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Multi-wave inverse problems are indirect imaging methods using the interaction of two different imaging modalities. One brings spatial accuracy, and the other contrast sensitivity. The inversion method typically involve two steps. The first step is devoted to accessing internal datum of quantities related to the unknown parameters being observed. The second step involves recovering the parameters themselves from the internal data. To perform that inversion, a typical requirement is that the Jacobian of fields involved does not vanish. A number of authors have considered this problem in the past two decades, and a variety of methods have been developed. Existing techniques require Hölder continuity of the parameters to be reconstructed. In practical applications, the medium may present embedded elements, with distinct physical properties, leading to discontinuous coefficients. In this article we explain how a Jacobian constraint can be imposed in the piecewise regular case, when the physical model is a divergence form second order linear elliptic boundary value problem.

Introduction

Parameter reconstruction problems for elliptic boundary value problems are indirect reconstruction problems with, at best, logarithmic stability [START_REF] Alessandrini | Stable determinations of conductivity by boundary measurements[END_REF][START_REF] Mandache | Exponential instability in an inverse problem for the Schrödinger equation[END_REF]. While these type of measurements are desirable as they are non intrusive, and typically require low cost apparels, such weak stability implies that only low-resolution reconstruction can be achieved in practice [START_REF] Scherzer | Handbook of mathematical methods in imaging[END_REF][START_REF] Wang | Photoacoustic and Thermoacoustic Tomography: Image Formation Principles[END_REF][START_REF] Widlak | Hybrid tomography for conductivity imaging[END_REF]. The Calderón problem for electrical impedance tomography (EIT) [Cal06, Uhl09, Uhl14], the inverse scattering problems [START_REF] Colton | Inverse acoustic and electromagnetic scattering theory[END_REF] and optical tomography [START_REF] Arridge | Optical tomography in medical imaging[END_REF] are the main examples of such problems. The stability of such methods dramatically improve when, instead of making absolute measurements ex nihilo, they are used to estimate perturbations of a know medium [START_REF] Ammari | Reconstruction of Small Inhomogeneities from Boundary Measurements[END_REF][START_REF] Capdeboscq | A general representation formula for boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction. M2AN[END_REF]. On the other hand, fast wave imaging modalities, such as ultrasound tomography or MRI, preserve singularities and achieve excellent spatial accuracy, at the cost of a loss of quantitative information with respect to the amplitude of the parameters involved.

Over the past two decades, coupled-physics, or multi-wave, or hybrid inverse problems (the final commonly accepted name is yet to be determined) have emerged. These imaging modalities aim to benefit from the advantages of both approaches: one for accurate contrast estimations, and the other for high resolution [AC18, AGK + 17, [START_REF] Bal | Hybrid inverse problems and internal functionals[END_REF][START_REF] Kuchment | Mathematics of hybrid imaging: a brief review[END_REF]. The most developed hybrid modality is photo-acoustic tomography (PAT) [DDBR19, KK11, RRN09, WA11], in which light and ultrasounds are combined. Many other modalities have been considered, all combining a diffusive process with a much less diffusive one [AKKR18, ABC + 08, ACdG + 11, HMY + 04, KK11, LJC00, SKL + 12, SW11, WA11, ZW04].

The parameter reconstruction method in all these problems start with a data collection step, where some internal data is reconstructed, involving both the parameter of interest and the solution of the PDE involving this parameter. In PAT, the internal data is µ(x)u(x) , where µ is the optical absorption and u is the light intensity. In Current Density Impedance Imaging (CDII), the internal data is |γ(x)∇u(x)|, where γ is the conductivity and u is the electric field. The second step involves extracting the parameter from this data, (µ(x) in PAT, γ in CDII). The mathematical problem considered in this article is related to this second step.

Example (A Jacobian constraint example). Consider the problem of reconstructing γ, a scalar function, in -div(γDu) = 0 in Ω, from the knowledge of the potential u in Ω, as in [START_REF] Alessandrini | An identification problem for an elliptic equation in two variables[END_REF]. It appears in a variety of contexts, such has Hydrology [START_REF] Neuman | A statistical approach to the inverse problem of aquifer hydrology: 1. theory[END_REF], CDII [BGM14, NTT11, SJAH91, WLM94] and Acousto-Electric Tomography [AKKR18, ABC + 08, CFDGK09]. If γ is regular, we have More generally, given N ≥ d measurements, the least-square optimisation problem associated to the (possibly overdetermined) system of equations

(D(lnγ)) T Du 1 , • • • , Du N = -∆u 1 , • • • , ∆u N in Ω.
has a unique minimiser when det Du i i , • • • , Du i d > 0 for some (i 1 , . . . , i d ) ∈ {1, . . . , N } d .

Using unique continuation methods, it is possible to address the parameter reconstruction problem without imposing Jacobian constraints [Ale14, ADCFV17, BCT22, Cho21, CT19]. On the other hand, when non-vanishing constraints are satisfied, the stability estimates are optimal (of Lipschitz type) and often lead to explicit reconstruction formulae [START_REF] Alberti | Lectures on elliptic methods for hybrid inverse problems[END_REF][START_REF] Bal | Hybrid inverse problems and internal functionals[END_REF].

The focus of this paper is non-vanishing Jacobian constraints. In two dimensions, for the conductivity equation, a generalisation of the Radó-Kneser-Choquet theorem [Ale86, AN01, [START_REF] Alessandrini | Quantitative estimates on Jacobians for hybrid inverse problems[END_REF][START_REF] Bauman | Univalent solutions of an elliptic system of partial differential equations arising in homogenization[END_REF] shows that imposing a non-vanishing Jacobian constraint globally, and independently of the conductivity is possible: in practice, it suffices to verify that the Jacobian doesn't vanish when the conductivity is equal to one everywhere. Such an approach cannot be extended to three dimensions, or more general elliptic problems [START_REF] Capdeboscq | On a counter-example to quantitative Jacobian bounds[END_REF][START_REF] Wood | Lewy's theorem fails in higher dimensions[END_REF]. Suitable solutions can be constructed using complex geometrical optics solutions (CGOS) [START_REF] Bal | Hybrid inverse problems and internal functionals[END_REF][START_REF] Bal | Inverse diffusion from knowledge of power densities[END_REF][START_REF] Bal | Multi-source quantitative photoacoustic tomography in a diffusive regime[END_REF][START_REF] Bal | Inverse diffusion theory of photoacoustics[END_REF][START_REF] Bal | Reconstruction of coefficients in scalar second-order elliptic equations from knowledge of their solutions[END_REF], but this construction depends on the unknown coefficients, which must be smooth and isotropic. Another approach [START_REF] Alberti | Lectures on elliptic methods for hybrid inverse problems[END_REF][START_REF] Bal | Reconstruction of coefficients in scalar second-order elliptic equations from knowledge of their solutions[END_REF] is based on the Runge approximation [START_REF] Peter | A stability theorem for solutions of abstract differential equations, and its application to the study of the local behavior of solutions of elliptic equations[END_REF][START_REF] Malgrange | Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution[END_REF]. It is valid for all PDE for which a Unique Continuation Property holds, it allows for anisotropic coefficients, and the smoothness assumptions are precisely that for the Unique Continuation Property of the underlying equation, namely Lipschitz regularity or Hölder continuity depending on the equation. By combining this approach with the Whitney projection method, it is proved in [START_REF] Alberti | Combining the Runge approximation and the Whitney embedding theorem in hybrid imaging[END_REF] that the set of suitable solutions is open and dense, with explicit estimates on the number of solutions needed. A very related result, using a slightly different Whitney projection argument, was proved independently around the same time [START_REF] Cekić | The Calderón problem for the fractional Schrödinger equation with drift[END_REF]. Very recently, another approach was proposed, which showed that choosing random boundary values was possible [START_REF] Alberti | Non-zero constraints in elliptic pde with random boundary values and applications to hybrid inverse problems[END_REF].

All these methods rely on some regularity of the coefficients. In practical cases, it is desirable to consider the case of piecewise regular coefficients, each region corresponding to a different strata in geology, or a different organ in medical imaging.

In this work, we show how the approach introduced in [AC22] can be extended to the case of piecewise regular coefficients. We use existing unique continuation results within the regular parts of the domain, [START_REF] Browder | On approximation by solutions of partial differential equations[END_REF][START_REF] Peter | A stability theorem for solutions of abstract differential equations, and its application to the study of the local behavior of solutions of elliptic equations[END_REF][START_REF] Malgrange | Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution[END_REF], and introduce adequate quantities to cross over discontinuities. These constructions may prove useful for other models where the principal part is in divergence form.

In section §2 we detail our assumptions, state the main result of this article, and explain its proof, using intermediate results proved in the subsequent sections. In [START_REF] Alberti | Combining the Runge approximation and the Whitney embedding theorem in hybrid imaging[END_REF], Hölder continuity is crucially used in two instances: to show existence of solutions satisfying adequate constraints via the Runge Approximation, and to use the Whitney projection method, which is based on Sard's lemma, which itself uses Hölder continuity. As a result, our developments come in two parts. In section §3 we establish the existence a finite number of solutions such that the non vanishing Jacobian constraint is satisfied in the whole domain: this requires adapting existing unique continuation results to cross smooth interfaces. In section §4 we use the continuity of fluxes across interfaces resulting from the divergence structure of the principal part, via appropriate charting, to deduce nonvanishing properties of gradients up to the internal subregion boundaries.

