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A Journey into the Multifaceted Universe of Coordinates Change, Basis Transformation, Dual Spaces, and Invariance

The present work aims as developing, in a progressive manner, several concepts from linear and multilinear algebra that are progressively integrated from basic operations up to rudiments of tensors. The covered subjects include brief historical remarks, the key concept of linearity, unit conversion, change of variables and coordinates, inner product, bases and their transformation, dual spaces and co-vectors, Einstein notation, invariance, and some rudiments of tensors. Several graphic illustrations and diagrams of the covered concepts and methods, as well as numeric case-examples have been included in order to contribute to consolidate the presented material.

Introduction

One of the keys for human development and intelligence stems from our intrinsic adaptability, combined with abilities for developing and using models (e.g. [START_REF] Da | Modeling: The human approach to science[END_REF]) of the realworld. One related aspect of particular interest concerns appreciating a given problem from diverse complementary points of view and perspectives. The adoption of these multiple-perspective approaches inherently implies identifying how structures and measurements change when seen from diverse frames, as well integrating the information obtained from each considered point of view into respective models.

A similar approach applies in science and technology. Actually, the increasing focus on complex systems research has motivated its more systematic application. For instance, it is not so often realized that well-succeeded areas as network science are intrinsically related to the need to modularize and organize data and information. Each of these modules, typically represented as a node, can then be more direct and effectively model specific portions of a complex system and/or dynamics. At the same time, the integration between the information obtained about these several constituent parts is effectively implemented by the interconnections between the nodes.

In mathematics, too, it is often necessary to approach a given structure or problem from multiple perspectives. One prototypical example of this activity is provided by the often required and implemented operations of coordinate change and basis transformation. In addition, these Figure 1: A frequent and important problem in vector spaces regards how structures and operations between vectors -including inner products, magnitudes, distances, etc. -of a space change (or remain invariant) when translated between different frames, here indicated by the linear transformation matrix A and its inverse A -1 . For instance, it would be expected that the work performed by a gradient force field along a particle motion woiuld not depend of coordinate and linear transformation choices. Actually, the inner product between the gradient vector and the particle velocity at each time instant is also unaffected.

two operations are so related to the idea of identifying and integrating multiple aspects of a problem that they could almost be taken as respective modeling paradigms. The first important point regarding these two operations is that they are closely interrelated in the sense that coordinates are intrinsically underlain by respective bases.

Actually, each coordinate indicates how much each ba-sis contributes to building up each of the vectors of the respective space (linear combination). Oftentimes, coordinate changes involve basis transformations. In this work, we shall also use the term frame while referring to coordinate systems as well as the associated bases. These concepts and operations are mostly covered in the important area of linear algebra (e.g. [START_REF] Hoffman | Linear Algebra[END_REF][START_REF] Wills | Vector Analysis with An Introduction to Tensor Analysis[END_REF][START_REF] Bowen | Introduction to vectors and tensors[END_REF][START_REF] Kreyszig | Advanced Engineering Mathematics[END_REF]).

There are two main reasons motivating, in general, the use of coordinate changes and basis transformations. First, we have that these two operations are frequently applied as a means to better adapt to specificities of the structure or system being analyzed and modeled. For instance, rotations are frequently approached more effectively by using polar coordinates. At the same time, specific types of crystals can be more directly represented and understood by using spatially sheared/skewed coordinate systems adhering to their intrinsic geometry.

Another reason for employing coordinate changes and basis transformations that is even more closely related to the above discussed multiple-perspectives approach, is as a means of focusing, in the sense of localizing our attention, on some portion of the structure or system that are particularly important or intricate. For instance, distinct frames can be placed at different points of a river while studying its flown, or along the wing or an airplane or the hull of a ship so as to more effectively understand flow and turbulence, as well as the mechanical stresses, at those points. Similarly, coordinate systems can de assigned to several parts of a mechanical system, such as pivots or interconnections between their parts.

Another example can be found in computer graphics and image analysis, where coordinate systems can be assigned respectively to objects of particular geometrical interest. A related, but more abstract, and therefore generic, example consists of placing frames along several positions of a scalar or vector field, e.g. near the respective singularities, including extrema and inflection points. Importantly, it should be observed that the careful assignment of frames in a problem can substantially facilitate its mathematical handling.

All the above presented examples can be observed to share one important feature, namely that several frames are typically involved. Moreover, in order to account for increased flexibility, the position and types of frames may vary along time and space in a same modeling approach. In some situations, it even becomes necessary to assign a frame to each of the points along a scalar or vector field, giving rise to "coordinate fields", as prototypically illustrated by the principle of modeling gravitational fields in terms of point-wise specific coordinate systems that directly adapt to the respectively implied local geometry.

Local coordinate systems are also characteristically studied in differential geometry (e.g. [START_REF] Carmo | Differential geometry of curves and surfaces[END_REF][START_REF] Burke | Applied differential geometry[END_REF][START_REF] Kreyszig | Differential geometry[END_REF]) and Rie-mannian geometry (e.g. [START_REF] Petersen | Riemannian geometry[END_REF][START_REF] Eisenhart | Riemannian geometry[END_REF]), related to the concept of manifolds which, informally, are structures that are locally similar to the Euclidean space. The consideration of these fields paves the way also to integrating quantities along different frames (e.g. line and surface integrals). These possibilities already hint of a close relationship between tensors and topology (e.g. [START_REF] Munkres | Elements of Algebraic Topology[END_REF][START_REF] Da | Continuity and connectedness: A first step[END_REF][START_REF] Basener | Topology and its Applications[END_REF]), implied by the need to concatenate in a continuous manner the several involved frames typically required for representing more elaborated structures.

Once several coordinate systems have been assigned to the system being studied, several measurements and models can be respectively developed at a more local level. It often becomes necessary to integrate these specific models into a greater whole corresponding to larger portions of the system. The progressive integration of these modules therefore can eventually lead to a respective hierarchy of modules. These interesting possibilities can only be developed provided we have means for interrelating the involved frames, which corresponds to one of the central points in coordinates change and basis transformations. In particular, it is important to ensure that these transformations are bijective (one-to-one), so that the respective inverse transformations can always be obtained. Hence, special attention needs to be given to transformations and their respective inverses.

Another important aspect related to the use of several coordinate systems concerns how specific measurements, in particular the magnitude and distance between vectors, change respectively. It then becomes especially interesting to identify possible measurements and operations that are invariant, and therefore conserved, by the adopted coordinate changes and basis transformations. In this particular, the bilinear operation known as inner product plays a central role. Basically, this operation takes two vectors from a space and yields a respective scalar value, therefore corresponding mathematically to a functional. As we shall see, the magnitude and distance between vectors can be obtained directly from the inner product.

It follows from the above considerations that the effective use of coordinate changes and basis transformations is especially concerned about mappings (as well as their inverse counterparts) between the involved frames, as well as how structures and operations are modified as a consequence. Many of these objectives are characteristic to the area of tensors (e.g. [START_REF] Block | Introduction to Tensor Analysis[END_REF][START_REF] Kolecki | An introduction to tensors for students of physics and engineering[END_REF][START_REF] Munkres | Analysis on manifolds[END_REF][START_REF] Bowen | Introduction to vectors and tensors[END_REF][START_REF] Wills | Vector Analysis with An Introduction to Tensor Analysis[END_REF][START_REF] Guo | What are tensors exactly? World Scientific[END_REF]). In fact, several of the mathematical structures -such as scalars, vectors, matrices, and transformations -can all be understood as relating, or being tensors.

There are many motivations for one becoming more closely acquainted with the areas of coordinates change, basis transformations, and tensors. In addition to their intrinsic mathematical appeal, they have been effectively applied in a wide range of areas, ranging from complete abstraction to technology. Indeed, related concepts are nowadays systematically applied, among other fields, in mathematics (e.g. multilinear algebra, abstract algebra, manifolds, differential geometry), physics (e.g. relativity, electromagnetism, classical mechanics, quantum mechanics), engineering (e.g. civil and mechanical, acoustics, fluid mechanics), as well as computer sciences (e.g. computer graphics and visualization, image analysis, pattern recognition, robotics, and deep learning).

It may not come as a surprise to observe that some of the involved concepts and methods, and in particular tensors, are in general not so easily accessible as other related concepts as vectors, matrices, and transformations. There are three main reasons for tensor studies not being particularly straightforward: (i) they depend on several preliminary concepts, some of which are relatively advanced; (ii) their generality and interesting properties mostly stem from their ability to represent high dimensional spaces, including multidimensional arrays; and (iii) tensors are often approached from distinct perspectives -including geometry, algebra, and topology -which, though interrelated, involve largely require familiarization with mostly distinct concepts and methods. In addition to that, tensors have been approached in many distinct, but related, manners along time, and by distinct areas (e.g. [START_REF] Guo | What are tensors exactly? World Scientific[END_REF]), varying from relatively high levels of abstraction to more practical applications.

From the physics and engineering perspectives, it is particularly important to identify operations between vectors that are independent (invariant) from the choice of coordinates and bases, therefore reflecting that fact that physical phenomena are completely independent of the choice of coordinates and bases that can be used for respective analysis and modeling (e.g. [START_REF] Kolecki | An introduction to tensors for students of physics and engineering[END_REF]). That is the perspective pragmatically adopted in the present work. In addition, we shall present, illustrate and discuss several related concepts and methods that, in addition to being interesting and useful on themselves, may also provide an entry point to further, more advanced studies in areas including Riemannian geometry, advanced differential geometry, as well as in tensor algebra and calculus.

Indeed, there is one particular aspect that deserve special attention, and this concerns the emphasis on the effect of multilinear transformations on operations between vectors (tensors) that are specific neither to the adopted databases nor the particular imposed transformations, being therefore invariant to those aspects. In other words, these are aspects that, while being irrespective to the coordinate system and imposed transformations, stem from properties of the considered operation that are observed intrinsically in any basis and under any multilinear transformation. A prototypical example of this perspective is provided by the concept of work in physics, which should not depend on the adopted framework.

A more concrete example, to be further explained as we proceed, consists of inner product between co-vectors (row vectors, covariant) and the more traditional "direct" vectors (column vectors, contravariant) of a given vector space. First, we have that these two types of structures can be described in terms of the respective bases, which are necessarily bi-orthogonal (in this case, the original space and its associated dual space). Then, we have that these two types of vectors (actually a co-vector and a vector) are inversely affected by any linear transformation. More specifically, we have that covariant-contravariant inner products are conserved while of multilinear transformations irrespectively of the adopted bases and transformations. However, even in the cases of non-invariant measurements between two vectors, such as those related to the inner product, it is still interesting to have indications of how these measurements change.

The main objective of the present work, in addition to presenting a revision of linear algebra concepts, consists in trying to provide some background that can pave the way, or at least assist, to more advanced studies. Special attention and efforts have been respectively invested. First, we tried to develop a progressive presentation, starting from linearity, unit conversion, and changes of variable, all of which providing some practical context for the subsequently addressed topics. In addition, we also frequently resourcee to graphic visualizations, as well as numeric examples, as means to illustrating and helping to consolidate the several presented concepts.

Given that It is almost possible to develop the covered concepts in a completely linear manner, sometimes a concept is mentioned before being more systematically treated in a following section. Therefore, the integration of the presented concepts will benefit from reading this work more than once.

Another observation regards the convention adopted for graphically expressing vectors. Generally, we use the bold face convention, where a vector is represented as v. However, the alternative approach of using arrows, i.e. v, is also employed in cases in which it can contribute to better visualization, as is often the case of representing vectors in figures. The arrowed notation also seems more adequate for handwriting, as it is often difficult to handwrite bold characters.

