
HAL Id: hal-03921298
https://hal.science/hal-03921298v1

Submitted on 3 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

API beauty is in the eye of the clients: 2.2 million
Maven dependencies reveal the spectrum of client–API

usages
Nicolas Harrand, Amine Benelallam, César Soto-Valero, François Bettega,

Olivier Barais, Benoit Baudry

To cite this version:
Nicolas Harrand, Amine Benelallam, César Soto-Valero, François Bettega, Olivier Barais, et al.. API
beauty is in the eye of the clients: 2.2 million Maven dependencies reveal the spectrum of client–
API usages. Journal of Systems and Software, 2022, 184, pp.111134. �10.1016/j.jss.2021.111134�.
�hal-03921298�

https://hal.science/hal-03921298v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

The Journal of Systems & Software 184 (2022) 111134

N
O
a

b

c

c
r
w
c
w
c
i
A
b
w
A
t

(
f
b

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

API beauty is in the eye of the clients: 2.2millionMaven dependencies
reveal the spectrum of client–API usages✩

icolas Harrand a,∗, Amine Benelallam b, César Soto-Valero a, François Bettega c,
livier Barais b, Benoit Baudry a

KTH Royal Institute of Technology, Stockholm, Sweden
Univ Rennes, Inria, CNRS, IRISA, Rennes, France
Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, Grenoble, France

a r t i c l e i n f o

Article history:
Received 18 December 2020
Received in revised form 8 September 2021
Accepted 18 October 2021
Available online 9 November 2021

Keywords:
Mining software repositories
Bytecode analysis
Software reuse
Java
Maven Central Repository

a b s t r a c t

Hyrum’s law states a common observation in the software industry: ‘‘With a sufficient number of
users of an API, it does not matter what you promise in the contract: all observable behaviors of your
system will be depended on by somebody’’. Meanwhile, recent research results seem to contradict this
observation when they state that ‘‘for most APIs, there is a small number of features that are actually
used’’. In this work, we perform a large scale empirical study of client–API relationships in the Maven
ecosystem, in order to investigate this seeming paradox between the observations in industry and the
research literature.

We study the 94 most popular libraries in Maven Central, as well as the 829,410 client artifacts
that declare a dependency to these libraries and that are available in Maven Central, summing up
to 2.2M dependencies. Our analysis indicates the existence of a wide spectrum of API usages, with
enough clients, most API types end up being used at least once. Our second key observation is that,
for all libraries, there is a small set of API types that are used by the vast majority of its clients.
The practical consequences of this study are two-fold: (i) it is possible for API maintainers to find an
essential part of their API on which they can focus their efforts; (ii) API developers should limit the
public API elements to the set of features for which they are ready to have users.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Software libraries provide reusable functionalities via Appli-
ation Programming Interfaces (APIs). Software applications that
euse these functions in their code declare the list of APIs they
ish to use. This declaration creates a dependency between the
lient application and the library API. Our study focuses on two
ell-documented intuitions about such client–library dependen-
ies. On one hand, Hyrum’s law captures a common observation
n the software industry: ‘‘With a sufficient number of users of an
PI, . . . all observable behaviors of your system will be depended on
y somebody’’ (Hyrum Wright, 2019). Applied to API usages, this
ould suggest that with enough clients, even the most exotic
PI elements would eventually be used by at least a client. On
he other hand, recent research results concur to consolidate

✩ Editor: W.K. Chan.
∗ Corresponding author.

E-mail addresses: harrand@kth.se (N. Harrand), amine.benelallam@inria.fr
A. Benelallam), cesarsv@kth.se (C. Soto-Valero),
rancois.bettega@univ-grenoble-alpes.fr (F. Bettega), barais@irisa.fr (O. Barais),
audry@kth.se (B. Baudry).
ttps://doi.org/10.1016/j.jss.2021.111134
164-1212/© 2021 The Author(s). Published by Elsevier Inc. This is an open access a
the intuition that APIs are unnecessarily large and that client
dependencies actually focus on a small part of common APIs (Qiu
et al., 2016; Eghan et al., 2019; Sawant and Bacchelli, 2017;
Mastrangelo et al., 2015).

We are intrigued by the seeming contradiction between these
observations: the first one suggests that every API member is
eventually used, while the second one suggests that only a small
part of APIs is really necessary. Our analysis of millions of de-
pendencies reveals a continuum between these two extremes,
rather than a contradiction. In other words, we confirm that
libraries contain a portion of API types that are used by a vast
majority of clients. Meanwhile, in the presence of a sufficient
number of clients, we observe that the rare or exotic API types
would eventually fit at least one adventurous client. These re-
sults provide evidence that API developers can make trade-offs
between the share of API elements they consider in maintenance,
documentation, and automated migration tools and the share of
clients that they support. To support all clients, developers need
to invest effort that is proportional to the total size of APIs. Yet,
accepting to support only the majority of clients, which use the
core API types, allows for significant effort savings. Considering
the typical API maintenance task of migration (Bartolomei et al.,
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jss.2021.111134
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2021.111134&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:harrand@kth.se
mailto:amine.benelallam@inria.fr
mailto:cesarsv@kth.se
mailto:francois.bettega@univ-grenoble-alpes.fr
mailto:barais@irisa.fr
mailto:baudry@kth.se
https://doi.org/10.1016/j.jss.2021.111134
http://creativecommons.org/licenses/by/4.0/

N. Harrand, A. Benelallam, C. Soto-Valero et al. The Journal of Systems & Software 184 (2022) 111134

j
A
i

c
b
c
b
D
o
d
i
l
(
c

t
t
o
t
t
s
u
m
u
o
s
s
o
c

s
l
s
v
i
t
c
a
e
i
v
c
m

c
o
S
u
d

b
d
t
u
n
o

M
l
l
o
(

2009), the migration of the 6317 clients of library gson:2.3.1 to
ackson-databind requires supporting migration rules for 162
PI types, but this number of types can be decreased to 20 (12%)
f only 5669 (90%) clients are to be supported.

Our work explores this spectrum of dependency relations, fo-
using on the Maven Central ecosystem. This choice is motivated
y two factors: it is the most popular repository to distribute
ode artifacts that run on the Java Virtual Machine; it contains
oth APIs and clients that depend on these APIs. The Maven
ependency Graph (Benelallam et al., 2019) provides a snapshot
f Maven Central as of September 6, 2018. From this graph, we
etermine the 94 most used libraries and all the client artifacts
n the repository, that depend on any version of one of these
ibraries. This forms the dataset for our study: 5225 libraries
union of all versions of the 94 most popular libraries), 901,876
lients, summing up to 2,169,273 dependencies.
We study how Maven artifacts depend on each other, around

hree dimensions. First, we analyze the client-side, to determine
o what extent each declared dependency is actually used at least
nce in their code, i.e., there is at least one API member used by
he client’s code. Second, we analyze the API side of dependencies
o determine how different API types are used by the clients. We
plit this analysis into two steps: we start by investigating the
sages of an API, cumulating all its versions; later, we analyze the
ost popular version of each API. Finally, to put our findings to
se, we propose a new actionable way to explore the continuum
f dependencies and assess the impact of focusing on a small
ubset of APIs, e.g., for maintenance activities through extinction
equences. For tasks where costs and effort increase with the size
f APIs such as API migration (Bartolomei et al., 2009), a tradeoff
an be made between cost and number of clients supported.
The key findings of our study are as follows: (i) on the clients-

ide, we found that 41,13% of declared dependencies do not trans-
ate into API usages at the bytecode-level; (ii) on the libraries-
ide, we observe the following: when considering the most used
ersion of each library, it is very likely that every public member
s used; (iii) meanwhile, we notice that every API can be reduced
o a small fraction and still fulfill the needs of a majority of the
lients. The size of this fraction varies from one API to another,
s library API purpose, size, and usage differ. Our dataset is large
nough to include some of the most extreme cases that occur
n the extraordinary practice of software development, e.g., a
ery small API with only annotations, some giant APIs which
lients use in a very focused way, or even some artifacts that are
assively used even if they have no public types.
The contributions of this paper are as follows:

• A systematic large-scale analysis of 2,169,273 Maven client–
API relations.