Model, Assumptions and Main Results

2

.1. Problem definition. The ambient space is R d , with d ≥ 2. Assumption 1. Assume that Ω is an open, bounded and connected domain in R d with a C 2 boundary. Assume that Ω contains N ≥ 1 open connected disjoint sets Ω 1 , . . . , Ω N with C 2 bound- aries such that 0 < d ∪ N
ℓ=1 Ω i , R d \ Ω . Assume furthermore that for any i ∈ {1, . . . , N }, Ω i has a C 2 R d-1 boundary, and each connected component of its boundary is in common with at most one other Ω j , j ̸ = i.

We write Ω N +1 = Ω \ (∪ N i=1 Ω i ), and denote Γ ij = ∂Ω i ∩ ∂Ω j when this set is non-empty.

Additionally, assume that each Γ ij is sphere-like, that is, there exists an open neighbourhood

U ij of Γ ij , an open neighbourhood V ij of S d-1 , and a C 2 diffeomorphism ψ ij : U ij → V ij such that ψ ij (Γ ij ) = S d-1 .
Moreover, there exists d 0 > 0 such that

(2) ∀i, j ∈ {1, . . . , N + 1} 2 , i ̸ = j, if ∂Ω i \ Γ ij ̸ = ∅ then d (Γ ij , ∂Ω i \ Γ ij ) > d 0 .
An example of such a configuration is given in figure 1. Following the usual notation, given a set U we write

1 U : x → 1 if x ∈ U, 0 otherwise. Assumption 2. Given α ∈ (0, 1], for each i ∈ {1, • • • , N + 1} let A i ∈ C 0,α R d ; M s d (R
) be a symmetric-matrix-valued function which is uniformly elliptic, that is, there exists λ > 0 such that for all x ∈ Ω, and all

ζ ∈ R d , (3) λ |ζ| 2 < A (x) ζ • ζ. For each i ∈ {1, • • • , N + 1}, let b i ∈ C 0,α R d ; R d , c i ∈ C 0,α R d ; R d and q i ∈ C 0,α R d ; R , be such that max ∥A i ∥ C 0,α (R d ;R d×d ) , ∥b i ∥ C 0,α (R d ;R d ) , ∥c i ∥ C 0,α (R d ;R d ) , ∥q i ∥ C 0,α (R d ;R) ≤ λ -1 , where for n ≥ 1, ∥f ∥ C 0,α (R d ;R n ) = sup R d |f | + sup x̸ =y∈R d 0̸ =ζ∈R n |f (x) • ζ -f (y) • ζ| |x -y| |ζ| .
Finally, when d ≥ 3, we assume additionally that

A i ∈ C 0,1 R d ; M s d (R) 1 . We write, for all x ∈ Ω \ ∪ i,j Γ ij , (4) A = N +1 i=1 A i 1 Ω i , b = N +1 i=1 b i 1 Ω i , c = N +1 i=1 c i 1 Ω i , and q = N +1 i=1 q i 1 Ω i .
We consider a second order elliptic operator of the form L : u → -div (ADu + bu) + c • Du + qu, and the PDE under consideration is

(5) Lu = 0 in Ω.
Thanks to assumption 2 the weak solutions of equation (5) enjoy additional regularity within each subdomain Ω i , i = 1, • • • , N + 1. lemma 3 follows from classical regularity results, see e.g. [Gia93, theorem 5.19 and 5.20] for a modern exposition. The function space corresponding to equation ( 5) is

(6) H (Ω) := H 1 (Ω) ∩ C(Ω) ∩ ∪ N +1 i=1 C 1,α Ω i .
1 So that the Unique Continuation Property holds in each subdomain. This assumption can be relaxed when A kℓ i (x) 1≤k,ℓ≤d = (a i (x)δ kℓ ) 1≤k,ℓ≤d for all x.

Note that

H (Ω) ⊂ C 0,1 (Ω), but H (Ω) ̸ ⊂ C 1,α (Ω). If u ∈ H(Ω), then u| Ω i ∈ C 1,α Ω i but
Du may not be continuous on Ω.

Lemma 3. If u ∈ H 1 (Ω) is a weak solution of equation (5), such that there exists g ∈ C 1,α Ω such that u -g ∈ H 1 0 (Ω) and for any v ∈ H 1 0 (Ω) there holds

Ω ADu • Dv dx + Ω ub • Dv dx + Ω vc • Du dx + Ω quv dx = 0.
Then, u ∈ H (Ω) and

N +1 i=1 ∥Du∥ C 0,α (Ω i ) + ∥u∥ C 0,α (Ω i ) ≤ C ∥u∥ L 2 (Ω) + ∥g∥ C 1,α (Ω) ,
where the constant C depends on λ given in assumption 2 and

Ω i , i = {1, • • • , N + 1} only.
We are now in position to define the quantity of interest in this paper.

Definition 4 (Non-vanishing Jacobian solutions). Given P ≥ d + 1, we call {u x 0 i } P i=1 ∈ H (Ω) P (a group of) non-vanishing Jacobian solutions of equation (5) at

x 0 ∈ Ω \ ∪ i,j Γ ij , if
(1) for i = 1, . . . , P there holds Lu

x 0 i = 0 in Ω, (2) The solutions {u x 0 i } P i=1 ∈ H (Ω) P satisfy rank (J (u x 0 1 , • • • , u x 0 P ) (x 0 )) = d + 1, where J (u 1 , . . . , u P ) (x) :=   Du 1 . . . Du P u 1 . . . u P   (x) =   ∂ 1 u 1 . . . ∂ d u 1 . . . . . . . . . ∂ 1 u P . . . ∂ d u P u 1 . . . u P   (x) .
Remark 5. Thanks to lemma 3, pointwise values of J (u x 0 1 , • • • , u x 0 P ) are well defined at any x ∈ Ω \ ∪ i,j Γ ij . The use of the word 'Jacobian' for the quantity J may seem abusive. Indeed one would expect a Jacobian to be   Dv 1 . . .

Dv d   =   ∂ 1 v 1 . . . ∂ d v 1 . . . . . . . . . ∂ 1 v d . . . ∂ d v d   , for some function v 1 , • • • , v d .
It turns out that the slightly generalised Jacobian we consider is a natural quantity to consider in this problem, to take into account the behaviour of solution across interfaces. On the other hand, from a family of non-vanishing Jacobian solutions, one can extract a subfamily u

x 0 i 1 , • • • , u x 0 i d such that det Du x 0 i 1 , • • • , Du x 0 i d (x 0 ) ̸ = 0,
so it encompasses non-vanishing Jacobian constraints for the traditional definition of a Jacobian.

Following the strategy introduced in [AC22] we define the admissible set for an integer P

A(P ) := (u 1 , u 2 , • • • , u P ) ∈ H(Ω) P : ∀x ∈ Ω \ ∪ i,j Γ ij , (u 1 , u 2 , • • • , u P ) are non vanishing Jacobian solutions} .
For a geometrical reason that will be discussed later, we introduce the notation

d ⋆ = d when d = 2, 4, 8 d + 1 otherwise when d ≥ 3.
2.2. Main result. The main result of this article is the following. Theorem 6. Under assumption 1 and assumption 2, when P ≥ d+d ⋆ +1 α , A (P ) is an open and dense subset of

{(u 1 , • • • , u P ) ∈ H (Ω) P : Lu i = 0 ∈ D ′ (Ω), i = 1, • • • , P }, where H(Ω) is defined in equation (6).
Remark. This theorem is an extension to the piecewise regular context [AC22, Theorem 2.3]. In terms of the result itself, the number P obtained in [AC22] is 2d α , thus our result requires a slightly larger number than the regular case; however the number of subdomain where the coefficients are regular does not play a role.

A careful reader comparing [AC22, Theorem 2.3] and theorem 6 might notice that our result applies to the whole domain, instead of a compact subset. Another simplification is that we need not assume that the Dirichlet (or Neuman or Robin) boundary value problem associated to (5) is well posed for our result to hold.

The proof is done in several steps.

Theorem 7. For any σ > 0 there exists ε > 0 such that for any

x ∈ Ω \ ∪ i,j Γ ij , there exists d + 1 solutions denoted as u x 1 , u x 2 , • • • , u x d+1 such that u x i ∈ H 1 (Ω) and Lu x i = 0 in Ω for i ∈ {1, 2, • • • , d + 1}
, and there holds

(7) det J u x 1 , u x 2 , • • • , u x d+1 (y) = det   ∂ 1 u x 1 • • • ∂ d u x 1 u x 1 . . . . . . . . . . . . ∂ 1 u x d+1 • • • ∂ d u x d+1 u x d+1   (y) > σ for any y ∈ B (x, ε) ∩ Ω j , j ∈ {1, . . . , N + 1}.
This result is proved in section §3. It does not follow directly from classical unique continuation arguments, because of the discontinuous nature of the coefficients of equation (5).

Choose σ = 1, and let ε be the corresponding ball radius. We may extract a finite cover of Ω from

∪ x∈Ω\∪ i,j Γ ij B (x, ε), of cardinality smaller than, say, (ε -1 diam (Ω)) d + 1. As a result, (8) A diam (Ω) ε d + 1 ̸ = ∅.
To reduce the cardinality of the required group of non-vanishing Jacobian solutions, and to prove the density property we announced, we use a Whitney reduction lemma. This strategy was used in [START_REF] Alberti | Combining the Runge approximation and the Whitney embedding theorem in hybrid imaging[END_REF], based on a method introduced in [GW75], and used the Hölder continuity of the Jacobian map J. In our setting, J may be discontinuous across interfaces Γ ij .

