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The bosonic skin eect: boundary condensation in asymmetric transport Louis Garbe, * Yuri Minoguchi, Julian Huber, and Peter Rabl Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, 1040 Vienna, Austria (Dated: January 3, 2023) We study the incoherent transport of bosonic particles through a one dimensional lattice with different left and right hopping rates, as modelled by the asymmetric simple inclusion process (ASIP).

Specically, we show that as the current passing through this system increases, a transition occurs, which is signied by the appearance of a characteristic zigzag pattern in the stationary density prole near the boundary. In this highly unusual transport phase, the local particle distribution alternates on every site between a thermal state and a bose-condensed distribution with broken U (1)-symmetry.

We further show that the onset of this phase is closely related to the so-called non-Hermitian skin eect and coincides with an exceptional point in the spectrum of density uctuations. Therefore, this eect establishes an interesting connection between quantum transport, non-equilibrium condensation phenomena and non-Hermitian topology, which can be probed in cold-atom experiments or in systems with long-lived photonic, polaritonic and plasmonic excitations.

Transport phenomena are of relevance for almost all areas of physics and technology with transport of electric currents and heat conduction in solids being two prototypical examples. While electric currents are carried by electrons, i.e., massive fermionic particles, heat transfer can be understood as the emission and reabsorption of quantized lattice vibrations, i.e, non-conserved bosonic excitations. However, despite relying on very dierent microscopic mechanisms, both transport scenarios share many similarities. For example, depending on the mean free path, transport can either be ballistic or diusive, where in the latter case Ohm's law and Fourier's law describe a similar linear relation between the current and the applied voltage or temperature gradient. Therefore, a general question of interest is under which conditions `anomalous transport' with a qualitatively very dierent phenomenology can be observed.

In this paper, we consider the setup shown in Fig. 1 (a) as an elementary model system to study dissipative transport of bosons. Here, bosons injected from a hot reservoir on the right can incoherently hop between neighboring sites of a one dimensional lattice, before being dumped into a second reservoir on the other end. This process has two key features: First, in the presence of a bias, the hopping rates to the left and right, Γ l and Γ r , are in general dierent, in which case the transport is asymmetric, i.e., directional. Second, the hopping rates towards sites that are already occupied are enhanced by the bosonic particle statistics. Therefore, this process can be seen as the bosonic counterpart of the celebrated asymmetric simple exclusion process (ASEP) [START_REF] Deng | Condensation of Semiconductor Microcavity Exciton Polaritons[END_REF], a common model for directed transport of fermions or classical hard-core particles, and one speaks of an asymmetric simple inclusion process (ASIP) instead [5].

Compared to fermions as the carriers for electric currents, the dissipative transport of bosonic particles has attracted considerably less attention so far. This can be * louis.garbe@tuwien.ac.at Bosons injected from a thermal particle reservoir with mean occupation number nr on the right can incoherently hop along the lattice with asymmetric rates Γ l and Γr, before being emitted into a second reservoir with occupation number nl on the left. A directional hopping can be imposed, for example, by applying a potential gradient with an energy oset U between neighboring sites. (b) Under stationary conditions, this hopping asymmetry combined with the bosonic particle statistics results in the bosonic skin eect, i.e., the formation of a nite boundary region with a staggered density prole. The two insets show sketches of the Wigner function for individual lattice sites, indicating that within this boundary region, the odd sites are in a condensed state with broken U (1) symmetry, while all other lattice sites exhibit a thermal distribution. See text for more details. attributed to a lack of conventional solid-state systems, where this physics is observable. However, this situation has changed recently and a variety of experimental platforms have now become available where non-equilibrium processes with bosonic particles can be probed. This includes, for example, cold atoms in optical lattice potentials, where dierent techniques to study transport have already been demonstrated [69]. Furthermore, it has been shown in various experiments that long-lived pho-P R E P R I N T 2 tonic [1013], polaritonic [1419] or plasmonic [START_REF] Hakala | BoseEinstein condensation in a plasmonic lattice[END_REF] excitations can behave as massive bosonic particles and even equilibrate with the surrounding material, before they eventually decay. This naturally raises the question of how transport in such settings is aected by the bosonic particle statistics of the carriers.

In the following analysis, we investigate the properties of the ASIP in a thermal transport scenario, where we focus primarily on the stationary current and the density prole along the lattice. In the absence of asymmetry, we recover also in this model the usual diusive transport, characterized by a linear population gradient and a Fourier law for the current. However, as soon as a nite degree of asymmetry is introduced, the transport becomes ballistic and particles accumulate in anite boundary region near the drain. Moreover, as the total current through the system increases, we observe a transition from a smooth pile-up to a zigzag structure depicted in Fig. 1 (b), with odd (even) sites being highly (weakly) populated. This phase represents a rather unusual non-equilibrium conguration, where the particle distribution in each lattice site alternates between a thermal distribution and that of a coherent state with broken U (1)-symmetry. This emergence of coherences in a purely dissipative and thermal transport scenario is very surprising and related to non-equilibrium condensation phenomena [START_REF] Deng | Excitonpolariton Bose-Einstein condensation[END_REF] that have no counterpart in fermionic transport. Therefore, we identify this boundary condensation as a unique feature of the ASIP model and call it the bosonic skin eect. This bosonic skin eect is indeed reminiscent of the socalled non-Hermitian skin eect (NHSE) [2129], which refers to the boundary localization of the eigenfunctions of non-Hermitian lattice Hamiltonians. While the NHSE is frequently discussed in connection with the topological classication of such models [24,[START_REF] Okuma | Non-Hermitian topological phenomena: A review[END_REF][START_REF] Gong | Topological Phases of Non-Hermitian Systems[END_REF][START_REF] Bergholtz | Exceptional topology of non-Hermitian systems[END_REF], its relevance for actual quantum transport processeswhich necessarily require a norm-preserving descriptionis still unclear. By mapping the dynamics of density uctuations in our system onto the paradigmatic Hatano-Nelson model (HNM) [START_REF] Okuma | Non-Hermitian topological phenomena: A review[END_REF][START_REF] Hatano | Localization Transitions in Non-Hermitian Quantum Mechanics[END_REF], we show explicitly how a direct correspondence between the eigenvalue structure of this non-Hermitian Hamiltonian and the stationary state of the actual transport system can be established. This correspondence relies on a hitherto unnoticed subtlety in the denition of boundary conditions for the HNM and provides many additional insights into the nature of the transition we observe. In particular, we nd that the transition coincides with the appearance of a higherorder exceptional point in the HNM, but occurs without an apparent closing of the dissipative gap. This distinguishes the bosonic skin eect from other dissipative quantum phase transitions [START_REF] Kessler | Dissipative phase transition in a central spin system[END_REF][START_REF] Minganti | Spectral theory of Liouvillians for dissipative phase transitions[END_REF] and in summary reveals an unexpectedly rich interplay between transport, non-equilibrium condensation eects and non-Hermitian physics.

The remainder of the paper is structured as follows. In Sec. I, we introduce the ASIP model and the main trans-port equations that we use to describe it. In Sec. II, we present the bosonic skin eect and discuss the onset of a zigzag phase within mean-eld theory, before investigating the full particle distribution and condensation eects in Sec. III. Finally, in Sec. IV, we discuss the connection between ASIP and the HNM, before summarizing our main ndings in Sec. V. Additional details about the analytic derivations and numerical methods are presented in the appendices.

I. MODEL

We consider the transport of bosons in a 1D lattice, as depicted in Fig. 1 (a). Here, the bosons are injected from a thermal reservoir on the right and propagate along a chain of L lattice sites through incoherent hopping processes, before being emitted into a second reservoir on the left. In the following we are primarily interested in asymmetric transport, Γ l > Γ r , where Γ l and Γ r denote the hopping rates to the left and to the right, respectively.

