ) = 

{
1 − P (y = a t | s t−1 ) , for a t > 0 

δ−a t + V 

π (s t ) , for a t < 0 , 
(3) 

here δ−a t is the cost of feature −a t , and V π (s ) is an expected

ost from state s under policy π . In [8,9] , the function Q 

π (a t | s t−1 )

s approximated by two deep neural networks, one for selec- 

or/rejector R (a t | s t−1 ) and one for classifier F (a t | s t−1 ) . 

We are intended, in particular, to learn another function 

 (a t | s t−1 ) which applies at any t of the cascade for any observa-

ion. In addition, we are going to modify the rejector R (a t | s t−1 ) to

elate it to the classifier through the same graphical model . Below, we 

ocus on how to learn this unique classifier and the corresponding 

ejector using probabilistic graphical models. 

. A semi-supervised generalised neural response 

In a number of applications, in particular in such domains as 

edicine and biology, scientists have access to cheap prior knowl- 

dge, e.g., KEGG (Kyoto Encyclopedia of Genes and Genomes), 

O (Gene Ontology). The problem of prior knowledge integration 

hich is closely related to semi-supervised learning, is known to 

e challenging, and a big number of research papers report neg- 

tive results [20] . We focus on probabilistic classifiers where the 

rior knowledge can be integrated in the form of the marginal 

robability of observations [21] . 

We propose a semi-supervised extension of the generalised neural 

esponse [11] , and our approach is expected to be more efficient in 

erms of empirical predictive performance, in particular for cases 

here the number of labeled observations is small. Note, the im- 

lementation of our method is simple. 

Following the notations of [11] , an observation with missing 

ata is denoted by (x, m ) , x ∈ R 

D , and m ⊂ { 1 , . . . , D } are features

ds with missing values. We are in a semi-supervised setting, and 

e assume that we have access to huge (possibly infinite) number 

f observations that allows us to approximate (or to compute the 

rue values) of the D -dimensional probability distribution q . So, the 

issing data at random in a given data set are generated by this 

unknown) distribution q . 

Comparing the proposed semi-supervised approach and Eq. (1) 

f [11] , the density conditioned on the observed features is re- 

laced by q (x ) which is either approximated from an external big 
10 
ata set, or provided as a ground truth by human experts: 

(x ) = 

{
q (x ) , if x is missing , 
0 , otherwise. 

(4) 

Then, the result of the generalised neuron response activa- 

ion holds also for the semi-supervised setting. Suppose that x ∼
 (μ, �) , and 

 

T x + b ∼ N (w 

T x + b, w 

T �w ) . (5) 

f x comes from a Gaussian mixture x ∼ ∑ M 

i =1 p i N (μi , �i ) with M

omponents, then 

 

T x + b ∼
M ∑ 

i =1 

p i N (w 

T μi + b, w 

T �i w ) . (6) 

heorem 1. Given w and b, where w ∈ R 

D and b are parameters of a

euron, and where F(x ) for missing data is completed using Eq. (4) ,

hen 

eLU (F ) w,b = 

M ∑ 

i =1 

p i NR 

(
w 

T μi + b √ 

w 

T �i w 

)
, (7) 

here NR (neuron’s response) = ReLU (N (w, 1)) . 

R (w ) = 

1 √ 

2 π
exp 

(
− w 

2 

2 

+ 

w 

2 

(1 + erf ( 
w √ 

( 2 

)) 
)
, 

where w = 

μ
σ and can be calculated for the each compo- 

ent and each dimension separately, and erf (z) = 

2 
π

∫ z 
0 exp (−a 2 ) da. 

ee [11] for more details. 

. Learning a unified cascade classifier with abstention 

At each stage of the heterogeneous cascade, we have values 

issing at random (MAR). This situation arises, since at various 

tages of the cascade learning, different f eatures are decided to be 

xplored for different observations. So, a classifier gets a data ma- 

rix X = (X obs , X mis ) which contains a lot of missing values in the

eginning of the cascade learning, and starts to be full when all 

eatures are explored. 

.1. Gaussian graphical models 

Classifier. We can build our classifier function F (a t | s t−1 ) based 

n a probabilistic model in the following way: 

 (a t | s t−1 ) = 1 − P (y = a t | x obs ) , 

here x obs is the part of the signal that we observe, y is the pre-

icted label, and F (a t | s t−1 ) represents the probability of misclassi- 

cation. 