• A public dataset of 5225 libraries (union of all versions of
the 94 most popular libraries) and 901,876 clients drawn
from Maven Central (Harrand, 2019b) along with an open
reproduction package (Harrand, 2019a). This large dataset
can fuel the ongoing research initiatives in the areas of
dependency management and release engineering.

• Novel empirical evidence about Maven dependencies: all
APIs include a small set of types that is used by the majority
of their clients, while most API types are used by at least
one client, when considering the most popular version of an
API. These findings open new directions to improve Maven’s
build process and to focus effort on the relevant subset of
APIs for maintenance and migration tasks.

This paper is organized as follows. Section 2 introduces the key
oncepts of Maven. In Section 3 we present our research method-
logy, analysis infrastructure and the dataset for this study. In
ection 4 we discuss the empirical observations about the actual
sage of client–library Maven dependencies. In Section 5 we
iscuss how our results could generalize in other ecosystems.
2

Fig. 1. Software reuse principles in JVM-based projects.

2. API usage in the Maven ecosystem

Maven is a software project management tool for Java and
other languages targeting the JVM (e.g., Groovy, Kotlin, Clojure,
Scala). It automates most phases of a software development life-
cycle, from build to deployment. Maven relies on a specification
file, named pom.xml, where developers explicitly declare what
should happen at each building phase. Dependency manage-
ment is one important phase where Maven automatically fetches
software artifacts on which a project depends. Those artifacts
are hosted on remote repositories, either public or private. Cur-
rently, Maven Central is the most popular public repository. It
hosts millions of software artifacts coming in the form of binary
sources (e.g., jar). These artifacts are uniquely identified by GAV
coordinates, referring to groupId (G), artifactId (A), and version
(V). Artifacts in Maven Central cannot be modified or updated,
meaning that all the releases of each artifact are stored in the
repository.

Maven lets developers the possibility to specify the scope of a
dependency declaration. This scope determines when the jar of
the dependency is added to the classpath of a project (Apache,
2020). Compile is the default scope, which implies that the depen-
dency is added to the compilation, test, and runtime classpaths. A
dependency with Compile scope is also added transitively to the
classpath of the artifact’s clients (and their clients and so forth),
if they do not explicitly exclude it. The dependencies declared
with a Test are meant to be required only to test the project:
they are added only to the compilation and test classpaths; they
are not added as transitive dependencies for the clients. The
scopes Provided and System indicate that the dependency will
e provided directly by the user if needed at runtime. Such
ependencies are resolved by Maven only for the compilation and
est classpath, and are not transitive. The scope Provided can be
sed for a dependency that is required only to build a project but
ot necessary for its execution. Finally, a Runtime dependency is
nly added to the runtime classpath and is transitive.
Fig. 1 illustrates a simplified example of API usages within the

aven ecosystem. API usages happen at two levels, the artifact-
evel, and the code-level. At the artifact level, a project declares a
ist of libraries that have to be added to the project’s classpath in
rder to build correctly. At the code-level, the members of the API
e.g., types, methods, etc.) are called, e.g., via object instantiation.

N. Harrand, A. Benelallam, C. Soto-Valero et al. The Journal of Systems & Software 184 (2022) 111134

1
1
1
1
1
1
1
1

1

1

2
2
2
2

2

2
2
2
2

j
b

1 <dependency>
2 <groupId>com.google.code.findbugs</groupId>
3 <artifactId>jsr305</artifactId>
4 <version>1.3.9</version>
5 <scope>compile</scope>
6 </dependency>

Listing 1: Excerpt of the pom.xml file of flink-runtime:1.5.0

1 // API members of slf4j-API
2 import org.slf4j.Logger;
3 import org.slf4j.LoggerFactory;
4 // API members of findbugs
5 import javax.annotation.Nonnull;
6
7 public abstract class ClusterEntrypoint implements

AutoCloseableAsync, FatalErrorHandler {
8
9 protected static final Logger LOG =

LoggerFactory.getLogger(ClusterEntrypoint.class);
0 private final Configuration conf;
1 private final Thread hook;
2 ...
3 protected ClusterEntrypoint(Configuration conf){
4 ...
5 hook = SHU.addShutdownHook(...);
6 }
7 public void startCluster() throws

ClusterEntrypointException {
8 LOG.info("Starting {}.",

getClass().getSimpleName());
9 try { sContext.runSecured((Callable<Void>) ()

-> { runCluster(configuration); ... });
0 }
1 }
2 @Nonnull
3 private Configuration

generateClusterConfiguration
(Configuration conf) {

4 final Configuration result = new
Configuration();

5 ...
6 return result;
7 }
8 ...}

Listing 2: Code snippet of ClusterEntrypoint class in
flink-runtime:1.5.1

2.1. Artifact-level API dependency

Fig. 1 represents the dependency relationships between five
artifacts. The com.payneteasy.socket-nio:client:1.0-4 artifact de-
clares dependencies towards two libraries: com.google.code:
findbugs:jsr305:13.9 and org.slf4j:slf4j-api:1.7.1. The org.apache.-
flink:flink-runtime:1.5.0 artifact declares a dependency towards
three libraries: com.google.code:findbugs:jsr305:13.9, org.slf4j:slf4j-
api:1.7.1 and org.apache.flink:flink-core:1.5.0.

The dependencies declared in the pom.xml file of each artifact
are identified by their exact coordinates. For example, in Listing
1, the artifact org.apache.flink:flinkruntime:1.5.0 declares a depen-
dency towards com.google.code.findbugs:jsr305:1.3.9 to reuse the
avax annotations defined in this library. Consequently, when
uilding the flink-runtime project, Maven will fetch the resource

jar corresponding to jsr305:1.3.9, together with all its transitive
dependencies, and add them to the project’s classpath.

2.2. Code-level API dependency

There are many ways to use external APIs at the code level
through inheritance, implementation, composition, genericity,
3

static method invocation etc.. Listing 2 shows a snippet from the
class org.apache.flink.runtime.entrypoint.ClusterEntrypoint of the
library org.apache.flink:flinkruntime:1.5.0 (Apache, 2019). It illus-
trates different ways in which org.apache.flink:flinkruntime:1.5.0
uses some dependencies that are declared in its pom.xml. The
class ClusterEntrypoint implements the AutoCloseableAsync class
exposed by the org.apache.flink:flinkcore:1.5.1 dependency (line
7), while lines 9 and 10 are examples of field declarations. On
line 9 the dependency is used through a call to the static method
getLogger(). Lines 22–24 illustrate reuse examples of API members
such as annotations, methods call, or in methods signatures.

3. Methodology

In this section we present our research questions and the
metrics we use to answer these questions. Then, we introduce
the dataset for this study and the methodology we have used to
collect API usages.

3.1. Research questions

This study is structured around the following research ques-
tions:

RQ1: How are the APIs used in the code of clients that
declare a dependency towards them? In this work, we study
how the APIs are used in the code of clients that declare a
dependency towards them. Previous studies hint on the fact
that some declared dependencies are actually never used, for
example, because API users do not systematically maintain their
build file (Constantinou et al., 2014; Zaimi et al., 2015). In this
research question, we investigate to what extent there is a gap
between what clients declare in their pom.xml and what they
actually use in their code. We also investigate what causes these
discrepancies.

