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Abstract—In this paper, we propose RISCLESS, a Reinforce-
ment Learning strategy to exploit unused Cloud resources. Our
approach consists in using a small proportion of stable on-
demand resources alongside the ephemeral ones in order to
guarantee customers SLA and reduce the overall costs. The
approach decides when and how much stable resources to allocate
in order to fulfill customers’ demands. RISCLESS improved the
Cloud Providers (CPs)’ profits by an average of 15.9% compared
to past strategies. It also reduced the SLA violation time by
36.7% while increasing the amount of used ephemeral resources
by 19.5%.

Index Terms—Cloud, Resource Allocation, Ephemeral Re-
sources, Stable Resources, SLA, Reinforcement learning

I. INTRODUCTION

In order to reduce the cost of operating underutilized
resources in a data-center, Cloud Providers (CPs) can reclaim
the unused resources from regular customers (the ones who
reserved these resources) to (re)sell it at a lower price to
other customers (let us call them ephemeral customers). These
reclaimed resources are by nature volatile. The resale of such
resources must meet the ephemeral customers’ expectations in
terms of SLA. If the SLA is violated, CPs may be subject
to penalties. Deploying applications on volatile resources
while guaranteeing SLA is still a challenge [1]–[5]. Indeed,
volatile resources can be lost and returned to their owner
(the regular customers) in the event that their applications see
their resource requirements increase. This change in regular
customers’ application behavior is hard to predict [6]–[8].

Different strategies were proposed to improve resource uti-
lization and guarantee customers SLA on ephemeral resources.
Some strategies [1], [3]–[5], [9]–[11] solely rely on ephemeral
resources. They leave a proportion of those resources unused,
called a safety margin, to absorb the sudden increase in regular
customers’ application demand, which decreases the amount
of reclaimable resources. Other strategies [12]–[16] combine
stable resources with volatile ones to guarantee customers’
SLA. Nonetheless, they mainly focus on Amazon Spot In-
stance1 which is less volatile than the reclaimed resources.
Thus guaranteeing SLA while increasing the CPs’ profits is a
real challenge.

We argue that Machine Learning (ML) can be used to
determine when and how much stable resources to allocate on
top of the ephemeral ones (stable resources volume needs to

1https://aws.amazon.com/ec2/spot/

be minimized). Specifically, we used Reinforcement Learning
(RL) due to the limitations of classical solutions. In fact,
most of the solutions [3], [12], [13] are centered on the
parametric improvement and optimization of allocation strate-
gies based on heuristics. Those are sometimes difficult and
time-consuming to (re)configure. Above all, the solutions are
not flexible to changes. To solve this problem, researchers
have proposed methods based on ML with models that are
capable of autonomously learn policies. More specifically, RL
approaches have been proposed for task scheduling [17], [18]
and resource allocation [19]–[21]. Although these studies do
not consider ephemeral resources, they show that RL is indeed
a promising choice to solve similar problems.

This paper proposes an approach to Cloud resource allo-
cation that improves the utilization of ephemeral resources
while guaranteeing SLA. Our solution computes the volatility
rate of resources using past utilization traces. It then captures
information, namely i) customers allocation request, ii) the
amount of stable and ephemeral resources available and iii)
the volatility rate of resources. It is used for the decision
process of when to allocate ephemeral and stable resources in
order to respond to customer’s requests. All while increasing
CPs’ profits because stable resources are more expensive
than ephemeral ones. Stable resources are useful mainly to
temporarily absorb the high volatility of ephemeral resources.
The solution also aims to reduce the possible penalties for
violating the SLA.

Experimental evaluation on traces from three datacenters
show that RISCLESS allows reducing SLA violation time
by 36.7% on average compared to other strategies. The use
of stable resources allows RISCLESS to compensate for the
possible loss of allocated ephemeral resources.

