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Abstract

Over the last ten years, Oosterhof and Todorov's valence-dominance model has emerged as the most prominent account of how people evaluate faces on social dimensions. In this model, two dimensions (valence and dominance) underpin social judgments of faces. Because this model has primarily been developed and tested in Western regions, it is unclear whether these findings apply to other regions. We addressed this question by replicating Oosterhof and Todorov's methodology across 11 world regions, 41 countries, and 11,570 participants. When we used Oosterhof and Todorov's original analysis strategy, the valence-dominance model generalized across regions. When we used an alternative methodology to allow for correlated dimensions we observed much less generalization. Collectively, these results suggest that, while the valence-dominance model generalizes very well across regions when dimensions are forced to be orthogonal, regional differences are revealed when we use different extraction methods, correlate and rotate the dimension reduction solution.

Introduction

People quickly and involuntarily form impressions of others based on their facial appearance [START_REF] Olivola | Elected in 100 milliseconds: Appearance-based trait inferences and voting[END_REF][START_REF] Ritchie | Forming impressions of facial attractiveness is mandatory[END_REF][START_REF] Willis | First impressions: Making up your mind after 100 ms exposure to a face[END_REF] . These impressions then influence important social outcomes [START_REF] Olivola | Social attributions from faces bias human choices[END_REF][START_REF] Todorov | Social attributions from faces: Determinants, consequences, accuracy, and functional significance[END_REF] . For example, people are more likely to cooperate in socioeconomic interactions with individuals whose faces are evaluated as more trustworthy [START_REF] Van 't Wout | Friend or foe: The effect of implicit trustworthiness judgments in social decision-making[END_REF] , vote for individuals whose faces are evaluated as more competent [START_REF] Todorov | Inferences of competence from faces predict election outcomes[END_REF] , and seek romantic relationships with individuals whose faces are evaluated as more attractive [START_REF] Langlois | Maxims or myths of beauty? A meta-analytic and theoretical review[END_REF] . Facial appearance can even influence life-or-death outcomes. For example, untrustworthy-looking defendants are more likely to receive death sentences [START_REF] Wilson | Facial trustworthiness predicts extreme criminalsentencing outcomes[END_REF] . Given that such evaluations influence profound outcomes, understanding how people evaluate others' faces can provide insight into a potentially important route through which social stereotypes impact behavior [START_REF] Todorov | Understanding evaluation of faces on social dimensions[END_REF][START_REF] Jack | Toward a social psychophysics of face communication[END_REF] .

Over the last decade, Oosterhof and Todorov's valence-dominance model [START_REF] Oosterhof | The functional basis of face evaluation[END_REF] has emerged as the most prominent account of how we evaluate faces on social dimensions [START_REF] Todorov | Social attributions from faces: Determinants, consequences, accuracy, and functional significance[END_REF] . Oosterhof and Todorov identified 13 different traits (aggressiveness, attractiveness, caringness, confidence, dominance, emotional stability, unhappiness, intelligence, meanness, responsibility, sociability, trustworthiness, and weirdness) that perceivers spontaneously use to evaluate faces when forming trait impressions [START_REF] Oosterhof | The functional basis of face evaluation[END_REF] . From these traits, they derived a two-dimensional model of perception: valence and dominance. Valence, best characterized by rated trustworthiness, was defined as the extent to which the target was perceived as having the intention to harm the viewer [START_REF] Oosterhof | The functional basis of face evaluation[END_REF] . Dominance, best characterized by rated dominance, was defined as the extent to which the target was perceived as having the ability to inflict harm on the viewer [START_REF] Oosterhof | The functional basis of face evaluation[END_REF] . Crucially, the model proposes that these two dimensions are sufficient to drive social evaluations of faces. As a consequence, the majority of research on the effects of social evaluations of faces has focused on one or both of these dimensions [START_REF] Olivola | Social attributions from faces bias human choices[END_REF][START_REF] Todorov | Social attributions from faces: Determinants, consequences, accuracy, and functional significance[END_REF] .