RQ2: How is the usage frequency of API types distributed
and how does that depend on the number of clients? API
developers aim at providing reusable functionalities to a large
number of clients. This desire to satisfy many users can become
a double-edged sword from the users’ perspective, which can be
overwhelmingly loaded by a large number of API types that they
do not need (Piccioni et al., 2013; Myers and Stylos, 2016). This
research question focuses on the distribution of usage frequency
of API types. We measure the share of API types that are never
used by any clients, rarely used or used by most clients. We dis-
cuss how these shares vary depending on the number of clients.
For this question we only consider Library Client relationship
where the client uses at least one type of the API.

RQ3: How is the usage frequency of API types distributed
when focusing on the popular version of an API? In this ques-
tion, we focus on the most popular version of each library in our
dataset to determine the effect of a ‘‘sufficient number of users’’
on API usage. This sheds new light on usages ratios, compared to
RQ2 that considers all versions of the libraries. This question is at
the core of our analysis of API usage with respect to Hyrum’s law,
which requires a large number of clients to study.

RQ4: Can inter-package calls explain the existence of API
types that are unused by the clients? In Java, developers need
to set the visibility of classes or methods to public if they want
to allow inter-package usages. In other words, some parts of a
library’s API might be public only because they are intended to
be used by other package of the library, and might not be meant
to be reused by the library’s clients. In this research question,
we analyze whether inter-package usages indeed contribute to
explain the existence of API types that are not used by the clients.

RQ5: How many API classes are essential for most of the
clients? The usage of API types is demonstrated to be strongly

N. Harrand, A. Benelallam, C. Soto-Valero et al. The Journal of Systems & Software 184 (2022) 111134

W
f

M
s
o
a

T

m
a
s
u
u

M
b

t
b
a
o
o
C
b
b
a
a
s
b
t

t
v

related to the needs of the clients (Sawant et al., 2018). In the
long term, these needs determine what constitutes the essential
part of an API. Here, we address the key intuition of this work:
the existence of a reuse-core for the APIs, i.e. a set of highly
used elements according to the clients’ state of practice. In this
research question, we investigate what proportion of the API is
essential for the clients and how this reuse-core varies according
to various API usages.

3.2. Metrics and definitions

For further references, we introduce the following notations:

• library: an artifact declared as a dependency by a client
• types(library): the set of distinct types that are visible for

client elements, i.e. classes, interfaces, or annotations
• typesobs(library) is the subset of types(library) used by at least

one client
• LIB a set of libraries sharing the same groupId and artifac-

tId, regardless of the version.
• clients(library): the set of clients that declare a dependency

towards a library
• clientsobs(library) is the set of client that call at least one

element of typesobs(library)
• clientsobs(type) is the set of clients that call at least one mem-

ber, i.e. fields and public and protected methods, including
constructors, of a given type

To answer RQ1, we measure the possible gap between clients
that declare a dependency towards an API in their pom.xml and
the ones that actually call this API at least once in their bytecode.

Metric 1. The dependency usage rate (DUR) of a LIB is the
proportion of clients that call at least one API member of a library ∈

LIB, (observed through static analysis), among all the clients that
declare a dependency towards any version of LIB:

DUR(LIB) =

|

⋃
l∈LIB

clientsobs(l) |

|

⋃
l∈LIB

clients(l) |

RQs 2, 3 and 4 study what proportion of the clients of a library
use each type of its API. We consider that a client uses a type if it
uses at least one member of this type, i.e. client ∈ clientsobs(type).

e name this proportion type usage rate (TUR), and define it as
ollows.

etric 2. The type usage rate (TUR) of a given type ∈ library corre-
ponds to the proportion of clients that reference at least one member
f said type (observed through static analysis), i.e. clientsobs(type),
mong the clients that actually use library, i.e. clientsobs(library):

UR(type) =
| clientsobs(type) |

| clientsobs(library) |

RQ5 investigates how necessary is each type of the API of the
ost popular version of each LIB. To assess this necessity, we
dapt the concept of extinction sequence (Albert et al., 2000) to
imulate the hiding of each type ∈ types(library) from the least
sed to the most used. We call LU(library, n) the set of n% least
sed types in typesobs(library).

etric 3. We measure the surviving client share (SCS) unaffected
y the hiding of LU(library, n).

SCS(library, n) =

⏐⏐⏐⏐ { c
⏐⏐⏐⏐ ∀type ∈ LU(library, n),
c /∈ clientsobs(type)

} ⏐⏐⏐⏐

| clientsobs(library) |

4

Fig. 2. Distribution of LIB number of clients.

To answer RQ5, we compute the variation of SCS(library, n),
where we vary n from 0% to 100%.

3.3. Dataset

In this work, we analyze software dependencies both at the
artifact and at the code levels. At the artifact level, we analyze
pom.xml files of client projects to determine the list of direct
dependencies they declare. At the code level, we analyze the
bytecode of both the clients and the libraries. On the client-side,
we determine what parts of the libraries’ API they actually use. On
the library-side, we evaluate the extent to which an API is actually
used by its clients. Hence, our dataset is composed of bytecode
and pom file of both libraries and clients.

We leverage the Maven Dependency Graph (MDG) (Benelal-
lam et al., 2019) to identify the most popular APIs in Maven
Central, as well as their client artifacts. Then we extract usage in-
formation through static analysis of the jar artifacts. This section
details these two steps.

The MDG captures all artifacts in Maven Central as nodes
and their dependencies as directed edges. Every node has a co-
ordinates property referring to the artifact’s coordinates (GAV)
and a packaging referring to the format of the artifacts bina-
ries. Furthermore, every edge has a property scope identifying
he dependency scope. We extract the 100 most popular li-
raries. We exclude 6 LIBs from these 100 libraries. One of them,
ppcompat-v7, is not packaged as a jar but as an apk. The 5
ther ignored LIBs contain no type and so, no API usage can be
bserved in their clients. Three of these 5 libraries are written in
lojure, and two others, spring-boot-starter and spring-
oot-starter-web, are packaged as jar files that contain no
ytecode, i.e., there are no API types. In fact, these LIBs serve
s an alias for a group of commonly used dependencies that
re transitively inherited through a single entry-point. Hence, we
tudy a set of 94 libraries. We compute the popularity of a LIB
ased on the number of distinct clients that declare a dependency
owards a version of the LIB with a Compile scope.

The raw dataset for our study includes all dependency rela-
ionships from any client artifact, in Maven Central, towards any
ersion of one of our LIBs. This represents 2,376,526 depen-

dency relationships between 901,876 clients (belonging to 99,949
unique pairs (GroupID, ArtifactID)) and 94 LIBs. The LIBs are in
a total of 5225 versions in the dataset.

Fig. 2 shows the distribution of the number of clients for each
LIB. The two most popular libraries are the standard scala-
library and slf4j-apiwith respectively 227, 014 and 203,366
clients. The number of clients per library decreases quickly in
this ranking to reach 7007 clients for the least popular library

N. Harrand, A. Benelallam, C. Soto-Valero et al. The Journal of Systems & Software 184 (2022) 111134

T
D

Fig. 3. Progressive data set filtering.

able 1
escription of 6 illustrative library examples.
Librarya #Types #Clients #Clientsobs Category

javax.inject:1 6 23,211 14,442 Extension
commons-cli:1.3.1 24 2557 2042 Utility
slf4j-api:1.7.21 38 31,752 21,398 Logging
junit:4.12 281 24,454 15,583 Testing
hibernate-core:4.3.11.Final 2746 539 453 ORM
commons-io:2.4 112 35,000 21,959 Utility

aFor readability, we refer to a library using only its artifactId and version.

of our dataset, xercesImpl. These libraries cover a broad range
of application domains, from logging, networking, language ex-
tensions, to collections and bytecode manipulation. Our dataset
includes libraries from 15 of the 20 most popular categories of li-
braries from mvnrepository.com.1 The only categories not covered
are, two related to Android applications (since we exclude apk),
two related to testing (as we exclude test dependencies), and a
category related to web assets which do not contain bytecode.