On the other hand, because of the divergence form of the principal part of the elliptic operator L, a mixed-type (for lack of a better word) Jacobian map of the form

(A∇u • h 1 + b • h 1 u, ∇u • h 2 , • • • , ∇u • h d , u) , with appropriately chosen (h 1 , • • • , h d ) ∈ C 0,1 Ω; R d×d is continuous.
Proposition 8. There exists a family of vector-valued functions

F = f 1 , • • • , f d ⋆ ∈ C 0,1 Ω; R d d ⋆ , such that (1) For every x ∈ Ω, there holds rank (f 1 , • • • , f d ⋆ ) (x) = d. (2) On each Γ ij , |f 1 | = 1, f 1 is normal to Γ ij , and f 1 • f j = 0 for any j ≥ 2.
(3) For any u ∈ H (Ω) weak solution of equation (5), the map

(9) J f (u, F) := ((ADu + bu) • f 1 , Du • f 2 , • • • , Du • f d ⋆ , u) satisfies J f (u, F) ∈ C 0,α Ω; R d ⋆ +1 .
This proposition is proved in section §4.

Remark. The vector f 1 can be thought of as the extension of the normal vector and To untangle the dependence of J f on u and F, we reformulate J f as follows.

f 2 , • • • , f d ⋆
Proposition 9. We note P d,d+1 ∈ R d×(d+1) the projection from R d+1 to R d given by P d,d+1 is such that

(P d,d+1 ) ij = δ ij . We note E d+1,d the extension from R d to R d+1 given by E d+1,d is such that (E d+1,d ) ij = δ ij . Set T : (Ω \ ∪ ij Γ ij ) × R d+1 → L R (d+1)×(d ⋆ +1) (x, ζ 1 , • • • , ζ d ⋆ +1 ) → A T (x)P d,d+1 ζ 1 P d,d+1 ζ 2 • • • P d,d+1 ζ d ⋆ P d,d+1 ζ d ⋆ +1 b(x)P d,d+1 ζ 1 0 • • • 0 1 For any x ∈ Ω \ ∪ ij Γ ij , and for any (ξ 1 , • • • , ξ d ⋆ ) ∈ R d d ⋆ there holds (10) rank (T (x, E d+1,d ξ 1 , • • • , E d+1,d ξ d ⋆ , e d+1 )) = rank (ξ 1 , • • • , ξ d ⋆ ) + 1.
Furthermore, we have

J f (u, F) = (∂ 1 u, • • • , ∂ d u, u) T (x, E d+1,d f 1 , • • • , E d+1,d f d ⋆ , e d+1 ) ,
where J f is given by equation (9).

Proof. The last column of

T (x, E d+1,d ξ 1 , • • • , E d+1,d ξ d ⋆ , e d+1
) is e d+1 ̸ = 0. Together with the fact that P d,d+1 E d+1,d = I d , the identity matrix in R d , the first d ⋆ columns are

A T (x)ξ 1 ξ 2 • • • ξ d ⋆ b(x)ξ 1 0 • • • 0 Thanks to the uniform ellipticity of A, A T ξ 1 • ξ 1 > λ |ξ 1 | 2
and equation (10) follows. The identity involving J f is straightforward. □

The Whitney reduction argument is as follows.

Lemma 10. Given P ∈ N large enough so that A (P ) ̸ = ∅, define

F : Ω \ ∪ i,j Γ ij × R d ⋆ +1 → R P (x, ζ) → F x ζ (11)
where

F x ζ :=   (∂ 1 u 1 , • • • , ∂ d u 1 , u 1 )
. . .

(∂ 1 u P , • • • , ∂ d u P , u P )   T (x, E d+1,d f 1 , • • • , E d+1,d f d ⋆ , e d+1 ) ζ, with {u 1 , • • • , u P } ∈ A (P ). Then F x has rank d + 1. For P > d+d ⋆ +1
α , and a ∈ R P -1 , let P a be the map from R P to R P -1 defined by P a (y) = (y 1 -a 1 y P , • • • , y P -1 -a P -1 y P )

for y = (y 1 , y 2 , • • • , y P ) ∈ R P . Let G = a ∈ R P -1 |P a • F x has rank d + 1 , then |R P -1 - G| Lebesgue = 0.
The proof of this lemma is given in A.3. We then translate this reduction result for J f into its counterpart for our original target map J. Lemma 11. Given any P > d+d ⋆ +1 α , and any

{u 1 , • • • , u P } ∈ A (P ), let G be the set of a = (a 1 , • • • , a P -1 ) ∈ R P -1 such that for all x ∈ Ω \ ∪ ij Γ ij there holds rank J (u 1 -a 1 u P , • • • , u P -1 -a P -1 u P ) (x) = d + 1. Then R P -1 \ G lebesgue = 0. Proof. Given F = {f 1 (x), • • • , f d ⋆ (x)} ∈ C 0,1 Ω; R d d ⋆
as defined in proposition 8, for x ∈ Ω \ ∪ ij Γ ij , let F x : R d ⋆ +1 → R P as given in equation (11). Thanks to lemma 10, we have rank

F x = d + 1 and for a.e a ∈ R P -1 , P a • F x has rank d + 1 which means rank   J f (u 1 -a 1 u P , F) . . . J f (u P -1 -a P -1 u P , F)   (x) = d + 1. Denote J = J (u 1 -a 1 u P , • • • , u P -1 -a P -1 u P ) and T = T (x, E d+1,d f 1 , • • • , E d+1,d f d ⋆ , e d+1 ) so that   J f (u 1 -a 1 u P , F) . . . J f (u P -1 -a P -1 u P , F)   = J T .
Then, rank(J T ) = d + 1, and since rank (J T ) ≤ min (rank (J ) , rank(T )), we conclude that d + 1 ≥ rank (J ) ≥ d + 1, which proves that rank(J ) = d + 1. □

With the above lemma, we have now returned to a familiar setting, where no further complications due to the discontinuous nature of the coefficients arise. The rest of the proof of the theorem 6 now follows an argument similar to the one found in [AC22, Theorem 2.3], and a variant of the argument above to prove that the set A (P ) is open, which we include in section §C.

2.3. Application on an example. We revisit example 1, namely the reconstruction of the conductivity from the knowledge of the solution to illustrate how our result naturally extends existing results derived for uniformly regular parameters. In addition to assumption 1 and assumption 2, suppose that b = c = q = 0, A = γI d , where γ is scalar valued function, and α = 1.

Proposition. Given P > 0 such that, A (P ) ̸ = ∅, and {u 1 , • • • , u P } ∈ A (P ). For each ℓ ∈ {1, • • • , P }, u ℓ ∈ BV (Ω), and its singular part is a jump set. The union over ℓ of these jump sets is ∪ i,j Γ ij .

Given x ∈ Γ ij , let n (x) be the normal pointing from Ω i to Ω j , that is, x + tn (x) ∈ Ω i for t < 0 and x + tn (x) ∈ Ω j for t > 0, provided t is small enough.

Let u p be such that lim t→0

+ |Du p (x + tn)| = max k∈{1,••• ,P } lim t→0 + |Du k (x + tn)|. Then lim t→0 + ln |Du p (x + tn (x)) • n (x)| -ln |Du p (x -tn (x)) • n (x)| = -[ln γ (x)] ij , where [ln γ (x)] ij = lim h→x h∈Ω j ln γ (h) -lim h→x h∈Ω i ln γ (h) .
The absolutely continuous part of D ln γ with respect to the Lebesgue measure is determined by Du 1 . . .

Du P D ln γ = ∆u 1 . . . ∆u P on Ω k , k = {1, • • • , N + 1} .
Remark. In particular, γ is uniquely determined up to a multiplicative constant.

Proof. Thanks to lemma 3, and proposition 8, there holds

J f (u ℓ , F) = (γDu ℓ • f 1 , Du ℓ • f 2 , • • • , Du ℓ • f d * , u ℓ ) ∈ C 0,1 (Ω) .
Because rank F = d the discontinuities of Du ℓ are included in the Γ ij . For any given ℓ, it may not correspond exactly, to the entire ∪ i,j Γ ij since Du ℓ • f 1 may possibly vanish on these interfaces; however,

rank [J f (u 1 , F) , • • • , J f (u P , F)] (x) = d + 1 for all x ∈ Ω, thus in particular, rank [(γDu 1 • f 1 , • • • , γDu P • f 1 )] (x) = 1 on ∪ i,j Γ ij , thus the set is indeed the whole ∪ i,j Γ ij .
Equipped with all interfaces Γ ij , and a set of associated normal vectors, we may recover the jumps between the different regions. Thanks to proposition 8,

γDu ℓ • f 1 ∈ C 0,1 (Ω), and f 1 (x) = n(x) on each Γ ij . Since lim t→0 + |Du p (x + tn)| = max k∈{1,••• ,P } lim t→0 + |Du k (x + tn)|,
and not all such limit can be zero by since

(u 1 , • • • , u P ) ∈ A (P ), lim t→0 ln |(γDu p ) (x + tn) • n| ∈ R. In particular, lim t→0 + ln |(γDu p ) (x + tn) • n| -ln |(γDu p ) (x -tn) • n| = 0, and therefore lim t→0 + ln |Du p (x + tn) • n| -ln |Du p (x -tn) • n| = -[ln γ (x)] ij .
The final identity is obtained exactly as in the regular case. □