We shall start by presenting some historic remarks, followed by some introductory concepts aimed at providing some context to the subsequently addressed topics, which include coordinates change, linear transformations, polyadics, inner product, basis transformations, dual spaces, dual basis, co-vectors, the gradient and its covariance, the Jacobian and rudiments of metric tensors, a familiarization with Einstein notation for summation (which is often adopted in areas related to the topics covered in the present work), as well as a very brief introduction to the formal concept of tensors. The presentation is complemented by two appendices including some properties of matrices and summation, and a brief review of the concept of vector spaces.

Some Brief Historic Remarks

This section provides some brief historical context to the concepts and methods addressed in the present work. This review is necessarily incomplete, being limited to just a few of the main contributions. Additional information about the historic context of the covered concepts can be found, for instance, in [START_REF] Cajori | A history of mathematics[END_REF][START_REF] Boyer | A history of mathematics[END_REF][START_REF] Wills | Vector Analysis with An Introduction to Tensor Analysis[END_REF][START_REF] Goodstein | Einstein's Italian Mathematicians: Ricci, Levi-Civita, and the Birth of General Relativity[END_REF][START_REF] Buchanan | A helping hand[END_REF][START_REF] Guo | What are tensors exactly? World Scientific[END_REF].

The concept of coordinate systems was largely developed, alongside analytic geometry, by René Descartes (1596-1650), who developed the concept of coordinates alongside the orthonormal systems that are now called Cartesian. Important related contributions were also provided by Pierre de Fermat (1607-1665), while a more systematic application of coordinate systems initiated with Leonhard Euler (1707-1783) in the context of curvilinear coordinates. The key concept of matrix inverse was later developed by Arthur Cayley (1821-1895).

The use of tensors in applied sciences and technology can be traced back mainly to the first developments in mechanics, in the sense that a force applied to a solid non-infinitesimal object is not only transferred along its line of action, but also implies other effects including shear and torque. As such, these effects along the solid body cannot be effectively modeled by a single force vector, requiring the use of multidimensional arrays with additional components aimed at representing those effects. From the more abstract mathematical perspective, principles of tensors were developed by Carl F. Gauss (1777-1855), William R. Hamilton (1805-1865), Elwin B. Christoffel (1829-1900), and Josiah W. Gibbs (1839Gibbs ( -1903)).

The consideration of coordinate-free properties of vector spaces respectively to the formulation and solution of partial differential equations was greatly developed by Élie Cartan . The possibility to perform integro-differential calculus with tensors, which is now called tensor calculus, was to a good extent developed by Gregorio Ricci Curbastro (1853-1925) and Tulio Levi-Civita (1873-1941). These approaches would prove to be essential for formalizing the development of general relativity by Albert Einstein (1879-1955).

Linearity

Linearity is one of the most important properties expected from analyzed systems and models. Though very few situations in the real world are indeed perfectly linear, they can still often be effectively approached in terms of linear approximations. At the same time, many of the mathematical concepts including vector spaces and differentials are based on linear properties. Perhaps the most important linear space in the real-world is the 3-D space in which we live, though the linearity of this space is influenced by gravitation.

Linearity is important, and expected, mainly because it makes the analysis and modeling of the real-world much simpler. Even though several real-world phenomena are ultimately non-linear, linear approximations have been proven to be particularly effective, contributing importantly to a large range of scientific and technological advancements.

While the precise definition of linearity depends on the type of system under analysis, all linear situations share the aspect of satisfying the principle of linear superimposition, which states that, if two entities X and Y are valid, so is any of their linear combinations or, more specifically:

X, Y are valid ⇐⇒ Z = a X + b Y is valid. (1) 
with a, b ∈ R. Moreover, we also have that:

a X + a Y = a (X + Y ) (2) 
As illustrated in the following, the meaning of the term "entity' depends on the type of problem being considered. More specifically, with a, b ∈ R, examples of linearity include, but are not limited to:

• Linear Vector Spaces (see Appendix B): X, Y are vectors ⇐⇒ Z = a X + a Y = a (X + Y ) is a vector (obs.: every vector space is a linear space);

• Linear Differential Equations: X, Y are valid solutions ⇐⇒ Z = a X + b Y is a valid solution.

• Linear Functions: Given two functions f (w) and g(w) =⇒ f (a w + b q) = a f (w) + b f (q) is a valid function.

• Linear Transformations: Given two transformations T x (w) and T y (w) =⇒ T (a w + b q) = a T (w) + b T (q) is a valid transformation.

Figure 2 illustrates the linear nature of geometrical 2D vector spaces (e.g. R 2 ), which is underlain by combination scalar multiplication(a) and the parallelogram rule for adding vectors (a). Any two vectors combined in these ), as perceived in geometrical terms, involves the operations of scalar multiplication (a) and sum of vectors by the parallelogram rule (b), as well as the combination of these two rules. In other words, any linear combination of vectors in R 2 is a vector in R 2 . Interestingly, these two operations are valid even if the base of the space is sheared. manners remains a valid vector in the same space. Interestingly, the two operations illustrated in Figure 2 are valid not only when the axes are orthogonal, but also for more generic bases of linear vector spaces.

It is important to take into account that the term linear is sometimes understood in a different manner, more specifically as indicating that the shape of an entity corresponds to a straight line or straight line segment. That is the case, for instance, of the linear function, which has a straight line as a graph. These functions have the general form:

y(x) = a x + b (3) 
However, in case b = 0, this type of straight function is not linear in the more specific sense.

Typically, the intended meaning of the term linear can be inferred from the context in which it appears. In the present work, we shall understand as corresponding to the linear superimposition principle.

Unit Conversion

One of the most basic daily situations related to the present work concerns changing units, we one does respectively to currencies (e.g. dollar to pound), temperature (e.g. Fahrenheit to Celsius), distance (e.g. inches to centimeters), weight (e.g. kilogram to ounces), etc. These changes can either be motivated by translating values among different countries, or times, as well as for achieving more commensurate measurements (e.g. it is more reasonable to measure the size of ants in millimeters rather than in meters). The latter type of conversion usually takes place within a same system of measurements, while the former operates across these systems. Almost invariably, these changes involve a transformation of the type:

y(x) = a x + b (4) 
which is an example of the type of transformation more formally called affine. In case b = 0, it becomes a linear transformation. Figure 3 illustrates the affine and a linear versions of Equation 4.

For instance, converting inches (x) to centimeters (y) can be obtained by applying:

y(x) = 2.54 x (5) 
which corresponds to Equation 4 with a = 2.54 and b = 0.

Thus, x = 10 in will correspond to y = 25.4 cm.

As another example, converting temperatures from Celsius (x) into Fahrenheit (y) can be achieved by: y(x) = 9 5

x + 32 [START_REF] Carmo | Differential geometry of curves and surfaces[END_REF] which corresponds to Equation 4 with a = 9/5 and b = 32. So, we have that x = 20 • C is equivalent to y = 68 • F .

The procedure of transforming measurements from inches to centimeters (and vice-versa) constitutes a linear operation, because, given any two measurements x 1 and x 2 , possibly scaled by respective factors a 1 , a 2 ∈ R, we necessarily have that:

y(a 1 x 1 + a 2 x 2 ) = 2.54 (a 1 x 1 + a 2 x 2 ) = = 2.54 a 1 x 1 + 2.54 a 2 x 2 = a 1 y(x 1 ) + a 2 y(x 2 )
However, this is not the case with the above considered conversion between temperatures in Fahrenheit to Celsius (and vice-versa), because, in general a 1 y 1 + a 2 y 2 = y(a 1 x 1 + a 2 x 2 ), i.e.: 

y(a 1 x 1 + a 2 x 2 ) = 9 5 (a 1 x 1 + a 2 x 2 ) + 32 = = 9 5 a 1 x 1 + 32 + 9 5 a 2 x 2 + 32 = a 1 y(x 1 ) + a 2 y(x 2 )

Changes of Variables

As with unit conversions, it is often the case in the physical sciences that a given variable x (or a set of variables) is replaced by another variable x to which it is bijectively (one-to-one) related, i.e.:

x = f (x) ⇐⇒ x = f -1 (x), ∀x (7) 
so that the original variable x can be eventually retrieved from its respectively derived version x.

Examples of variable changes include but are not limited to:

x = x + 2 ⇐⇒ x = x -2 (8) x = 3 x ⇐⇒ x = x 3 (9) x = x 2 , x ≥ 0 ⇐⇒ x = √ x (10) 
x = e x , x > 0 ⇐⇒ x = ln x (11)

x = ln x , x > 0 ⇐⇒ x = e x (12) 
Thus, variable changes can be understood as being related to a transformation of the original space in which the original variable x "lived".

As an illustration of the concept of variable change, let us consider the function defined as follows:

g(x) = x sin √ 10000 x (13) 
Figure 4(a) illustrates this function, from which it can be perceived that it becomes difficult to be discerned near the origin of the coordinate system. The shape of the function near this point could be better appreciated if we were only able perform a change of variable so as to "zoom" into the region of the x-axis around (0, 0). This can be done, for instance, by making the following variable substitution:

x = α x (14) 
where α > 1. Thus, the new variable x will increase faster than the original variable x by a factor of α > 1.

However, given that the original function in Equation 13 is expressed respectively to the original variable x, instead of the new variable x, we have to resource to the following relationship immediately implied by Equation 14:

x = x α (15) 
Now, by plugging x = x α only into the right-hand side of Equation 13, we obtain:

x α sin 10000 x α ( 16 
)
Since this is now a function of x, rather than x, we can write:

g(x) = x α sin 10000 x α (17) 
It should be noticed that the variable change needs to be done only at the right-hand side of the equation because, in case it were performed also at the left-hand side, the change would have no effect, i.e.:

g x α = x α sin 10000 x α (18) 
is precisely the same as Equation 13! The desired zooming effect of this transformation is shown in Figure 4(b), for α = 10, where the range of the x-values has been clipped for enhanced visualization (the range would otherwise be [0, 100]). Now, the above type of change of variables can sometimes lead to a misunderstanding in the sense that the value x α replacing the old variable x in the equation seems to suggest that the function is "seeing" a compressed, rather than a dilated (magnified) version of the original variable x. The key to minimize the chances of this type of confusion is to keep in mind the original variable transformation x = α x, which actually expresses the effect of the implemented variable change.

Coordinates Change: A First Look

The action of changing variables, as discussed in the previous section, can be understood as an instance of another important operation in the physical sciences, namely change of coordinates, the main difference being that the latter typically involves changing two or more coordinates.

For instance, let points in a 2D space be described in terms of a respective Cartesian (orthogonal) system of coordinates (related to Euclidean spaces), involving an axis x (abscissae) and an axis y (ordinates). Any point of this space can be represented by the respective tuple (x, y). Oftentimes, it becomes necessary to translate these coordinates into those related to another coordinate system, which can be Cartesian or not.

However, before proceeding further into the operation of coordinates change, it is interesting to define more specifically what a coordinate system means: ' Given a space of dimension D, such as R 2 (D = 2) or R 3 (D = 3), a system of coordinates consists in a way to associate bijectively each possible point in this space to a D-tuple (x 1 , x 2 , . . . , x D ) of real values, each of which is said to be one of the point coordinates.

For simplicity's sake, we will mostly use (x, y) and (x, y, z) for 2D and 3D spaces, reserving the alternative indexed notation (x 1 , x 2 , . . . , x D ) for higher dimensional spaces.

There is a virtually infinite number of possible coordinate systems, a few of which are illustrated in Figure 5.