II. RISCLESS : A REINFORCEMENT LEARNING
STRATEGY TO GUARANTEE SLA

A. Architecture overview

Fig.1 presents an overview of the architecture that de-
ploys our solution called RISCLESS (ReInforcement Leaning
Strategy to Guarantee SLA on CLoud Ephemeral and Stable
ReSources). There are three main actors:

Farmers: datacenter owners, that seek to reduce their TCO
by offering unused resources to customers. We suppose that
these farmers have stable resources that could be allocated on-
demand with higher costs compared to the unused resources.
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Fig. 1: Overview RISCLESS architecture and modules

Customers: we focus on customers that request ephemeral
cloud resources at a lower cost (i.e., ephemeral customers).

Operator: the interface between farmers and customers.
They aim at minimizing farmers’ TCO by offering unused
resources to customers with SLA requirements.

Globally, the architecture is composed of ephemeral and
stable resources. Each of these two resource pools is formed
by a set of hosts. The hosts forming the ephemeral pool deploy
the following two modules:

Forecasting Builder [2]: it predicts the next 24 hours
of future resource utilization at a host-level. The amount of
available resources is then inferred from hosts capacities.

QoS Controller [3], [5]: it ensures that the SLA of reg-
ular customers who have reserved resources on the host are
respected. It does so by reducing the utilization of ephemeral
resources if their owners (i.e., regular customers) need them.
The Operator deploys two modules (our contribution):

Volatility Calculator: this module is used to reduce the
complexity of the resource allocation process. It summarizes
the multiple points (i.e., 24 hours) predictions from the Fore-
casting Builder into a single value. This value represents the
volatility rate (i.e., probability) of losing ephemeral resources.

RLAllocator: represents the decision-maker of our solution.
It is based on an RL algorithm to decide when to allocate
ephemeral and stable resources. The module aims at allocating
the resources requested by customers with SLA requirements
while maximizing CPs’ profits.

The architecture in Fig.1 illustrates the workflow and
communication between the actors and modules. The work-
flow starts with (1) the customers requesting resources for
allocation through the Customers interface. The request is
received by the Operator who transfers it to the RLAllocator
module. The Volatility Calculator module then (2) retrieves
the predictions of ephemeral resources and calculates their
volatility rate. The module sends (3) the volatility rate to
the RLAllocator module. The RLAllocator module also (4)
receives the available ephemeral resource capacities. Once all
the data have been collected, the RLAllocator module (5)
decides on the pool of resources to allocate namely ephemeral

TABLE I: Forecasting Builder Example

t �ycpu ycpu ecpu = �ycpu − ycpu �ym ym em = �ym − ym z

0 30% 60% -30% 40% 60% -20% 1
1 40% 30% 10% 53% 50% 3% 0
...

...
...

...
...

...
...

...
479 41% 52% -11% 45% 40% 5% 1

or stable resources. Finally, The Operator (6) informs the
customers of the allocated resources.

B. Volatility Calculator

The Forecasting Builder predicts future resource utilization
for every host. Having the hosts’ predictions for the next
24 hours as input for the RLAllocator is costly as the size
increases with the number of hosts. Through the Volatility Cal-
culator module, our goal is to reduce the verbose information
and only provide a single value that represents the volatility
rate of losing resources in the ephemeral pool.

The volatility rate provides a summary of prediction errors
to the RLAllocator. The latter can then make allocation deci-
sions based on the provided information. The module receives
as input both the past prediction and utilization of resources
during a Δt window (e.g., 24 hours). The module then
computes the volatility rate p ∈ [0, 1] of the ephemeral pool.
Finally, the module outputs the value for the RLAllocator.

Table I shows an example of traces with predictions from
the Forecasting Builder for a time window of Δt=24h with
a 3-minute sampling period (which makes 480 periods). It
contains the following for both the CPU and memory metrics:

• Actual measures of utilization: ymetric

• Predictions of future resource utilization: �ymetric

• Prediction errors: emetric = �ymetric − ymetric

The volatility rate represents the probability of underesti-
mating the amount of resource utilization. In other words,
resources are lost if �ymetric < ymetric and the amount of
resources lost is proportional to the prediction error.

To calculate this probability, a random variable z is used
where zt represents whether the predictions underestimated
the CPU or memory usage at time t. Table I shows the values
that the variable z takes according to its definition. It is set
to ’1’ if the prediction is underestimated (i.e., emetric < 0).
For example, at t = 0, the predicted CPU is �y = 30% but the
measured utilization is y = 60%, thus the prediction error is
ecpu = −30% < 0 and z = 1.