Successful replications of the valence-dominance model have only been conducted in Western samples [START_REF] Morrison | Predicting the reward value of faces and bodies from social perception[END_REF][START_REF] Wang | The motivational salience of faces is related to both their valence and dominance[END_REF] . This focus on the West is consistent with research on human behavior more broadly, which typically draws general assumptions from analyses of Western participants' responses [START_REF] Henrich | The weirdest people in the world?[END_REF] . Kline et al. recently termed this problematic practice the "Western centrality assumption" and argued that regional variation, rather than universality, is likely the default for human behavior [START_REF] Kline | Variation is the universal: Making cultural evolution work in developmental psychology[END_REF] .

Consistent with Kline et al.'s notion that human behavior is best characterized by regional variation, two recent studies of social evaluation of faces by Chinese participants indicate different factors underlie their impressions [START_REF] Sutherland | Facial first impressions across culture: Data-driven modeling of Chinese and British perceivers' unconstrained facial impressions[END_REF][START_REF] Wang | A datadriven study of Chinese participants' social judgments of Chinese faces[END_REF] . Both studies reported that Chinese participants' social evaluations of faces were underpinned by a valence dimension similar to that reported by Oosterhof and Todorov for Western participants, but not by a corresponding dominance dimension. Instead, both studies reported a second dimension, referred to as capability, which was best characterized by rated intelligence. Furthermore, the ethnicity of the faces rated only subtly affected perceptions [START_REF] Sutherland | Facial first impressions across culture: Data-driven modeling of Chinese and British perceivers' unconstrained facial impressions[END_REF] . Research into potential cultural differences in the effects of experimentally manipulated facial characteristics on social perceptions has also found little evidence that cultural differences in social perceptions of faces depend on the ethnicity of the faces presented [START_REF] Han | Cultural differences in preferences for facial coloration[END_REF][START_REF] Perrett | Effects of sexual dimorphism on facial attractiveness[END_REF][START_REF] Xie | Perceiver and target characteristics contribute to impression formation differently across race and gender[END_REF] . Collectively, these results suggest that the Western centrality assumption may be an important barrier to understanding how people evaluate faces on social dimensions. Crucially, these studies also suggest that the valence-dominance model is not necessarily a universal account of social evaluations of faces and warrants further investigation in the broadest set of samples possible.

Although the studies described above demonstrate that the valence-dominance model is not perfectly universal, to which specific world regions it does and does not apply are open and important questions. Demonstrating differences between British and Chinese raters is evidence against the universality of the valence-dominance model, but it does not adequately address these questions. Social perception in China may be unique in not fitting the valence-dominance model because of the atypically high general importance placed on status-related traits, such as capability, during social interactions in China [START_REF] Li | Mate preferences in the US and Singapore: A cross-cultural test of the mate preference priority model[END_REF][START_REF] Ting-Toomey | Face and facework: An introduction[END_REF] . Indeed, Tan et al. demonstrated face-processing differences between Chinese participants living in mainland China and Chinese participants living in nearby countries, such as Malaysia [START_REF] Tan | You look familiar: How Malaysian Chinese recognize faces[END_REF] . Insights regarding the unique formation of social perceptions in other cultures and world regions are lacking. Only a large-scale study investigating social perceptions in many different world regions can provide such insights.

To establish the world regions to which the valence-dominance model applies, we replicate Oosterhof and Todorov's methodology [START_REF] Oosterhof | The functional basis of face evaluation[END_REF] in a wide range of world regions (Africa, Asia, Australia and New Zealand, Central America and Mexico, Eastern Europe, the Middle East, the USA and Canada, Scandinavia, South America, the UK, and Western Europe; see Table 1). Our study is the most comprehensive test of social evaluations of faces to date, including more than 11,000 participants. Participating research groups were recruited via the Psychological Science Accelerator project [START_REF] Chartier | The Psychological Science Accelerator[END_REF][START_REF] Chawla | A new 'accelerator' aims to bring big science to psychology[END_REF][START_REF] Moshontz | The Psychological Science Accelerator: Advancing psychology through a distributed collaborative network[END_REF] .