The Cartesian system of coordinates in Figure 5(a) is probably the most frequently used in practice, underlying Euclidean spaces, and having unique interesting features, especially by having orthonormal basis. As a consequence, the coordinates of points in these system depend only on each respective axis, as the axes are orthogonal and therefore have no non-zero mutual projection. In addition, the Cartesian coordinate system seems to intu- itively compatible with the way in which humans perceive the surrounding 3D space. This system is so ubiquitous as to be taken for granted in most visual representations to be found almost everywhere. In other words, almost every time we see a coordinate system visualization, it refers to a Cartesian frame.

Despite the ubiquity of Cartesian systems, there are several reasons to consider alternative coordinate systems, especially because actually few real-world measurements are interrelated in this orthonormal manner. For instance, many physical problems, including uniform circular motion, can often be described in a simpler manner by changing to polar coordinates. In other words, certain coordinate systems can be more directly adhere to the specific geometry underlying a certain problem.

Another reason for using alternative coordinate systems is to consider a multiplicity of them, for instance each of which reflecting the geometry of specific regions of a more elaborate geometrical structure or problem, therefore providing a multiple-perspective representation. Interestingly, moving coordinate systems, or with coordinates that are function of an independent parameter (e.g. time), can also be employed in specific situations.

A simple example of coordinate change is illustrated in Figure 6, where points with coordinates (x, y) expressed in the Cartesian system A need to be translated into coordinates (x, ỹ) respective to another Cartesian system B, the former being displaced by the relative vector r = (3, 2) (shown in cyan in the figure) from the latter.

The sought transformation can be readily achieved by employing the following coordinate changes:

x = x + 3 ỹ = y + 2 (19) 
As the above coordinate change is necessarily bijective, it can be inverted as:

x = x -3 y = ỹ -2 (20)
allowing the original coordinates to be recovered from their respective changed values. The bijection between the two representations above can then be more generally summarized as:

v = (x, y) ←→ ṽ = (x, ỹ) (21) ṽ = v + b (22) v = ṽ -b ( 23 
)
where b is a generic constant vector and we have used tilde to indicate the new, changed version of the coordinates.

Interestingly, the specific type of transformation illustrated above does not involve a respective basis transformation, as both the old and new frames are Cartesian. It involves only changing the respective coordinates of the previous and new representations of the same vector. This type of transformation is often said to be nonhomogeneous linear mapping or affine transformation, as we briefly discussed while addressing conversions between Celsius and Fahrenheit.

There is another important type of coordinate transformation that does involve changing the basis of the frame, corresponding to linear transformations, which have general form:

v = (x, y) ←→ ṽ = (x, ỹ) (24) ṽ = B v (25) v = B -1 ṽ ( 26 
)
where B is a square matrix with dimension D × D.

Unlike the previous case-example, now we have change of both coordinates and basis vectors, the latter of which will be addressed at more length in Section 10.

Figure 7 illustrates a possible linear change of coordinate systems, specific to transforming a Cartesian frame into a sheared system, more specifically a linear transformation. Geometrically, this type of transformation preserves straight lines and parallelism between them.

It is important to realize that, in Figure 7, we have shown both the old (orthonormal) and new (nonorthogonal) coordinate systems considering the same Euclidean space that is implicit to the respective page of this work where it appears. As a consequence, while the coordinates of the old frame are directly proportion (the magnification of this page) to the respective coordinates, the coordinates in the new system can only be gauged with respect to the respective skewed axes, not being necessarily proportional to measurements taken directly from the page visualization, which would need to be transformed by matrix B. As we shall see later in this work, this matrix actually corresponds to the inverse of the matrix A describing the respective basis transformation. It is interesting to keep in mind that it is also possible to obtain a rendering of the points/objects in the space of interest as seen from the perspective of the new frame itself, shown in a Cartesian manner. Figure ?? illustrates how the original object in the Cartesian frame in (a) looks when visualized from the perspective of the new, sheared frame. In principle, given only this figure, it is impossible to decide if it derived from a linear transformation of an orthonormal frame or if the object is indeed a parallelogram shown in the orthonormal coordinates of the visualization. In other words, not only every coordinates change is relative to some original basis, but coordinate systems taken isolatedly can also be visualized in several manners, none of which is absolute unless we have additional information.

Observe that, as should be expected, straight lines were mapped by the linear transform into straight lines, while parallel lines remained parallel. However, the lengths of the sides of the rectangle, as well as the relative distances between each of the four vertices, have not been preserved, neither has been the rectangle area.

The fact that the sheared frame could be understood as if it were an orthonormal system if taken isolatedly, as illustrated in Figure 8, suggests that we could consider all concepts and perform all the same operations as we usually apply in orthonormal coordinates (including, for instance, function definitions, derivatives, magnitudes, inner products, etc.), but with the important implication that each of these operations will not necessarily result in the same values as in the original system. One of the main interests in scientific modeling consists in identifying how these operations, especially those related to magnitude and distances (i.e. metrics), change when performed btween two or more frames interrelated by respective linear transformations. Of particular interest are operations between two vectors that depend neither of the coordinate systems nor the specific linear transformations being implemented, as this is what actually happens in the physical reality, i.e. the observed phenomenon should not depend on how it is represented by frames.

Interestingly, as observed in [START_REF] Da | Multiset neurons[END_REF], measurements obtained from real-world data of different types that are not necessarily inhabit orthonormal spaces (e.g. temperature, date of the year, color, weight, etc.) are often represented in orthonormal frames, know as feature spaces, in areas like pattern recognition, artificial intelligence, and data science. This well-intended, but now always accurate tendency, has been referred to as the Cartesian surmise in [START_REF] Da | Multiset neurons[END_REF].

One particular case of linear transformation occurs when the transformation matrix B is a diagonal matrix, namely a matrix with all off-diagonal elements being zero:

v = (x, y) ←→ ṽ = (x, ỹ) (27) ṽ = B v, with B = diagonal matrix (28) v = B -1 ṽ ( 29 
)
where:

B =     α 1 0 . . . 0 0 α 2 . . . 0 . . . . . . . . . 0 0 . . . α D     (30) 
This type of linear transformation implements simply a scaling by α i on each respective coordinate i. The inverse linear transformation in this particular case is immediately obtained as:

B -1 =     (α 1 ) -1 0 . . . 0 0 (α 2 ) -1 . . . 0 . . . . . . . . . 0 0 . . . (α D ) -1     (31)
There is another particular case of linear transforms that deserves further attention, and that happens when B is orthonormal, i.e.:

B T = B -1 ⇔ B B T = I ⇔ A = [B -1 ] T = B T -1 (32)
In this case, the transformed coordinate system will still have basis vectors that are orthonormal one another, though they are not identical to the respective original basis vectors. One important example of orthonormal transformation are those implemented by rotations and reflections of a Cartesian frame. For instance, in R 2 we could have:

B = cos(θ) -sin(θ) sin(θ) cos(θ) (33) 
we can immediately verify that:

B B T = cos(θ) -sin(θ) sin(θ) cos(θ) cos(θ) sin(θ) -sin(θ) cos(θ) = = cos(θ) 2 + sin(θ) 2 C C cos(θ) 2 + sin(θ) 2 = I (34) 
where C = cos(θ) sin(θ) -cos(θ) sin(θ) = 0.

Observe that an orthonormal transformation of an orthonormal basis yields another orthonormal basis. Now, we can address the more general case of coordinates change involving affine transformations, where a linear transformation is combined with the algebraic sum of a constant vector, i.e.:

v = (x, y) ←→ ṽ = (x, ỹ) (35) ṽ = B v + b (36) v = B -1 [ṽ -b] (37) 
It is interesting to observe that affine transformations are more general than linear transformations (which is a special case of the former), which are more general than Cartesian transformations (which is a particular case of the former type of transformation). Orthogonal transformations are a specific case of linear transformations. The interrelationship between the several considered types of coordinates change are illustrated in Figure 9 There is one aspect underlying basis and coordinates that is not frequently realized. It has to do with the fact that, given a single D-dimensional vector space with ] that allows all vectors (points) in this space to be represented in a bijective manner, it is impossible to decide wether the basis is orthonormal or not, though they can be verified or not to be linearly independent. That is because the scalar product and parallelogram rule works in absolutely identical manner in any of its possible bases.

Similarly, we can have no absolute information about the magnitude of the basis vectors. In fact, it is only possible to decide on properties of the basis vectors including orthogonality, orthonormality, magnitude, and angle, provided we have a standard reference system allowing respective callibration. The situation is analogous to defining the 1 meter standard. We will not be able to calibrate any measurement in terms of this unit unless we have access to a respective reference or additional information.

In order to better understand this somewhat strange phenomenon, let us consider the situation illustrated in Figure 10.

Unless we compare any of the two systems one another, or with the typically adopted orthogonal underlying reference of the horizontal-vertical orientations of the page in which the figure appears, it is impossible to tell anything about the relative properties of the vector components of each basis. This important fact often goes unnoticed because of our inherent familiarity with the 3D surrounding Euclidean space. As an aside, it is interesting to notice that the reader's visualization of the frames in Figure reffig:paradox is probably actually not fully orthonormal, as it often involves perspective transformations implied by unavoidable tilting of the page. The fact that this effect goes often unnoticed stems from our impressive ability to compensate for these geometrical transformations without perceived effort. Though in this section we discussed some of the main types of coordinates change, namely linear and affine, there are many other types involving non-linear changes that are not implementable by using matrix products or vector sums. In addition, it is also possible to have matrices B and/or constant vectors b to be functions of time.

Linear Transformations, and their Transformations

Let S and R be two vector space with respective associ-

ated bases [b 1 , b 2 , . . . , b D S ] and [c 1 , c 2 , . . . , c D R ].
A linear transformation T is a map transforming vectors from S into vectors in R, i.e.:

T : v ∈ S -→ r ∈ R (38) 
while preserving the scalar product and vector sum operations of the original space, and ensuring their linearity, i.e.:

T (a v + b r) = a T (v) + b T (r) (39)
where a, b ∈ R. In other words, linear transformations translate linear vector spaces into linear vector spaces.

In case the transformation is bijective, it is said to correspond to an isomorphism, and when it goes from S to itself, and not to a distinct space, it is called an endomorphism.

Assuming T to be isomorphic and endomorphic, the case most frequently considered in the present work, this type of transformation can be expressed as follows:

r = T v ⇐⇒ v = T -1 r (40)
where v, r ∈ S. Now, let us see what happens to a linear transformation of this type when the respective basis is linearly changed by a forward matrix A (please refer to Section 10). We start by writing:

v = A ṽ (41) r = A r (42) 
from which we obtain:

r = T v =⇒ A r = T A ṽ =⇒ =⇒ r = A -1 T A ṽ (43) 
as well as:

v = T -1 r =⇒ A ṽ = T -1 A r =⇒ =⇒ ṽ = A -1 T -1 A r (44) 
Recall that matrix product is not commutative, though it is associative.

Polyadics

The concept of dyadics, as well as its generalization to polyadics, was introduced by Gibbs as a means to treat vectors algebraically as we do with scalars, i.e. taking their sums and products (e.g. [START_REF] Wills | Vector Analysis with An Introduction to Tensor Analysis[END_REF][START_REF] Block | Introduction to Tensor Analysis[END_REF][START_REF] Kolecki | An introduction to tensors for students of physics and engineering[END_REF]). For instance, in a 3D Euclidean space, if:

v = v 1 î + v 2 ĵ + v 3 k r = r 1 î + r 2 ĵ + r 3 k
where î, ĵ, and ĵ are the canonical vectors constituting the basis of the 2D space.

we could then write expressions as:

v + 2 r = (v 1 + 2r 1 ) î + (v 2 + 2r 2 ) ĵ + (v 3 + 2r 3 ) ĵ (45) 
and:

v r =(v 1 î + v 2 ĵ + v 3 k) (r 1 î + r 2 ĵ + r 3 k) = = v 1 r 1 îî + v 1 r 2 îĵ + v 1 r 3 îk + + v 2 r 1 ĵî + v 2 r 2 ĵĵ + v 2 r 3 ĵk + + v 3 r 1 kî + v 3 r 2 kĵ + v 3 r 3 kk
Interestingly, such algebraic manipulations of vectors satisfy all traditional algebraic properties, except being commutative.