Proof of theorem 7

We construct a group of solutions which satisfies the Jacobian constraint locally within one subdomain Ω i and extend them one subdomain at a time. To do this rigorously, we introduce a construction map, and an associated index map, defining the order in which the extension is performed. For any permutation i :

{1, • • • , N + 1} → {1, • • • , N + 1}, we denote Ω I k = Ω i(1) ∪ • • • ∪ Ω i(k) for k ∈ {1, • • • , N + 1}.
We have the following definition: Definition 12. We say a permutation i :

{1, • • • , N + 1} → {1, • • • , N + 1} is a construc- tion map, if the following holds : For any j ∈ {2, • • • , N + 1}, there exists a unique k (j) ∈ {1, • • • , j -1} such that ∂Ω i(j) ∩ ∂Ω I j-1 = Γ i(j)i(k(j)) .
With i a construction map comes

j i = j i 1 , • • • , j i N +1
the map index of i defined as follows:

(1) for every

s ∈ {1, • • • , N + 1}, j i s ∈ {1, • • • , N + 1} N +1 , (2) The starting map j i 1 satisfies j i 1 = (i (1) , • • • , i (1)) (3) For any s ∈ {2, • • • , N + 1} we have (j i s ) i(ℓ) = j i s-1 i(ℓ) if ℓ ≤ s -1, (j i s ) i(ℓ) = i (ℓ)
if s = ℓ, and ℓ ≥ s + 1, (j i s ) i(ℓ) is defined inductively:

(j i s ) i(ℓ) = (j i s ) i(k(ℓ)) .
Thanks to assumption 1, for any i ∈ {1, • • • , N + 1}, we can always find a construction map i with i (1) = i. A simple example is: 1. Then i 1 : {1, 2, 3, 4, 5} → {2, 3, 1, 5, 4} and i 2 : {1, 2, 3, 4, 5} → {2, 1, 5, 4, 3} are two different construction maps with i 1 (1) = i 2 (1) = 2.

Example 13. Let Ω = Ω 1 ∪ Ω 2 ∪ Ω 3 ∪ Ω 4 ∪ Ω 5 in figure

We have

Remark.

j i 1 =            {2, 2, 2, 2, 2} {2, 2, 3, 2, 2} {1, 2, 3, 1, 1} {1, 2, 3, 5, 5} {1, 2, 3, 4, 5}            and j i 2 =            {2, 2, 2, 2, 2} {1, 2, 2, 1, 1} {1, 2, 2, 5, 5} {1, 2, 2, 4, 5} {1, 2, 3, 4, 5}            .
Note that for any construction map i, there holds

j N +1 i = {1, • • • , N + 1}. 5 1 2 3 4 Figure 1. A 4 inclusion configuration.
In the sequel, it would be convenient to assume that the Dirichlet problem boundary value problem associated to L is well posed in Ω, as it would allow us to control the norm of solutions by their boundary traces. In fact, well-posedness for a large family of subproblems will be used. We denote

L [i 1 , i 2 , • • • , i N +1 ] for i 1 , • • • , i N +1 ∈ {1, • • • , N + 1},
the second order elliptic operator with given coefficients A i j , b i j , c i j , q i j in Ω j . We shall use the following lemma.

Lemma 14. There exists some ϑ > 0 such that for any κ ∈ (0, ϑ), all Dirichlet boundary value problems associated with

L [i 1 , • • • , i N +1 ] + κ where i 1 , • • • , i N +1 ∈ {1, • • • , N + 1} are well-posed in Ω.
The proof of this lemma is given in A.1. For any κ ∈ (0, ϑ) fixed, we first prove theorem 7 for L + κ. To simplify notations, we write L for L + κ . Thanks to lemma 14, the Dirichlet boundary value problem associated with

L [i 1 , • • • , i N +1 ] is well-posed for any i 1 , • • • , i N +1 ∈ {1, • • • , N + 1}.
In the last step, we shall revert to the original operator, now L-κ, to prove theorem 7 using the smallness of κ and the regularity of the coefficients.

The proof of theorem 7 relies on a series of lemmas. To start the construction, we exhibit functions satisfying the requirement (7), which satisfy Lu x i = 0 in a neighbourhood of x. Lemma 15. Given j ∈ {1, • • • , N + 1}, for any σ ∈ (0, 1), there exists ε ∈ (0, 1) depending on λ, σ, d and κ given by lemma 14 only such that for any point x ∈ Ω \ ∪ i,j Γ ij , there exist

u x 1 , u x 2 , • • • , u x d+1 ∈ (H 1 (Ω)) d+1 such that for i ∈ {1, 2, • • • , d + 1}, L [j, • • • , j] u x i = 0 in Ω. Moreover there holds det J (u x 1 , u x 2 , • • • , u x d ) (y) > σ for any y ∈ B (x, ε) ∩ Ω.
Proof. Fix j = 1. Consider x = 0 ∈ Ω, and B x = B (0, 2diamΩ) a ball centred in x containing Ω. In the sequel C represents any constant depending on d and λ given in assumption 2, and κ given by lemma 14, only. Note that the coefficients of 

L [1, • • • , 1], namely A 1 , b 1 , c 1 , q 1 + κ,
L 0 : v → -div (A 1 (0) Dv + b 1 (0) v) + c 1 (0) • Dv + (q 1 (0) + κ) v. For i = 1, • • • , d, let u i = f (x i ) be the solution of constant coefficients ODE      -(A 1 ) ii (0) f ′′ (t) + (c i 1 (0) -b i 1 (0)) f ′ (t) + (q 1 (0) + κ) f (t) = 0 for all t ∈ R, f ′ (0) = 1, f (0) = 0.
Let u d+1 = f (x 1 ) be the solution of the following second-order constant coefficients ODE initial value problem:

     -(A 1 ) 11 (0) f ′′ (t) + (c 1 1 (0) -b 1 1 (0)) f ′ (t) + (q 1 (0) + κ) f (t) = 0 for all t ∈ R, f ′ (0) = 0, f (0) = 1.
We observe that, for all i ∈ {1, • • • , d + 1}, L 0 u i = 0 in Ω, and det J (u 1 , • • • , u d+1 ) (0) = 1. We now turn to solutions for the boundary value problem variable coefficients. Set V ε = B(0, 2ε) ⊂ B x for some ε ∈ 0, min 1 2 , 1 2 diamΩ to be chosen later. We shall construct

u x 1 , • • • , u x d+1 in H 1 loc (B x
), the required construction being obtained by taking the restriction to Ω. Consider the d + 1 Dirichlet problems

L [1, • • • , 1] v j = 0 in V ε , v j = u j on ∂V ε , j = 1, • • • , d + 1.
Note that this problem is well posed for ε small enough. Thanks to lemma 3, andδ 

v 1 , v 2 , • • • , v d+1 are well defined and in C 1,α (V ε ). Set for i = 1, • • • , d + 1, δ 1 i := -(A 1 (x) -A 1 (0)) Du i - (b 1 (x) -b 1 (0)) u i ,
2 i := (c 1 (x) -c 1 (0)) • Du i + (q 1 (x) -q 1 (0)) u i . Then, for each i, L [1, • • • , 1] (u i -v i ) = div δ 1 i + δ 2 i , and 
∥Du i -Dv i ∥ C 0,α Vε ≤ C δ 1 i C 0,α Vε + δ 2 i C 0,α Vε .
In particular, (13)

∥Du i -Dv i ∥ C 0, α 2 Vε ≤ C δ 1 i C 0,α Vε + δ 2 i C 0,α Vε diam (V ε ) α 2 ≤ Cε α 2 .
By an integration by part, and Poincaré's inequality (with a constant chosen to be valid for any ε ∈ (0, 1)),

∥Du i -Dv i ∥ L 2 Vε ≤ C δ 1 i L 2 Vε + C Poincaré δ 2 i L 2 Vε .
We compute, using the Hölder regularity of the parameters,

Vε δ 1 i 2 dx + Vε δ 2 i 2 dx ≤ Cε d+2α .
Inserting this estimate in (13) we obtain

∥u i -v i ∥ H 1 0 Vε ≤ Cε d/2+α
, and using that for any x, y ∈ V ε and any f , there holds ∥f ∥ ∞ ≤ ∥f ∥

C 0, α 2 Vε diam (V ε ) α 2 + |V ε | -1 2 ∥f ∥ L 2 Vε
, we conclude that

∥Du i -Dv i ∥ L ∞ (Vε) ≤ Cε α .
Because of assumption 2, the operator L [1, • • • , 1] enjoys a Unique Continuation Property on a B x . Thus, for each i there exists

u x i ∈ H 1 (B x ) ∩ C 1,α loc (B x ) such that L [1, • • • , 1] u x i = 0 on B x , and ∥u x i -v i ∥ L 2 (Vε) < ε. Thanks to lemma 3 this implies ∥Du x i -Dv i ∥ L ∞ (Bε) ≤ Cε α
, where B ε = B (0, ε), and in turn,

∥Du i -Du x i ∥ L ∞ (Bε) ≤ Cε α . Since det J is multi-linear, det J (u 1 , • • • , u d+1 ) -J u x 1 , • • • , u x d+1 ≤ (d + 1) d+1 i=1 |Du i | + |Du x i | d max 1≤i≤d+1 |Du i -Du x i | Therefore sup Bε det J (u 1 , • • • , u d+1 ) -J u x 1 , • • • , u x d+1 ≤ Cε α . Since det J (u 1 , u 2 , • • • , u d+1 ) (0) = 1
, for any σ ∈ (0, 1) there exists ε, depending λ, d, σ and κ only such that min

Bε det J u x 1 , • • • , u x d+1 > σ. □
The following lemma extends a solution across an interface.