Previous studies compared two cultures to demonstrate regional differences [START_REF] Sutherland | Facial first impressions across culture: Data-driven modeling of Chinese and British perceivers' unconstrained facial impressions[END_REF][START_REF] Wang | A datadriven study of Chinese participants' social judgments of Chinese faces[END_REF] . By contrast, the scale and scope of our study allows us to generate the most comprehensive picture of the world regions to which the valence-dominance model does and does not apply.

We test two specific competing predictions: Prediction 1. The valence-dominance model applies to all world regions. Prediction 2. The valence-dominance model applies in Western-world regions, but not other world regions.

Results

Analyzed data set. Following the planned data exclusions (see supplemental materials for a breakdown of these exclusions, CODE 1.5), the analyzed data set is summarized in Table 2.

Main analysis (principal component analysis, PCA, CODE 2.1). Oosterhof

and Todorov reported the results of a PCA with orthogonal components, no rotation, and retaining components with eigenvalues > 1. We conducted an identical analysis and report (1) the number of components extracted per the registered criteria, (2) if the 1 st and 2 nd components had the same primary pattern as Oosterhof and Todorov, and (3) the similarity of the 1 st and 2 nd factors as quantified with a congruence coefficient.

We extracted the same number of components (2) as Oosterhof and Todorov in two world regions, Africa and South America, and a different number of components (3) in the other world regions (see Figure 1). In the world regions where a third component was extracted, the trait ratings of "unhappy" and "weird' tended to have the highest loadings on that component, but those ratings also crossloaded on the first component.

We hesitate to interpret or describe this component with any authority because it varied across world regions, consisted of crossloaded traits, and explained only a small proportion of additional variance. The primary pattern reported by Oosterhof and Todorov (a first component that strongly correlated with rated trustworthiness, but not with rated dominance, and a second component that strongly correlated with rated dominance, but not with rated trustworthiness) was present in all world regions except Eastern Europe, where dominance was correlated with the first component more strongly than our registered criterion (that dominance would correlate weakly with the first component < .5). Figure 1 shows the full loading matrices for each region and Table 3 shows how these relate to our registered criteria.

We report Tucker's coefficient of congruence, ϕ, which quantifies the loading similarity of Oosterhof and Todorov's reported component to the corresponding component we extracted. However, it is important to interpret ϕ with caution when the number of components differs across the solutions being compared. When comparing loadings across solutions, an assumption is that the configuration of the traits to components is the same (i.e., configural invariance). To the extent that the structure of the loading matrices differs across solutions, the comparability of the loadings is compromised (i.e., loadings estimated from different dimensional spaces are not on the same scale). For world regions that did not have the same configuration of traits to components (different number of components extracted, different primary pattern observed), ϕ is uninterpretable. This is because the differences in configuration across the two solutions are conflated with the loading differences.

Our analyses indicated that the first component was equal to (ϕ > .95) the first component in Oosterhof and Todorov's original study for all world regions. The second component was equal to (ϕ > .95) or fairly similar to (ϕ > .85) the second component reported by Oosterhof and Todorov in all of the world regions except Asia (ϕ = .848). Table 4 summarizes these results.

Together, these results suggest the valence-dominance model generalizes across world regions when using an identical analysis to Oosterhof and Todorov's original study. Thus, the results of our PCA support Prediction 1 (that the valencedominance model will apply to all world regions), but not Prediction 2 (that the valence-dominance model will apply in Western world regions, but not other world regions). However, we note here that in most world regions, we extracted a 3 rd component not extracted in the original study, that Eastern Europe did not demonstrate the same primary pattern, and that ϕ should be interpreted with caution for all world regions except Africa and South America.

Robustness analyses (Exploratory Factor Analysis, CODE 2.2).

Following our analysis plan, we conducted additional robustness analyses that directly addressed criticisms of the type of statistical analyses used by Oosterhof and Todorov (see [START_REF] Widaman | On common factor and principal component representations of data: Implications for theory and for confirmatory replications[END_REF] for a discussion of these criticisms). These robustness analyses employed EFA with an oblimin rotation as the model and used parallel analysis to identify the number of factors to extract. The goal of an EFA with an oblimin rotation is to simplify the loading matrix and yield interpretable factors.