Dyadics are directly related to operations between vectors, including the dot the cross products. For instance, if we understand the dyad v • r as corresponding to the dot product, we have:

v • r = v 1 r 1 + v 2 r 2 + v 3 r 3
which corresponds to the inner product in Euclidean spaces.

By making v × r, it follows that:

v × r = v 1 r 2 k -v 1 r 3 ĵ- -v 2 r 1 k + v 2 r 3 î+ + v 3 r 1 ĵ -v 3 r 2 î
which is the same as the traditional cross product between two 3-dimensional vectors.

Triple combinations of vectors as in vru are also possible, being called triadics. The concept immediately extends to any number of vectors, in which case we have a polyadic, which can be understood as the general case.

Inner Product, Magnitude, and Metrics

The special type of vector spaces that are provided with an inner product is often called pre-Hilbert spaces, metric spaces, or geometric spaces. In case a space provided with an inner product is also complete (i.e. a Banach space), it is said to be a Hilbert space. A complete space is so that every possible Cauchy sequence (e.g. [START_REF] Da | Continuity and connectedness: A first step[END_REF]) of its elements (i.e. vectors) converge to determined limit that belongs to that space. Banach spaces are also expected to be normed, though they may not necessarily be endowed with a respective inner product. Given two vectors v = (v 1 , v 2 , . . . , v D ) and r = (r 1 , r 2 , . . . , r D ) of a Cartesian space S with dimension D, their respective inner product can be expressed as:

v, r = v|r = (v|r) (46) 
The inner product can be understood as the application, or map, that transforms 2-tuples of vectors of a vector space S into real scalars s ∈ R (other fields can be used, but the present work focuses on R as scalar field), i.e.:

v, r : v, r ∈ R D -→ R (47)
In real vector spaces, the inner product needs to be (i) symmetric, (ii) bilinear, and (iii): positive definite, i.e.:

(i) v, r = r, v (48) 
(ii -a) v, (a r + b q) = a v, r + b v, q (49) (ii -b) (a v + b r) , q = a v, r + b v, q (50) (iii) v, v > 0 ( 51 
)
where a, b ∈ R. Observe that condition (ii-b) can also be understood to follow directly from (i) and (ii-a).

In R D , the inner product can be expressed as:

v, r = N i=1 v i r i = v i r i ( 52 
)
in which we used the Einstein notation (see Section 18) v i r i to obtain the simplified righthand term.

A bilinear map in the R D spaces is an inner product iff there is a symmetric and positive definite matrix G so that:

v, r = v T G r (53) 
Recall that a matrix G is said to be positive definite if:

v, v = v T G v > 0 (54) 
for every non-zero column vector v.

It is important to keep in mind that G does not need to be the identity matrix, as in the case in orthonormal spaces. Now, we can more formally approach the concept of two vectors v and r being orthogonal as follows:

v • r = 0 ( 55 
)
If these vectors also satisfy the two following relations:

v • v = 1 (56) r • r = 1 (57)
then the two vectors are said to be orthonormal one another.

Given two tuples of vectors ω

= [ω 1 , ω 2 , . . . , ω D ] T and v = [v 1 , v 2 , . . . , v D ]
T , they will be said to be biorthonornal iff:

ω i • v j = δ i,j (58) 
In this case, by resourcing to dyadics, we can also write: In the particular case ω = v, the vectors in ω are said to be mutually orthonormal.

w v T =     ω 1 • v 1 ω 1 • v 2 . . . ω 1 • v D ω 2 • v 1 ω 2 • v 2 . . . ω 2 • v D . . . . . . ω D • v 1 ω D • v 2 . . . ω D • v D     = =     1 0 . . . 0 0 1 . . . 0 . . . . . . . . . 0 0 . . . 1     = I (59)
In addition to providing the basis for defining orthonormality, the inner product has another important implication in the sense that it is directly related to the concept of magnitude of a vector. More specifically, given a vector v, we can make:

v • v = v 2 1 + v 2 2 + . . . + v 2 D =⇒ ||v|| = √ v • v = v 2 1 + v 2 2 + . . . + v 2 D
The definition of the magnitude of a vector in an Euclidean space immediately allows us to derive a respective metric or distance between vectors: given two vectors v and r, their distance can be quantified as follows:

d v,r = ||v -r|| = = (v 1 -r 1 ) 2 + (v 2 -r 2 ) 2 + . . . + (v D -r D ) 2 
The above developments corroborate the special importance of the inner product in providing the means for quantifying both the magnitude and distance/metric between vectors of a given Euclidean space (see Fig. 11).

However, the above definition of inner product is not preserved while of coordinates change / linear transformations of the frame. Though nothing prevents us from applying Equation 46 to the same vectors represented in general linear or sheared space, the result will not be the same in each of those cases.

To conclude this section, let us have a first look at how the inner product change with linear transformations. Let S be a 2-dimensional vector space with canonical basis î, ĵ , and let the following two vectors of this space:

v = 2 3 ; r = - 1 1 ; 
Their inner product in space S is:

v • r = [v] t r = 2 3 -1 1 = -2 + 3 = 1
Let us now linearly transform the coordinates of these vectors in terms of the forward matrix:

A = 1 2 0.5 -1 =⇒ A -1 = 0.5 1 0.25 -0.5
From which: ṽ = 0.5 1 0.25 -0.5

2 3 = 4 -1 ; r = 0.5 1 0.25 -0.5 -1 1 = 0.5 -0.75
The inner product considering the new coordinates is as follows:

ṽ • r = [v] t r = 4 -1 0.5 -0.75 = 2.75
This example, to which we shall return in Section 15, numerically illustrates that the inner product is not necessarily conserved when of basis/coordinate changes.

Bases and their Transformations

Given a geometrical D-dimensional vector space S, any of its basis consists of a set of D vectors b 1 , b 2 , . . . , b D so that any point P : (x 1 , x 2 , . . . , x D ) of S can be expressed uniquely and bijectively as a linear combiation of the basis vectors, i.e.:

P : (x 1 , x 2 , . . . , x D ) = x 1 b 1 + x 2 b 2 + . . . + x D b D (60)
The real values x 1 , x 2 , . . . , x D correspond to the coordinates of the point P in the respective basis. It is interesting to keep in mind that, taken by themselves, the coordinates do not have any meaning. It is only when taken in relationship with the respective basis vectors that coordinates work. In an informal sense, an analogy could be established with a cookie recipe, where the basis vectors correspond to the possible ingredients, while the coordinates specify how much of each ingredient should be added in order to obtain the cookie, i.e. the point P in space S.

In principle, in a space involving only a single basis b, it would be possible to choose from a infinity of possible valid basis, with "valid" meaning that each point of the space becomes bijectively associated to the respectively implied coordinates. This requirement is the same as imposing that none of the vectors belonging to the base can be expressed as linear combination of the others, so that the vector in the bases cannot be linearly dependent.

Among these infinity of choices, one of them is particularly noticeable, receiving the name of canonical basis, characterized by the vectors belonging to it each having just one coordinate equal to 1, while all the other elements are zero. Thus, the canonical vectors in R 2 are:

î = (1, 0) (61) ĵ = (0, 1) (62) 
The canonical basis of R 3 is given in terms of the vectors:dy

î = (1, 0, 0) (63) ĵ = (0, 1, 0) (64) k = (0, 0, 1) (65) 
Examples of representation of positions (associated to vectors) of R 2 and R 3 in terms of the respective canonical bases include:

(1, 2, 0.5) = 1 î + 2 ĵ + 0.5 k (66)

(3, π) = 3 î + π ĵ (67) (-1, 0, 1) = -1 î + 0 ĵ + 1 k (68)
Let us now consider the linear transformation of a given basis b of a space S into another basis b. This can be done as follows:

         b1 = a 1,1 b 1 + a 2,1 b 2 + . . . + x D,1 b D b2 = a 1,2 b 1 + a 2,2 b 2 + . . . + x D,2 b D . . . bD = a 1,D b 1 + a 2,D b 2 + . . . + x D,D b D (69)
where a i,j are the components of a respective transformation matrix A. Observe that, in order to achieving a simpler representation of basis transformations and coordinates changes, it is of interest to take the indices of these elements in transposed order, as actually adopted in the above system of equations.

The previous system can now be summarized by using matrix notation as:

[ b1 b2 . . . bD ] = [b 1 b 2 . . . b D ] A (70) 
If we organize the vectors in the two respective basis as vectors, we can further simplify the basis transformation as:

b = b A (71) 
where: (73)

A =     a 1,1 a 1,2 . . . a 1,N a 2,
where:

A -1 =     ã1,1 ã1,2 . . . ã1,N ã2,1 ã2,2 . . . ã2,N . . . . . . . . . ãN,1 ãN,2 . . . ãN,N    
As the basis vectors vary "together" with the forward transformation matrix A (and not with A -1 ), these (row) vectors are said to be covariant with the transformation, being often represented with subscripted indices. Contravariant vectors (column) with vary "contrariwise" to the transformation implemented by matrix A, i.e. with matrix A -1 , in which case the respectively associated indices appear as superscripts. These conventions, which are often used in Physics, especially as elements of Einstein notation (see Appendix 18), are practically interesting because they provide an immediate indication of how a given structure (e.g. a column vector) change with the respective linear transformation. For the sake of specificity, we will sometimes use the term direct to identify traditional, contravariant vectors.

As an example of basis transformation, consider the following transformation from basis bases b to b in R 2 :

b1 = 2 b 1 + 0 b 2 b2 = -0.5 b 1 + 0.5 b 2 (74) 
From which we necessarily have, by considering the inverse matrix:

b 1 = 0.5 b1 + 0 b2 b 2 = 0.5 b1 + 2 b2 (75) 
Now, though we know everything about the relationship between these two bases, we do not yet actually have the coordinates of the vectors belonging to those bases.

As already discussed, unless some previous constraint is imposed, there is no pre-determined manner to assign the bases in the above example. However, once one of the basis is assigned, the other is completely determined as a consequence.

So, in we do not have any specific requirement regarding these two bases, we could choose either (or none) of them 

Coordinates Change: A Closer Look

Though we have already discussed, in Section ??, the operation of coordinates change from the perspective of some of the most frequent respective types, it is now time to revisit that operation from a more comprehensive perspective.

Let us start by deriving how coordinates change under a respective linear transformation related to matrix A and its inverse A -1 . We shall to this respectively to a 2-D vector space S. A generic vector v in this space can be expressed in terms of its coordinates (x 1 , x 2 ) as follows:

v = x b 1 + y b 2 (76)
Now, as presented in the previous section, we also have that the new basis can be expressed in terms of the old basis as:

b 1 = b1 b2 ã1,1 ã2,1 (77) 
and:

b 2 = b1 b2 ã2,1 ã2,2 (78) 
By combining the three equations above, it follows that:

v = = x ã1,1 ã1,2 b1 b2 + y ã2,1 ã2,2 b1 b2 = = x ã1,1 b1 + x ã2,1 b2 + y ã1,2 b1 + y ã2,2 b2 = = (x ã1,1 + y ã1,2 ) b1 + (x ã2,1 + y ã2,2 ) b2
Rearranging the terms:

v = (x ã1,1 + y ã1,2 ) b1 + (x ã2,1 + y ã2,2 ) b2
Now, the above expression shows how the original vectors v can be expressed in terms of the new basis vectors b 1 and b 2 , so that the coefficients associated to these vectors actually correspond to the coordinates of v in the new coordinate system. Thus, we can write:

ṽ = x ỹ : x = x ã1,1 + y ã1,2 ỹ = x ã2,1 + y ã2,2 (79) 
By rewriting the above system of equations in terms of matrix algebra, we obtain:

ṽ = x ỹ = ã1,1 ã1,2 ã2,1 ã2,2 x y = A -1 x y (80) 
which provides the means for changing the old coordinates of v into the new coordinates of ṽ. The above coordinate change rule can thus ben summarized as:

ṽ = A -1 v (81)
If follows that the more "traditional" column vectors of S is contravariant, as it tends to change in an opposite manner to A.