A. The ASIP master equation

We model the dynamics of this system by the master equation

dρ dt = (L hop + L l + L r ) ρ, (1) 
where ρ is the system density operator. Here, the rst term describes the incoherent hopping of bosons along the lattice. This process is described by the Liouville superoperator

L hop ρ = L-1 p=1 Γ l D[â † p âp+1 ]ρ + Γ r D[â † p+1 âp ]ρ, (2) 
where âp (â † p ) are the bosonic annihilation (creation) operators for lattice site p and we have introduced the short notation

D[ĉ]ρ = ĉρĉ † - 1 2 ĉ † ĉρ + ρĉ † ĉ . ( 3 
)
This process is a non-reciprocal and bosonic version of the so-called quantum exclusion process [START_REF] Haga | Liouvillian Skin Eect: Slowing Down of Relaxation Processes without Gap Closing[END_REF]3537]. In Eq. ( 2), the jump operator â † p+1 âp (â † p-1 âp ) destroys a boson at site p and creates a boson at site p + 1 (p -1) instead. This process conserves the total particle number and it is thus dierent from particle loss or gain. As a direct consequence of this particle number conservation, each jump operator is quadratic in â and â † , and therefore the hopping process is nonlinear.

The second and the third term in Eq. (1) represent the coupling to the thermal particle reservoirs to the left and to the right, which we model by

L l ρ = κ l (n l + 1)D[â 1 ]ρ + κ l nl D[â † 1 ]ρ, L r ρ = κ r (n r + 1)D[â L ]ρ + κ r nr D[â † L ]ρ.
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Here κ l and κ r denote the coupling rates to the two reservoirs and nl and nr are the corresponding thermal occu- pation numbers. Note that while we will only consider thermal baths in this work, other pumping mechanism, such as incoherent gain, would result in a behavior that is qualitatively very similar to what is discussed below.

B. Asymmetric hopping

Before we proceed, let us briey comment on the physical motivation behind this asymmetric transport model. A very generic scenario is depicted in Fig. 1 (a), where bosons are conned to a lattice with an energy gradient, for example, an optical lattice for cold atoms, a nanophotonic lattices for polaritons, etc. In this case, due to a large energy oset U > 0 between neighboring sites, coherent tunneling is suppressed, but in the presence of a phononic bath, the bosons may still transition between neighboring sites by emitting or absorbing vibrational excitations. Such a process can be modelled by a phononassisted tunneling term of the form

Ĥint ∼ p (â † p+1 âp + âp+1 â † p )( bp + b † p ), (4) 
where the bosonic operators bp represent local bath exci- tations. Roughly speaking, for a particle to jump to the left, it must lose the energy ∼ U by emitting it into the environment. Conversely, to jump to the right, it must absorb the same amount of energy. Therefore, a bath at low temperature, where emission processes are more likely than absorption, favors hopping to the left. More precisely, under the assumption that the bath is suciently Markovian, its dynamics can be eliminated to derive an equation of motion for the reduced system density operator ρ only. While some details may depend on the specic implementation (see Appendix A for a more detailed derivation), this master equation will be, quite generically, of the form given in Eq. ( 1), with hopping rates satisfying

Γ l Γ r = exp U k B T phon . (5) 
Here, T phon is the temperature of the phononic bath, which determines the asymmetry in this setting. Apart from such naturally occurring dissipative hopping mechanisms, there are also many systems where this asymmetric hopping processes can be engineered. For example, in optical lattices, directed dissipative hopping can be implemented via Raman processes [START_REF] Haga | Liouvillian Skin Eect: Slowing Down of Relaxation Processes without Gap Closing[END_REF], which involves atomic or cavity decay as a source of dissipation and directionality. Ideas for realizing number-conserving dissipation processes for photons have also been discussed for optomechanical systems [START_REF] Tomadin | Reservoir engineering and dynamical phase transitions in optomechanical arrays[END_REF][START_REF] Weitz | Optomechani-cal generation of a photonic Bose-Einstein condensate[END_REF] and circuit QED [START_REF] Marcos | Photon condensation in circuit quantum electrodynamics by engineered dissipation[END_REF], and can be readily adapted for the implementation of directed hopping processes as well. In the following we do not consider any of these possible implementations specically, but rather address the general properties of the transport model given in Eq. (1).

C. Transport

In this work we focus primarily on the stationary transport of particles between two thermal reservoirs. In the absence of asymmetry, transport would be driven by the temperature gradient between the reservoirs, i.e., by the dierence between nr and nl . By contrast, for asymmet- ric rates Γ l = Γ r , a directed particle ow develops even without any external temperature bias. To characterize transport in dierent parameter regimes, we consider the average stationary current J as well as the stationary density prole n p = np = â † p âp along the chain. Throughout this paper we adopt the convention that symbols with hats represent quantum operators, while symbols without hats denote their averages.

Starting from the master equation in Eq. ( 1), the mean occupation number n p of any of the sites changes in time as

dn p dt = J p,p+1 -J p-1,p . (6) 
This equation has the form of a conservation law, where, for any p ∈ [1, N -1],

J p,p+1 = Γ l np+1 (1 + np ) -Γ r np (1 + np+1 ) (7) 
is the average particle current between sites p and p + 1.

Note that we have adopted the convention that a positive J p,p+1 implies a current owing from right to left, i.e., from site p + 1 into site p. The current depends nonlinearly on the site occupation, which is already a sign of transport enhancement due to bosonic bunching: the probability for a particule on site p + 1 to jump to site p is enhanced by a factor 1 + np , that depends on the population of the target site. On the boundaries, the currents

J 0,1 = κ l (n 1 -nl ), J L,L+1 = κ r (n r -n L ) (8) 
represent the ow of particles into the left bath and from the right bath, respectively. In the steady state, the particle current is conserved along the chain and we obtain

J p,p+1 (t → ∞) = J ∀p. (9) 
Note, however, that this uniformity of the current does not imply a uniform density prole n p .

D. Mean-eld dynamics

Although Eq. ( 1) contains only dissipative terms and no additional coherent interactions between the bosons, these incoherent processes are nonlinear and therefore P R E P R I N T do not permit a closed set of equations for the mean occupation numbers. In addition, since the number of possible bosonic congurations scales exponentially with both the number of lattice sites L and the typical occupation numbers, n p , brute-force numerical solutions of the master equation are also inaccessible for the parameter regimes of interest. Therefore, to proceed we resort to a mean-eld decoupling of the equations of motions by factorizing expectation values as np np+1 ≈ np np+1 . Under this approximation, the average current reads

J p,p+1 Γ l n p+1 (1 + n p ) -Γ r n p (1 + n p+1 ). ( 10 
)
The system is then described by a set of L nonlinear dierential equations, which can be solved eciently numerically and also permit exact analytic solutions in the steady state.

To benchmark the validity of the mean-eld approximation, we compare these predictions with exact Monte-Carlo simulations for small systems sizes and low occupation numbers n p 1 and with phase-space simulations based on the Truncated Wigner Approximation (TWA) [START_REF] Polkovnikov | Phase space representation of quantum dynamics[END_REF] for larger occupation numbers. Within their respective regimes of validity, we nd almost perfect agreement between the numerical results and the stationary distributions obtained from mean-eld theory. Further details about these numerical methods and some of the benchmarks can be found in Appendix B.

E. Hydrodynamic limit

Additional insights about the transport dynamics in our system can be obtained by considering the continuum (or hydrodynamic) limit. To do so, we rewrite the meaneld equations of motion as

dn p dt = Γ A 2 (n p+1 -n p-1 )(2n p + 1) + Γ S (n p-1 -2n p + n p+1 ), (11) 
where Γ A = Γ l -Γ r and Γ S = (Γ l + Γ r )/2. Then, under the assumption that the n p vary slowly between neighboring sites, we can replace them by a continuous eld n(x, t), where x is the dimensionless position along the lattice. This eld obeys the partial dierential equation

∂ t n = Γ A (1 + 2n)∂ x n + Γ S ∂ 2 x n. ( 12 
)
This is, in essence, the well-known Burgers' equation [42 44], a simplied version of Navier-Stokes equation in hydrodynamics.

With the left side of the lattice being initially empty, the possible solutions of Eq. ( 12) contain propagating shock waves of the form [START_REF] Bonkile | A systematic literature review of Burgers' equation with recent advances[END_REF] n(x, t) nsw tanh

x -L + c sw t w sw , ( 13 
)
where nsw is the height, c sw Γ A (n sw + 1/2) the speed and w sw = 2Γ S /c sw the width of the wavefront. These solutions clearly illustrates how the bosonic enhancement factor aects transport. First, the velocity of the density wave scales with the typical density nsw . Second, the bosons in the high density region propagate faster than the boson at the front, which leads to a compression of the wave and w sw going to 0 for very large nsw . While the Burgers' equation provides valuable intuition about the transport dynamics in our system, it is based on a continuum approximation and is only expected to hold in a `laminar' regime, i.e., when the effective Reynolds number

Re = Γ A nsw Γ S (14) 
associated with a typical occupation number nsw is small [START_REF]+ 1 Re ∂ 2 x n, with Re the Reynolds number, and n having values of order O(1)[END_REF]. In the opposite limit, the characteristic length scale, ξ sw ∼ O(1), becomes on the order of the lattice spacing and new features can arise from the discreteness of the lattice and the presence of boundaries.