Assuming that the different measures are independent of
each other, the variable z follows a Bernoulli’s distribution of
parameter p. With p being the probability of underestimation.

To estimate p, an empirical estimator �p is used. It is the
mean over a Δt time window of the z values.

C. RLAllocator

It is the decision-maker, its objective consists in deciding
when to allocate ephemeral and stable resources in order to
maximize CPs’ profits and reduce SLA violations.

This module was built using RL. It is formalized with the
MDP composed of the quadruplet < S,A, T,R > with: S
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being the set of states of the environment, A the set of actions,
T the transition function, and R the reward function.

1) Environment: Each of the two pools of resources is
characterized by its available capacity in terms of CPU and
memory. The ephemeral pool is further characterized by
the volatility rate. Both types of resources have a cost of
allocation. Ephemeral resources are less expensive than the
stable ones (up to 90% in Amazon Spot Instance).

2) State space S: At each time step t, the state is charac-
terized by the customers’ request, the quantity of ephemeral
and stable resources allocated, the available capacity of the
two types of resources, and finally the volatility rate of the
ephemeral resources. It is defined as follows:
S = {resrem, resalloc(e), resalloc(s), resavail(e),

resavail(s), p}
With resrem, resalloc(e), resalloc(s), resavail(e),

resavail(s) ∈ N being respectively the amount of remaining
resources to be allocated, ephemeral resources allocated,
stable resources allocated, available ephemeral resources,
available stable resources and p ∈ [0, 1]: the volatility rate.

3) Action space A: At each time step t, the model can
perform an action a, which is related to the allocation of
resources for the customers. The set of actions are:
A = {a1, a2, a3, a4, a5}
with: a1: Allocate an ephemeral resource unit, a2: Remove

an ephemeral resource unit. a3: Allocate a stable resource unit.
a4: Remove a stable resource unit. a5: Do nothing.

A resource unit is defined as an amount of vCPU and
memory that are allocated at the same time to a customer
(e.g., a resource unit of 2 vCPU and 8 GB).

4) Reward function R: Our goal is to maximize CPs’
profits from selling ephemeral resources while minimizing
the use (thus the cost) of stable resources for ephemeral
customers. We also seek to reduce SLA violations for regular
customers. The reward function is defined for each state as:
r = resalloc(e)× CPE − resalloc(s) ×
CPS − resrem × CPV with CPE being the cost per
ephemeral resource unit CPS, the cost per stable resource
unit CPV , the cost of SLA violation penalty.

Each ephemeral or stable resource has a cost per unit CPE
and CPS. The SLA violation has a cost per violation CPV .
In a state S, the reward function considers the total cost of the
amount of ephemeral resources allocated resalloc(e) which
is considered as the profit. The amount of stable resources
resalloc(s) has to be minimized since its cost is higher than
the ephemeral ones. SLA violation can occur in two cases:
i) when losing an ephemeral resource, ii) when the customer
requests are not met . In both cases, the remaining resource
to allocate resrem increases, hence increasing SLA penalties.

5) Model algorithm: To solve the Cloud resource alloca-
tion problem, we train the RL agent using the Deep Q-Network
(DQN) algorithm [22]. DQN is used to approximate the Q-
values using neural networks with a single function (called
Q network). Since the state representation of the allocation
problem is too large, DQN can approximate values for the
Cloud states that have never been encountered during the
learning process. Algorithm 1 represents the pseudo-code of
allocating Cloud ephemeral and stable resources using DQN.

The algorithm starts by initializing (line 1) the configuration
of the agent’s model. Then, it initializes a buffer that stores
previous resource allocation experiences (line 2). The buffer is
used to improve the learning process of the agent. Each expe-
rience contains the state (e.g., allocated amount of ephemeral
and stable resources), action (e.g., allocate stable resource),
reward (e.g., SLA violation penalty), and the next state of the
Cloud environment. The agent starts by receiving the amount
of resources to allocate (line 3). Then it receives the available
amount of resources for the ephemeral and stable pools (lines
5-7). The agent then makes either a random resource allocation
decision (i.e., action) or the best one according to a probability
� (line 8). The random selection of actions is necessary since
initially, the agent does not have any experience. Afterward,
the agent fetches both the reward and the new environment
state (line 9). This current resource allocation experience is
stored in the buffer (line 10) used for the learning process
(lines 11-13). The decision process is repeated as long as there
are still resources available to be allocated for customers.