It follows immediate from Equation 80 that the reverse change, bringing back the coordinates to their old values, is as follows:

v = x y = a 1,1 a 1,2 a 2,1 a 2,2 x ỹ = A x ỹ (82) 
which, in matrix notation, beecomes: 12 Basis Transformation and Coordinates Change: A Complete

v = A ṽ (83)

Case-Example

In this section we provide a complete example, respective to the case illustrated in Figure 13, including forward and backward basis transformation and coordinates change. More specifically, starting from a basis b and a vector v corresponding to the position of a point P , we will first transform to a new basis b, and then find the new coordinates of point P in this basis.

The original frame is defined by the basis b = (b 1 , b 2 ), which has been chosen to be an orthonormal basis with respective versors b 1 = (1, 0) and b 2 = (0, 1). The new system has its basis derived from the old system as b

= b1 = 2 b 1 , b2 = -0.5 b 1 + 0.5 b 2 , i.e.: b = b A = b1 b2 = [b 1 b 2 ] 2 -0.5 0 0.5 = = [2 b 1 -0.5 b 1 + 0.5 b 2 ]
which corresponds to the forward transformation of the original basis.

The forward transformation matrix A, as well as the respectively inverse A -1 , are given as follows for reference purposes:

A = 2 -0.5 0 0.5 ; A -1 = 0.5 0.5 0 2 (84) 
The respective backward (or inverse) basis transformation, from the new to the old system, can then be obtained The change of the coordinates of points v b = (x, y) in the old system into the new coordinates (x, ỹ) can be obtained by using A -1 as follows:

ṽ = A -1 v =⇒
x ỹ = 0.5 0.5 0 2

x y

In the case of point P , we have:

x ỹ = 0.5 0.5 0 2 2 1 = 1.5 2 
It is also possible to transform the vectors belonging to the original basis, yielding: Observe that the coordinates of these two basis vectors refer to the new frame b.

The backward (or inverse) coordinate change, from the new into the old system, is as follows:

v = A ṽ =⇒ x y = 2 -0.5 0 0.5 x ỹ
In the case of point P , it follows that:

x y = 2 -0.5 0 0.5 0.5 2 = 2 1
The reverse transformation of the coordinates of the vectors in the new basis back to the old basis can then be implemented as:

x b1 y b1 = 2 -0.5 0 0.5 0.5 0 = 1 0
and:

x b2 y b2 = 2 -0.5 0 0.5 0.5 2 = 0 1
This calculation concludes our complete case-example of the important operations of basis transformation and coordinates change. We now proceed to generally lessknown concepts and methods, related to dual spaces, cobasis, and dual vectors.

Dual Spaces and Dual Vectors

In the following we assume that we are dealing with finitedimension vector spaces. A different situation applies in the case of infinite basis.

Given a vector space S with dimension D, defined by a respective basis b i , i = 1, 2, . . . , D, its dual basis S * spans all possible linear functionals (co-vectors) ω(), taking the vectors v = (v 1 , v 2 , . . . , v D ) ∈ S into the scalar field, which is assumed to be R, i.e.:

ω ∈ S * , v ∈ S : ω(v) = s ∈ R (85)
It necessarily follows from ω being linear functionals that:

ω(a r) = a ω(v) ∈ R (86) ω(v + r) = ω(v) + ω(r) ∈ R (87)
The elements of S * are often said to be co-vectors, dual vectors, 1-forms, linear functionals, or linear forms, respectively to S. Examples of co-vectors belonging to S * (with S = R D ) include:

ω(v) = v 1 ∈ R (88) ω(v) = D i=1 v i ∈ R (89) ω(v) = D i=1 a i v i ∈ R (90) ω(v) = 0 ∈ R (91)
where a i ∈ R.

Observe that every co-vector is a covariant vector in a linear transformation A.

It is henceforth assumed that the dual spaces are endowed with respective operations of scalar product and vector sum, in which case they become dual vector spaces.

As valid vector spaces, dual vector spaces need to have respective bases, which will be called co-basis of S. As could be expected, since a dual vector space S * is respective to a vector space counterpart S from which it derives, the basis of S * is related to the basis of S.

More specifically, let S = R 2 , with a basis [b 1 , b 2 ]. A basis φ of the respectively defined dual space is composed by co-vectors φ 1 and φ 2 such that:

φ i (b j ) = δ i,j (92) 
where δ i,j is the Kronecker delta. As discussed in Section 9, this condition actually corresponds to requiring the two basis to be bi-orthonormal.

In this section, we assume the vector space S with dimension D to have a valid respective inner product be-tween any two of its elements v and r, defined as:

v, r = v • r = D i=1 v i r i = [v 1 v 2 . . . v D ] T     r 1 r 2 . . . r D     (93)
We can associate the transpose of the first vector to a functional ω (which, as a co-vector, is a row vector), allowing us to write the action of the functional onto r as:

ω(r) = ω • r = ω r (94)
As a first example, let us consider S = R 2 with basis b 1 = (1, 0) and b 2 = (0, 1), and the dual space S * with respective basis φ 1 = (1, 0) and φ 2 = (0, 1). If we adopt that:

φ 1 = [1 0] φ 2 = [0 1]
this will provide a valid basis for S * (therefore a co-basis of S) because:

φ 1 • b 1 = (1, 0) • (1, 0) = 1 φ 1 • b 2 = (1, 0) • (0, 1) = 0 φ 2 • b 1 = (0, 1) • (1, 0) = 0 φ 2 • b 2 = (0, 1) • (0, 1) = 1
which can be summarized as:

φ b = I
Given that the basis of S does not need to be canonical, it is interesting to consider a respective additional example assuming b 1 = (1, -1) and b 2 = (0, 1). In this case, we have:

φ 1 • b 1 = (1, 0) • (1, -1) = 1 φ 1 • b 2 = (1, 0) • (0, 1) = 0 φ 2 • b 1 = (1, 1) • (1, -1) = 0 φ 2 • b 2 = (1, 1) • (0, 1) = 1
This result illustrates that the basis and co-basis of a sheared vector space S * has distinct respective vectors being, nevertheless, bi-orthogonal as required of a co-basis.

Let now v = (2, 3) be one of the vectors in S. It follows from its respective coordinates that:

v = (2, 1) = 2 b 1 + 3 b 2
The effect of the basis functional φ 1 on v is:

φ 1 • v = (1, 0) • (2, 3) = (1, 0) • [2 b 1 + 3 b 2 ] = (1, 0) • [2 (1, -1) + 3 (0, 1)] = 2
while the other basis functional yields:

φ 2 • v = (1, 1) • (2, 3) = (1, 1) • [2 b 1 + 3 b 2 ] = (1, 1) • [2 (1, -1) + 3 (0, 1)] = 3
This result, combined with the previous example concerning an orthogonal basis, indicate that the functionals composing the basis of a dual vector space S * can be understood as being able to extract the coordinates from the respective vectors in the S vector space counterpart, even when the basis of S is non-orthonormal.

Given a dual vector space S * and a respective basis φ 1 , φ 2 , any of its functionals (i.e. co-vectors of S * ) ψ can be expressed in terms of unique respective linear combination:

ω = D i=1 ω i φ i ( 95 
)
where φ i are the coordinates of the co-vector ψ in the dual basis system.

For instance, in the case of the first example above (S = R 2 , with b 1 = (1, 0) and b 2 = (0, 1)), we would have that:

ω = [2 1] = 2 φ 1 + 1 φ 2 (96) 
The action of this co-vector ψ on generic vectors v = (x, y) of S can now be expressed as:

ω • v = [2 1] x y = 2 x + 1 y (97)
The 1-form defined by the co-vector is shown in Figure 14, assuming integer scalar values ω,can therefore be understood as corresponding to the following lines associated to integer inner product values:

s = ω • v = 2 x + y ∈ I (98)
Observe that these lines are level-sets of the scalar field defined by the co-vector ψ = [2 1] along S, which actually corresponds to the plane z(x, y) = 2 x + y.

The 1-forms associated to the vectors composing the co-basis can be used to extract the coordinates of vectors in S. At the same time, the 1-form defined by ω, also called a stack, provides a means for gauging the length of the projections of the vectors v onto the co-vector ω. For instance, point P : v = (2, 1) yields s = 5. At the same time, points Q and R yield s = 3 and s = 4, respectively.

Figure 15 illustrates the relationship between the basis b 1 = (1, -1) and b 2 = (0, 1) and its co-basis φb 1 = (1, 0) and φ 2 = (1, 1) as in our previous example in which neither the basis nor the co-basis were intrinsically orthonormal. Observe that both the basis and respective co-basis span the spaces S and S * , respectively. The position of point P in the basis b is v = (2, 3), as also shown in the figure. Each of the coordinates of v can be extracted by using the co-vectors in the co-basis φ as follows. Take the level set of the stacks defined by φ 1 (straight line orthogonal to that vector, passing through P ) and observe the value, along one of the axis x or y which is orthogonal to that level set. This value gives the first coordinate of v which, in the case of this specific example is x = 2. By applying the same procedure respectively to phi 2 , we obtain the second coordinate y = 3, as expected. Now, it is time for considering how the vectors φ i of the co-basis of S, as well general co-vectors ω i of S * , change under a liner transformation respective to the forward matrix A. The new co-basis will be represented as φ, and the new co-vectors as ω.

We start from the fact that the basis and co-basis of the vectors space S, as well as the their counterparts in the transformed space, are bi-orthogonal in their respective old and new vector spaces, i.e.:

φ b = I (99) φ b = I (100) b T φ T = I (101) bT φT = I (102)
We have also already derived the following transforma- tion rules:

b = b A (103) b = b A -1 (104) ṽ = A -1 v (105) v = A ṽ (106) 
By substituting Equation 104 into Equation 99, we obtain:

φ b = φ ( b A -1 ) = I =⇒ φ b A -1 A = A =⇒ =⇒ φ b = A (107) 
Similarly, substituting Equation 103 into Equation 100, leads to:

φ b = φ (b A) = I =⇒ φ b A A -1 = A -1 =⇒ =⇒ φ b = A -1 (108) 
In addition, it can be shown that the co-basis vectors undergo the following change under a linear transformation by A:

φ = A -1 φ (109) 
so that the transformation can be reversed as:

φ = A φ (110)
The transformation rule for co-vectors is:

ω = ω A (111)
and the respective inverse is given as:

ω = ω A -1 (112)
14 Dual Spaces and Co-Vectors: A Complete Case Example

Let us determine how the basis and co-basis of a vector space S change under linear transformations (e.g. coordinate changes and basis transformations) implemented by a forward matrix A.