F. Relation to ASEP

By replacing the bosonic operators in Eq. ( 1) by operators âp that obey fermionic anti-commutation rela- tions, i.e., {â p , â † p } + = 1, we obtain the master equation describing the ASEP. In this case, the site occupation numbers n p obey the same equation as in Eq. ( 6), but with a fermionic current

J ASEP p,p+1 = Γ l np+1 (1 -np ) -Γ r np (1 -np+1 ) . ( 15 
)
Here, rather than being enhanced, the hopping to neighboring sites is prohibited by the Pauli exclusion principle, if the site is already occupied. The properties of ASEP have been extensively studied in the literature [START_REF] Deng | Condensation of Semiconductor Microcavity Exciton Polaritons[END_REF]. This includes, most notably, the scaling of current uctuations [START_REF] Johansson | Shape Fluctuations and Random Matrices[END_REF][START_REF] Sasamoto | One-Dimensional Kardar-Parisi-Zhang Equation: An Exact Solution and its Universality[END_REF] in innite lattices, which falls into the Kardar-Parisi-Zhang (KPZ) universality class [START_REF] Kriecherbauer | A pedestrian's view on interacting particle systems, KPZ universality and random matrices[END_REF][START_REF] Kardar | Dynamic Scaling of Growing Interfaces[END_REF][START_REF] Lerouvillois | Random surface growth models : hydrodynamic limits and uctuations[END_REF] and are thus connected to surface growth and related non-equilibrium phenomena. It is therefore interesting to understand how the change from an exclusion to an inclusion process aects these current uctuations. These aspects, however, will be discussed in more detail elsewhere [START_REF] Minoguchi | [END_REF]. Instead, here we focus on novel eects that are unique to ASIP and reveal themselves already at the mean-eld level.

II. THE BOSONIC SKIN EFFECT

In the following section we explore in more detail the stationary states of the transport master equation ( 1), which we describe in terms of the mean occupation numbers n p and the current J. ΓA/Γ l = 0.17 (bottom left), and ΓA/Γ l = 1 (bottom right). For all plots nr = 10 and two dierent values of nl = 0 (blue lines) and nl = 20 (yellow lines) have been considered. The insets show the current J versus the lattice size L, in loglog scale, and for three dierent values of nl = 0, 5, 9. For ΓA = 0 we recover a linear density gradient and Fourier law for the current, as expected for a diusive transport. For any ΓA > 0, the current becomes independent of both L and nl , indicating ballistic transport. In this regime, we observe the formation of a nite boundary region of size ξ, as indicated by the shaded area. As the asymmetry increases, ξ shrinks, and reaches zero for ΓA ∼ 0.17Γ l ; if we further increase ΓA, a boundary region appears again, in which the population oscillates from site to site. For all plots, we have set κr = κ l = Γ l .

A. Transport regimes 1. Diusive transport

In Fig. 2 (a) we rst consider the symmetric case Γ l = Γ r , where the stationary density prole along the chain is simply a linear interpolation between nl and nr . This is also expected from Burgers' equation in the continuum limit, Eq. ( 12), which for symmetric hopping describes pure diusion. In this regime, the current obeys the Fourier law and decreases with system size, i.e.,

J ∝ nr -nl L . (16) 
Interestingly, this diusive transport is independent of the particle statistics and is the same for bosons, fermions and noninteracting classical particles.

`Laminar' asymmetric transport

For a suciently large lattice, L 1, the diusive transport turns into directional transport for any nite hopping imbalance, Γ A = 0. In this case, the stationary density prole is at and assumes a constant value of n p n ∞ across most parts of the lattice. The exception is a region of size ξ close to the left reservoir, where the density gradually adjusts to a boundary value, which depends on the occupation number of the left bath, nl . Most importantly, for a lattice size L ξ, the stationary current J > 0 is completely independent of both nl and the length of the chain [see the inset of Fig. 2 (b)]. This is true even though Γ r is still nite. This behavior is reminiscent of ballistic transport in coherent systems, although here motion is purely dissipative with a corresponding mean free path of one lattice site.

While the quantitative details in this regime are already aected by the bosonically-enhanced hopping rates, the population prole is still qualitatively similar to what one would obtain for asymmetric hopping of independent classical particles. Moreover, since the eective Reynolds number introduced in Eq. ( 14) is still small, this behavior is well described by the continuous Burgers' equation in Eq. ( 12) and we can draw a direct analogy with the regime of laminar ow in uid dynamics.

`Turbulent' asymmetric transport

When either the asymmetry or the right bath occupation nr are further increased, the size of the boundary region, ξ, decreases and reaches a value of ξ = 0 at a critical value Γ c A ≡ Γ c A (n r ). At this specic value, the density prole is completely at, with the exception of site p = 1, which is coupled to the left reservoir. As shown in the inset of Fig. 2 (c), since the relevant length scale vanishes, the current at this critical value is independent of the system size and adopts the value

J = κ r nr Γ l Γ l + κ r . ( 17 
)
Remarkably and somewhat unexpectedly, this situation occurs already for nite Γ r , i.e., under conditions where particle ow in both directions is still possible. As the directed particle ow is further increased, a boundary region of nite size ξ reappears. In this regime, however, the populations vary strongly between neighboring sites and we observe a zigzag conguration with a decaying envelop. Counter-intuitively, as we keep increasing Γ A , we nd that the extent of this zigzag conguration increases in the direction opposite to the propa-P R E P R I N T gation. The transport is ballistic in this regime as well, i.e., the current

J ≈ κ r nr > 0 (18)
is independent of both nl and the system size for suf- ciently large L. However, in contrast to the smooth pile-up observed above, this rapidly oscillating density prole is no longer captured by the Burgers' equation. This behavior is found for high eective Reynolds numbers; in analogy with turbulent ow in uid dynamics, we observe an accumulation of particule at small length scale, which, in our lattice setting, lead to a breakdown of the continuum approximation [51]. This staggered accumulation of particles in alternating lattice sites, rather than being distributed smoothly across the lattice, does not appear in analogous models for directed transport of fermions or classical particles and is thus a clear indication of bosonic bunching eects.

B. Stationary density prole

Let us now proceed with a more in-depth analysis of the stationary density prole. In the steady state, the current J is uniform across the lattice and we can use Eq. ( 10) to relate the occupation numbers between neighboring sites by

Γ A n p n p+1 + Γ l n p+1 -Γ r n p = J. (19) 
For a large enough lattice, L 1, and p large, the occupation numbers near the right reservoir approaches a constant value n p ∼ n p+1 = n ∞ , which is determined by the xed point of this equation. This leads to the following general relation,

J = Γ A n ∞ (1 + n ∞ ), (20) 
between the stationary current and the asymptotic particle density. The boundary condition for the reservoir on the right also gives us J = κ r (n r -n ∞ ), which allows us to compute explicitly the asymptotic density,

n ∞ = 1 2 1 + κ r Γ A 2 + 4n r κ r Γ A - 1 2 1 + κ r Γ A , (21) 
and the stationary current,

J = κ r nr - κ r 2 1 + κ r Γ A 2 + 4n r κ r Γ A + κ r 2 1 + κ r Γ A . (22) 
Note that both quantities are smooth functions of all the system parameters and don't exhibit any sharp features.