As illustrated in Fig. 3, we filter our dataset through the
research questions. For RQ1, we focus on the 2,169,273 depen-
dencies concerning the 829,410 client artifacts that we could
resolve (those for which we could download the jar). For RQ2, we
focus on the dependencies for which we could observe an actual
usage in the bytecode of the client. At this stage we exclude 2 LIB
that do not contain public types. This represents 4931 libraries,
1,277,106 dependencies and 677,953 clients. In RQs 3, 4 and 5
we analyze the client–API dependencies for the most popular
version of each library. This corresponds to 94 libraries, 319,882
dependency relationship and 235,440 unique clients. This latest
version of the dataset supports our investigations of API usage
with ‘‘a sufficient number of users’’, a key condition to study long
tail distributions.

Given the large number of libraries and clients, the plots
displayed in the section represent a lot of information, and it
is sometimes difficult to keep the intuition between the data
and the software engineering phenomena that are at stake. To
keep the discussion concrete, we select 6 libraries that we use
to illustrate all the research questions. Table 1 summarizes the
name, the number of types, the number of clients, the number of
clients that actually use the library and the application domain for
these 6 libraries. We select these libraries because they represent
a diverse set of domains, sizes, API types, and number of clients.
We select the most used version of each LIB.

3.4. API usages collection

We collect the jar file of each version of each of our 94 LIBs
from Maven Central and statically analyze it to extract all its

1 https://mvnrepository.com/open-source.
5

Fig. 4. Distribution of dependency usage rate (DUR) among the 94 LIBs. Each
bin represents to the number of LIBs (y-axis) with a DUR belonging to range
of the bin (x-axis).

API members. Then, we store this list of members in a relational
database. Table 2 shows descriptive statistics about the APIs and
clients for our study. The Libraries Overview part shows the
number of API members (types, methods, fields) in our set of
libraries, the number of dependencies declared towards these
libraries and the number of distinct clients that declare these de-
pendencies. The Libraries Members part details the distribution
of the number of type definitions and the total number of meth-
ods and fields across the library APIs. The Libraries Types part
distinguishes between different kinds of type definitions (classes
interfaces and annotations) that we found in APIs. We provide a
detailed description of these types since they will form the main
granularity at which we analyze API usages. The smallest API in
our dataset is the javax.inject:javax.inject:1 library, which contains
1 interface and 5 annotations, of which, only one defines a default
method.

In a second step, we collect, from Maven Central, the jar file
of every single artifact that declares a dependency to at least
one of the libraries in our dataset. The artifacts are resolved with
Eclipse Aether (Eclipse, 2019), a Java library that fetches artifacts
from remote repositories for local consumption. We analyze the
bytecode of each of these clients, looking for local variables,
fields, parameters, return types, annotations, type extensions or
implementations that are referencing library types, including in
lambda expressions. We also analyze invocations that target any
element of the resolved API members. The bytecode analysis
is implemented on top of ASM (OW2, 2019), a popular Java
library for bytecode manipulation and analysis. The source code
is available on GitHub (Harrand, 2019a). For each API usage, we
count the number of times an element is referenced. The Clients
Overview part of Table 2 gives the distribution of the number of
API types used, as well as the number of dependencies declared
by each client.

Table 3 is an excerpt of the database of API usages that we
collected. This excerpt corresponds to the usages collected in the
bytecode corresponding to the example in Listing 2. For example,
this excerpt shows that the class ClusterEntrypoint references the
class Logger of slf4j-api:1.7.21 one time, and calls the method
Logger.info 6 times.

4. Results

4.1. RQ1 How are the APIs used in the code of clients that declare a
dependency towards them?

In this research question, we examine the cases where a client
declares a dependency towards a library in its pom.xml file, but its
bytecode does include any usage of the library’s API. We measure
the extent of the phenomenon and investigates its causes.

https://mvnrepository.com/open-source

N. Harrand, A. Benelallam, C. Soto-Valero et al. The Journal of Systems & Software 184 (2022) 111134

d
t
c
a
o
9
m
c

o
t
t
c
t
o
a
s
d
t
p

t
a
c

#

s
s

Table 2
Descriptive statistics of libraries (GAV) and clients (GAV).

Libraries Overview Libraries Members

#Membs #In. Dep. #Dist-Clis. #Types #Meths #Fields

Min. 8 0 0 6 1 0
1st Qu. 1102.00 11 6 101 889.50 46
Median 2333 56 21 221 1922 158
Mean 7895.59 479.13 89.64 662.07 6617.91 615.61
3rd Qu. 4813 261 67 458 4101.50 360
Max. 118690 47819 5375 10256 108117 13682

Total 41,085,887 2,169,273 475,928 3,453,949 34,120,704 3,511,234

Libraries Types Clients Overview

#Classes #Intfcs. #Anns. #Type Usgs. #Out. Dep.

Min. 0 0 0 0 1
1st Qu. 58 8 0 1 1
Median 145 29 0 5 2
Mean 477.09 80.41 8.72 25.14 2.70
3rd Qu. 310 66 9 23 3
Max. 9200 930 98 15,379 45

Total 2,964,707 442,157 47,085 21,268,765 2,169,273
o

Table 3
The API usages collected in the code of Listing 2.
Library Class Member signature #Calls

slf4j-api org.slf4j.LoggerFactory getLogger(Class;)Logger; 1

TYPE 1
org.slf4j.Logger info(String;)V 6

error(String;Throwable;)V 2

jsr305 javax.annotation.Nonnull TYPE 1
javax.annotation.Nullable TYPE 2

javax.annotation.concur TYPE 9rent.GuardedBy

Fig. 4 shows a histogram with the distribution of depen-
ency usage rate DUR(LIB) among our 94 LIBs. We compute
he DUR for every single library in LIB. The leftmost bin in-
ludes nine LIBs for which less than 10% of their clients include
t least one usage of the LIB’s API, i.e. with DUR in [0, 0.1[.
rg.apache.maven:maven-plugin-api has the maximum rate, with
6.9% of its clients that use at least one element of its API. The
edian rate is 52.4%. No LIB is actually called by 100% of its
lients.
spring-boot-configuration-processor is an example

f extremely low DUR (0.2%). This LIB contains a set of annota-
ions, as well as an annotation processor that can be used by IDEs
o assist with the development of spring-boot applications.2 Ac-
ording to the official documentation, in order to avoid shipping
his dependency at runtime, it is recommended to declare it as
ptional. We suspect that most of the clients that do not mark it
s optional, do so accidentally. There is however one single client,
pring-boot-security-saml,3 (across its 14 versions), which
oes use its API4 to generate Markdown documentation based on
he annotations provided by spring-boot-configuration-
rocessor.
The group of LIBs with a DUR below 20%, is composed of

wo types of libraries. First, we find libraries that are meant to
ssist users at development time. For example, spring-boot-
onfiguration-processor enable a developer to generate

2 https://docs.spring.io/spring-boot/docs/2.1.1.RELEASE/reference/htmlsingle/
configuration-metadata-annotation-processor.
3 https://github.com/ulisesbocchio/spring-boot-security-saml.
4 https://github.com/ulisesbocchio/spring-boot-security-saml/blob/master/

pring-boot-security-saml/src/main/java/com/github/ulisesbocchio/spring/boot/
ecurity/saml/util/ConfigPropertiesMarkdownGenerator.java.
 #

6

customized metadata based on annotations5 to provide auto-
completion and documentation. Other examples are jaxb-core,
which is used to generate Java source code from XML files, and
lombok that enriches the Java language with annotations that
are used to generate boilerplate code. When these libraries are
erroneously declared with the default scope (compile instead
of provided), they are needlessly considered as a runtime de-
pendency. Second, we distinguish libraries that are not supposed
to be called directly by the client. Instead, they are used by
other existing dependencies. For example, a client declares slf4j
r mysql-connector-java as dependencies in order to let its

other dependencies use different logging facades or database
connectors.