Let S be a two-dimensional vector space with basis b as:

b 1 = [1 0] = î b 2 = [0 1] = ĵ
as well as the forward matrix A and its inverse A -1 as follows:

A = 2 -0.5 0 0.5 ; A -1 = 0.5 0.5 0 2
The components of the co-basis φ of S are:

φ 1 = [1 0] = î φ 2 = [0 1] = ĵ
The new basis implied by A is:

b = b A = (2 î, -0.5 î + 0.5 ĵ)
The new co-basis is given as:

φ = A -1 φ = 0.5 0.5 0 2 φ 1 φ 2 = = 0.5 φ 1 + 0.5 φ 2 2 φ 2 = (0.5 φ 1 + 0.5 φ 2 , 2 φ 2 )
In the case of a generic co-vector ω = [u v], we have that it is transformed as:

ψ = ω A = = [u v] 2 -0.5 0 0.5 = [2 u -0.5 u + 0.5 v]

Invariance

Having developed some feeling for dual spaces and covectors, we are now in a better position to appreciate the role of inner product in linear spaces and transformations. For reference purposes, Table 1 presents a summary of the several structures and properties of a direct space S and its dual space S * . Let us start by taking two contravariant vectors of R 3 , more specifically

v = [v 1 v 2 v 3 ] T and r = [r 1 r 2 r 3 ] T .
Their respective traditional inner product can be obtained as:

v • r = v 1 r 1 + v 2 r 2 + v 3 r 3 = v T r
Now, let us linearly transform the coordinates of these two vectors, as specified by an invertible matrix A, as follows:

ṽ = A -1 v r = A -1 r
If we apply the traditional inner product to this new space, we obtain:

ṽ • r = A -1 v • A -1 r = A -1 v T A -1 r = = v T A -1 T A -1 r = v • r
Let us call the above matrix a:

G = A -1 T A -1 (113) 
which corresponds to a simple example of a metric tensor. Observe that it follows from its own construction that this matrix is always symmetric. Now, the inner product example case above can be rewritten as: 

v T G r ( 
transformations of bases b = b A φ = A -1 φ inverse transformations of bases b = b A -1 φ = A φ transformations of vectors ṽ = A -1 v ω = ω A inverse transformations of vectors v = A ṽ ω = ω A -1
Table 1: Summary of the vector and basis nomenclature, properties and transformations respetively to the vector space S and its respective dual space S * .

Observe the analogy between the above relationship and Equation 53.

Interestingly, matrix G above depends only of the linear transformation matrix A, being irrespective to the old and new bases. This matrix is particularly important because it specifies how the inner product changes under a linear transformation A. Analogous metric matrices can be obtained respectively to inner products between other types of vectors. In summary, a metric tensor depends and refer to the effect of a generic linear transformation on the inner product between vectors.

As a numeric example, if we had the linear transform defined by the following forward matrix:

A = 1 2 0.5 -1
it would then follow that:

G = A -1 T A -1 = 0.5 0.25 0.1 -0.5 0.5 1 0.25 -0.5 = = 0.3125 0.3750 0.3750 1.250
As expected, G is a symmetric matrix. We can use this matrix to predict what will be the effect of the above transformation on the inner product between two vectors such as:

v = 2 3 ; r = -1 1 
The original inner product in space S is:

v • r = [v] t r = 2 3 -1 1 = -2 + 3 = 1
while the inner product considering the new coordinates will be given as:

ṽ • r = v T G r = = 2 3
0.3125 0.3750 0.3750 1.250

-1 1 = 2.75
It is interesting to compare this result with that obtained for the example at the end of Section 9.

Therefore, we can conclude that the metric tensor G incorporates all information necessary to infer the effect of the linear transformation implemented by A on the inner product operation.

There is, however, one situation in which the inner product is preserved by the linear transformation, and that happens when:

G = A -1 T A -1 = I (115) 
Indeed, in case A is orthonormal, we have that:

A T = A -1 ⇐⇒ A T T = A = A -1 T =⇒ =⇒ G = A -1 T A -1 = I (116) 
which means that the traditional vector-vector inner product is conserved in the case of orthonormal transformations, but only in those cases. This result illustrates how the metric tensor can be used to identify operations that are irrespective to the adopted bases and linear transformations. Now, let us see what happens when we apply the traditional inner product definition between a covariant vector ω and a contravariant vector v. We start by calculating the inner product as:

ω • v = ω 1 v 1 + ω 2 v 2 + ω 3 v 3 = ωv
where it should be recalled that ω and v are, respectively, row and column vectors. Now, we transform the involved co-vector and vector linearly as:

ω = ω A ṽ = A -1 v
So that the inner product in the transformed space becomes:

ω • ṽ = (ω A) • A -1 v = ω AA -1 v = ω v = ω • v
And, lo, we have that the inner product between a covariant and a contravariant vector is conserved by the linear transformation implemented by matrix A. As a matter of fact, this could be somehow expected, given that the covariant and contravariant vectors behave exactly in inverse manner when of linear transformations, so that they cancel each other out. Indeed, every convariantcontravariant inner product will be conserved by any linear transformation defined by any linear transformation.

The metric tensor for the previous example, concerning linear transformations of the inner product between a covector and a vectors, can therefore be expressed as:

G = AA -1 = I
Let us consider an example in which we shall use the invariance of the above inner product to calculate distances in linearly transformed spaces. In particular, let us calculate the distance between the points associated to vectors v and r as follows:

∆ = v -r d(v, r) = √ ∆ T • ∆ = √ ∆ • ∆
So far, the inner product is the same as if it were between two column vectors, but we are actually understanding ∆ = ∆ T as a co-vector in S. Therefore, we have the following coordinates change equations:

∆ = ∆ A ∆ = A -1 ∆
It follows that:

∆ • ∆ = ( ∆ ) ( ∆) = (∆ A)(A -1 ∆) = ∆ • ∆

¡¡¡¡

Though we managed to obtain a means to calculate distance between two vectors that is invariant to coordinates and linear transformations, we need to keep in mind that this is indeed not the inner product between two column vectors. A similar approach can be used to obtain invariant magnitude calculations.

The invariance of the covariant-contravariant inner product stems directly from the orthonormality between the bases of S and its dual space. This property therefore is verified whatever the basis chosen for S, being also invariant to the specific implemented linear basis transformation. [START_REF] Munkres | Analysis on manifolds[END_REF] The Gradient Let S be a D-dimensional vector space with a nonnecessarily orthonormal basis b with vectors b i , i = 1, 2, 3, and let us define a differentiable scalar field φ(x), with x = (x 1 , x 2 , x 3 ).

The gradient of φ(x) at a point x can be defined as:

∇ φ(x) = ∂φ(x) ∂x 1 b 1 + ∂φ(x) ∂x 2 b 2 + ∂φ(x) ∂x 3 b 3 (117) 
Let us transform the space S to another linear space, by using the forward transformation matrix A.

The gradient in the new space can be expressed as:

∇ φ(x) = ∂φ(x) ∂ x1 b1 + ∂φ(x) ∂ x2 b2 + ∂φ(x) ∂ x3 b3 
Let us now make:

D i = ∂φ ∂ xi
so that, by using the chain rule for multivariate differentiation, we obtain:

D 1 = ∂φ ∂x 1 ∂x 1 ∂ x1 + ∂φ ∂x 2 ∂x 2 ∂ x1 + ∂φ ∂x 3 ∂x 3 ∂ x1 D 2 = ∂φ ∂x 1 ∂x 1 ∂ x2 + ∂φ ∂x 2 ∂x 2 ∂ x2 + ∂φ ∂x 3 ∂x 3 ∂ x2 D 3 = ∂φ ∂x 1 ∂x 1 ∂ x3 + ∂φ ∂x 2 ∂x 2 ∂ x3 + ∂φ ∂x 3 ∂x 3 ∂ x3 
Recall that:

x = A x
which can be expanded into the following system of equations:

   x 1 = a 1,1 x1 + a 2,1 x2 + a 3,1 x3 x 2 = a 1,2 x1 + a 2,2 x2 + a 3,2 x3 x 3 = a 1,3 x1 + a 2,3 x2 + a 3,3 x3
from which we obtain:

∂x i ∂ xj = a j,i
allowing us to write: The above result indicates that the gradient of a scalar field in S is covariant, so that:

D 1 = a 1,1 ∂φ ∂x 1 + a 2,
∇ φ(x) = ∇ φ(x) (118) 
As an example, let the vector space S = R 2 with canonical orthogonal basis ê = [ê 1 , ê2 ], and the scalar field defined as:

φ(x, y) = (x -1) 2 + (y -1) 2 (119) 
The gradient of this field at a generic point (x, y) ∈ R 2 can be readily obtained as:

∇ φ(x, y) = (2 x -2) ê1 + (2 y -2) ê2 (120) 
At point (x, y) = (1, 2), we have:

∇ φ(1, 2) = 0 ê1 + 2 ê2 (121) 
Now, let us transform the previous space by using the forward linear transformation matrix:

A = 2 0 0 2
By applying the just obtained Equation 118, it follows that:

∇ φ(x) = ∇ φ(1, 2) A = [0 2] 2 0 0 2 = [0 4] (122)
Observe that it was not necessary to calculate the transformed coordinates of vector [START_REF] Hoffman | Linear Algebra[END_REF][START_REF] Da | Modeling: The human approach to science[END_REF]. Now, let us consider another transformation matrix as follows:

A = 0 2 1 -1
and a new point x = (2, 3):

∇φ(2, 3) = (2 x -2) ê1 + (2 y -2) ê2 = = 2 ê1 + 4 ê2 = (2, 4)
By applying Equation 118:

∇φ(x) = ∇φ(2, 3) A = [2 4] 0 2 1 -1 = [4 0]
Let us verify this result. We start by obtaining:

x y = 0 2 1 -1 x ỹ = 2 ỹ x -ỹ from which: φ(x, ỹ) = (2 ỹ -1) 2 + (x -ỹ -1) 2 = = 4 ỹ2 -4 ỹ + 1 + x2 -2xỹ -2x + 2ỹ + ỹ2 + 1 = = x2 -2xỹ + 5ỹ 2 -2 ỹ -2x + 2
Therefore, in the new space with vectors (x, ỹ) the gradient becomes:

∇ φ(x, ỹ) = (2 x -2ỹ -2) b 1 + (10ỹ -2x -4) b 2
Let us obtain now take into account the inverse matrix:

A -1 = 0.5 1 0.5 0 which allows us to obtain the transformed coordinates of the point (2, 3) as: 0.5 1 0.5 0

2 3 = 4 1
Now, we have all the components to verify that:

∇ φ(x = 4, ỹ = 1) = = (8 -2 -2) ê1 + (10ỹ -2x -2) b 2 = 4ê 1 + 0b 2
as could be expected.

The Jacobian

Let a D-dimensional vector space S with a basis [b 1 , b 2 , . . . , b D ] and a non-necessarily linear, but differentiable, map ψ() (a vector field) that takes vectors v = (x 1 , x 2 , . . . , x D ) from this space into vectors ṽ in same space, i.e.:

ψ : v ∈ S -→ ψ(v) = ṽ ∈ S ( 123 
)
where the map can be described in terms of the following vector field coordinates ψ i (v):

ψ(v) = (ψ 1 (v), ψ 2 (v), . . . , ψ D (v)) (124) 
The Jacobian of map φ() can be expressed as:

J =      ∂ψ1 ∂x1 ∂ψ1 ∂x2 . . . ∂ψ1 ∂x D ∂ψ2 ∂x1 ∂ψ2 ∂x2 . . . ∂ψ2 ∂x D . . . . . . . . . ∂ψ D ∂x1 ∂ψ D ∂x2 . . . ∂ψ D ∂x D      (125) 
In the particular case in which ψ() is a linear map specified by the respective matrix A, we have that J = A.