1 + Γ S -c Γ S +c p µ . (23) 
Here, µ is a constant that depends on the properties of the left reservoir, but its precise dependence is not important for the following discussion. In Eq. ( 23) we have also introduced the parameter

c = Γ A n ∞ + 1 2 , ( 24 
)
which is the bosonically-enhanced speed of propagation. Indeed, c is closely related to the speed of the shockwaves discussed in connection with the Burgers' equation ( 12), but determined by the self-adjusted, stationary density n ∞ . By looking at the rst term on the right side of Eq. ( 23), we see an exponential decay of the excess population, which can be re-expressed as

Γ S -c Γ S + c p-1 = e -p-1 ξ for c < Γ S , e -( 1 ξ +iπ)(p-1) for c > Γ S . (25) 
Therefore, in both regimes, we can dene the characteristic decay length

ξ = 1 log Γ S +c Γ S -c . ( 26 
)
As we increase Γ A or nr , ξ decreases, and goes to zero for c = Γ S . This allows us to identify the critical value of the hopping imbalance,

Γ c A Γ l = Γ l + κ r Γ l + κ r (1 + nr ) , (27) 
at which point ξ = 0 and the system changes between the smooth and the zigzag boundary conguration observed above. Beyond this point, we acquire an extra phase π, which explains the alternating occupation numbers for values of Γ A > Γ c A . The full dependence of ξ on Γ A and nr is plotted in Fig. 3, which clearly shows a sharp drop to zero along the transition line Γ A = Γ c A .

C. Nonlinear transport and generalized Fibonacci sequence

While the rst term in Eq. ( 23) denes the characteristic size of the boundary region, it is important to keep in mind that the full density prole is not described by a simple exponential decay. This deviation, represented by the second term in Eq. ( 23), is due to the nonlinear nature of transport arising from the bosonic particle statistics.

To obtain additional insights about this prole, we show in Appendix C that the stationary occupation numbers can be rewritten in the form

n p = a y p-1 y p + d, (28) 
where the new quantities y p obey the recursion relation

y p+1 = ay p-1 + by p , (29) 
with constants a = (JΓ A -

Γ l Γ r )/Γ A 2 , b = 2Γ S /Γ A and d = Γ r /Γ A .
This reformulation shows that rather than being described by an exponential decay, the mathematical structure of n p is given by the ratio of successive coecients of a generalized Fibonacci sequence [START_REF] Lee | Anomalously large relaxation times in dissipative lattice models beyond the non-Hermitian skin eect[END_REF], also known as Lucas sequence. For example, in the special case of Γ r = 0 and a current J = Γ l , we obtain a = b = 1 and d = 0 and the populations n p then oscillates towards n ∞ = (1 + √ 5)/ √ 2 in the same way that the ratio of successive coecients of the Fibonacci sequence oscillates towards the golden ratio. We emphasize that this structure is not limited to our model; indeed, any next-neighbor nonlinear recursion relation of the type αn p n p+1 + βn p + γn p+1 = δ will lead to a density prole of the form given in Eq. [START_REF] Okuma | Non-Hermitian topological phenomena: A review[END_REF]. By contrast, recursion relations of the type βn p + γn p+1 = δ, as encountered in linear transport models, give rise to an exponential population prole.

III. BOUNDARY CONDENSATION

The strong bunching of the bosons in certain lattices sites, as observed for Γ A > Γ c A , is somewhat reminiscent of the formation of a Bose-Einstein condensate, where at low temperatures bosons tend to accumulate in a single momentum mode. However, in the current setting this eect is observed in a regime where a large thermal current passes through the system, and one would expect a thermal distribution of particles instead. To resolve these two conicting physical pictures, we must go beyond mean-eld theory and take a closer look at the full particle distributions and the coherence properties of our system.

A. Density uctuations

To study eects beyond mean-eld theory, we use numerical simulations based on the TWA. Within the TWA, the Wigner distribution is sampled by complex phase-space variables α p following stochastic trajectories. Symmetrically-ordered expectation values of the form â †n p âm q sym are then approximated by the corresponding stochastic averages α * n p α m q . For more details about this method, we refer to Appendix B. In Fig. 4 we use this numerical approach to evaluate the equal-time two-particle correlation function g (2) p (0

) = â † p â † p âp âp â † p âp 2 (30) 
for each of the lattice sites, once the system has reached a steady state. The phase space plots below this curve show the corresponding distributions of the α p obtained from the individual trajectories in the numerical simulation, which sample the Wigner function of that site. We see that near the right reservoir the value of this correlation function is g (2) (0) 2, as expected for a thermal state [START_REF] Walls | Quantum Optics[END_REF]. The corresponding Wigner functions are very close to a Gaussian distribution centered around α = 0. Near the left boundary, however, g (2) (0) decreases for all odd sites and approaches a value of g (2) (0) ≈ 1, which indicates a coherent state. In this case the corresponding phase-space distribution has the shape of a symmetric ring with a maximum at a nite value of |α p | ≈ √ n p . In contrast, on all even sites the distribution remains Gaussian-like and centered around α p = 0, although values of g (2) (0) > 2 indicate deviations from an exact thermal distribution. This overall behavior is further conrmed by the probability distributions P (|α p | 2 ) plotted in Fig. 4 (b).

B. U (1) symmetry breaking and phase coherence

ASIP describes a purely incoherent hopping process. This means that the full master equation given in Eq. ( 1) is diagonal in the number basis and is invariant under the local U (1) symmetry transformations âp → âp e iφp . This symmetry is also clearly visible in the phase-space plots in Fig. ( 4) a), which are fully symmetric under rotation. However, the density operator ρ only describes an ensemble average, while within a given experimental realization the U (1) symmetry can still be spontaneously broken.

To analyze potential symmetry-breaking eects in our system, we want to evaluate how long information about the phase in a given site is preserved. This is quantied by the coherence function g (1) p (τ ) = lim

t→∞ a † p (t + τ )a p (t) sym a † p (t)a p (t) sym . ( 31 
)
In Fig. 4 (c), we show the evolution of g

p (τ ) as function of the delay time τ . We see that in the odd sites near the left reservoir, this correlation function decays over a timescale τ coh 10Γ -1 l , which is multiple times longer than the typical relaxation timescales in this system. In contrast, for even sites no such extended phase correlation can be observed and the coherence vanishes on timescales much faster than Γ -1 l . We also do not obtain any signicant cross-correlations between any of the lattices sites.

To understand this emergence of coherence in more detail, we consider the totally asymmetric case, Γ r = 0, and also assume nl = 0 for simplicity. Under these assumptions, the phase-space variable α 1 of the rst lattices site obeys the stochastic equation (see Appendix (B 2) for the detailed derivation):

dα 1 = Γ l n 2 -κ l 2 α 1 dt + κ l + Γ l n 2 2 dW, ( 32 
)
where dW is a Wiener process. In Eq. ( 32) we have also adopted the convention n 2 ≡ |α 2 | 2 -1/2 to be consistent with symmetrized expectation values, â † p âp sym = n p + 1/2 = |α p | 2 , even on a single trajectory level. Close to the steady state, the occupation number of the second site can be expressed in terms of the recursion relation detailed in Sec. II C, and approximated by

n 2 (t) J/Γ l 1 + n 1 (t) . ( 33 
)
After reinserting this results into Eq. ( 32), we obtain a closed diusion equation for the variable α 1 , which is of the form

dα 1 = J |α 1 | 2 + 1/2 -κ l α 1 2 dt + D(α 1 )dW. ( 34 
)
From the deterministic part of this equation, we see that once the current J exceeds the decay rate κ l , the dynamics becomes unstable and the population of the rst site starts to increase. It then saturates at a value n 1 = |α 1 | 2 + 1/2 = J/κ l , consistent with the steady state result obtained from the mean-eld analysis in this regime. Physically, Eq. ( 34) represents a saturable gain mechanism for site 1, which arises from the recursion relation [START_REF] Kessler | Dissipative phase transition in a central spin system[END_REF]. This gain mechanism is exactly similar to the ones present in condensation or lasing phenomena. For J/κ l 1 and once the amplitude α 1 has been amplied to a large value, it can be approximately written as α 1 (t) =

√ n 1 e iφ1(t) , where the phase φ 1 (t) obeys

dφ 1 κ 2 l 2J dW. ( 35 
)
This phase diusion equation predicts a decay of the average amplitude according to

| α 1 | ∝ e -t/τ coh (36)
and with a coherence time of τ coh = 4J/κ 2 l 4n r /κ l . In Fig. 5 we consider a scenario in which the lattice is initialized in a symmetry broken state with each amplitude α p (t = 0) slightly displaced in a random direction. given in Eq. [START_REF] Temme | Stochastic exclusion processes versus coherent transport[END_REF]. For all plots, Γ l = κr, Γr = 0, L = 10, and nl = 0.