The seven LIBs with the highest usage rate among their
clients (DUR(LIB) > 80%), include the standard libraries for Scala
and Kotlin, as well as other frameworks used as domain-specific
languages. This latter category includes the maven-plugin-api,
which provides a way for developers to create Maven plugins,
and the Apache camel-core library, an integration framework
for systems producing and consuming data.

The majority of LIBs, 58 out of the 94, have a DUR between
40% and 80%. The median DUR of the population is 53.1%. This
indicates that, for common libraries of the ecosystem, slightly
less than half of clients declare a dependency towards a library
and do not make any direct static call to it. For instance, among
the 79,364 clients that declare a dependency towards a version
of commons-io, only 47,495 (59.8%) refer to an element of its
API in their bytecode. Similarly, the DUR of slf4j-api is 67.3%.
This corresponds to 117,692 clients of 174,895 containing calls
to slf4j-api in their bytecode.

Discussing the root cause of unused dependencies:
We distinguish two common situations where a dependency is

declared but not used by a client. First are declared dependencies
that ended up in the pom.xml, most likely, by accident; either
through an ingenuous copy-and-paste or inherited from an earlier
version of the client’s pom.xml where it was actually used. This
hypothesis is consistent with the observations of McIntosh and
colleagues (McIntosh et al., 2014) who found that build files are
more prone to clones than other software artifacts. Take the
javax.inject for example, which has a dependency usage rate of
61.9%, slightly above the median. Since this library contains only
5 annotations and one interface, it is unlikely that any client has
used it through reflection. Moreover, the fact that it has only one

5 https://docs.spring.io/spring-boot/docs/2.1.1.RELEASE/reference/htmlsingle/
configuration-metadata-annotation-processor.

https://docs.spring.io/spring-boot/docs/2.1.1.RELEASE/reference/htmlsingle/#configuration-metadata-annotation-processor
https://docs.spring.io/spring-boot/docs/2.1.1.RELEASE/reference/htmlsingle/#configuration-metadata-annotation-processor
https://github.com/ulisesbocchio/spring-boot-security-saml
https://github.com/ulisesbocchio/spring-boot-security-saml/blob/master/spring-boot-security-saml/src/main/java/com/github/ulisesbocchio/spring/boot/security/saml/util/ConfigPropertiesMarkdownGenerator.java
https://github.com/ulisesbocchio/spring-boot-security-saml/blob/master/spring-boot-security-saml/src/main/java/com/github/ulisesbocchio/spring/boot/security/saml/util/ConfigPropertiesMarkdownGenerator.java
https://github.com/ulisesbocchio/spring-boot-security-saml/blob/master/spring-boot-security-saml/src/main/java/com/github/ulisesbocchio/spring/boot/security/saml/util/ConfigPropertiesMarkdownGenerator.java
https://docs.spring.io/spring-boot/docs/2.1.1.RELEASE/reference/htmlsingle/#configuration-metadata-annotation-processor
https://docs.spring.io/spring-boot/docs/2.1.1.RELEASE/reference/htmlsingle/#configuration-metadata-annotation-processor

N. Harrand, A. Benelallam, C. Soto-Valero et al. The Journal of Systems & Software 184 (2022) 111134

p

o
d
p
l
d
b
c
o
t

a
r
o
d
4

a
t
c
t

7

version (javax.inject:1) excludes the hypothesis that this depen-
dency is used to prevent versions conflict. This leaves us with two
plausible explanations for the 38.1% of unused dependencies: (1)
forgetting to update the pom.xml and removing unused depen-
dencies during maintenance, or (2) a simple copy-and-paste of
an existing pom.xml. A living example of the latter hypothesis is
the multi-module Maven project com.eurodyn.qlack2.fuse where
all the modules that declare a dependency to javax.inject use
at least one API member, except qlack2-fuse-file-upload-rest. This
module contains only one type (Eurodyn, 2019) that does not
import nor use any member of javax.inject API. In this case, it is
safe to suggest that this dependency was copied and pasted from
another module at the time it was created.

Another common reason for clients to declare a dependency
U without actually using it is to expose it in the classpath so that
another one of its dependencies D can use U . Two mechanisms
support this: either U shadows another dependency of D and con-
sequently, when the client is built, D uses U instead of the other
dependency; or D declares U as an optional dependency, which is
enforced as soon as the client of D declares U as a dependency.
Classpath shadowing is commonly used by the clients of the
slf4j logging framework. netty, a framework for building asyn-
chronous network applications, declares javassist as an optional
dependency, to accelerate encoding/decoding methods. async-
http-client6 depend on netty and declares javassist as dependency
to improve netty’s performances7 but no call to javassist ’s API are
resent in asynch-http-client ’s bytecode.
We replicated the study for this research question with an-

ther static analysis tool (based on the Apache maven-
ependency-analyzer8), on a subset of the client–library de-
endencies (Soto-Valero et al., 2021). This study unveiled a simi-
ar ratio of unused dependencies: 44.2% (19,673 out of 44,488) of
irect dependencies declared in pom.xml files were not followed
y any static usage of the API of the dependency. This result is
onsistent with the observation of our current work, i.e., 41,13%
f declared dependencies do not translate in an actual usage of
he dependency.

Answer to RQ1: 892,167 out of 2,169,273 dependencies
declared in the clients pom.xml files are not used (41,13%).
We observe three main causes: some libraries are not meant
to be used directly; developers mistakenly define the scope
of the dependency; a pom.xml file is hardly maintained and
cleaned. These observations indicate the need for better
support to analyze and maintain build files.

4.2. RQ2: How is the usage frequency of API types distributed and
how does that depend on the number of clients?

In this research question, we study how client usages of APIs
re distributed across its types. We focus on the client–library
elationships for which we are able to observe at least one usage
f the library on the client’s bytecode. This represents 1,277,106
ependency relationships between 677,953 unique clients, and
931 unique libraries (58.87% of the dependencies in our dataset).
Fig. 5b shows the distribution of usage rates of API types for of

ll 4931 libraries used by at least a client. The x-axis represents
he Type Usage Rates (TUR) grouped in 11 categories. The first
ategory is for types having a TUR that is equal to zero, while
he remaining categories are grouped by 10% ranges, the lowest

6 https://github.com/AsyncHttpClient/async-http-client/blob/
7714b5215afd670d7ca6cd698de21596a0606de/providers/netty4/pom.xml.
7 https://github.com/AsyncHttpClient/async-http-client/issues/430.
8 http://maven.apache.org/shared/maven-dependency-analyzer.
7

Fig. 5. Distribution of type usage rates of API types of all 4931 libraries used
by at least a client.

bound excluded. The y-axis represents the proportion of types in
each library that falls into each category, from 0% to 100%, on a
logarithmic scale. This figure is read as follows: The first column
on the left represents the distribution of the share of API being
used by none of its clients, the second column to the left shows
the distribution of the share of API being used by more than 0%
but less than 10% of its clients, and so forth.