We conducted this analysis on Oosterhof and Todorov's original data and found a similar result to their PCA solution: two factors extracted, with Factor 1 characterized by a high loading for trustworthiness and Factor 2 characterized by a high loading for dominance. However, for all other world regions, we extracted more than two factors using parallel analysis. Full EFA loading matrices for each region and Oosterhof and Todorov's original data are shown in Figure 2. The four-factor solution for the USA and Canada did not converge. We did not register a contingency for nonconvergence, but because parallel analysis can lead to over extraction, we reran the EFA with one less than the number of suggested factors. The model converged when estimating three factors.

In contrast to the PCA, the results of our robustness analyses showed less evidence that the valence-dominance model generalizes across world regions. For example, we extracted a different number of factors than the original solution for all world regions. A summary of the results for our replication criteria is given in Table 5.

Because the number of factors differed from the original solution in all world regions and the loading matrices were differentially rotated from the original solution, it is not valid to compare the differences in the loadings from the original solution to those observed in the world regions reported here, as we had initially planned. Loadings quantify the relationship of traits to a factor. To compare loadings across samples, we must first determine whether we extracted the same factor in each sample (i.e., satisfied the assumption of configural invariance). Our registered analyses included the calculation of Tucker's coefficient of congruence, ϕ, in order to compare the 1 st factor from the original study to the 1 st factor we extracted in a given world region, and to compare the 2 nd factor from the original study to the 2 nd factor extracted in a given world region. However, because we extracted a different number of factors from the original solution in all world regions, it is not valid to compare the loadings across these different factors or quantify their differences using ϕ.

The congruence coefficient is only appropriate to report when we can ensure the factors are comparable across samples. That the number of factors extracted did not replicate the original pattern and that the EFAs were rotated differently across world regions negates the comparability of the loadings. Consistent with our registered analysis code, we reported ϕ for the 1 st factor from Oosterhof and Todorov to the factor with the most explained variance in a world region, and ϕ for the 2 nd factor from Oosterhof and Todorov to the factor with the 2 nd most explained variance in a world region only in the supplemental materials. However, we stress that these coefficients are quantifying loadings that link to different factors from different dimensional spaces and are not necessarily comparable.

In summary, the results of our EFA support neither Prediction 1 (that the valence-dominance model will apply to all world regions) nor Prediction 2 (that the valencedominance model will apply to Western-world regions, but not other world regions).

Discussion

Our primary analyses, PCAs identical to those reported by Oosterhof and Todorov (2008), suggested that the valence-dominance model of social perception of faces generalizes well across world regions. Although most world regions showed a third component not discussed in the original work, this third component is actually similar to the third component in Oosterhof and Todorov's original study. In Oosterhof and Todorov's original study, they did not interpret the third component because its eigenvalue was below 1, whereas in our analyses the eigenvalues of the third components in most of the regions are just above 1. Nonetheless, the third component in each region has a factor congruence between 0.77 and 0.90 with the third component for Oosterhof and Todorov's data. However, we emphasize here that many of these dimensions accounted for a relatively small proportion of the variance explained and, thus, may be of limited theoretical importance.

In contrast to the results of our PCAs, an alternative analysis that addressed common criticisms of the type of analysis Oosterhof and Todorov employed showed much less generalization across world regions. We used modern extraction techniques and EFAs with correlated factor rotations. The correlated rotation methods aim to simplify the loading matrix with the goal of estimating interpretable factors, and in our data, revealed more regional variation. These results suggest that, if the dimensions of face perception are indeed correlated, using analytic techniques that force these dimensions to be uncorrelated may be obscuring important regional differences in the structure of face perceptions.

A necessary next step for moving forward in person-perception research is to address which analysis model (PCA or EFA) best aligns with theory, so that those models and theories can be revised and expanded appropriately in future research.

Crucially, the two models make different assumptions about trait ratings of faces. The PCA model does not assume that a latent factor causes the trait ratings of the faces.

The component captures linear combinations of the original variables, maximized to explain variance. Furthermore, in the original valence-dominance model, those components were assumed to be orthogonal. By contrast, the theory underlying the EFA model is that a latent factor causes the trait ratings, and any unexplained variance in that rating is measurement error. Additionally, our EFA models allowed for the factors to be correlated.