For this initial conguration, the plots in Fig. 5 (a) show the successive evolution of the Wigner function of site p = 1. We clearly see that the initial displacement is quickly amplied to its steady-state value, after which the phase diuses on a much longer timescale. Eventually, we recover the ring-shaped prole shown in Fig. 4 (a). In Fig. 5 (b) we the evolution of | α 1 | for different values of nr . The long-time decay of this quantity agrees quite well with the analytic prediction in Eq. [START_REF] Eisler | Crossover between ballistic and diusive transport: the quantum exclusion process[END_REF].

C. Summary

In summary, the results presented in this section show that the zigzag structure observed at the mean-eld level is consistent with the picture of an alternating lattice of partially-condensed and thermal-like bosonic states. In agreement with other non-equilibrium condensation phenomena or lasing eects, the bose-condensed sites are characterized by a spontaneously broken U (1)-symmetry with a phase coherence time that is long compared to the typical relaxation timescales in this system. The most surprising nding in our setting is that this eect occurs only in every other site near the boundary, while neighboring sites remain close to a thermal state. This is specic to the nonlinear transport scenario, where the recursion relations discussed in Sec. II C lead to the gain saturation eect (34) responsible for the condensation.

IV. NON-HERMITIAN DYNAMICS AND THE HATANO-NELSON MODEL

The accumulation of particles near one end of the lattice in a directional transport model is reminiscent of the NHSE [START_REF] Hatano | Localization Transitions in Non-Hermitian Quantum Mechanics[END_REF]. This eect refers to the localization of the eigenfunctions of non-Hermitian lattice Hamiltonians, when switching from periodic to open boundary conditions. A prominent example in this context is the HNM, which, indeed, has originally been introduced to model directional transport of bosons. However, in contrast to the ASIP master equation considered here, the HNM represents a tight-binding Hamiltonian with asymmetric tunnelling amplitudes, which is necessarily non-Hermitian and cannot be used to model transport at the quantum level. While physically consistent formulations of the HNM in terms of a proper master equation have later been introduced [START_REF] Song | Non-Hermitian Skin Effect and Chiral Damping in Open Quantum Systems[END_REF][START_REF] Mcdonald | Nonequilibrium stationary states of quantum non-Hermitian lattice models[END_REF][START_REF] Haga | Liouvillian Skin Eect: Slowing Down of Relaxation Processes without Gap Closing[END_REF][START_REF] Lee | Anomalously large relaxation times in dissipative lattice models beyond the non-Hermitian skin eect[END_REF], it turns out that in this case the required incoherent processes describe particle exchange with the environment, rather than dissipative hopping, and the connection to the originally intended directed transport physics is lost. Nevertheless, despite these apparent mathematical and physical dierences, we nd that there exists a very close connection between ASIP and the HNM, which we will explore in more detail in this section.

A. The non-Hermitian skin eect

The HNM is the simplest model to study boundary localization in non-Hermitian systems. It is described by the lattice Hamiltonian

H HN = p iJ l â † p âp+1 -iJ r â † p+1 âp = p,q â † p h p,q âq , (37) 
where the âp represent non-interacting bosons, whose dy- namics is then fully described by the tunneling matrix

h =          0 iJ l 0 0 . . . -ixJ r -iJ r 0 iJ l 0 0 . . . 0 -iJ r 0 iJ l 0 . . . 0 0 -iJ r 0 iJ l . . . . . . . . . . . . . . . . . . . . .          . (38) 
Here, x = 1 for periodic boundary conditions and x = 0 for an open chain. For J r = J l we recover the usual tight-binding Hamiltonian with real-valued single particle eigenenergies, E k = 2J r sin(k). The corresponding momentum eigenstates are extended over the whole lattice, both for open and periodic boundary conditions.
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For J r = J l , by contrast, the tunneling to the left and to the right is no longer the same, and Ĥ † HN = ĤHN . Still, when assuming periodic boundary conditions, the eigenfunctions of h remain plane waves, ψ k (p) ∼ e -ikp , where k ∈ [-π, π), but with a complex spectrum

E k = (J l + J r ) sin(k) + i(J l -J r ) cos(k), (39) 
which describes an ellipse in the complex plane. In contrast, for open boundary conditions, all eigenmodes are exponentially localized,

ψ k (p) = (-i) p-1 J r J l p-1 2 sin(pk), (40) 
and no longer orthogonal to each other. The corresponding spectrum is given by

E k = 2 J r J l cos(k). (41) 
This transition from an extended to a localized set of wavefunctions when changing from periodic to open boundary conditions occurs also in many related lattice models and has been dubbed NHSE [2129] From Eq. ( 41) we see that in the case where J r and J l have the same sign, i.e., J r J l > 0, the single-particle energies are real and therefore describe solutions that oscillate in time. However, when J r J l < 0, the spectrum is purely imaginary, i.e., it describes decaying or amplied solutions. These two regimes are separated by a socalled exceptional point (EP) at J r = 0, where Hamiltonian (37) becomes defective and cannot be diagonalized anymore. Instead, it adopts a so-called Jordan normal form

h = iJ l          0 1 0 0 0 . . . 0 0 1 0 0 . . . 0 0 0 1 0 . . . 0 0 0 0 1 . . . . . . . . . . . . . . . . . . . . .          , (42) 
which has only a single eigenmode with energy E EP = 0 and a wavefunction ψ EP (p) = δ p1 , which is fully localized on the rst site. The other basis elements are so-called generalized eigenvectors, i.e., they are transformed into ψ EP through the action of h.

The NHSE and the presence of exceptional points, have recently attracted a lot of attention, in particular in connection with the classication of topological properties of non-Hermitian lattice systems [24,[START_REF] Okuma | Non-Hermitian topological phenomena: A review[END_REF][START_REF] Gong | Topological Phases of Non-Hermitian Systems[END_REF][START_REF] Bergholtz | Exceptional topology of non-Hermitian systems[END_REF]. However, non-Hermitian Hamiltonians such as H HN given in Eq. ( 37) are per se unphysical and therefore the relevance of such spectral properties for the dynamics of open quantum systems is in general less clear. In the following we show how a direct connection between the HNM and ASIP can be established on the level of density-and current uctuations.

B. Linearized boson transport

Let us now return to our mean-eld model in Eq. ( 6) and consider a situation, where at some initial time t = 0 the whole lattice is prepared in a at density distribution n p (0) = n ∞ . For the successive evolution we make the ansatz

n p (t) = n ∞ + p (t), (43) 
and assume that the uctuations p remain small compared to n ∞ . This is justied for short times and, more generally, under the condition n r -n l ≈ 2n ∞ . We can then linearize the mean-eld equations of motion and obtain

d p dt = c( p+1 -p-1 ) + Γ S ( p+1 + p-1 -2 p ) + [(c + Γ S -κ) p + κ m] δ p1 , (44) 
with m = (n l + nr -2n ∞ ), and δ ij the Kronecker delta.

Here we have set κ l = κ r = κ and already neglected the contribution from the right reservoir, assuming that L 1. To connect this result to the HNM discussed above, we introduce the vectors = ( 1 , .., L ) T and r( ) = ( m -1 , 0, 0, . . . ) T , such that

d dt = -ih eff + κ r( ), (45) 
with a non-Hermitian Hamiltonian

h eff = i          Γ S + c Γ S + c 0 0 . . . Γ S -c 0 Γ S + c 0 . . . 0 Γ S -c 0 Γ S + c . . . 0 0 Γ S -c 0 . . . . . . . . . . . . . . . . . .          -2iΓ S 1. (46) 
Therefore, ignoring the coupling to the left reservoir for now, κ → 0, we see that the density uctuations p obey an eective Schrödinger equation with a non-Hermitian Hamiltonian h eff , which, by identifying J r ↔ c -Γ S and J l ↔ c + Γ S , is very similar but not identical to h. In particular, the diagonal elements of h eff are shifted by a constant imaginary part -2iΓ S and, compared to h, there is an additional term c + Γ S in the rst entry of h eff . The rst change merely shifts all the eigenenergies in the complex plane towards negative imaginary values, enforcing stable dynamic. The second change, as we will see, arises from the boundary conditions.