First, let us analyze the share of API types for each library
being used by no client (leftmost boxplot). The first quartile of
this distribution is 41.7%, its median is 71.8%, and its third quartile
is 88.9%. This means that for 50% of libraries, more than 71.8% of
the API types are used by no client in our dataset.

On the opposite side of the figure, the rightmost column shows
that the proportion of API types used by more than 90% of clients
is greater than 0.6% for 25% of libraries. This hints the existence
of a handful number of API types in each library that are used
by a vast majority of the clients. We investigate extreme usages
further with Fig. 5a by showing the distribution of the share of
clients using the most used type of each API. The first quartile of
this distribution is 60.9%, it is median 80.0%, and its third quartile
is 100%. This means that for more than 25% of the libraries, there
is at least one type used by all clients. Whilst, for more than 75%
of them, there is at least one API type used by more than 60.9%
of the clients.

These two observations, a small number of API types used
by many clients and a large portion of types used by no clients,
are consistent with observations in previous work (Sawant and
Bacchelli, 2017; Qiu et al., 2016).

Now, let us analyze the second leftmost boxplot. It captures
the proportion of API types that are rarely used. These types are
used by one client at least, but no more than 10% of the clients.
We observe that this category, TUR ∈]0, 10%[exhibits a large
variability: the first quartile is 0%, the third quartile is 37%, the
maximum is 99.4% and the median is 10.5%. This large variability,
similar to the leftmost boxplot, suggests two phenomena. First,
some libraries have a very large portion of types that are rarely
used, a phenomenon that has not been observed previously.
Second, these large variabilities might come from large variations
in the number of clients for each library.

https://github.com/AsyncHttpClient/async-http-client/blob/77714b5215afd670d7ca6cd698de21596a0606de/providers/netty4/pom.xml
https://github.com/AsyncHttpClient/async-http-client/blob/77714b5215afd670d7ca6cd698de21596a0606de/providers/netty4/pom.xml
https://github.com/AsyncHttpClient/async-http-client/issues/430
http://maven.apache.org/shared/maven-dependency-analyzer

N. Harrand, A. Benelallam, C. Soto-Valero et al. The Journal of Systems & Software 184 (2022) 111134

2
s
a

t

o
a
t
r
A
d
n
o

1
l

u
t
a
i
2

i
u
1
t
m

Fig. 6. Distribution of the number of clients per library.

Fig. 6 is a boxplot representing the distribution of the number
of clients of each library. The x-axis is the number of clients on
a logarithm scale. The plot indicates the quartiles of the distribu-
tion. For instance, 365 of the 4805 libraries have exactly 1 client.
75% of libraries have more than 6 clients, 50% have more than 29
and 25% have more than 268. The maximum number of clients
observed is 29,466 for scala-library:2.11.8.

We observe a strong negative correlation (−0.26, p-value <
.2e−16) between the number of clients that use a library and the
hare of the API types that are unused. Furthermore, we observe
n even stronger positive correlation (0.34%, p-value < 2.2e−16)

between the number of clients using an API and the share of its
types that is rarely used (<10%). This means that libraries with
few clients tend to have a large ratio of unused API types. When
the number of clients increases, the ratio of unused API types
decreases in favor of rarely used types. These observations hint
that the number of library clients matters when studying the API
usage. The next research question investigates this phenomenon
further, with a focus on the most used version of each LIB.

Answer to RQ2: All libraries include a handful of API types
that are used by a vast majority of their clients. Meanwhile,
50% of libraries include more than 71.8% of types that are
used by no client. These observations confirm previous stud-
ies observing that most API clients focus their usage on a
small part of the public types. The rate of unused API types
varies significantly depending on the number of clients,
which motivates a detailed analysis of the most popular
library versions.

4.3. RQ3: How is the usage frequency of API types distributed when
focusing on the popular version of an API?

In this section we focus on the most popular version of each of
he 94 LIBs and their 235,440 clients. The goal is to analyze the
distribution of API usages in the presence of a sufficient number
of clients. We investigate in particular how the share of API types
used by no clients, and few clients, change compared with library
with fewer clients.

Fig. 7b shows the distribution of the TUR of API types, focusing
n the most used version of each LIB (instead of aggregating
ll versions as in Fig. 5b). The x-axis shows categories based on
he percentage of clients using each part of an API. The y-axis
epresents the share of API types used by a certain ratio of the
PI clients, on a logarithm scale. The first column shows the
istribution of the share of API types of our 94 libraries used by
o client. The second column shows the distribution of the share
f API types used by at least one client but less than 10%.
8

Fig. 7. Distribution of usage rates of API types of the most used version of each
LIB.

Overall, we notice that both distributions in Figs. 7b and 5b
share the same general characteristic: the proportion of library
types decreases while increasing the TUR. Meanwhile, we notice
some key differences. First, we remark that the proportion of
types used by absolutely no client drastically decreases when
focusing on the most popular versions of the LIB, with a median
value at 2.6% (while it was 71.8% when considering all the ver-
sions of the LIB). Second, we observe that the proportion of API
types used by less than 10% of the clients has increased, with a
median value of 80.2%. We observe that with a sufficient number
of users, for most libraries, the share of API types used by no client
falls drastically. With a sufficient number of clients, the share of
unused API types decreases to the profit of the share of API types
that are rarely used.

The third interesting difference while considering the most
popular version is about the usage distribution of the most popu-
lar type (box plot on top of Fig. 7b): the median does not change,
but the quartile values do. Precisely, 64% to 93%, instead of 61% to
∼100%. This is consistent with the increase of the quartile values
in the categories [70%, 80%[and [80%, 90%[and the decrease of
the quartile values [90%, 100%]. The maximum is usage rate is not
00% anymore, since, with a sufficient number of clients, it is less
ikely to have all them use the same single type.

Overall, the distribution of the share of clients using the most
sed type of an API, as well as the share of API types used by more
han 50% of clients, indicates the existence, in most libraries, of
small compact subset of APIs being used by most client. This

s consistent with previous work (Qiu et al., 2016; Lämmel et al.,
011; Thummalapenta and Xie, 2008).
Here we analyze our illustrative examples in details, and check

f our assumption that with enough client all API types end being
sed by at least one. commons-io:2.4 is a good example: it exposes
12 API types, it is used by 21,959 clients and there is no type
hat is used by no client. We can observe on Fig. 7a, that the
ost used type of commons-io:2.4 is IOUtils used by only 64.5%

of its clients. This is lower than 75% of libraries in our dataset.

N. Harrand, A. Benelallam, C. Soto-Valero et al. The Journal of Systems & Software 184 (2022) 111134

j
b
a

5
f
t
c

e
b

a
a
a
t
i
E
u
t
e
o
a
w
e
i
p

Our assumption holds for regular APIs such as commons-cli:1.3.1,
avax.inject:1 and slf4j-api:1.7.21, which can be partly explained
y the small number of types they offer for reuse (resp. 6, 24
nd 38). While our assumption holds, commons-io:2.4 and slf4j-

api:1.7.21 also have a large share of types that are rarely used
(in the]0, 10%] category), indicating a large diversity of usage
profiles.

The case of junit:4.12 is distinct from the other examples. Our
assumption globally holds for this library, since only 6 of the 281
public types are not used. The distinctive feature with respect
to API usage appears in the boxplot at the top of Fig. 7a: the
most used type of junit:4.12, (org.junit. Assert), is used by only
4.4% of its clients. This singular case can be explained by the
act that version 4.x of junit contains both a new API (including
he type org.junit. Assert), and the API of version 3.x for backward
ompatibility reasons (including a type junit.framework. Assert).
hibernate-core:4.3.11.Final, our 6th example, is a counter-

xample. It exposes 2746 types, the version we analyze is used
y 453 clients, but 81.8% of its types are never used.