Theory can guide which model we use to analyze person-perception data. A person-perception theory that aligns with a PCA model would state that there are no underlying latent factors that cause a person to rate a face in a particular way. There are, instead, perceptual processes that vary across contexts, those doing the rating, and those being rated, and the differential processes give rise to components that can be used to reduce the data. This theory of person perception would move forward with identifying the shared processes across contexts, raters, and ratees to see if there are predictable patterns in how the data are reduced.

A person-perception theory that aligns with an EFA model makes different assumptions about the processes that give rise to face ratings. This theory would state that latent factors (e.g., valence or dominance) cause the trait ratings and, once we account for the correct latent factors, any variability left in the ratings is measurement error. We suggest that more careful and explicit consideration of how theory connects to these approaches, and of which approach is best-suited to different research questions, will benefit the field.

Our study is one of several recent studies that have begun to utilize different statistical models and explore more dynamic theories of trait ratings [START_REF] Xie | Perceiver and target characteristics contribute to impression formation differently across race and gender[END_REF][START_REF] Hehman | The unique contributions of perceiver and target characteristics in person perception[END_REF][START_REF] Sutherland | Do facial first impressions reflect a shared social reality[END_REF] by exploring how the structure of trait ratings vary systematically. This growing body of work catalogues variations in trait ratings by target demographic [START_REF] Xie | Perceiver and target characteristics contribute to impression formation differently across race and gender[END_REF][START_REF] Hehman | The unique contributions of perceiver and target characteristics in person perception[END_REF][START_REF] Oh | Gender biases in impressions from faces: Empirical studies and computational models[END_REF] , target status [START_REF] Oh | Economic Status Cues from Clothes Affect Perceived Competence from Faces[END_REF] , target age [START_REF] Collova | Testing the functional basis of first impressions: Dimensions for children's faces are not the same as for adults' faces[END_REF] , perceiver knowledge [START_REF] Stolier | The conceptual structure of face impressions[END_REF] , and cultural factors [START_REF] Sutherland | Facial first impressions across culture: Data-driven modeling of Chinese and British perceivers' unconstrained facial impressions[END_REF][START_REF] Wang | A datadriven study of Chinese participants' social judgments of Chinese faces[END_REF] . Further, this growing body of work proposes dynamic theories of person perception and more flexible statistical models for capturing them [START_REF] Xie | Perceiver and target characteristics contribute to impression formation differently across race and gender[END_REF][START_REF] Hehman | The unique contributions of perceiver and target characteristics in person perception[END_REF][START_REF] Sutherland | Do facial first impressions reflect a shared social reality[END_REF][START_REF] Stolier | A dynamic structure of social trait space[END_REF] .

Our results are consistent with this recent work in that they do not provide strong evidence that there are a few generalizable latent factors that cause the trait ratings across world regions. They do, however, suggest a dynamic process of person perception and elucidate the differential patterns of ratings across world regions. We can use these data, representing impressions formed on a global scale, to expand or refine our theories and guide the selection of statistical models to represent those theories. Given the accumulating evidence for variation in trait ratings, it is important that the connection between the statistical models used to represent theories of person perception are explicit and can accommodate the complexities of the impression formation process.

Methods

Ethics

Each research group had approval from their local Ethics Committee or IRB to conduct the study, had explicitly indicated that their institution did not require approval for the researchers to conduct this type of face-rating task, or had explicitly indicated that the current study was covered by a preexisting approval. Although the specifics of the consent procedure differed across research groups, all participants provided informed consent. All data was stored centrally on University of Glasgow servers.

Procedure

Oosterhof and Todorov derived their valence-dominance model from a principal components analysis of ratings (by US raters) of 66 faces for 13 different traits (aggressiveness, attractiveness, caringness, confidence, dominance, emotional stability, intelligence, meanness, responsibility, sociability, trustworthiness, unhappiness, and weirdness) [START_REF] Oosterhof | The functional basis of face evaluation[END_REF] . Using the criteria of the number of components with eigenvalues greater than 1.0, this analysis produced two principal components. The first component explained 63% of the variance in trait ratings, strongly correlated with rated trustworthiness (r = .94), and weakly correlated with rated dominance (r = -.24). The second component explained 18% of the variance in trait ratings, strongly correlated with rated dominance (r = .93), and weakly correlated with rated trustworthiness (r = -.06). We replicated Oosterhof and Todorov's method [START_REF] Oosterhof | The functional basis of face evaluation[END_REF] and primary analysis in each world region we examined.