C. Boundary conditions and steady state

To understand the physical consequences of these subtle but important dierences between h eff and h, we emphasize that the dynamics of the uctuations p in Eq. ( 44) can still be written as a continuity equation,

d p dt = j p,p+1 -j p-1,p , (47) 
with currents

j p,p+1 = (Γ S + c) p+1 -(Γ S -c) p . (48) 
The evolution h eff is then recovered by enforcing the boundary condition:

j 0,1 = 0. ( 49 
)
that is, Neumann boundary condition. By contrast, the dynamics h is obtained by enforcing Dirichlet boundary conditions 0 = 0 for a ctitious site p = 0 on the left of the chain. This subtle change in the boundary conditions has an important consequence for the spectrum of h eff , namely the existence of a steady state. More precisely, in Appendix D we show that up to nite-size corrections,

Spec{h eff } L = Spec{h -2iΓ S } L-1 ∪ {E ss = 0}. (50)
with Spec{A} L is the spectrum of matrix A in L dimensions. This means, rst of all, that the spectrum of density uctuation in the ASIP model shares all the spectral features of the HNM we discussed above. In addition, there exists a unique steady state with E ss = 0 and a wavefunction

ψ ss (p) = Γ S -c Γ S + c p-1 . (51) 
Up to nonlinear corrections, which we have omitted in the current analysis, this wavefunction agrees with the stationary density prole derived in Eq. [START_REF] Okuma | Topological Origin of Non-Hermitian Skin Eects[END_REF]. Note that existence and the shape of this steady state does not change when including a nite κ, since the term ∼ κ( 1m) in Eq. ( 44) merely xes the magnitude of uctuation at the rst site.

D. Discussion

In Fig. 6 we plot the eigenvalues of h eff for dierent values of c/Γ S and dierent boundary conditions. These plots conrm the conclusions from above, namely that the eigenvalue structure of h eff mimics that of the HNM, expect for an overall shift and the existence of a steady state with E ss = 0 for all parameters. For the open lattice, we see that eigenvalues coalesce near c = Γ S , which corresponds to the (L -1)-th order exceptional point EP for J r = 0 in the HNM. The explicit form of the steady-state solution in Eq. (51) conrms that this exceptional point coincides with the transition point into the zigzag phase in the full ASIP model. This correspondence between the EP in the uctuation dynamics and the transition in the stationary density prole is actually quite surprising. Naively one would expect that the EP, which occurs at an imaginary oset of -2iΓ S , mainly inuences the transient dynamics of decaying uctuation modes. Instead, it signies a non-analytic behavior ξ ∼ |Γ S -c| in the stationary uctuation mode, which remains spectrally well isolated from the EP throughout this transition. This is in stark contrast to what is usually assumed for non-equilibrium phase transitions in dissipative systems, where the phase transition point coincides with the closure of the dissipative gap [START_REF] Kessler | Dissipative phase transition in a central spin system[END_REF][START_REF] Minganti | Spectral theory of Liouvillians for dissipative phase transitions[END_REF].

Note also that, even though these results have been obtained in a linearized regime, they still arise through a many-body eect. Indeed, if we take Eq. ( 2) in the singleexcitation limit, the enhancement factor disappears, and the net left and right jumping rates are simply given by Γ r,l . This can be obtained by setting n ∞ = 0 and c = Γ A /2 in [START_REF] Johansson | Shape Fluctuations and Random Matrices[END_REF]. In this case, since Γ r > 0 and Γ l > 0, we can never cross the transition and reach the zig-zag regime c > Γ A . By contrast, when the bath populate the chain with a non-zero base population n ∞ , excitations propagate at an enhanced speed c = Γ A (n ∞ + 1/2), and the condition c > Γ A can be fullled. In Fig. 3, we can see that for nr = 0, the transition line can be reached, but not crossed; for any nr > 0, the zigzag phase can be obtained. Hence, this many-body eect can be observed when a pumping mechanism is here to ll the chain. Such a pumping mechanism was absent, for instance, in [START_REF] Haga | Liouvillian Skin Eect: Slowing Down of Relaxation Processes without Gap Closing[END_REF], which is why the transition was not observed in this case. If the transition cannot be observed without lling, conversely, any non-zero lling is sucient to observe it: for Γ r = 0, the transition occurs at arbitrarily low values of nr and n ∞ . This result is predicted by a mean-eld treatment, which we may expect to be inaccurate in this regime of very low lling; however, our numerical benchmark in Appendix B conrms that the zigzag phase can indeed be observed in this limit.

V. SUMMARY AND CONCLUSIONS

In summary, we have studied the dissipative transport of bosons through a lattice with asymmetric hopping rates, as described by the ASIP. Compared to the ASEP for fermions or classical hard-core particles, dissipative transport of bosons is characterized by hopping events that are accelerated by the presence of other particles. Our analysis showed that despite the simplicity of this process and without including any additional coherent interactions, this bosonic enhancement already gives rise to a highly non-standard transport phenomenology including ballistic currents, particle accumulation at the edge of the system, and the formation of isolated Bose-Einstein condensates along the lattice.

Furthermore, within a linearized uctuation analysis, we have shown that the onset of this unconventional phase coincides with the occurrence of an EP in the celebrated NHM. Hence, this eect relates the spectral prop- Together, these results show that an EP for the higher-energy states is associated with a change in the steady-state conguration.

erties of the HNM into an observable signature in the stationary density prole. This creates an interesting connection between the widely discussed eigenvalue structure of non-Hermitian lattice models and actual physical observables in dissipative quantum transport problems.

However, we emphasize that the bosonic skin eect identied here is a true many-body eect, which displays many characteristic features that are not captured by a linear lattice model. This includes, for example, the generalized Fibonacci sequence that underlies the stationary occupation numbers or the alternating particle statistics in even and odd sites. These signatures are already visible for average densities of less than one boson per lattice site and become more pronounced as the reservoir temperature and the particle currents increase. Therefore, the eects described in this work are rather robust and should be observable in a variety of physical platforms. when dN l p = 1 (dN r p = 1). The probabilities for these events are p(dN l p = 1) = Γ l n p+1 (1 + n p )dt, (B2) p(dN r p = 1) = Γ r (1 + n p+1 )n p dt, (B3) and p(dN i p = 0) = 1 -p(dN i p = 1). By starting from a given initial conguration, {n p (t = 0)}, and evolving a total number of N t stochastic trajectories in time, we can approximate the expectation value of any function of operators np by an ensemble average. For example, np nq (t) 1 N t Nt i=1 n p (t)n q (t) =: n p (t)n q (t) . (B4)

This method becomes exact in the limit N t → ∞, and therefore also accounts for cross-site correlations, C pq (t) = np nq (t) -np (t) nq (t), which are neglected in the mean-eld theory. It cannot, however, be used to predict quantities such as cross-site coherences of the form â † p âp+1 , because those involve o-diagonal ele- ments of the density matrix. Furthermore, this method is limited to low average occupation numbers, since otherwise the rate of jumps, and therefore also the total simulation time, increases signicantly.

High density regime: Truncated Wigner Approximation

The TWA is a technique for simulating the dynamics in phase space, which is spanned by complex amplitudes α p , α * p dened on each site p. The state of the full lattice is then fully described by a multi-mode Wigner function W ({α p }) on this space and expectation values of symmetrically-ordered operator products can be obtained from the moments of this function. For example, â †n p âm q sym = d 2L α (α * p ) n α m q W ({α p }). (B5)

To obtain the equation of motion for W ({α p }) we use the substitutions [START_REF] Polkovnikov | Phase space representation of quantum dynamics[END_REF] â † p ρ → α * p -

1 2 ∂ αp W, âp ρ → α p + 1 2 ∂ α * p W,
to convert the master equation ( 1) for the density operator into a partial dierential equation for W . To illustrate this approach, let us consider only a single term,

d ρ dt = Γ l D[â † 1 â2 ]ρ, which translates into ∂W ∂t = Γ l 2 ∂ 1 α 1 2 -α 1 |α 2 | 2 + ∂ 2 α 2 2 + α 2 |α 1 | 2 + ∂ * 1 ∂ 1 |α 2 | 2 2 - 1 4 + ∂ 2 ∂ * 2 |α 1 | 2 2 + 1 4 -∂ 1 ∂ 2 α 1 α 2 + 1 4 ∂ 1 ∂ * 1 ∂ 2 α 2 - 1 4 ∂ 2 ∂ * 2 ∂ 1 α 1 + c.c. W, (B6) 
where we have used the short-hand notation ∂ i = ∂ αi , and ∂ * i = ∂ α * i . Note that the same equation was derived in [START_REF] Huber | Phase-Space Methods for Simulating the Dissipative Many-Body Dynamics of Collective Spin Systems[END_REF], where the two bosonic modes represented Schwinger bosons describing a d-level system.