It is worth noting, that we have to evaluate probability P (y = 

 t | x obs ) at any step of the cascade, i.e., for signals x obs with dif-

erent number of observed elements. This fact conceals the main 

hallenge of the learning task: our model should be able to pro- 

ide a probability value for any subvector or any subset of fea- 

ures. Our idea is to introduce a Gaussian probabilistic model P (y = 

 t | x ) for fully-observed signal x, and, second, use the tools of the

raphical models theory to derive the expressions for all possible 

 (y = a t | x obs ) . A Gaussian graphical model P (x | y = k, θ ) is fully de-

ned by the parameter θ = (μk , �k ) 
K 
k =1 

, where K is the number of 

lasses and θ is the parameter to be estimated. The challenge is 

o use the probability values as training instances. For the classi- 

er, it can be done via weighted likelihood estimation considered 

n Section 5.4 . 

We can not fit a generative Gaussian classifier using all features 

n advance, since the feature selection in the cascade classifier is 



T. Shpakova and N. Sokolovska Pattern Recognition Letters 147 (2021) 8–15 

Fig. 2. An alternative view of the learning procedure sketched as Algorithm 1 . 
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Algorithm 1 Learning probabilistic personalised cascade with ab- 

stention 

for e = 1 , . . . , E do 

Initialise s 1 
for t = 1 , . . . , T do 

Take an action: a ∗t = arg min 

a t ∈ A 
Q 

π (a t | s t−1 , θ
(e ) ) 

Update and store in memory the historic state: 

s t = (a [ t] , x [ t] ) 

end for 

Update labels for minibatch data (a j , s j , y j ) sampled from 

memory: 

y j = δa j + min 

a ∈ A 
Q 

π (a | s j−1 , θ
(e ) ) 

Sample a minibatch (a j , s j , y j ) { 1 , ... ,J} from memory 

if e is odd then 

Update parameter θ (e ) of the classifier F (θ ) using the 

weighted log-likelihood (eq. 9) 

else 

Update parameter θ (e ) of the rejector R (θ ) using the mini- 

batch data and the gradient descent 

end if 

end for 

o

u

t

w  

r

f

N  

(

6

a

p

a

w

j

t

a

p

t

ost-dependent. However, we can apply a warm start based on 

ome prior knowledge available, as we discussed in Section 4 . 

Rejector Our rejector is a neural network similar to the state- 

f-the-art approaches. One of the reasons why we do not apply a 

aussian model for the rejector, is that it is not obvious how to de- 

ign a rejector via probabilistic graphical models (PGM). Attempt- 

ng to do it, we can try to express R (a t | s t−1 ) through P (x i | x obs )

or each i . A conditional probability P (x i | x obs ) can be re-written

hrough the known values of probabilistic graphical model, how- 

ver, it is impossible to compute the cost-to-go values for the fea- 

ures. So, we apply a neural network – the deep Q-learning to com- 

ute the cost-to-go for all features – with the PGM-based general- 

zed neuron’s response. 

.2. Sharing parameters between classifier and rejector 

The classifier in our architecture are Gaussian graphical models 

ith parameters θ = (μk , �k ) 
K 
k =1 

, one model per class k . The rejec-

or is a neural network with a generalised neuron’s response which 

an be either identical to one proposed by Smieja et al. [11] , or a

emi-supervised neuron’s activation described in Section 4 . In both 

ases, the Gaussian mixtures with parameters θ ′ = (μ′ 
k 
, �′ 

k 
) K 

k =1 
are 

sed in the rejector for the neuron’s activation response. 

In our classifier and our rejector, the input of the models coin- 

ide (it is the observed features of each data point). Therefore, we 

an consider the following model: 

= (μk , �k ) 
K 
k =1 = (μ′ 

k , �
′ 
k ) 

K 
k =1 = θ ′ , (8) 

here the rejector and the classifier share and update the same 

et of parameters. In this way, we accelerate the learning proce- 

ure and profit from the double source of information for the same 

hared parameters θ . Note that the rejector being a neural net- 

ork, has much more parameters than θ ′ , we also estimate ma- 

rices of weights and intercepts for each layer of the deep network 

we use the ReLU and the softmax layers). 