Stimuli in our study came from an open-access, full-color, face image set [START_REF] Ma | The chicago face database: A free stimulus set of faces and norming data[END_REF] consisting of 60 men and 60 women taken under standardized photographic conditions (M age = 26.4 years, SD = 3.6 years, Range = 18 to 35 years). These 120 images consisted of 30 Black (15 male, 15 female), 30 White (15 male, 15 female), 30 Asian (15 male, 15 female), and 30 Latin faces (15 male, 15 female). As in Oosterhof and Todorov's study [START_REF] Oosterhof | The functional basis of face evaluation[END_REF] , the individuals photographed posed looking directly at the camera with a neutral expression, and the background, lighting, and clothing (here, a grey tshirt) were constant across images.

In our study, adult raters were randomly assigned to rate the 13 adjectives tested by Oosterhof and Todorov using scales ranging from 1 (Not at all) to 9 (Very) for all 120 faces in a fully randomized order at their own pace. Because all researchers collected data through an identical interface (except for differences in instruction language), data collection protocols were highly standardized across labs. Each participant completed the block of 120 face-rating trials twice so that we could report test-retest reliabilities of ratings; ratings from the first and second blocks were averaged for all analyses (see CODE 1.5.5 in the Supplemental Materials).

Raters also completed a short questionnaire requesting demographic information (sex, age, ethnicity). These variables were not considered in Oosterhof and Todorov's analyses but were collected in our study so that other researchers could use them in Raters completed the task in a language appropriate for their country (see below). To mitigate potential problems with translating single-word labels, dictionary definitions for each of the 13 traits were provided. Twelve of these dictionary definitions had previously been used to test for effects of social impressions on the memorability of face photographs [START_REF] Han | Cultural differences in preferences for facial coloration[END_REF] . Dominance (not included in that study) was defined as "strong, important."

Participants

Simulations determined that we should obtain at least 25 different raters for each of the 13 traits in every region (see https://osf.io/x7fus/ for code and data). We focused on ratings of attractiveness and intelligence for the simulations because they showed the highest and lowest agreement among the traits analyzed by Oosterhof and Todorov, respectively. First, we sampled from a population of 2,513 raters, each of whom had rated the attractiveness of 102 faces; these simulations showed that more than 99% of 1,000 random samples of 25 raters produced good or excellent interrater reliability coefficients (Cronbach's αs >.80). We then repeated these simulations sampling from a population of 37 raters, each of whom rated the intelligence of 100 faces, showing that 93% of 1,000 random samples of 25 raters produced good or excellent interrater reliability coefficients (Cronbach's αs >.80). Thus, averages of ratings from 25 or more raters will produce reliable dependent variables in our analyses; we planned to test at least 9,000 raters in total.

In addition to rating the faces for the 13 traits examined by Oosterhof and Todorov, 25 participants in each region were randomly assigned to rate the targets' age in light of Sutherland et al.'s results showing that a youth/attractiveness dimension emerged from analyses of a sample of faces with a very diverse age range [START_REF] Sutherland | Social inferences from faces: Ambient images generate a threedimensional model[END_REF] . Age ratings were not included in analyses relating to replications of Oosterhof and Todorov's valence-dominance model. These age-ratings were collected to allow for planned exploratory analyses including rated age, but we did not perform these analyses.

Analysis Plan

The code used for our analyses is included in the Supplemental Materials and publicly available from the Open Science Framework (https://osf.io/87rbg/). The specific sections of code are cited below as (CODE x.x.x).