The TWA consists of neglecting in this equation all third-order derivatives. This approximation is expected to be accurate when the number of bosons in the chain is high (see [START_REF] Polkovnikov | Phase space representation of quantum dynamics[END_REF][START_REF] Blakie | Dynamics and statistical mechanics of ultra-cold Bose gases using c-eld techniques[END_REF] for a more detailed discussion). Hence, this method provides a complementary treatment to the one presented in the previous section. After we performed the TWA, we obtain a Fokker-Planck equation, governed by a drift vector A and a diusion matrix D,

∂W ∂t = -∂ λ (A λ W ) + 1 2 ∂ λ ∂ * µ (D λµ W ), (B7) 
where we have used Einstein's sum convention and the 2L greek indices run over all α p and α * p . For example given in Eq. (B6) above, the corresponding diusion matrix is given by

D = Γ l 2       |α 2 | 2 -α 1 α 2 0 0 -α * 1 α * 2 |α 1 | 2 0 0 0 0 |α 2 | 2 -α * 1 α * 2 0 0 -α 1 α 2 |α 1 | 2      
, where we have ordered the four independent variables as (α 1 ,α * 2 ,α * 1 ,α 2 ). We have also omitted the constant terms ±1/4, which cancel when adding the contributions from all lattice sites, expect at the boundaries. For any other site, the diusion matrix is positive semi-denite and can therefore be written as D = BB † with

B = Γ l 4       α 2 -α 2 0 0 -α * 1 α * 1 0 0 0 0 α * 2 -α * 2 0 0 -α 1 α 1       .
Therefore, it is possible to unravel the Fokker-Planck equation in terms of stochastic trajectories in phase space, which follow the (Ito) equations

d α λ = A λ dt + ν B λµ d W µ . (B8) 
Here, W = (W 1 , W * 2 , W * 1 , W 2 ), where the dW i are complex-valued Wiener processes satisfying dW i dW * i = 1, dW i dW i = dW i = 0. By dening dV = (dW 1 -dW *

2 )/ √ 2, we can write the stochastic equations as

dα 1 = Γ l 2 α 1 |α 2 | 2 - 1 2 dt + Γ l 2 α 2 dV, dα 2 = - Γ l 2 α 2 |α 1 | 2 + 1 2 dt - Γ l 2 α 1 dV * .
This derivation can be generalized in a straightforward manner to all lattice sites and including the hopping to the right and the coupling to the reservoirs. Altogether we end up with the following set of stochastic dierential equations P R E P R I N T p with some constants α and β. We see here that the solution separates into two parts: one is the steady-state solution, the other is the eigenstate we were looking for.
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 1 Figure 1. Asymmetric bosonic transport. (a) Sketch of the ASIP setup studied in this work. Bosons injected from a ther-

Figure 2 .

 2 Figure2. Plots of the steady-state occupations numbers np for a lattice of L = 15 sites and dierent degrees of asymmetry: ΓA/Γ l = 0 (top left), ΓA/Γ l = 0.05 (top right), ΓA/Γ l = 0.17 (bottom left), and ΓA/Γ l = 1 (bottom right). For all plots nr = 10 and two dierent values of nl = 0 (blue lines) and nl = 20 (yellow lines) have been considered. The insets show the current J versus the lattice size L, in loglog scale, and for three dierent values of nl = 0, 5, 9. For ΓA = 0 we recover a linear density gradient and Fourier law

Figure 3 .

 3 Figure 3. Dependence of the skin length ξ as dened in Eq. (26) on the hopping asymmetry ΓA and on the thermal population of the right reservoir, nr. When ΓA is exactly zero (thick dark line at the bottom of the diagram), we recover the usual diusive behavior. The dashed line corresponds to ΓA = Γ c A , at which point ξ = 0. Below (above) this line, the steady-state population exhibits a smooth (zigzag) prole near the left boundary. The inset shows ξ along the horizontal green line at ΓA = 0.5Γ l . For all points in this plot a value of κr = Γ l has been assumed, and the results are independent of both nl and κ l .
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 41 Figure 4. (a) Plot of the second-order correlation function g (2) (0) for a lattice of L = 10 sites, as obtained from a TWA simulation with 5000 trajectories. The phase-space distributions below each point indicate the distributions of the amplitudes αp at the nal time of the simulation. (b) Distributions of the values of |αp| 2 and (c) plots of the coherence function g(1) (τ ) for the rst few odd (left) and even (right) sites near the boundary. For all plots we have set κ = Γ l , Γr = 0, nr = 30 and nl = 0; for plot c), we have used a reference time of t = 10Γ -1 l to reach the steady state.

  Figure 5. (a) Evolution of the Wigner function of site p = 1, when the system in initially prepared in a slightly symmetry broken state with | αp | = √ 3 and a random phase. The three plots show the resulting phase distributions obtained in a TWA simulation for dierent times Γ l t = 0, 2, 40 and for nr = 80. We see that on a short timescale the initial displacement is amplied, after which phase diuses on a much longer time scale. (b) Plot of the ensemble-averaged amplitude of the rst site for the same initial conditions, but assuming dierent thermal occupation numbers of the right reservoir. After a short amplication, we observe an exponential decay of the average amplitude due to phase diusion. The dashed lines represents represent the analytic prediction for this decay,

Figure 6 .

 6 Figure 6. Complex spectrum of HNM with various boundary conditions: Neumann (as given by (46)), Dirichlet (the same without the rst term on the diagonal), or periodic. We show the spectrum for dierent values of c, increasing clockwise: 0.8ΓS, 0.98ΓS, 1.02ΓS and 2ΓS. When going from periodic to Dirichlet condition, the eigenvalues collapse on a line. The spectrum with Neumann boundary conditions is essentially the same as Dirichlet, plus an isolated state at the origin, which describes the steady-state. The insets on the left show the population prole of the steady-state along the chain. At c = ΓS, the higher-energy states coalesce and (46) becomes defective, indicating we have an EP. However, the steady-state mode remains pinned at the origin. At the EP, the steadystate prole goes from exponential decay to zig-zag, showing the connection between spectral and steady-state properties.

  p = α SS p + β˜ (k)

In a rst step, we show in Fig.2examples of the stationary density prole n p for a lattice of L = 15 sites, together with the scaling of the current J as a function of L. From these plots we identify three qualitatively dierent transport regimes.

For large nr we obtain n ∞ ∼ √ nr and a current J ≈ κ r nr , which is limited by the inux of particles from the right reservoir.The left boundary conditions imposes J = κ r (n 1 -nr ), meaning that n p = n ∞ for small site numbers p. In Appendix C we show in more detail how the relation in Eq. (19) can be used to determine the full density prole n p in the limit L → ∞, which for Γ l > Γ r can be written in the formn p -n ∞ n 1 -n ∞ = Γ S -c Γ S + c p-1 1 + Γ S -c Γ S +c µ

Γ S -c 1/2 cos(k) (as a technical note, it is important to make sure that the rescaling constant is always nite; which is why we cannot do a rescaling of the form p → p (Γ S -c) or p → p Γ S -c , since in this case the constant diverges or go to zero at Γ S = c.)We then obtain(k) p+1 = Γ S -c Γ S + c p [ 1 + sin(k)] + Γ S -c Γ S + c p-12
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Appendix A: Derivation of the transport master equation

In this section, we outline the derivation of master equation [START_REF] Golinelli | The asymmetric simple exclusion process: an integrable model for non-equilibrium statistical mechanics[END_REF] for the case of a tilted lattice potential, where in each site the bosons are coupled to a bath of localized phonon modes. The Hamiltonian for this setup can be written as Ĥ = -t a p (â † p+1 âp + â † p âp+1 ) + p pU â † p âp + Ĥphon , (A1) where t a is the tunneling amplitude and U is the energy oset between two sites. The third term, Ĥphon , accounts for the presence of the phononic bath, and we assume it to be of the form

(A2) Here, the rst part is the energy of the phononic modes with annihilation (creation) operators bp,ω ( b † p,ω ) satisfying [ bp,ω , b † q,ω ] = δ pq δ(ω -ω ), and the second part describes a phonon-induced shift of each lattice site with some smooth coupling function g(ω).