Algorithm 1: Pseudo-code of the used DQN
1. agent = initialize DQN model();
2. experiences = initialize experience buffer();
3. resrem = get remaining resources to allocate();
4. while resrem > 0 do // remaining resources to

allocate
5. resalloc = get allocated resources();
6. resavail = get available resources();
7. p = compute volatility rate();

8. select a=
�

random action with probability �
best action else

9. reward = observe reward value();
10. experiences.add current experience()
11. if should update then
12. agent.update(experiences);
13. end
14. resrem = get remaining resources to allocate();
15. end

III. EXPERIMENTAL EVALUATION

We try to answer the following Research Questions (RQ):
RQ1: What is the overall performance of RISCLESS in terms
of resource utilization, SLA violations, and CPs’ profits? RQ2:
How many on-demand stable resources does RISCLESS use
on top of the ephemeral ones to reduce SLA violations ?

A. Experimental setup
1) Datasets: the traces used were extracted from three

datacenters. One is from a University, and two from Private
Companies labeled PC-1 and PC-2. The traces were recorded
over 6 months with a 3-minute sampling period [2], [3], [11].

2) Resource allocation approaches: RISCLESS was com-
pared to the following approaches:

Fixed: [3]: This approach uses a static safety margin
percentage of 5% selected empirically from different datasets.

Scavenger [4]. The mean and standard deviation of resource
utilization history is used to compute a dynamic safety margin.

ReLeaSER [11]: It uses Reinforcement Learning to select a
dynamic safety margin according to resource prediction errors.
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TABLE II: Summary information of each datacenter

Datacenter Number of hosts CPU (cores) RAM (TB)

PC-1 9 120 1.2
PC- 2 27 230 3.8

University 6 72 1.5

3) Implementation: Experiments were performed on an
ad-hoc simulator. RISCLESS was implemented using Keras
v. 2.3.1 and TensorFlow GPU v. 1.14.0. The Mean Square Er-
ror was used as the error function. The training was performed
on 80% of PC-2 traces, while 20% were used for testing.

B. Evaluation metrics

We used the following metrics: 1) Total profits: which is
the cost related to the profits minus the cost of SLA violations
and the cost related to the on-demand stable resources.2) SLA
violation time: it is the cumulative time during which the SLA
was violated. 3) Amount of reclaimed ephemeral resources:
it is the cumulative amount of ephemeral resources that were
used without affecting the SLA of customers.

The evaluation of the first two metrics is based on a real
economical model from Amazon AWS. It comprises:

Resource costs: based on Amazon AWS instance type
t2.large that is 2 vCPU and 8 GB of memory (ephemeral
instance: 0.0317 $/hour, stable instance: 0.0928 $/hour).

SLA violation: the penalty is calculated as a discount on
the profit related to the sold instances. The discount percentage
is based on the cumulative violation time over one day:

• Between 15 and 120 minutes: 10% discount
• Between 120 and 720 minutes: 15% discount
• More than 720 minutes: 30% discount
1) RQ-1. Overall performance of RISCLESS: Fig.2 shows

the total profits of RISCLESS over the 6 months traces for
each datacenter. We observe that for the three datacenters,
the Fixed strategy generates the least profits. We also observe
that ReLeaSER performs better than Scavenger by an average
of 27.6%. Finally, RISCLESS generates the highest profits
compared to other approaches. It improves the profits com-
pared to ReLeaSER by 8%, 8.3%, and 31.5% for PC-1, PC-2,
and University respectively. These results are explained by the
SLA violation time and the amount of reclaimed resources.