Ratings from each world region were analyzed separately and anonymous raw data is published on the Open Science Framework. Our main analyses directly replicated the principal component analysis reported by Oosterhof and Todorov to test their theoretical model in each region sampled (CODE 2.1). First, we calculated the vector of loadings from the first component estimated from each world region. We repeated this analysis for the second component. This produced a standardized measure of component similarity for each component in each world region that was not sensitive to the mean size of the loadings [START_REF] Lorenzo-Seva | Tucker's congruence coefficient as a meaningful index of factor similarity[END_REF] . Further, this coefficient was fitting for the current study because it does not require an a priori specification of a factor structure for each group, as would be needed if we were to compare the factor structures in a multiple-group confirmatory factor analysis. Following previous guidelines [START_REF] Lorenzo-Seva | Tucker's congruence coefficient as a meaningful index of factor similarity[END_REF] , we concluded that the components in Oosterhof and Todorov were not similar to those estimated in a given world region if the coefficient was less than .85, were fairly similar if it was between .85 -.94, and were equal if it was greater than .95. (CODE 2.1.4). Thus, we reported whether the solution had the same primary pattern that Oosterhof and Todorov found and quantified the degree of similarity between each component and the corresponding component from Oosterhof and Todorov's work. This connects to our competing predictions: Prediction 1 (the valence-dominance model applies to all world regions) was supported if the solution from the principal components analysis conducted in each region satisfied all of the criteria described above. Specifically, the primary pattern was replicated and the components had at least a fair degree of similarity as quantified by a ϕ of .85 or greater.

Prediction 2 (the valence-dominance model applies in Western-world regions, but not other world regions) was supported if the solutions from the principal components analysis conducted in Australia and New Zealand, The USA and Canada, Scandinavia, The UK, and Western Europe, but not Africa, Asia, Central America and Mexico, Eastern Europe, The Middle East, or South America, satisfied the criteria described above.

First, it has been argued that exploratory factor analysis with rotation, rather than an unrotated principal components analysis, is more appropriate when one intends to measure correlated latent factors, as was the case in the current study [START_REF] Fabrigar | Evaluating the use of exploratory factor analysis in psychological research[END_REF][START_REF] Park | The use of exploratory factor analysis and principal components analysis in communication research[END_REF] . Second, the extraction rule of eigenvalues greater than 1.0 has been criticized for not indicating the optimal number of components, as well as for producing unreliable components [START_REF] Cliff | The Eigenvalues-greater-than-one rule and the reliability of components[END_REF][START_REF] Zwick | Comparison of five rules for determining the number of components to retain[END_REF] .

To address these limitations, we repeated our main analyses using exploratory factor analysis with an oblimin rotation as the model and a parallel analysis to determine the number of factors to extract. We also recalculated the congruence coefficient described above for these exploratory factor analysis results (CODE 2.2.2).

We used parallel analysis to determine the number of factors to extract because it has been described as yielding the optimal number of components (or factors) across the largest array of scenarios [START_REF] Fabrigar | Evaluating the use of exploratory factor analysis in psychological research[END_REF][START_REF] O'connor | SPSS and SAS programs for determining the number of components using parallel analysis and velicer's MAP test[END_REF][START_REF] Schmitt | Current methodological considerations in exploratory and confirmatory factor analysis[END_REF] (CODE 2.2.1). In a parallel analysis, random data matrices are generated such that they have the same number of cases and variables as the real data. The mean eigenvalue from the components of the random data is compared to the eigenvalue for each component from the real data. Components are then retained if their eigenvalues exceed those from the randomly generated data [START_REF] Courtney | Determining the number of factors to retain in EFA: Using the SPSS R-Menu v2.0 to make more judicious estimations[END_REF] .

The purpose of these additional analyses was twofold. First, to address potential methodological limitations in the original study and, second, to ensure that the results of our replication of Oosterhof and Todorov's study are robust to the implementation of those more rigorous analytic techniques. The same criteria for replicating Oosterhof and Todorov's model described above were to be applied to this analysis (CODE 2.2.1.3).

Protocol registration

The Stage 1 protocol for this Registered Report was accepted in principle on 05 November 2018. The protocol, as accepted by the journal, can be found at https://dx.doi.org/10.6084/m9.figshare.7611443.v1. 
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  secondary analyses of the published data. The data from this study are the largest and most comprehensive open access set of face ratings from around the world with open stimuli by far, providing an invaluable resource for further research addressing the Western centrality assumption in person perception research.