The Jacobian provides the best linear approximation of the map ψ() around each point v 0 of the considered space as follows:

ψ(v) ≈ J v0 (v -v 0 ) + ψ(v 0 ) (126)
Observe the analogy of the above expression with the Taylor series. Indeed, the Jacobian is understood as the first differential of the field ψ().

The determinant of the Jacobian det(J), called Jacobian determinant, supplies important information about the local (a small neighborhood around each point) effect of the map on the obtained vector field. More specifically, we have that:

• the map is invertible around each point iff det(J) = 0; • det(J) > 0 implies that the orientation of the vectors is maintained around each point;

• det(J) < 0 implies that the orientation of the vectors is reversed around each point.

The inner product of two vectors u and v in S linearly transform under the Jacobian as:

ũ • ṽ = (J u) • (J v) = (J u) T (J v) = = u T (J T J) v = u T G v (127) 
So G = J T J is the metric tensor indicating the local effect of the map φ() on the inner product between two vectors, which thus yields important information about the impact of the map on measurements of magnitude and distance within a local region around each point of interest. Observe that the Jacobian itself is usually not considered a metric tensor, but G = J T J is.

Let us now develop a case example of using the Jacobian for linear approximation. We shall consider the following quadratic map from a 2-dimensional vector space S:

ψ(x) = x 2 y (128) ψ(y) = y 2 x ( 129 
)
which leads to the following Jacobian:

J = 2 x y x 2 2 x y y 2 (130)
The fact that the obtained Jacobian is symmetric is a consequence of the symmetric nature of the adopted metric mapping. Symmetry of the Jacobian matrix is not ensured in more general cases.

Figure 17 depicts the quadratic mapping above respectively to a square region 0 ≤ x ≤ 1 and 0 ≤ x ≤ 1. Each point of the frame in (a) is mapped to a respective image in (b). We will arbitrarily choose the point to be taken as reference the Jacobian linear approximation as v 0 = (1/6, 1/7) The region to be considered for approximation, centered at the chosen point, corresponds to the red square in (a). Figure 17(b) shows the mapped region (in red), as well as the region obtained by respective Jacobian linear approaximation, which is shown in blue. These two regions can hardly be distinguished one another, indicating an accurate approximation has been achieved in this case. 18 Getting Familiarized with Einstein Notation

Though we have progressed through several important concepts and methods along this work, a more effective understanding and handling of vectors, matrices, and tensors can greatly benefit from expressing respective operations in terms of Einstein notation, introduced in 1916 [START_REF] Einstein | Die Grundlage der allgemeinen Relativittstheorie[END_REF] as a means of simplifying tensorial expressions. As a matter of fact, the concepts and methods presented so far in this work provide a good perspective from which to develop a progressive familiarization with Einstein notation. Having familiarized with the covered concepts along the previous sections, the respective translation of several of them to be developed allows one to concentrate on the specificities of this new notation without having to grasp the respective concepts at the same time.

One first important point about Einstein notation is that it applies mostly to products between scalar, vectors, matrices and tensors. Though possible, in principle, Einstein notation is not often applied to algebraic sums. As we will soon see, Einstein consists mostly of single product terms.

A second important point is that a same term may contain several indices, but each of these indices can appear only singly or in pairs. indeed, paired indices are the key to Einstein notation, because they imply a respective summation. For instance:

3 i=1 a i x i = a 1 x 1 + a 2 x 2 + a 3 x 3 = a i x i (132)
in which the righthand side corresponds to the respective version of the summation in Einstein notation.

The above equation, in a sense, can be understood as the "essence" of that notation. The basic idea is that, when indices appear in pairs in summations, they are related to summation of respective products. Therefore, the Einstein notation is actually related to sums of paired product terms.

It is important to observe that the range of the indices cannot be specified in the standard Einstein notation, so they need to be kept in mind. 

The fact that an index refers to a contravariant operation (or "character" as in [START_REF] Einstein | Die Grundlage der allgemeinen Relativittstheorie[END_REF]) is often represented by using that index as a superscript, while indices referring to covariant operations are shown as subscripts. As indicated in [START_REF] Einstein | Die Grundlage der allgemeinen Relativittstheorie[END_REF], this convention originated with Ricci and Levi-Civita.

For instance, if v and r are two column vectors, the sum of the pairwise element products (i.e. the respective inner products) can be expressed as:

D i=1 v i r i = v i r i = r i v i
Henceforth, we will used capital letters to indicate matrix elements, lower case letters in bold for vectors, and lower case normal letters for scalars.

The product of a matrix B by a column (contravariant) vector becomes:

r = B v : r i = D j=1 B i j v j = B i j v j
Though the expression at the righthand side is slightly simpler, it does not allow for index manipulation.

It is important to keep in mind that the letters i and j do not necessarily correspond to rows and columns of the matrix in this specific order, as it is sometimes assumed. Indeed, that convention cannot be preserved when several indices are involved. In addition, observe that the row indices are represented as superscripts of the matrix B (see also Fig. 18a).

We also have that:

r i = D j=1 B j i v j = D i=1 v j B i j = v j B i j
illustrating that the use of the superscript/subscript convention readily indicates that v j is being righthand multiplied with the matrix T irrespectively of the relative position (i.e. left or right-hand side) of the former term. In addition, observe that the order of the terms is not relevant, because the proper indexing is ensured by using adequate indexing.

A new basis b of a vector space, obtained by a linear change of an old basis b, can be expressed as:

b = b A : bi = N j=1 b j A j i = b j A j i
As another example, the coordinates of a column vector v changes under matrix A as:

ṽ = A -1 v : ṽi = N j=1 (A -1 ) i j v j = (A -1 ) i j v j (134)
while the respective inverse can be annotated as:

v = A ṽ : v i = N j=1 A i j ṽj = A i j ṽj (135) 
The coordinates of a co-vector ω changes under matrix A as:

ω = ω A : ωi = N j=1 ω j A j i = ω j A j i (136) 
Let us now consider the multiplication of two matrices A and B, with respective dimensions P × N and N × Q:

C = A B : c i,j N k=1 a i,k b k,j = A i k B k j
In the case of three matrices A, B, and C with dimensions P × N , N × M and M × Q, it follows that:

D = A B C = A (B C) = (A B) C; (A B) : N k=1 a i,k b k,p = A i k B k p =⇒ =⇒ D = (A B) C : D i,j = M p=1 N k=1 a i,k b k,p (c p,j ) = = M p=1 N k=1 a i,k b k,p c p,j = N k=1 M p=1 a i,k b k,p c p,j = = N k=1 a i,k M p=1 b k,p c p,j = = M p=1 N k=1 c p,j a i,k b k,p = N k=1 M p=1 a i,k b k,p c p,j = • • • = = A i k B k p C p j = A i k C p j B k p = . . . = B k p A i k C p j
in which we have extensively applied the associative property of the matrix product. The above result can be neatly summarized as:

D i j = A i k B k p C p j
It should be kept in mind that the fact that = The above examples, especially the triple matrix product, well illustrate the effectiveness of Einstein notation for simplifying more complex sums of product terms. Now, consider the following term:

A i k B k p C p j = A i k C p j B k p in
A i j (A -1 ) j i v i = δ j i v i = v i
Observe the use of the Kronecker delta to represent the identity matrix.

We have seen in Section 7 that the result r of linear transformation T of a vector v, represented by its respective matrix T , transforms linearly under the forward matrix A as r = A -1 T A ṽ. In other words, the resulting transformation matrix effective becomes A -1 T A. Let us now try to derive this same property by using Einstein notation:

We start by making:

r k = T k p v p
It follows that:

rj = (A -1 ) j k r k = (A -1 ) j k (T k p v p ) = = (A -1 ) j k T k p (A p i ri ) = (A -1 ) j k T k p A p i ri =⇒ =⇒ T k p -→ (A -1 ) j k T k p A p i
No further simplifications are possible because matrix product is not commutative.

Next, we revisit the independence of the gradient respectively to basis and linear transformation choices.

Let φ(v) = (x 1 , x 2 , . . . , x N ) be a vector field on a N -dimensional vector space S with basis [b 1 , b 2 , . . . , b N ], so that its gradient can be expressed as:

N j=1 ∂φ ∂x j b j = ∂φ ∂x j b j (137) 
It follows that:

∂φ ∂ xi = N j=1 ∂φ ∂x j ∂x j ∂ xi = ∂φ ∂x j ∂x j ∂ xi = ∂φ ∂x j A j i (138) 
which allows to express the components of the gradient in the changed coordinates as:

∂φ ∂x j A j i (139)

Towards Tensors

As tensors involve the concept of multilinear functions [START_REF] Bowen | Introduction to vectors and tensors[END_REF], we start by defining bilinear and multilinear functions as follows.

Let S, U be two vector spaces. A bilinear function (or map) consists of an application f from S × u into R which is linear respectively to both S and U i.e.:

f : (s, u) -→ f (s, u) = α ∈ R s ∈ S, u ∈ U (140) 
with:

f (a s 1 + b s 2 , u) = af (s 1 , u) + bf (s 2 , u), a, b, ∈ R (141) 
A multilinear function the concept of bilinear from 2 to S vector spaces S 1 , S 2 , . . . , S S . More specifically, a S-multilinear function can be expressed as the following map:

f : (s 1 , s 2 , . . . , s S ) -→ α ∈ R (142) 
which is linear respectively to each vector x i while the other vectors are kept constant.

In case p of the vector spaces are direct vectors spaces, while q = S -p vector spaces are dual spaces, the multilinear map f is called a tensor of order or type (p, q), with total order p + q = S. Tensors with p = q = 0 correspond to real scalars.

Therefore, tensors involve only direct and dual vector spaces, being irrespective to coordinate choices and changes. Tensors involving exclusively direct spaces are said to be covariant, those originating only from dual spaces are called contravariant, while tensors defined upon direct and dual spaces are said to be mixed. Observe, in this definition, the association between co-vectors (elements of dual spaces) with covariance, while direct vectors are associated to contravariance, as could be expected. Now, it suggested from the above multilinear algebra approach that tensors would be exclusively maps from Cartesian products of vector and dual vectors space into the field R, being therefore functionals, such as the inner product. However, vectors and matrices, which are often also understood as tensors, do not directly fit into this definition because, strictly speaking, they are not linear functions. One interesting aspect of the above specific definition of tensor as a functional is that it emphasizes the theoretical and applied importance of measurements, which typically take scalar values.

While tensors as defined above constitute a valid structure, the concept of tensor is more general and is based on tensor products among other things, which allows addressing vectors, matrices, and multidimensional arrays as tensors, which they indeed are. Thought these formalizations and extensions are beyond the scope of the present work, the here presented material is expected to provide motivation and some preliminary background for further related studies.

Concluding Remarks

The present work had as its main objective to provide a relatively accessible and informal presentation of the operations of coordinates change and basis transformation, with special emphasis on better understanding how coordinates and bases, as well as measurements derived these elements, are affected under the respectively implemented linear change. Special attention has been focused on structures and measurements that remain invariant to coordinates change and basis transformations, because this aspect is especially important while modeling realworld systems and respective dynamics, which are known not to depend on the specific choices of coordinates or basis.

The above objective had as its main motivations the fact that coordinates change and basis transformation provide a particularly effective means for analyzing and modeling several elaborated data and systems, so that specific frames can be associated to respective points of special interest and/or pronounced complexity, giving rise to a multiple-perspective approach to scientific modeling.

In order to contribute to a better appreciation of the covered concepts and methods, we resourced to a presentation proceeding from relatively simpler to more elaborated concepts involving progressive integration of the presented topics. In addition, several resources including figures, diagrams, tables, and numeric examples have been incorporated in our presentation in order to better illustrate and consolidate the covered concepts.