Answer to RQ3: Focusing on the most popular version of
each LIB, we confirm that, in the Maven ecosystem, with
a sufficient number of clients, only a very small share of
the API types are never used. Meanwhile, we observe a new
phenomenon: a large part of API types are used by less than
10% of clients (median proportion of types used by less than
10% of clients is 95,00%).

4.4. RQ4: Can inter-package calls explain the existence of API types
that are unused by the clients?

Java imposes a design constraint on multi-package libraries:
class member must be publicly visible in order to be used by
nother class, from another package, inside the library. Yet, once
class is public, it is not possible to limit the visibility boundaries
o only the packages of the library. Once a class is visible beyond
ts package boundaries, it is accessible to the rest of the world.
ven though, several different conventions can inform a library
ser that a public type is meant for internal usage, such as naming
he package internal or annotating the type as such, non is
nforced. Therefore, one could argue that some types are public
nly to be used internally by the library itself, which could explain
part of the API types that are not used by the clients. If this
as true, we would observe that the types that are not used by
xternal clients are actually used through internal calls. Here we
nvestigate this hypothesis and its consequences on the results
resented above.
We consider the most popular version of each LIB. For each

library, we distinguish between the types that are used by one
client at least and the types that are used by no client. For each
category of type, we measure the share that is used through
inter-package calls inside the library.

The boxplot at the top of Fig. 8 is the distribution of intra-
library usages for types that are used by at least one external
client. One point on this plot corresponds to the proportion of
types of one library that are used by at least one client of this
library and that are also used inside the library.

The boxplot at the bottom of Fig. 8 is the distribution of intra-
library usages for types that are used by no client. One point here
is the proportion of types of library used by no client but used
internally. In this boxplot, 12 libraries, that have no public type
that is used by no clients, do not appear. Among our examples,
commons-cli:1.3.1, and javax.inject:1 are not on the lower line of
the plot since they do not have any unused public type and are
single package library.
9

Fig. 8. Distribution of inter-package usage rates of API types of the most used
version of each LIB.

Furthermore, 9 libraries have only 1 package which makes
their share of types used from other packages equal to 0% (for
both lines).

The comparison of these two distributions informs us that, not
only types used by no clients are not more likely to be used by
another package of the same library, but in fact the opposite is
true. The median inter-package usage rate for types used by at
least a client is 30.7% while it is 0% for types used by no clients at
all. Furthermore, a t−test rejects that their mean is the same with
p-value < 0.001. The bottom plot reveals that for more than half
of the libraries, no unused type is used by other packages of the
library. For all these libraries, the types that are publicly visible
are not public to allow internal usages, but most probably to be
used by the clients of these libraries. We also observe that 90% of
the libraries have less than 23% of unused types that are used by
another package of the library. This consolidates the observation
that API members are not made public for inter-package usages.
In other words, types used internally by a library, are not less
popular among its clients. Consequently, Fig. 8 shows that the
declaration of some types as public to allow their internal usage,
cannot explain the majority of the unused public types.

Answer to RQ4: The existence of public types that are not
used by the clients of a library is not explained by the Java
constraint of setting a type as public for internal usages.
Based on this new observation and on the results of RQ3, we
can conclude that, as soon as a developer sets an element
as public, it will likely be used by some client, given a
sufficient number of clients, regardless of the developer’s
initial intentions.

4.5. RQ5: How many API classes are essential for most of the clients?

In this last research question, we explore how the long tail
distribution of API usages can be navigated. We demonstrate that,
if developers are willing to satisfy a majority of their API clients
(and not all of them), then they can still identify a small core of
API types on which they can focus their efforts and eventually
apply the good practices from the literature. For example, testing,
and documentation efforts can be focused on the small core
of API types that are the most used without alienating a large
amount of clients. Similarly, automated library manipulation such
as specialization or automated migration can support only this
core while supporting the majority of the population of clients.

The dataset for this question includes the most popular version
of each LIB and their clients. The API of each library is reduced
to API types that are used by at least one client.

Fig. 9 represents the distribution of extinction sequences for
the 94 libraries in our dataset. We simulate these extinction

N. Harrand, A. Benelallam, C. Soto-Valero et al. The Journal of Systems & Software 184 (2022) 111134

s
t
s
o
f
w
s
c

c
p
c
t
o
I
u

.
i
e
c
i
1
t

s
9
n
p
m
W

i
3
t

o
c
m
A
u
a
a
T
t
p
t
u

t
o
t
a

s
s
b
T
u
t
t
o
7

m
a
m
s

Fig. 9. Distribution of extinction sequences for API types. Each sequence simu-
lates the hiding of API types from the least to the most used type. Colored lines
show the extinction of 6 libraries, while the boxplot represents the distribution
of all 94 most used version. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

sequences by hiding types of their API, from the least popular
one to the most popular one. At every step of this process, we
observe the share of client that are no longer able to use the
API. The x-axis shows the share of hidden API types (from 0% to
100%). Given a share of hidden API types, the y-axis indicates the
hare of clients that can still access all the types they need. In
he rest of this section, we say that these clients are correctly
erved. The colored lines represent the extinction sequences of
ur 6 case studies, while the boxplots represent the distributions
or the population of 94 artifacts. All extinction sequences start
ith 0% of API types being hidden, and 100% of clients correctly
erved. They all end with 100% of API types hidden and 0% of
lients served.
The yellow line represents the extinction sequence for

ommons-io:2.4. We observe that it is possible to hide a large
art of the types while correctly serving the vast majority of the
lients. The big drop occurs when simulating hiding the 3 last
ypes of the API: FilenameUtils, FileUtils,IOUtils. 14 819
ut of the 21 959 clients (67.5%) only use either FileUtils,
OUtils or both, and 7039 (32%) use only IOUtils, the most
sed types of the API.
The blue line represents the extinction sequence for javax-

inject:1. This API has only comports 6 types (5 annotations and an
nterface) and all of them are used by the clients. Consequently,
ach simulation of type hiding corresponds to a sharp decrease of
orrectly served clients. The least popular type is Scope, which
s still is used by 1129 of the 14 442 clients (7.8%). About half of
4 442 clients (49.8%) use only one or both of the most popular
ypes of the API: Singleton and inject.

commons-cli:1.3.1’s extinction sequence is represented in pur-
ple. The API of commons-cli:1.3.1 is another example of a rather
mall API (24 types). 64.3% of its client (1313 out of 2042) use the
most used types: we observe a steep drop when removing the
inth most used type (OptionGroup). The rest of the sequence
resents an unusual shape because the most popular type is
ostly used in conjunction with one other of the popular types.
ith only 10 clients using only the most used type Options.
slf4j-api:1.7.21’s extinction sequence is represented in green. It

s one of the most extreme cases in our dataset. The API contains
7 types, but 20 164 of the 21 398 clients (94.2%) use only two

ypes: LoggerFactory and Logger. As only 1560 clients use

10
nly Logger, the sharpest drop in correctly served clients is
aused by the removal of LoggerFactory. This occurs because
ost clients use these two types in conjunction. The rest of the
PI provides more advanced logging options that only few clients
se. Fig. 10 illustrates this singular situation. This figure shows
chord diagram representing types of the API of org.slf4j:slf4j-
pi:1.7.21 and its clients. Nodes on the upper par represents API
ypes with a size proportional to the number of clients using
hem. The lower part represents three groups of clients (with a
roportional size): in red, clients only using the two most popular
ypes (Logger and LoggerFactory), in blue, clients that do not
se any of these two types, and in yellow other clients.
The orange line represents hibernate-core:4.3.11.Final’s extinc-

ion sequence. It simulates the progressive hiding of the 507 types
f its API used by at least one client. This sequence informs us
hat the 397 least used types of the API may be hidden without
ffecting more than 75% of the clients.
The boxplots of Fig. 9 represent the distributions of extinction

equences for all 94 libraries in our dataset. The median values
how that for half of libraries, 88% of the API types or more can
e hidden, while leaving more than 75% of clients unaffected.
his illustrates the implication of the long tail distribution of API
sages. There is a small set of features used by most client, and
he rest is used but rarely. Similarly, the series first quartiles of
hese distributions show that for three quarters of libraries 77%
r more of the API types may be hidden without affecting at least
5% of clients.
All APIs include a small set of features that serve a vast

ajority of the clients. This confirms that API developers who
re willing to ignore a minority of clients can indeed focus their
aintenance, documentation and development efforts on the
mall subset of the API that is the most used.