Figure 1 .

 1 Figure 1. Principal component analysis (PCA) loading matrices for each region. Positive loadings are shaded red and negative loadings shaded blue; darker colors correspond to stronger loadings. The proportion of variance explained by each component is included at the top of each table.

Figure 2 .

 2 Figure 2. Exploratory factor analysis (EFA) loading matrices for each region. Positive
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average rating for each face separately for each of the 13 traits (CODE 2.1.2). We then subjected these mean ratings to principal component analysis with orthogonal components and no rotation, as Oosterhof and Todorov did (CODE 2.1.3). Using the criteria they reported, we retained and interpreted components with eigenvalues greater than 1.0 (CODE 2. 1.3.1).

Criteria for replicating Oosterhof and Todorov's valence-dominance model.

We used multiple sources of evidence to judge whether Oosterhof and Todorov's valence-dominance model replicated in a given world region. First, we examined the solution from the principal components analysis conducted in each region and determined if Oosterhof and Todorov's primary pattern replicated according to three criteria: (i) the first two components had eigenvalues greater than 1.0, (ii) the first component (i.e., the one explaining more of the variance in ratings) correlated strongly with trustworthiness ( > .7) and weakly with dominance ( < .5), and (iii) the second component (i.e., the one explaining less of the variance in ratings) correlated strongly with dominance ( > .7) and weakly with trustworthiness ( < .5). If the solution in a world region met all three of these criteria, we concluded that the primary pattern of the model replicated in that region (CODE 2.1.3.3).

In addition to reporting whether the primary pattern was replicated in each region, we also reported Tucker's coefficient of congruence [START_REF] Burt | The factorial study of temperament traits[END_REF][START_REF] Tucker | A method for synthesis of factor analysis studies[END_REF] . The congruence coefficient, ϕ, ranges from -1 to 1 and quantifies the similarity between two vectors of loadings [START_REF] Davenport | Significance testing of congruence coefficients: A good idea?[END_REF] . It is: where x i and y i are the loadings of variable i (i = 1, …, n number of indicators in the analysis) onto factors x and y. For the purposes of the current research, we compared the vector of loadings from the first component from Oosterhof and Todorov to the Exclusions. Data from raters who failed to complete all 120 ratings in the first block of trials or who provided the same rating for 75% or more of the faces were excluded from analyses (CODES 1.5.1,1.5.3, and 1.5.5).

Data-quality checks. Following previous research testing the valencedominance model [START_REF] Oosterhof | The functional basis of face evaluation[END_REF][START_REF] Morrison | Predicting the reward value of faces and bodies from social perception[END_REF][START_REF] Wang | The motivational salience of faces is related to both their valence and dominance[END_REF] , data quality was checked by separately calculating the interrater agreement (indicated by Cronbach's α and test-retest reliability) for each trait in every world region (CODE 2.1.1). A trait was only included in the analysis for that region if the coefficient exceeded .70. Cases in which the coefficient does not exceed .70 will be reported and discussed. There were no cases in which the coefficient did not exceed .70. Test-retest reliability of traits was not used to exclude traits from analysis.

Power analysis. Simulations showed we had more than 95% power to detect the key effect of interest (i.e., two components meeting the criteria for replicating Oosterhof and Todorov's work, as described above). We used the open data from Morrison et al.'s replication [START_REF] Morrison | Predicting the reward value of faces and bodies from social perception[END_REF] of Oosterhof and Todorov's research to generate a variance-covariance matrix representative of typical interrelationships among the 13 traits tested in our study. We then generated 1,000 samples of 120 faces from these distributions and ran our planned principal components analysis (which is identical to that reported by Oosterhof & Todorov) on each sample (see https://osf.io/87rbg/ for code and data). Results of >99% of these analyses matched our criteria for replicating Oosterhof and Todorov's findings. Thus, 120 faces gave us more than 95% power to replicate Oosterhof and Todorov's results.

Robustness analyses. Oosterhof and Todorov extracted and interpreted

components with an eigenvalue greater than 1.0 using an unrotated principal components analysis. As described above, we directly replicated their method in our main analyses but acknowledge that this type of analysis has been criticized.
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