Fig.3 shows the cumulative time during which the SLA is
violated. We observe that RISCLESS violates SLA the less.
It reduces the cumulative violation time when compared to
ReLeaSER by 54%, 46.2% and 10% for PC-1, PC-2, and
University respectively. These results show that the utilization
of stable resources can decrease the SLA violation time. This
partly explains the improvements in the profits seen previously.

Fig.4 shows the average amount of used ephemeral re-
sources per day for each datacenter. This amount is measured
as the cumulative number of allocated resource units for each
time step throughout the day. The red line shows the maximum
reclaimable resources. We observe that the Fixed approach
utilizes the least ephemeral resources which can be explained
by the safety margin used. ReLeaSER uses around 2% fewer
resources when compared to Scavenger but still manages to

generate more profits. This is mainly due to the reduction in
SLA violation time. We also observe that RISCLESS uses
more ephemeral resources. When compared to Scavenger, it
improves the utilization by 12.8%, 10.9%, and 34.8% for PC-
1, PC-2, and University respectively. The approaches that use
a safety margin reduce the amount of usable resources to avoid
SLA violations. However, using stable resources to absorb
the potential loss of volatile resources allows RISCLESS to
optimize its utilization. RISCLESS uses 92%, 98%, and 93%
of the maximum reclaimable resources for PC-1, PC-2, and
University while having the least of SLA violations.

(a) PC 1 (b) PC 2 (c) Univ.

Fig. 2: Total CPs’ profits

(a) PC 1 (b) PC 2 (c) Univ.

Fig. 3: Cumulative violation time of SLA

(a) PC 1 (b) PC 2 (c) Univ.

Fig. 4: Average per day amount of ephemeral resources

2) RQ-2. Percentage of stable resources: we analyze
results concerning the percentage of stable resources used.
The goal is to extract some of the environment variables (e.g.,
volatility rate) that affect the utilization of stable resources.
Table III specifies, for each datacenter, the average volatility
rate per day of the ephemeral resources, as well as the
percentage of stable resources used compared to the total
allocated resources for ephemeral customers.

We can observe that PC-1 has the highest volatility rate and
the highest percentage of stable resources. Meanwhile, PC-2
has the lowest volatility rate and stable resources. RISCLESS
uses less than 10% of stable resources for all the tested
datacenters. It can be observed that the more volatile the
resources of a datacenter, the more stable resources are used.

IV. RELATED WORK

Safety margin-based approaches: safety margin was used
in [1], [3], [5], [9], [10] with a fixed percentage of safety
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TABLE III: Average volatility rate and % of stable resources

PC-1 PC-2 University
Volatility rate 0.83 0.69 0.75

Stable resources used (%) 9.21% 4.63% 8.33%

margin. Even though the fixed method does reduce SLA
violations, it can be improved considerably alongside resource
utilization since customers’ workloads are not stable. Hence,
a dynamic safety margin was used in Scavenger [4] and
ReLeaSER [11]. It improved the utilization of ephemeral
resources while reducing customers’ SLA violations. However,
when resource volatility is high, these strategies may not
perform well. Indeed, the higher the volatility, the larger the
safety margin, the less ephemeral resources are exploited.

Stable and ephemeral resources: other studies [12]–[16]
tried to improve customers SLA by utilizing stable on-demand
resources on top of the ephemeral ones. The stable resources
can be used for saving data in the case of data processing
applications. It can also be useful for running prioritized jobs
that have to be otherwise re-executed due to the lost resources.
However, the aforementioned solutions mainly focus on Ama-
zon Spot Instance which is less volatile than the reclaimed
resources. Furthermore, the customers using these resources
receive a notification prior to the interruption. This signal
can be used as a convenient moment for allocating stable
resources. In addition, the use cases of these solutions are
generally limited to data processing applications.

V. CONCLUSION

We proposed RISCLESS, a strategy that makes it possible
to exploit ephemeral resources while reducing SLA violations.
Our approach is based on RL as a decision-making model.
It combines ephemeral resources with on-demand stable re-
sources in order to offer SLA guarantees while reducing costs.
The experimental evaluation results showed that RISCLESS
had allowed for more thorough exploitation of ephemeral re-
sources with a reduction in SLA violations, which significantly
increased CPs’ profits from the resale of resources.
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