One aspect that deserved particular attention concerns the definition and identification of the main properties of dual spaces, which are not always familiar to researchers not working intensively with linear algebra. Special attention has therefore being given to dual spaces, co-basis, and co-vectors. In fact, the concepts of the direct space and respective dual space are directly related to the idea of contravariance and convariance also developed in this work. As a matter of fact, these two tendencies of variation respectively to the forward transformation A provide a potentially power conceptual means for better understanding, and identifying, possible invariances to the lin-ear transformations implemented by coordinates change and basis transformation.

Also important was the concept of inner product, which was also covered in this work. We could then shown that though the traditional inner product is not invariant to linear transformations, the inner product between a covector and a vector is indeed invariant in that situation. In addition, we also verified that the gradient operator can be understood as being covariant, so that the inner product between the gradient of a scalar field and vectors of the respective vector space are inherently invariant to linear transformations. It was also emphasized that the observed variances and invariances do not depend on the choice of coordinate systems, basis, or specific type of linear transformations implemented. Being an interesting useful related concepts, the Jacobian and Jacobian determinant of a vector field were also briefly addressed and illustrated.

A section providing familiarization with the Einstein notation for simplifying summations has also been included in this work because of this notation being largely adopted in physics and other related areas. Constituting a point of convergence of the several presented concepts and methods, tensors have also been very briefly introduced as the last topic in this work. Being based on more advanced concepts, mainly from multilinear algebra and topology, tensors could not be further addressed in the present work.

As a complementation to the presentation, two appendices have also been incorporated covering, respectively, some useful properties and the linear algebra concept of vector space.

It is expected that our presentation may contribute to familiarizing the interested readers with the importance and main aspects of coordinates change and basis transformations which not only are intrinsically interesting, but find applications in a large range of areas. It is also expected that the presented material could provide part of the background necessary for further studies in related areas including Riemannian manifolds, advanced topics in differential geometry, as well as tensor algebra and tensor calculus.

Observations
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A Some Useful Properties

In the following are listed some properties of matrices, inner products, and summations, assuming real element values, that are potentially useful in the context of the present work. Observe that this list is guaranteed to be incomplete.

A [B C] = [A B] C = A B C (143) 
A [B + C] = A B + A C (144) [A B] T = B T A T (145) 
A T -1 = A -1 T (146) 

A -1 = A T ⇐⇒ A A T = A T A = I (147) v, r = r, u (148) 
a 1 v 1 + a 2 v 2 +, r = a 1 v 1 , r + a 2 v 2 , r (149) 

B Vector Spaces

Vector spaces, one of the key concepts in linear algebra, underlies virtually all concepts and methods addressed in the present work. Therefore, we provide a brief respective review in the following.

One first important point to be realized about vector spaces is that all them are, first and foremost, linear spaces of vectors.

A vector space S is a tuple [V, F, +, .], where V is a set containing the vectors, F is a scalar field, "+" is the operation corresponding to the sum of vectors of V (i.e. v +r), and "." is the operation of multiplying a vector ijV by by a scalar a ∈ F (i.e. a.v). For simplicity's sake, the "." is often omitted, e.g. av.

Both + and . correspond to binary operations, i.e. they take two arguments an yield one result. Examples of frequently used scalar fields are the set of real R and complex C numbers.

In addition, a vector space S needs to satisfy the following requirements:

• The operations + and . are closed, i.e. they result a vector that belongs to S;

• The vector sum is associative, commutative, and distributive;

• The scalar product is associative, commutative, and distributive;

• We necessarily have that a(bv) = (a b)v, where a, b ∈ F and v ∈ V . It is important to realize that (a b) is the multiplication between two scalars from F , while b v is the scalar multiplication between a scalar from F and a vector from V .

• There is a zero vector 0 so that 0 + v = v for any vector v ∈ S;

• There is a unit scalar 1 so that 1.v = v for any vector v ∈ S;

• For any v ∈ S, there is a unique respective inverse vector -v so that v + (-v) = 0.

These properties are important because they ensure a minimum structure to S, so that the vectors can be handled in well-established and stable manners, implying all the results of the above operations to be closed in S, i.e. it is impossible to obtain a vector that is not in S by using the above operations and properties. where x i , i = 1, 2, . . . , D are the respective coordinates of vector v.

Examples of vector space include {0}, R, R N , as well as polynomials and functions, Given a vector space and one of its specific basis b, it is possible to establish a bijective (one-to-one) mapping between each possible vector and its respective coordinates, therefore yielding a respective isomorphism. Thus, it becomes possible to handle vectors in terms of matrices (recall that the column and row vector are particular cases of a matrix).

Figure 2 :

 2 Figure 2: The linearity of vectors in 2D spaces (e.g. R 2 ), as perceived in geometrical terms, involves the operations of scalar multiplication (a) and sum of vectors by the parallelogram rule (b), as well as the combination of these two rules. In other words, any linear combination of vectors in R 2 is a vector in R 2 . Interestingly, these two operations are valid even if the base of the space is sheared.

Figure 3 :

 3 Figure 3: The affine (a) and linear (b) forms of Eq. 4, the latter requiring b = 0. The linearity superimposition principle is not applicable to the first of these forms, hence affine transformations are not linear, even though they yield straight line graphical visualizations.

Figure 4 :

 4 Figure 4: The function g(x) in Eq. 13 shown in terms of the original variable x (a), as well as in terms of the new varieable x = 10 x (b).

Figure 5 :

 5 Figure 5: A few examples of valid systems of coordinate in R 2 : (a) Cartesian coordinates (orthogonal axis); (b) linear coordinates (preserve lines and parallelism); (c) polar coordinates; (d) curvilinear coordinates. In all these cases, each point in the space becomes bijectively associated to a respective unique 2-tuple (x, y). Observe how the reference axes, though not shown explicitly, can be easily discerned from the start extremity of the arrows indicating the coordinates.

Figure 6 :

 6 Figure 6: A coordinate change corresponding to a relative translation (indicated in cyan) of the new Cartesian system A with respect to the old system B. This change does not involve any transformation of the respective Cartesian basis.

Figure 7 :

 7 Figure 7: An object (green rectangle) is represented in terms of the coordinates of the orthonormal system defined by the basis vectors shown in red. Another system of coordinates, corresponding to a linear transformation associated to a square matrix A of the former, is shown in blue. The coordinates from the former system can be translated to those of the former in terms of the matrix B. The coordinates of the box frame in the figure are shown respectively to the plane of the page, for reference.

Figure 8 :

 8 Figure 8: The rectangle from Fig. 7 as seen by the non-orthonormal coordinate system in blue. The coordinates shown in the figure frame are those obtained by transformation of the original system in red while considering matrix B. In case only this figure had been presented, we could not decide if it corresponded to a transformed rectangle originally in an orthonormal space to a skewed space, or truly a parallelogram "inhabiting" the orthonormal frame of the figure visualization.

Figure 9 :

 9 Figure 9: The interrelationship between several types of coordinates change. In this figure, v is the vector undergoing transformation, B is a square real matrix of dimension D × D, b is a real vector with dimension D × 1, and |B| is the determinant of B.

Figure 10 :

 10 Figure 10: It often goes unnoticed that the vectors composing the basis of a space, when presented alone and without any further relationship to references or standards, cannot have their properties such as orthogonality, orthonormality, and even magnitude identified in any absolute manner. Indeed, considered in complete isolation, all the four systems (a-d) shown in the figure are, in principle, undistinguishable unless we consider the plane of the figure as a reference. It is precisely this interesting property that allows the geometrical scalar product and parallelogram rules in Fig. 2 to work irrespectively of the type of basis vectors, provided the basis is valid in the sense of spanning the associated vector space and involving linearly independent vectors. Also included in this figure (e,f) are two examples of non-valid basis, as they have smaller dimension as bases (a-d) and cannot span the same space.

Figure 11 :

 11 Figure 11: Some vector spaces, all of which are linear are provided with an inner product, which allows respective definition of magnitude and metrics between vectors of those spaces.

  1 a 2,2 . . . a 2,N . . . . . . . . . a N,1 a N,2 . . . a N,N     We also have that each individual vector is transformed as: bi = b i A (72) The inverse transformation, from the new basis back to the old one, can be immediately obtained by considering the inverse of matrix A, i.e.: b = b A -1

Figure 12 :Figure 12

 1212 Figure 12: Three possible ways to instantiate two bases b (in red) and b (in blue) of R 2 while constrained by the same transforming matrix A as in the example: (a) basis b is assumed to be canonical; (b) basis b is assumed to be canonical; and (c) none of the bases are canonical.

Figure 13 :

 13 Figure 13: The situation considered in the complete case-example described in the present section. We have the original basis b = b 1 , b 2 to correspond to the canonical basis of an orthonormal coordinate system (x, y), and the new basis to be respectively defined as b = b1 = 2 b 1 , b2 = -0.5 b 1 + 0.5 b 2 , with respective coordinates (x, ỹ). The point P has coordinates (2, 1) in the b system, which are changed to (1.5, 2) in the new system.

  as:b = b A -1 = [b 1 b 2 ] = b1 b2 0

Figure 14 :

 14 Figure 14: The 1-form defined in the vector space S by the co-vector ω = [2 1]. Observe that the number of lines encompassed by each vector v = (x, y) corresponds to the projection of that vector onto ω. This operation can be performed in terms of the respective inner product ω • v. Though φ 1 and φ 2 are co-vectors, we have shown them as standard vectors in the figure for reference purposes.

Figure 15 :

 15 Figure 15: The basis and co-basis obtained in the case of nonorthonormal basis b. Though neither the basis nor the co-basis are intrinsically orthonormal, they are mutually bi-orthonormal. Please refer to the text for an explanation of how the co-vectors of the co-basis φ can be used to extract the coordinates of the vector associated to point P respectively to the direct basis b.

Figure 16 :

 16 Figure 16: This figure illustrates the new basis b (in blue) and the co-basis φ (in green) obtained from the transformation of the respective counterparts in Fig. 13. Also shown is the determination of the coefficients of the vector associated to point P , which has coordinates v = (2, 1) in the old system, and coordinates ṽ = (1.5, 2) in the new basis b.Observe that the extraction of these coordinates of ṽ are performed as described in the previous section, i.e. by considering the intersection between the axes associated to the new basis and the level set passing through P . Other two points, Q and R are also included for further illustration of coordinates extraction by the new co-vectors.

  • |det(J)| indicates how the hypervolume changes around each point: expands for |det(J)| > 1 and shrinks for 0 < |det(J)| < 1;

Figure 17 :

 17 Figure 17: Example of Jacobian linear approximation of a quadratic map. The original region that was considered in the approximation is shown in red in (a). The respective mapping of this region by the quadratic mapping (in red) and by the Jacobian approximation (in blue), as shown in (b), are nearly undistinguishable.

  Single indices can be used to specify all the respective elements associated to that index. For instance, the vectors in the basis b = [b 1 , b 2 , . . . , b 1 ] can be represented simply as: b i

  Einstein notation (and also in summation) by no means imply that A B C = A C B, given that matrix product is not commutative. The proper sequence of the terms in the several product forms in the the Einstein notation is guaranteed by the relative position of the indices, as illustrated in Figure18(b).

Figure 18 :

 18 Figure 18: (a): The convention for row/column representation of matrix indices; and (b) The original sequence of matrices in a respective product is preserved by the diagonal matching between the involved contravariant and covariant involved indices, as well as by the distinct indices.

  A vector space with dimension D has an infinite number of respective bases b = [b 1 , b 2 , . . . , b D ] so that any vector b of S can be expressed as: b = x 1 b 1 + x 2 b 2 + . . . x D b D (152)
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