.3. Learning procedure 

The learning procedure we propose is drafted as Algorithm 1 . 

t relies on the deep Q-learning procedure [7] . We perform E

pisodes (one episode considers one randomly sampled observa- 

ion) and T iterations, where each iteration corresponds to a new 

eature acquisition, or to the decision to classify the current obser- 

ation. To update the parameters θ, on each episode e, we sample 

 minibatch of fixed size J, and either perform one step of the gra-

ient descent for the NN-based rejector, or update the parameters 

of the graphical model depending on the current number (odd 

r even) of the episode. The sketch of this iterative process is pre- 

ented on Fig. 2 . 

In the following section, we describe how we update the pa- 

ameters of the model using the weighted log-likelihood. 

.4. Weighted log-likelihood 

The cascade learning procedure drafted in Algorithm 1 has to 

eal with non categorical class values y . It comes from the fact that 

he classifier F , approximated by a neural network or by a proba- 

ilistic model, returns conditional probabilities of a class given an 
11 
bservation. The parameters θk for each class ( θk = [ μk , �k ] ) are 

pdated using P (y = k | x, θk ) , and not hard labels. 

We interpret this probability as a degree of sureness. To explore 

his knowledge, we can use a weighted likelihood approach [22] , 

here the dataset now consists of { x n , v n } , where v n ∈ [0 , 1] rep-

esents the soft label. In this case, the objective has the following 

orm for each θk : 

max 
θk 

N ∑ 

n =1 

v n log P (x n | y = k, θk ) . (9) 

ote that in a hard labels case where v n ∈ { 0 , 1 } , the expression

9) reproduces the standard maximum likelihood objective. 

. Experiments 

In this section, we illustrate the performance of the proposed 

pproach on simulated and real-world benchmark data. We com- 

are our approach — the POMDP framework with the unified prob- 

bilistic classifier that shares its parameters with the rejector —

ith the state-of-the-art approaches of [8,9] ( https://github.com/ 

aromiru/cwcf ), and also several baselines. Our primary motiva- 

ion are small sample size problems where generative learning 

pproaches are more promising compared to discriminative ap- 

roaches. 

Overall, we will present the results for the following competi- 

ive methods: 

1. The state-of-the-art cascade classifier of [8] based on two 

neural networks; 

2. A baseline model where the classifier is a Gaussian graphi- 

cal model and the covariance matrix is diagonal, i.e., we as- 

sume all features are independent; rejector is a neural net- 

work taken from Clertant et al. [8] ; 

3. Another baseline model where the classifier is a Gaussian 

graphical model and the covariance matrix is not diagonal; 

the rejector is neural network taken from Clertant et al. [8] ; 

https://github.com/jaromiru/cwcf
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Fig. 3. Simulated dataset 1. 

Fig. 4. Simulated dataset 2. 

Fig. 5. Heart data, 90% for train. 
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4. The rejector is the neural network with the generalised neu- 

ron activation from Smieja et al. [11] ; classifier is neural net- 

work taken from Clertant et al. [8] ; 

5. Our probabilistic cascade classifier described in Section 5 , 

where the rejector is the neural network with the gener- 

alised neuron activation from Smieja et al. [11] and the clas- 

sifier is a Gaussian graphical model; 

6. Another recently published state-of-the-art method of [9] ; 

similarly to the approach of [8] , it is also based on the deep

Q-learning. 

On the figures below, the tested methods are presented in the 

ame order. 

We introduce the shared cost δ = 1 / (d · D ) for all features simi-

arly to [8] . In the cost expression, D is the number of features in a

ata set, and d is a hyper-parameter that we vary to simulate sce- 

arios with various costs. We considered d in range [1 , 2 , . . . , 9] .

he more expensive a feature is, less accurate result is expected, 

ince smaller costs encourage feature exploration. On all our fig- 

res illustrating performance, on the horizontal axis we show the 

verage number of selected features by the corresponding models, 

nd on the vertical axis we show test accuracy. We also show the 

tandard deviation divided by 10 to facilitate the plots reading. 