Lemma 16. Let i be a construction map as defined in definition 12, and j i the associated index map. Given k ∈ {1, . . . , N + 1}, write

Γ k = ∂Ω I k-1 ∩ ∂Ω i(k) , and L k = L j i k . Let W k = ∪{ℓ:(ji k ) ℓ =(j i k-1 ) ℓ } Ω ℓ .
In other words, W k is the open set where coefficients of L k are almost everywhere the same as those of L k-1 . Suppose that u ∈ H

1 (W k ) is a weak solution of L k u = L k-1 u = 0 in W k . For any δ > 0, there exists an open set U , such that W k ∪ Γ k ⊂ U ⊂ Ω and v ∈ H 1 (U ) such that L k v = 0 in U and ∥u -v∥ H 1 (W k ) < δ.
Proof. Suppose that Γ k = Γ 1i(k) , that is, the subdomain within Ω I k for whom Γ k is a connected component of its boundary is Ω 1 . Write i(k) = k, and

ω 1 = Ω 1 ∩{x : d (x, Γ k ) < d 0 }
, where d 0 is given by equation (2). Thanks to assumption 1, there exists a C 2 diffeomorphism

ψ k : U 1,k → V 1,k , Γ k → ∂B 1 , where U 1,k and V 1,k are neighbourhoods of Γ k and ∂B 1 . Take η > 0 small enough such that ψ -1 k (∂B 1-η ) ⊂ U 1,k ∩ ω 1 . Take t ∈ 1 2 , 1 and set U t := ψ -1 k x : tx ∈ ∂B 1 \ ∂B 1-η = ψ -1 k x : x ∈ ∂B 1 t \ ∂B 1 t (1-η) ⊂ U 1,k .
An example of such a construction is illustrated in figure 2. In what follows, C is any constant, which may change from line to line, depending on Ω, Ω 1 , d, λ, κ andψ 

-1 k C 2 . Write Y := U t ∩ Ω 1 , G := U t ∩ Ω i(k) . Define u t (x) = u ψ -1 k (tψ k (x)) ∈ H 1 U t .
There exists some η 0 > 0, such that for any 0 < η < η 0 , and any t ∈ 1 2 , 1 there holds

(14) ∀u ∈ H 1 0 U t , ⟨L k u, u⟩ H -1 (U t ),H 1 0 (U t ) ≥ 1 3 λ ∥u∥ 2 H 1 0 (U t )
. We establish this claim in A.2. 1, this illustrates an extension across Γ 15 , the dashed line. The green area correspond U t 1,5 , with t = 1 10 . In this example, the Dirichlet problem is L [1, 2, 3, 5, 5] u = 0.

Consider the Dirichlet boundary value problem in

U t Lv = 0 in U t , v = u t on ∂U t ,
which is well-posed thanks to (14). We estimate

L u t -v , u t -v H -1 (U t )×H 1 (U t ) = Lu t , u t -v H -1 (U t )×H 1 (U t ) ≤ |J 0 | + |J 1 | + |J 2 | , where J 0 = Y AD u t -u •D u t -v + u t -u (b + c)•D u t -v +(q + κ) u t -u u t -v dx, J 1 = G ADu t • D u t -v + bu t • D u t -v + c • Du t u t -v + (q + κ) u t u t -v dx,
and

J 2 = - Γ k ADu t + bu t • n u t -v dS.
Thanks to the Hölder regularity of u and Du, see lemma 3,

u t (x) -u(x) = u ψ -1 k (tψ k (x)) -u ψ -1 k (ψ k (x)) ≤ C |1 -t| α ∥u∥ C 0,α (ω 1 ) , Similarly, Du t (x) -Du(x) ≤ C |1 -t| α ∥Du∥ C 0,α (ω 1 ) ,
and altogether

|J 0 | ≤ C |1 -t| α ∥u∥ C 1,α (ω 1 ) v -u t H 1 (U t ) . To estimate J 1 , we write |J 1 | ≤ C u t H 1 (G) v -u t H 1 (U t )
, and by interpolation,

u t H 1 (G) ≤ C ∥u∥ L ∞ (Ω 1 ) + ∥Du∥ L ∞ (Ω 1 ) |G| 1 2 ≤ C ∥u∥ L ∞ (Ω 1 ) + ∥Du∥ L ∞ (Ω 1 ) (1 -t) 1 2 .
Thus altogether, writing β = min α, 1 2 . (15)

|J 0 | + |J 1 | ≤ C ∥u∥ C 1,α (Ω 1 ) v -u t H 1 (U t ) |1 -t| β . Note that J 2 ≤ ∥(ADu + bu) • n∥ L 2 (Γ k ) u t -v L 2 (Γ k ) ≤ C ∥u∥ L ∞ (Ω 1 ) + ∥Du∥ L ∞ (Ω 1 ) u t -v L 2 (Γ k ) . (16) Note that for every x ∈ Γ k , ψ -1 k 1 t ψ k (x) ∈ ∂U t . Since v = u t on ∂U t , we find on Γ k u t -v (x) = u t -v ψ -1 k • ψ k (x) -u t -v ψ -1 k 1 t ψ k (x) = 1 1 t D u t -v • ψ -1 k (θx) • xdθ,
Applying Cauchy-Schwarz, we find

u t -v (x) ≤ C |1 -t| 1 2 1 1 t D u t -v • ψ -1 k (θx) 2 dθ 1 2
, and integrating over Γ k

u t -v 2 L 2 (Γ k ) ≤ C |1 -t| Γ k 1 1 t D u t -v • ψ -1 k (θx) 2 dθdx ≤ C |1 -t| u t -v 2 H 1 (G) . ( 17 
)
In turn, combining (15), ( 16) and ( 17),

L u t -v , u t -v ≤ C |1 -t| β ∥u∥ C 1,α (Ω 1 ) u t -v H 1 (U t ) .
Thanks to (14), this implies

u t -v H 1 (U t ) ≤ C |1 -t| β ∥u∥ C 1,α (Ω 1 ) .
For every fixed t consider the following system (18)

             L k S = 0 in Ω \ ψ -1 k ∂B 1 t (1-η) S = 0 on ∂Ω [S] = u -v on ψ -1 k ∂B 1 t (1-η) [(ADS + bS) • n] = (ADu + bu) • n -(ADv + bv) • n ψ -1 k ∂B 1 t (1-η)
, Where [•] denotes the jump across the boundary, thanks to lemma 14, this problem is well posed, and there exists some

S ∈ H 1 Ω \ ψ -1 k ∂B 1 λ (1-η)
solution of equation ( 18). Moreover there holds:

∥S∥ H 1 Ω\ψ -1 k ∂B 1 λ (1-η) ≤ C ∥u -v∥ H 1/2 ψ -1 k ∂B 1 λ (1-η) + ∥(AD (u -v) + b (u -v)) • n∥ H -1/2 ψ -1 k ∂B 1 λ (1-η) ≤ C ∥u -v∥ H 1 (Y ) .
Using the triangle inequality, this yields,

∥S∥ H 1 Ω\ψ -1 k ∂B 1 λ (1-η) ≤ C u t -u H 1 (Y ) + u t -v H 1 (Y ) ≤ C (1 -t) β ∥u∥ C 1,α (Ω 1 ) . Take ṽt = v1 U t +1 (W k \Ω 1 )∪ψ -1 k B 1 t (1-η) u+S1 Ω\ψ -1 k ∂B 1 t (1-η)
. By construction, we have ṽt ∈

H 1 (W k ∪ Γ k ∪ U t ) and there holds ∥ṽ t -u∥ H 1 (W k ) ≤ C (1 -t) β ∥u∥ C 1,α (Ω 1 )
. The conclusion follows choosing t close enough to 1, and

U = W k ∪ Γ k ∪ U t . □
The third step is to extend the solution to the whole Ω.

Lemma 17. With the notations of ( 16), for any ε > 0, there exists a weak solution of

v ∈ H 1 (Ω) of L k v = 0 in Ω such that ∥v -u∥ H 1 (U ) < ε.
Proof. Note that on V k = Ω \ W k the coefficients of L k are not discontinuous, and the Unique Continuation Property holds. As a result there exists a sequence of functions

(u n ) n∈N ∈ H 1 (V k ) N such that L k u n = 0 on V k and ∥u n -u∥ H 1 (U ∩V k ) ≤ 1 n .
which implies that

∥u n -u∥ H 1/2 (∂W k ) ≤ ∥u n -u∥ H 1/2 (∂(U ∩V k )) ≤ ∥u n -u∥ H 1 (U ∩V k ) ≤ C n .
Let ν be the outer normal vector of ∂W k and let

F 1 : H 1 (W k ) → H -1/2 (∂W k ) u → Ã| W k Du + b| W k u • ν
and

F 2 : H 1 (U \ W k ) → H -1/2 (∂W k ) u → Ã| V k Du + b| V k u • ν Since u ∈ H 1 (U ) is a weak solution of L k u = 0 in U , there holds F 1 (u) = F 2 (u) on ∂Ω I k . As a result, ∥F 1 (u) -F 2 (u n )∥ H -1/2 (∂W k ) ≤ ∥F 2 (u) -F 2 (u n )∥ H -1/2 (∂W k ) ≤ ∥u n -u∥ H 1 (U ∩V k ) ≤ C n .
Consider the following system in Ω

         L k s n = 0 in Ω \ ∂W k s n = 0 on ∂Ω [s n ] = u -u n on ∂W k [(ADs n + bs n ) • ν] = F 1 (u) -F 2 (u n ) on ∂W k . (19) 
lemma 14 implies that there exists s n ∈ H 1 (Ω \ ∂W k ), a weak solution of equation ( 19) and there holds (20)

∥s n ∥ H 1 (Ω\∂W k ) ≤ C ∥F 1 (u) -F 2 (u n )∥ H -1/2 (∂W k ) + ∥u -u n ∥ H 1/2 (∂W k ) ≤ C n . Let v n = s n 1 Ω\∂W k + u1 U + 1 V k u n . By construction, v n ∈ H 1 (Ω)
is a weak solution of equation (5). Moreover, we have

∥v n -u∥ H 1 (U ) ≤ ∥s n ∥ H 1 (Ω\∂W k ) + ∥u n -u∥ H 1 (U \W k ) ≤ C n ,
and the conclusion follows. □

We now turn to the proof of theorem 7.