In the limit U t a , coherent tunneling to neighboring sites is energetically suppressed and we can diagonalize the bare lattice Hamiltonian to lowest order in = t a /U . We do so by introducing the new bosonic operators

(A3) Note that for a consistent treatment, we need to keep terms up to second order in . This allows us to write the full Hamiltonian as

To understand the eect of the remaining interaction term, Ĥint , we move to the interaction picture and dene

Then

P R E P R I N T 13 where

Thus, we obtain three interaction terms, which, upon eliminating the bath, will give rise to dierent incoherent processes. We see that to zeroth-order in , we only obtain an o-resonant energy shift ĉ † p ĉp , which will lead to dephasing eects that depend on the bath spectral density at ω ≈ 0. We will discuss later the eect of this term on the dynamics.

Let us now focus on the process V (1) , which resembles the coupling in Eq. ( 4). After making a rotating wave approximation and keeping only the resonant terms in Eq. (A6), we can eliminate the bath degrees of freedom and derive a master equation for the bosons only. It is given by

(A7) where

and

is the correlation spectrum of the phonon bath. When the bath is in a thermal state with temperature T phon , we obtain

which leads to the relation between the hopping rates given in Eq. (5). Note that due to the simple structure of the bath considered in this model, Eq. (A7) still contains coherences between the jump operators that involve the same site. Finally, the term V (2) in (A6) will also generate terms of the dephasing type. When all terms are properly taken into account, we obtain the Lindblad equation

where L hop is given by (A7), and

ρ Â † B + h.c. Hence, taking everything into account, we obtain a hopping process plus on-and o-site dephasing terms. These terms, as well as any additional local energy shifts that may be present, will in general remove the remaining coherences in (A7), and nally yield the process [START_REF] Mallick | The exclusion process: A paradigm for nonequilibrium behaviour[END_REF]. It is important to note that, although specic dephasing processes might limit the coherence time discussed in Sec. III, all of our other results (the emergence of the bosonic skin eect with a zig-zag structure, the presence of Poisson-like distribution and ring structure on every other site, and the connection with the HNM), depend only on the population and are totally unaected, even in the presence of arbitrary dephasing rates. The same is true when coherent onsite interactions between the bosons are included. Therefore, we argue that very generically, once coherent tunneling is suppressed, the relevant transport dynamics in such a dissipative lattice will be described by the master equation given in Eq. ( 1).

Appendix B: Numerical methods

Low density regime: Monte-Carlo simulations

In the absence of any additional Hamiltonian terms, the master equation in Eq. ( 1) is diagonal in the Fock basis |{n p } = |n 1 , n 2 .., n L , where the n p denote the number of bosons in each site. Therefore, we can restrict our analysis to the diagonal elements of the density operator, P ({n p }, t) = {n p }|ρ(t)|{n p } , which describe the probability of a given particle conguration. These probabilities evolve as

where the last term is obtained by doing the substitution (l ↔ r) and n 1 ↔ n L . Here P ≡ P ({n p }, t), P (n p + 1) is a short notation for P (n 1 , . . . , n p + 1, n p+1 , . . . , n L ) and

Due to the exponentially growing conguration space, the exact dynamics of P ({n p }, t) can only be calculated for very small lattices and low occupation numbers. Instead, for larger lattices we sample the probability distribution via a Monte-Carlo simulation. To do so, the boson numbers n p (t) for each site are treated as stochastic variables, which during an innitesimal time step dt evolve according to

Here, the dN l,r p = 0, 1 are independent random variables and indicate that a boson has hopped to the left (right) P R E P R I N T

where all the dV i are independent complex Wiener processes.

Note that in the equation for α 1 , the diusion rate in the last term can become negative, when the coupling to the left reservoirs is too weak. This problem does not occur in any of the presented results, where we assume κ l = Γ l . In this case, the noise processes ∼ dV 1 and ∼ dV l can be combined and for Γ r = nl = 0 we then obtain Eq. (32).

Benchmarking the mean-eld approximation

In Fig. B 3, we compare the results obtained with these two numerical methods with the predictions from meaneld theory in the limits of low and high occupation numbers. These plots show that within their range of applicability, the features in the stationary density prole discussed in the main text are accurately reproduced by both methods, both in the smooth and in the zigzag phase. In particular, the exact results from the Monte-Carlo simulations demonstrate that the predicted density patterns are already visible in parameter regimes, where there is on average less than one boson per site. We also nd that the mean-eld prediction for the the transition point Γ c A is well reproduced by both methods (not shown here).

Appendix C: Derivation of the stationary density prole

In this section we provide additional details about the derivation of the steady-state occupation numbers n p within the mean-eld approximation. The starting point for this derivation is Eq. ( 19), which for L → ∞ already determines the relation between the current J and the asymptotic occupation number n ∞ , as given in Eq. [START_REF] Hakala | BoseEinstein condensation in a plasmonic lattice[END_REF]. To solve the full recursion relation, we rst introduce a new variable v p = n p -Γ r /Γ A , which obeys

with a = (JΓ A -Γ l Γ r )/Γ A 2 and b = 2Γ S /Γ A . In a next step, we make the ansatz v p = ad p-1 /d p to obtain a new sequence of numbers d p , which satisfy

(C2) Hence, the d p are given by a generalization of the Fibonacci sequence (known as the Lucas sequence). We can express the elements of this sequence as

where the constants α and β depend on the initial condition and

Therefore, in terms of these quantities, we obtain a general expression for the mean occupation number of each site,

P R E P R I N T 16 where µ = β/α. By rewriting the above result in terms of the ratio (n p -n ∞ )/(n 1 -n ∞ ) we obtain Eq. ( 23), from which the decay of the zigzag structure becomes more obvious. At this point, the parameters n ∞ and µ are still unknown and must be determined by the boundary conditions. Since in the steady-state the current is constant we obtain

In the limit of a large lattice, we can set n L = n ∞ , which gives us a quadratic equation for n ∞ ,

with a solution displayed in Eq. ( 21). Finally, from the current into the left reservoir and the result for n p=1 in Eq. (C5) we can determine the value of µ. For nl = 0 and Γ r = 0, its explicit expression is

In the most general case, its precise functional dependence on all the system parameters is complicated and of limited interest.

Appendix D: Eigenstates of HNM with Neumann boundary conditions

In this subsection, we discuss the eigenstates and eigenvectors of Eq. [START_REF] Johansson | Shape Fluctuations and Random Matrices[END_REF]. We look at the current vector j = (j 1,2 , j 2,3 , ...) T ; these obey the equation

i.e., the current themselves obey the HNM with Dirichlet boundary conditions. This make sense, since Neumann condition for the population means that the current cancels at the boundary, hence Dirichlet condition for the current on the dual lattice. Note that within a chain of size L, we have only L -1 currents, hence the matrix h -2iΓ S 1 is now a L -1-by-L -1 matrix. We obtain

and the associated eigenergies

where k = qπ/L for q = 1, 2, . . . , L -1. Here and in the following, we take the convention √ -1 = +i. From the current eigenstates, we can obtain the population eigenstates through the recursion relation

e ikq -e -ikq 2i(Γ S + c) .

We can now evaluate the geometric sum and after a lengthy but straightforward expansion, we obtain

where

.

Since we are looking for eigenstates, we are free to rescale all the p by a constant.

We perform the following transformation:

Their explicit form is given by

We can readily check that

Note that if we have = SS , the current is zero; therefore, any combination α SS + ˜ (k) will yield the same current j (k) . This gives a further interpretation for the higher-energy eigenstates ˜ for the other eigenstates.

We conclude this section by a remark on the behavior of the gap; near the EP, the energy dierence between any two eigenstates scales as ∼ √ Γ S -c. Although the EP involves the coalescence of a macroscopic number of states, its gap still shows the square-root scaling typical of an order-1 EP, instead of the 1/L scaling one may expect from a higher-order EP [24].