All the hyper-parameters were fixed by 10-fold cross valida- 

ions. We used the code of [8] , and we used the same hyper-

arameters as in his implementation. We also performed the grid 

earch among the parameters for the Q-learning and neural net- 

orks: the number of iterations (episodes) from 10 0 0 to 50 0 0 

ith the step 10 0 0, exploration rate decay in range [0.9, 0.995, 

.999], learning rate in range [0.1, 0.01, 0.001, 0.0 0 01]. 

It is an interesting point that curves have different number of 

oints. Similarly to [9] , in the cost-accuracy plane, we use the test 

et to select the most accurate model instances, which form a con- 

ex hull over all tested models. Also, all considered methods per- 

orming feature exploration, stop the feature acquisition earlier or 

ater, and do not continue (on the test set) until no features are 

eft. 

.1. Simulated data 

For the simulated setup, we sampled two different 2- 

imensional binary classification problems. One is a general clas- 

ification problem (we used make_classification function 

f sklearn ), and isotropic Gaussian blobs ( make_blobs func- 

ion) with default parameters. In both scenarios we generate 

ata for a classification problem with two classes. Our motiva- 

ion was to consider a data set, which is not separable if one 

eature (dimension) is selected, but can be easily separated in a 

wo-dimensional space. We also add three extra white noise fea- 

ures to make it challenging for our cascade models to select 

roper features. To be precise, we considered a 5-dimensional data 

et, where 2 features are drawn using the scikit-learn package, 

ake_classification function, and the other 3 features are 

hite noise, and are sampled from the standard Gaussian distribu- 

ion. 

The performance on the simulated data sets – accuracy as a 

unction of the number of selected features – is shown on Figs. 3 

nd 4 . It is easy to see that the proposed POMDP with the gen-

ralised neuron activation (rej:GNR on the figures) and the in- 

roduced probabilistic cascade classifier (classif:indNB+rej:GNR) are 

ighly competitive compared to the state-of-the-art methods. 

.2. Real-world benchmarks 

The benchmark data we considered can be downloaded from 

he UCI Machine Learning Repository. They are binary prediction 

asks: 
12 
• Heart Disease data set contains information about 303 patients 

and 13 features. 
• Mammographic mass data set is dedicated to discrimination of 

benign and malignant mammographic masses. There are 6 at- 

tributes and 961 patients in the original data. We transformed 

the categorical variables into binary via the one-hot-encoding, 

and we obtained a data set with 14 variables. 
• Breast Cancer Wisconsin (Prognostic). The data set contains 30 

variables describing characteristics of the cell nuclei for 569 pa- 

tients. 

Figs. 5–7 illustrate our results on the Heart Disease data set, 

igs. 8–10 – on the Mammography data, and Figs. 11–13 on the 

reast Cancer data set. Figs. 5, 8, 11 represent the scenario where 

e do the 10-fold cross validation, and we use 90% data for train- 

ng and 10% for test. We observe that the state-of-the-art meth- 

ds of [8,9] , as well as our approach where the rejector uses the 

eneralised neuron activation, achieve the state-of-the-art perfor- 

ance. It is interesting that the behavior of the estimators depends 

eavily on the number of observations provided for learning, what 
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Fig. 6. Heart data; 10% for train (semi-supervised scenario). 

Fig. 7. Heart data; 50% for train (semi-supervised scenario). 

Fig. 8. Mammo; 90% for train. 

Fig. 9. Mammo; 10% for train (semi-supervised scenario). 
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Fig. 10. Mammo; 50% for train (semi-supervised scenario). 

Fig. 11. Breast; 90% for train. 

Fig. 12. Breast; 10% for train (semi-supervised scenario). 

Fig. 13. Breast; 50% for train (semi-supervised scenario). 
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s quite easy to explain: the more observations are provided to a 

earning algorithm, the higher the predictive performance. For the 

emi-supervised setting (described in Section 4 ), we initialise the 

aussian parameters using all data, and take less data for training 

we try 10% and 50% of data available). The proposed probabilistic 

cenario achieves quite reasonable results in cases where the num- 

er of observations is not high (50%), and the generalised neuron 

ctivation seems to always achieve the state-of-the-art precision. 

Another important point to mention is that some approaches 

top and predict labels earlier than the others. It is related to the 

ost value, and to the trade-off between the cost and the classifiers 

onfidence. 