(2, 2, 2, 2, 2)

5 1 2 3 4 (2, 2, 3, 2, 2) 5 1 2 3 4 (1, 2, 3, 1, 1) 5 1 2 3 4
(1, 2, 3, 5, 5)

5 1 2 3 4
(1, 2, 3, 4, 5) 5 1 2 3 4 Figure 3. A construction following the construction map i : {1, 2, 3, 4, 5} → {2, 3, 1, 5, 4}. Every colour represents one set of regular coefficients. At each step, all the subdomains within which the construction has not been performed have the same parameters as the subdomain where the solution is constructed.

Proof of theorem 7. Given σ > 0 and x ∈ Ω \ ∪ i̸ =j Γ ij , we choose a construction map i ∈ S N +1 such that the starting point x is in the first set, x ∈ Ω I 1 . Using lemma 15 for the first step, and then applying lemma 16 and lemma 17 inductively, with

L 1 = L j i 1 . . . L N +1 = L j i N +1 = L,
the conclusion follows. □

We now turn to original operator (which is represented by L original = L -κ), to prove theorem 7.

Proof of theorem 7 for L original . Thanks to theorem 7 for L = L original + κ there holds Claim 18. For any σ > 0, there exists ε > 0 such that for any x ∈ Ω \ ∪ i̸ =j Γ ij there exists d + 1 solutions denoted as

u x 1 , u x 2 , • • • , u x d+1 such that u x i ∈ H 1 (Ω) and Lu x i = 0 in Ω for i ∈ {1, 2, • • • , d + 1}, and det J u x 1 , u x 2 , • • • , u x d+1 ( 
y) > σ, for any y ∈ B (x, ε) ∩ Ω j , j ∈ {1, . . . , N + 1} . If the Dirichlet boundary value problem associated with L original is well-posed, then for any i ∈ {1, . . . , d + 1} and any x ∈ Ω \ ∪ i̸ =j Γ ij , consider the following Dirichlet boundary value problem:

L original v x i = 0 in Ω v x i = u x i on ∂Ω. Then, v x i -u x i ∈ H 1 0 (Ω) satisfies L original (v x i -u x i ) = κu x i
in Ω, and thanks to the wellposedness of L original , we have ∥v x i -u x i ∥ H 1 0 (Ω) ≤ Cκ, where the finite constant C is independent of x. Thanks to the regularity of L original in Ω j , we have ∥v x i -u x i ∥ C 1,α (Ω j ) ≤ Cκ. Take κ small enough (since κ ∈ (0, ϑ) is chosen arbitrarily ) and take a corresponding ε given in claim 18 for L, thanks to the multi-linearity of det J, we conclude that

det J v x 1 , u x 2 , • • • , v x d+1 (y) > σ for any y ∈ B (x, ε) ∩ Ω j , j ∈ {1, . . . , N + 1}.
If the Dirichlet boundary value problem associated with L original is not well-posed, the kernel of the solution map, written ker (L original ) to avoid introducing additional notations, is finite dimensional, and not empty. For any x ∈ Ω \ ∪ i̸ =j Γ ij and any i ∈ {1, . . . , N + 1}, take

u x i = u 1 + u 2 where u 1 ∈ ker (L original ) ⊂ H 1 0 (Ω) ⊂ L 2 (Ω) , u 2 ∈ ker (L original ) ⊥ ⊂ L 2 (Ω)
. By the Fredholm alternative, there exists a unique

v 2 ∈ H 1 (Ω) such that v 2 -u 2 ∈ H 1 0 (Ω) ∩ ker (L original ) ⊥ satisfies L original (v 2 -u 2 ) = -L original u 2 = κu in Ω, v 2 -u 2 = 0 on ∂Ω. Furthermore, ∥v 2 -u 2 ∥ H 1 0 (Ω) ≤ Cκ. Choose v x i = u 1 +v 2 , which satisfies∥v x i -u x i ∥ H 1 (Ω) ≤ Cκ.
Taking κ small enough, thanks to the regularity of the coefficients in each subdomain and the multi-linearity of det J, we conclude that 

det J v x 1 , u x 2 , • • • , v x d+1 ( 
Lemma 20. Set h 1 = (x 1 , • • • , x d ) on S d-1 . When d = 2, 4, or 8, there exists {h 2 , • • • , h d } ∈ C 1 S d-1 ; R d d-1 such that (h 1 , h 2 , • • • , h d ) ∈ SO d S d-1
where SO d refers to the real unitary matrices with positive determinant.

Otherwise, d ≥ 3 there exists

{h 2 , • • • , h d+1 } ∈ C 1 S d-1 ; R d d such that (h 1 , h 2 , • • • , h d+1 ) ∈ SO d+1 S d-1 .
This lemma is proved in section §B. Proof. Let Π i be the geometric complement of Ω i , where i ∈ {1, • • • , N }. There exists a C 1,1 diffeomorphism H i : B 2 H i → Π i , which induces a C 0,1 bijection on the vector fields:

DH i : C 0,1 B 2 ; R d → C 0,1 Π i ; R d .
It is a map which maps SO d to SO d since the degree of H i is either 1 or -1 and moreover it maps the tangent vectors (respectively the normal vector) on the sphere to the tangent vectors (respectively the normal vector) on ∂Π i , which is the outer boundary of

Ω i . Take B r i ⊂ B 2 ⊂ B r * i , 1 < r i < 2 < r * i , such that g H i( Br i ) + 1 = g Π i = g H i B r * i
and such that the genus of the Π i \ H i (B r i ) equals to the genus of H i B r * i \ Π i , and equals one. In particular any Ω j , j ̸ = i, contained in Π i are contained in H i (B r i ) and H i B r * i . Applying lemma 20 with R = 2, when d = 2, 4, 8 , there exists

{h 1 , • • • , h d } in B 2 a group of C 1 unit vector fields on ∂B 2 . We construct {f 1 , • • • , f d } ∈ C 0,1 H i B r * i \ H i (B r i ); SO d as follows. Criterion 21. (1) {f 1 , • • • , f d } = {DH i (h 1 ) , • • • , DH i (h d )} on ∂Π i . (2) On H i (∂B r i ) and H i ∂B r * i , let {f 1 , • • • , f d } = {e 1 , • • • , e d }.
In other words, we have

(f 1 , • • • , f d ) = I d on H i (∂B r i ) and H i ∂B r * i . (3) Since SO d is path connected, at each x ∈ ∂B r i there exists S ∈ C 0,1 (∂B r i × [r i , r * i ] ; SO d ) a path such that S (x, r i ) = DH -1 i (I d ), S (x, 2) = (h 1 , • • • , h d ) 2 x ∥x∥ and S (x, r * i ) = DH -1 i (I d ). There holds |S (x, r) -S (x, r ′ )| ≤ C(d) r * i -r i |r -r ′ | , and 
∥D x S (x, r)∥ ∞ ≤ C(d) DH -1 i ∞ ∥(Dh 1 , • • • , Dh d )∥ ∞ . (4) For any r ∈ (r i , r * i ), set (f 1 , • • • , f d ) H i r x ∥x∥ = DH i (S x (r)) := DH i (S (x, r)).
In the construction above, for any

x ∈ H i B r * i \ H i (B r i ), we have (f 1 , • • • , f d ) (x) ∈ SO d . Moreover since (f 1 , • • • , f d ) is constructed by a composition of Lipschitz maps, {f 1 , • • • , f d } is of class C 0,1 in H i B r * i \ H i (B r i ) . Indeed, ∥f k (H i (x)) -f k (H i (y))∥ ≤ f k H i ∥x∥ x ∥x∥ -f k H i ∥y∥ + ∥x∥ 2 x ∥x∥ + f k H i ∥x∥ + ∥y∥ 2 x ∥x∥ -f k H i ∥y∥ + ∥x∥ 2 y ∥y∥ + f k H i ∥x∥ + ∥y∥ 2 y ∥y∥ -f k H i ∥y∥ y ∥y∥ = DH i (S x (∥x∥)) -DH i S x ∥y∥ + ∥x∥ 2 (21) + DH i (S y (∥y∥)) -DH i S y ∥y∥ + ∥x∥ 2 + DH i S x ∥y∥ + ∥x∥ 2 -DH i S y ∥y∥ + ∥x∥ 2 ≤ C (d) 1 r * i -r i + DH -1 i ∞ ∥(Dh 0 , • • • , Dh d-1 )∥ ∞ ∥x -y∥ . Note that for each i ∈ {1, • • • , N }, we have (f 1 , • • • , f d ) = I d on ∂ H i B r * i \ H i (B r i ) . Set (22) (f 1 , • • • , f d ) = I d in Q := Ω \ ∪ N i=1 H i B r * i \ H i (B r i )
In each

H i B r * i \ H i (B r i ), {f 1 , • • • , f d } is of class C 0,1 , continuous on ∂ H i B r * i \ H i (B r i )
and Lipschitz continuous in Q thanks to 22. Thus it is of class C 0,1 in the whole Ω.