Figs. 14–16 show the training time as a function of cost for the 

onsidered benchmarks. It is easy to see that the proposed proba- 

ilistic cascade classifier is the most efficient in terms of learning 

ime. The simple Gaussian model where we consider independent 
13 
eatures, is quite close to it in computational efficiency but note 

hat the performance of it is not optimal. 

We can observe that the proposed methods are comparably ac- 

urate, and sometimes they outperform the state-of-the-art cas- 

ade with abstention [8] . We also observe that our approach 

chieves a very reasonable performance for the data that match 

he Gaussian distribution assumption, and can meet some difficul- 

ies for some real data sets where this assumption does not hold. 

The question of the computational time is one of main moti- 

ations for our method. Our method is computationally efficient, 

ompared to other state-of-the-art methods, including [9] . The re- 

ults ( Figs. 14–16 ) illustrate that our method achieves the best 

earning time compared to all other considered approaches. We 

ould like to precise that the neural network of [8] is rather sim- 

le (2 hidden layers, 6 neurons in each), however, the network of 

9] is more complex (64 neurons in each layer, and 3 hidden lay- 
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Fig. 14. Learning time Heart data set. 

Fig. 15. Learning time Breast data set. 

Fig. 16. Learning time Mammo data set. 

e

p

t

[

d

o

p

m

t

M

d

n

m

i

s

l

P

w

7

c

c

j

t

m

c

t

m

a

m

w

o

m

e

i

m

i

b

a

a

s

c

t

i

a

c

m

n

i

d

p

D

c

i

r

t

A

A

S

f

R

 

 

 

rs), resulting in longer learning time. We test the smallest (sim- 

lest) neural network used by Janisch et al. [9] , and their learning 

ime is still always bigger than for our method. The approach of 

9] implements an early stopping, where an error rate on a vali- 

ation set is used to decide when to stop. This procedure (testing 

n the validation test), takes additional time during the training 

rocedure. 

The method of [9] outperforms all other methods on the Mam- 

ography data set (although it is still longer to train compared 

o other approaches). Our intuition why [9] is so accurate on the 

ammography, is that it relies on quite a big neural network. The 

ata set is also big (compared to other tested benchmarks), and the 

umber of predictive features in the data set is relatively small: the 

ethod stops the feature exploration quite early. This configuration 

s beneficial for their method. 

To run the computations, we used the Google Colab online 

erver which is well-known by practitioners. For each launch it al- 

ocates 13GB RAM and 50 GB of the disk. Our implementation in 

ython, as well as our code for all the experiments reported here 

ill be made publicly available. 

. Conclusion 

Our goal was to develop and test a novel heterogeneous cas- 

ade classifier with a unified classification model. We propose a 

ascade classifier with abstention where the classifier and the re- 

ector communicate and share parameters. 

One of important constraints in real applications is computa- 

ional efficiency what explains our motivation to estimate only one 
14 
odel which applies at any stage and for any observation of the 

ascade classifier. The need for efficiency has also motivated us 

o focus on multivariate Gaussian models where the unobserved, 

issing values and prior knowledge can be treated naturally. 

The proposed method is much faster than the state-of-the- 

rt cascade classifiers. In general, we observed that the proposed 

ethod is always faster, however, it can (potentially) perform 

orse that other state-of-the-art methods in some setups, since 

ur method can be viewed as a simplified version of the NN-based 

ethods. 

Our method is based on the simple (Gaussian) graphical mod- 

ls, using the independence assumption between the features, and 

t learns fast (but more elaborate methods can perform better). The 

ethod of [9] achieves the state-of-the-art performance, however, 

t takes much longer to train, since the method relies on a rather 

ig neural network, and it makes use of the early stopping, testing 

n error rate on a validation set. 

We also considered the case of prior knowledge integration, 

nd we propose an extension that belongs to the family of semi- 

upervised learning approaches. 

Currently we investigate other generative graphical models as 

andidates for cascades with abstention with the goal to extend 

he area of applicability of our method, despite the fact that it can 

ncrease its computational complexity. Another interesting research 

venue is introduction of discriminative graphical models into the 

ascades, however, this is a challenging task, since the problem of 

issing data imputation and the integration over unobserved data 

eed to be solved and, moreover, solved efficiently. Another open 

ssue is the introduction and detailed theoretical analysis of novel 

ata imputation methods. We provide some ideas on it in the ap- 

endix. 
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