To conclude the proof of proposition 8, we now check that for every u ∈ H (Ω), such that Lu = 0 in Ω, there holds J f (u, F) = ((A∇u + bu)

• f 1 , ∇u • f 2 , • • • , ∇u • f d , u) is of class C 0,α in Ω. Note that for each H i B r * i \ B r i , there exists only one j ∈ {1, • • • , N + 1}\ {i} such that Ω j ∩ H i B r * i \ B r i ̸ = ∅ and Γ ij = H i (∂B 2 ) ⊂ H i B r * i \ B r i .
Thanks to the continuity of the flux (ADu + bu) • n = (ADu + bu) • f 1 on Γ ij , the Lipschitz continuity of F ,the C 0,α continuity of Du, u, A and B in Ω i or Ω j , we conclude that J f (u, F) is of class C 0,α in each H i B r * i \ B r i and Q. Moreover, we note that on each ∂H i B r * i \ B r i , the coefficients A and b are uniformly C 0,α , as they are in the interior of Ω i or Ω j . Therefore, we have

J f (u, F) is of class C 0,α on ∂Q \ ∂Ω = ∪ i ∂H i B r * i \ B r i (Note that for different k and s, ∂H k B r * k \ B r k ∩ ∂H s B r * s \ B rs = ∅). In particular it is continuous. Thus J f (u, F) is of class C 0,α on Ω. □ 4.2.
Proof of Proposition 8 for other dimensions.

Proof. Let Π i be the geometric complement of Ω i , where i ∈ {1, • • • , N }. There exists a C 1,1 diffeomorphism H i : B 2 H i → Π i , which induces a C 0,1 bijection on the vector fields:

DH i : C 0,1 B 2 ; R d → C 0,1 Π i ; R d .
It is a map which maps SO d to SO d since the degree of H i is either 1 or -1 and moreover it maps the tangent vectors (respectively the normal vector) on the sphere to the tangent vectors (respectively the normal vector) on ∂Π i , which is the outer boundary of Ω

i . Take B r i ⊂ B 2 ⊂ B r * i , 1 < r i < 2 < r * i , such that g H i( Br i ) + 1 = g Π i = g H i B r * i
and such that the genus of the Π i \ H i (B r i ) equals to the genus of H i B r * i \ Π i , and equals one. In particular any Ω j , j ̸ = i, contained in Π i are contained in H i (B r i ) and

H i B r * i . For any M = (m ij ) (d+1)×(d+1) ∈ R d+1 × R d+1 , we write P (M ) = (m i,j ) (d+1)×d . Thanks to lemma 20, we construct {f 1 , • • • , f d+1 } ∈ C 0,1 H i B r * i \ H i (B r i ); R d d+1
with rank equals to d as follows:

(

1) {f 1 , • • • , f d+1 } = {DH i (h 1 ) , • • • , DH i (h d+1 )} on ∂Π i (2) On H i (∂B r i ) and H i ∂B r * i , let {f 1 , • • • , f d+1 } = P (I d+1 ) (3) There exists a C 0,1 path S : ∂B r i ×[r i , r * i ] → SO d+1 such that S(x, r i ) = DH -1 i (I d+1 ), S(2) = DH -1 i (H d (x)) (where H d is given in equation (28)) and S (r * i ) = DH -1 i (I d+1 ). For any r ∈ (r i , r * i ) and x ∈ ∂B r i , take (f 1 , . . . , f d ) (H i rx r i ) = P (DH i (S (x, r))). Since for any x ∈ ∂B r i and r ∈ [r i , r * i ], S (x, r) ∈ SO d+1 . We have rank S (x, r) = d + 1. Therefore, rank PS (x, r) = d. As before, we conclude that {f 1 , • • • , f d+1 } is also of class C 0,1 in H i B r * i \ H i (B r i ). Note that for each i ∈ {1, • • • , N }, we have (f 1 , • • • , f d+1 ) = P (I d+1 ) on ∂ H i B r * i \ H i (B r i ) . Set (23) (f 1 , • • • , f d+1 ) = P (I d+1 ) in Q := Ω \ ∪ N i=1 H i B r * i \ H i (B r i )
As we proved before, in each

H i B r * i \ H i (B r i ), {f 1 , • • • , f d } is of class C 0,1 . It is con- tinuous on ∂ H i B r * i \ H i (B r i )
and Lipschitz continuous in Q thanks to equation (23), and therefore of C 0,1 globally on Ω.

The rest of the proof is identical to that given when d = 2, 4 or 8. □

Dirichlet boundary value problem associated with L

i := L [i 1 , • • • , i N +1
] is not well-posed, there exists a non-zero solution of

L i u = 0 in Ω u = 0 on ∂Ω Consider (L i + M I d ) -1 as a linear operator from L 2 (Ω) to L 2 (Ω) ∩ H 1 0 (Ω). The ill- posedness of L i implies that M -1 ∈ σ (L i + M I d ) -1 . Thanks to the Rellich-Kondrachov embedding, (L i + M I d ) -1 : L 2 (Ω) → L 2 (Ω) is a compact linear operator acting on L 2 (Ω), therefore M -1 is an isolated eigenvalue. That is, there exists ℵ 1 [i 1 ,••• ,i N +1 ] > 0 such that B M -1 , ℵ 1 [i 1 ,••• ,i N +1 ] \ {M -1 } ⊂ ρ (L i + M I d ) -1 . When the Dirichlet boundary value problem is well-posed, M -1 ∈ ρ (L i + M I d ) -1 . The resolvent is open, thus there exists some ℵ 2 [i 1 ,••• ,i N +1 ] > 0 such that B M -1 , ℵ 2 [i 1 ,••• ,i N +1 ] ⊂ ρ (L i + M I d ) -1 . Now define ℵ = min i 1 ,••• ,i N +1 ∈{1,••• ,N +1} ℵ 1 [i 1 ,••• ,i N +1 ] , ℵ 2 [i 1 ,••• ,i N +1 ]
, and ϑ = ℵM 2 1 + ℵM .

We verify that for every κ ∈ (0, ϑ) M -1 ̸ ∈ σ (L i + κ + M ) -1 , which in turn means that L i + κ is well posed. □

A.2. Proof of lemma 22.

Fact. There exists some η 0 > 0, such that for any 0 < η < η 0 , and any t ∈ 1 2 , 1 there holds

(24) ∀u ∈ H 1 0 U t , ⟨L k u, u⟩ H -1 (U t ),H 1 0 (U t ) ≥ 1 3 λ ∥u∥ 2 H 1 0 (U t ) .
Proof. Indeed, we have, for any t > 0,

⟨L k u, u⟩ = U t A∇u • ∇u + u (b + c) • ∇u + qu 2 dx ≥ λ ∥∇u∥ 2 L 2 (U t ) -2λ -1 U t |∇u| |u| dx -λ -1 ∥u∥ 2 L 2 (U t ) ≥ λ 2 ∥∇u∥ 2 L 2 (U t ) - λ 2 + 2 λ 3 ∥u∥ 2 L 2 (U t ) . (25) 
To address the lower order term we rely on lemma 22. Since U t = ψ -1 k B1 t \ B1

t (1-η) , by changing variables, lemma 22 shows that for any u ∈ H 1 0 (U We note that the first eigensolution is radial, u = f st (|r|), and f st ∈ C ∞ ((t, s)) satisfies 1 r d-1 ∂ r r d-1 ∂ r f st = ρ 1 st f in (t, s) f st (s) = f st (t) = 0.

By the change of variable r → r 2 -r 1 s-t (r -t)+r 1 , we find that f st (r) = f r 2 r 1 r 1 -r 2 s-t (r -t) + r 2 , and ρ 1 st = r 2 -r 1 s-t 2 ρ 1 r 2 r 1 .

ρ 1 st = inf (2) When d = 4, ∀ (x 1 , x 2 , x 3 , x 4 ) ∈ ∂B 1 , set h 1 = (x 1 , x 2 , x 3 , x 4 ) , h 2 = (-x 2 , x 1 , -x 4 , x 3 ) , h 3 = (x 3 , -x 4 , -x 1 , x 2 ) , h 4 = (x 4 , x 3 , -x 2 , -x 1 ) .

(3) When d = 8, ∀ (x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 , x 8 ) ∈ ∂B 1 set h 1 = (x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 , x 8 ) , h 2 = (-x 2 , x 1 , -x 4 , x 3 , -x 6 , x 5 , x 8 , -x 7 ) , h 3 = (-x 3 , x 4 , x 1 , -x 2 , -x 7 , -x 8 , x 5 , x 6 ) , h 4 = (-x 4 , -x 3 , x 2 , x 1 , -x 8 , x 7 , -x 6 , x 5 ) , h 5 = (-x 5 , x 6 , x 7 , x 8 , x 1 , -x 2 , -x 3 , -x 4 ) , h 6 = (-x 6 , -x 5 , x 8 , -x 7 , x 2 , x 1 , x 4 , -x 3 ) , h 7 = (-x 7 , -x 8 , -x 5 , x 6 , x 3 , -x 4 , x 1 , x 2 ) , h 8 = (-x 8 , x 7 , -x 6 , -x 5 , x 4 , x 3 , -x 2 , x 1 ) .

The second part of lemma 20 follows from the following proposition. Set

h i = (x 1 x d+2-i -δ 1,d+2-i , • • • , x d x d+2-i -δ d,d+2-i ) ,
where δ i,j is the Kronecker symbol. We have ⟨h i , x⟩ = d j=1 x 2 j x d+2-i -x d+2-i = 0, for i ≥ 2, thus each h i is tangent to S d-1 . Take (28)

H d =     h 1 1 h 2 x d . . . . . . h d+1 x 1     (d+1)×(d+1)
, that is, .

H d =      
which implies rank (J f (v 1 , • • • , v P ⋆ )) = d + 1. Thanks to the relation between J and J f , we conclude that rank (J (v 1 , • • • , v P ⋆ )) = d + 1 which implies v ∈ A (P ⋆ ). □
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  ) • Du = -∆u in Ω.Suppose given d measurements u 1 , . . . , u d . By (1) we obtain(D(lnγ)) T Du 1 , • • • , Du d = -∆u 1 , • • • , ∆u d in Ω.If det Du 1 , • • • , Du d > 0 holds true, then ∇(lnγ), and in turn γ up to a multiplicative constant, are explicitly readable from the data by inverting the matrix Du 1 , • • • , Du d .

  as the tangent vectors on each boundary Γ ij . Indeed, since A and b are only piecewise regular, only the normal flux is continuous (and, in turn, Hölder continuous) across interfaces between any Ω i and Ω j . This forces f 2 , • • • , f d ⋆ to be tangent to the interface. A topological difficulty arises in all dimensions, except 2, 4 and 8, which requires the introduction of an extra element to obtain a full rank family of Lipschitz continuous tangent vectors. This classical result[START_REF] Bott | On the parallelizability of the spheres[END_REF][START_REF] Michel | Non-parallelizability of the n-sphere for n > 7[END_REF] is discussed further in section §B.

Figure 2 .

 2 Figure 2. For the example shown in figure1, this illustrates an extension across Γ 15 , the dashed line. The green area correspond U t 1,5 , with t = 1 10 . In this example, the Dirichlet problem is L [1, 2, 3, 5, 5] u = 0.

  y) > σ. □ 4. Proof Of Proposition 8 We recall the definition of the geometric complement of an open set Ω ⊂ R d , which is the smallest open set Π ⊂ R d such that Ω ⊂ Π and the genus of Π equals to zero. Definition 19. Given any open set U ⊂ Ω, we write g U = # {j ∈ {1, • • • , N + 1} : Ω j ⊂ U } which is the number of pieces contained in U . By construction, we have g Ω = N + 1.

4. 1 .

 1 Proof of Proposition 8 when d = 2, 4 or 8.

  Bs\Bt) for every u ∈ H 1 0 (B s \ B t ). □ A.3. Proof of lemma 10.Proof. We have  J f (u 1 , F) . . . J f (u P , F)   = J (u 1 , • • • , u P ) T T (x, E d+1,d f 1 , • • • , E d+1,d f d ⋆ , e d+1 ) .Thanks to proposition 8 there holds rank(f 1 , • • • , f d ⋆ ) = d. Furthermore (E d+1,d f 1 , • • • , E d+1,d f d ⋆ ) ∩ Re d+1 = {0} , thus proposition 9 shows that rank (T (x, E d+1,d f 1 , • • • , E d+1,d f d ⋆ , e d+1 )) = d + 1.

Proposition.

  There exists h 2 , • • • , h d+1 in C 1 S d-1 , R d d such that ⟨h i , x⟩ = 0, for i = 2, • • • , d + 1 and rank (x, h 2 , • • • , h d+1 ) = d on S d-1 . Proof. For every x ∈ S d-1 ⊂ R d , we denote x = (x 1 , x 2 , • • • , x d ).

  are Hölder continuous on B x . Consider the constant coefficient

	partial differential operator
	(12)

  Combining equation (25) and equation (26), we have⟨Lu, u⟩ H -1 (U t )×H 1 0 (U t ) ≥ + 2 λ 3 η 2 ∥∇u∥ 2 L 2 (U t ) .Choosing η > 0 small enough there holds for all t ∈ 1 2 , 1 ,⟨Lu, u⟩ H -1 (U t )×H 1 (U t ) ≥ 1 3 λ ∥∇u∥ 2 L 2 (U t ) .Lemma 22. Write B r for the ball centred at the origin of radius r. Given 0 < r 2 < r 1 , for any s and t such that r 1 < t < s < r 2 , there holds∀u ∈ H 1 0 (B s \ B t ) ∥u∥ 2 L 2 (Bs\Bt) ≤ c (s -t) 2 ∥∇u∥ 2 L 2 (Bs\Bt). for some constant c, which depends on r 1 and r 2 only.Proof. Consider the Dirichlet eigenvalue problem in B s \ B t

	λ 2	-4C	λ 2 □
	  △u = ρ st u in B s \ B t  u = 0 on ∂B s
	  u = 0	on ∂B t

t ) there holds (26) ∥u∥ 2 L 2 (U t ) ≤ C η 2 t 2 ∥∇u∥ 2 L 2 (U t ) ≤ 4Cη 2 ∥∇u∥ 2 L 2 (U t ) .

  1 x 2 x 2 2 -1 . . . x d x 2 x 2 x 2 1 -1 x 1 x 2 . . . x d x 1 x 1There holds rankH d = d + 1, for d ≥ 2. The proof is by induction. When d = 2, we compute det H 2 = -1. When d ≥ 3, we have 1 x 2 x 2 2 -1 . . . x d x 2 x 2 x 2 1 -1 x 1 x 2 . . . x d x 1 x 1 = (-1) d+1 det H d-1 = . . . = (-1)

						x 1	x 2	. . .	x d	1	
						x 1 x d . . .	x 2 x d . . . x 2 d -1 x d . . . . . . . . . . . .	   	.
								
		x 1	x 2	. . . x d	1	
		0	0	. . . -1 0	
	det H d =	. . .	. . .	. . .	. . .	. . .		d(d+3) 2

x x

Appendix A. Additional Proofs

A.1. Proof of lemma 14.

Proof of lemma 14. Given v ∈ H 1 0 (Ω), there holds, using the a priori bounds 2, Cauchy-Schwarz and completing a square,

Thus writing

Note that ∀a ∈ R P -1 rank P a = P -1 thus for every x, we have:

In conclusion, we have

The identity R P -1 \G = P P -1,P (B) therefore holds. We now follow the argument in [AC22, Lemma 4.1] and [START_REF] Greene | Whitney's imbedding theorem by solutions of elliptic equations and geometric consequences[END_REF] and deduce that H k-1 (B) = 0. The conclusion is attained as the P -1-Hausdorff measure equals to the P -1-Lebesgue measure. □

Appendix B. Proof of lemma 20

When d ̸ ∈ {2, 4, 8} it is impossible to find a group of continuous vector fields family {h 1 , . . . , h d } such that for every x ∈ ∂B 1 , there holds

(1)

In odd dimensions, this is a consequence, of the so-called Hairy ball theorem. In general, the following result is proved in [START_REF] Michel | Non-parallelizability of the n-sphere for n > 7[END_REF] and [START_REF] Bott | On the parallelizability of the spheres[END_REF], see also [START_REF] Ranicki | Commentary on "On the parallelizability of the spheres[END_REF].

Theorem. There exists trivial bundle of S d-1 if and only if d = 2, 4 or 8. Moreover, when d ∈ {2, 4, 8} there exists {h

where SO d refers to the real unitary matrices with positive determinant.

Explicit examples are :

(1) When d = 2, ∀ (x 1 , x 2 ) ∈ ∂B 1 , set h 1 = (x 1 , x 2 ) and h 2 = (-x 2 , x 1 ).

Thus, we have rank

and modify the last line of H d to be h d+1 (-1)

, (-1)

Proof. We reproduce the proof given in [START_REF] Alberti | Combining the Runge approximation and the Whitney embedding theorem in hybrid imaging[END_REF] with the necessary adaptations for the reader's convenience. Thanks to theorem 7, and in turn equation ( 8), there exists a large P 0 such that

Thanks to lemma 11, for a.e a P 0 +P ⋆ -1 ∈ R P 0 +P ⋆ -1 , there holds

Repeating this reduction P 0 times, for a.e a T = a T 1 , • • • , a T T ∈ R T , where T = (P ⋆ , • • • , P 0 + P ⋆ -1), there holds rank J h 1 -

For any ε > 0, taking a T small enough, since u 1 , • • • , u P 0 are bounded in H (Ω), we conclude that ∥h -h a T ∥ H(Ω) P ⋆ ≤ ε.

We then prove that A (P ⋆ ) is an open set. For any x ∈ Ω, u = (u 1 , • • • , u P ⋆ ) ∈ H (Ω) P ⋆ , we define Det : Ω × H (Ω) P ⋆ → R given by Det (x, u) :=

Thanks to the continuity and the multi-linearity of J f , Det (x, u) is continuous for every x ∈ Ω, u = (u 1 , • • • , u P ⋆ ) ∈ H (Ω) P ⋆ . Take u ∈ A (P ⋆ ), for every x ∈ Ω, there holds