Answer to RQ5: With enough clients, most API types are
used, while most clients can be served successfully with a
small subset of API types. In particular, for more than half of
the libraries in this study, 88% of the API types or more can
be hidden while leaving more than 75% of clients unaffected.
If API developers are willing to ignore a minority of clients,
they can focus their maintenance, documentation and de-
velopment effort on the small subset of the API that is the
most used. It also opens opportunities to automate library
migration, only supporting a limited part of API targeted
while supporting a large majority of clients using it.

5. Discussion

In this section, we reflect on how our observations could hold
in other dependency ecosystems. We articulate this reflection
around four characteristics of our dataset and how they influence
our observations.

5.1. Source code language for clients

All artifacts in our dataset are Java bytecode. Yet, the source
code may vary (Java, Scala, Kotlin, Groovy). We analyzed the
clients implemented mostly in Scala, to check if a client’s source
code language affects the usage of external APIs. We choose Scala
because it is the most popular language of the ecosystem, aside
from Java, according to the popularity of its standard library.

To assess if clients implemented in Scala use APIs differently
than those written purely in Java, we select all the clients that
declare a dependency (excluding test scope) towards any version
of the Scala standard library (org.scala-lang:scala-library. Let us
note that these clients might also use other languages, e.g., Java.

N. Harrand, A. Benelallam, C. Soto-Valero et al. The Journal of Systems & Software 184 (2022) 111134

c
(
r

T
(
b
T

o
f
n
h
r
I
t

5

a
I
d
o
t
t
p
s
r

t
t
b
t

5

b
o
a
t

Fig. 10. Chord diagram representing the bipartite graph of the org.slf4j:slf4j-
api:1.7.21 API types and its clients. Nodes on the upper part represent API
Types, with a size proportional to the number of clients using them. The lower
part represents three groups of clients (with a proportional size): in red, clients
only using the two most popular types (Logger and LoggerFactory), in blue,
lients that do not use any of these two types, and in yellow other clients.
For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

his subset of clients represents 31.4% of the dataset used for RQ2
212 844 artifacts). Then, we select libraries which API is called
oth by clients using Scala and clients that do not include Scala.
his represents 1322 out of the 4931 clients of our dataset.
We perform a Welch test to determine if the average number

f types of the API called by Scala clients is significantly different
rom the one called by clients not using Scala. While the average
umber of types used by clients using Scala (12.6) is slightly
igher than the one of client not using Scala (11.8), we cannot
eject the hypothesis that these means are equal (p-value 0.45).
n other words, clients using Scala do not use significantly more
ypes of an API than other clients.

.2. Build tool

Our observations about unused dependencies (Section 4.1) are
ffected by the build system used to compile and test a client.
ndeed, different languages and associated build tools implement
ifferent policies regarding external API usages. In RQ1 and in
ur subsequent studies (Soto-Valero et al., 2021) we observed
hat Maven can build and package projects that include libraries
hat are not used. Meanwhile, the Go compiler does not compile
rograms which declare unused imports,9 and widely used tools
uch as goimports10 can refactor imports of a go program to
emove unused ones.

The ecosystem of Go libraries likely behaves differently than
he Java ecosystem, regarding our observations in RQ1. We can
herefore speculate that the different practices enforced by the
uild tools impact the distribution of API usages, as studied in
his work.

.3. API size

Our dataset shows a loose correlation (0.21, p-value 0.04)
etween the core-index of a library and the size of its API (number
f public types). Consequently, variations in the range of sizes for
given set of APIs are likely to change the range of core sizes and
he core-index.

9 https://golang.org/doc/faq#unused_variables_and_imports.
10 https://godoc.org/golang.org/x/tools/cmd/goimports.
11
In our dataset, the 3 libraries that are written in Scala (scala-
library, scala-compiler, and scala-reflect), have very
large APIs in terms of number of bytecode types, in part because
the Scala compiler generates types to implement various Scala
language constructs. This tends to exacerbate the importance of
unused or rarely used types.

The range of API sizes varies in other ecosystems. For example
Abdalkareem et al. (2017) observe the increasing popularity of
trivial packages in the npm ecosystem, i.e. packages that con-
tain less than 250 LOC. These packages represent 16.8% of the
npm population in 2017. Meanwhile, 90% of our artifacts have
more than 147 accessible elements. This difference in API sizes
between npm and Maven influences the observations about the
core of APIs: it is very likely that the core of npm libraries is
proportionally larger than in Maven.

In summary, the trends in size of APIs vary in different ecosys-
tems. Yet, these variations should not affect the existence of a
core set of API members that are used by a majority of clients.

5.4. Update frequency and interconnection

The number of clients for a given library in a specific version
influences the shape of the extinction sequence and the number
of used API members. The frequency of updates impacts this
number of clients: a popular and stable library attracts more
and more clients over time, while libraries that update very
frequently have a scattered population of clients over multiple
versions (Soto-Valero et al., 2019). Indeed, it is common for client
projects to keep outdated dependencies (Kula et al., 2018; Bogart
et al., 2016). Consequently, variations in update frequency have
an impact on the shape of the Core.

Decan et al. (2018) study 7 software ecosystems (Cargo, CPAN,
CRAN, npm, NuGet, Packagist and RubyGems), describing the
variations in update frequencies, as well as how interconnected
the ecosystems are. They observe that, while all ecosystems grow
over time, some also increase in ratio of dependency over artifact.
This indicates that in these ecosystems, dependencies are more
and more interconnected. They also observe that, across all the
studied ecosystems, a small number of artifacts concentrate most
of the usages by others. Furthermore, this inequality seems to
increase over time. In RQ2 we show how a large number of
clients tends to imply no or few unused parts of APIs (confirming
Hyrum’s law), but does not change the fact that in general a small
part of APIs concentrate most usages. Based on the observations
of Decan about various update frequencies in different ecosys-
tems, it is likely that the relative size of APIs with no observed
client, will likely vary in from one ecosystem to another.

5.5. The notion of Core outside Maven

While our dataset focuses on artifacts from Maven Central,
we are confident that the results would be similar on other
Java corpora. We refer to previous works with other dataset to
elaborate on the generalizability of our findings. Qiu et al. (2016)
analyzed 5000 projects mined from GitHub and observed that API
usages follow Zipf’s law. This is consistent with our results, and
implies that extinction sequences would produce similar results
on their corpus.

Lämmel et al. (2011) perform API usages analyses similar to
ours, based on the SourceForge ecosystem. Their dataset includes
6286 clients for which they mine API usages. Several of their
findings align with ours and comfort our results. (i) The 4 most
used external APIs of their dataset are libraries providing XML
parsing, Logging and Testing functionalities, and are also in our
dataset. (ii) The number of clients using popular libraries follow a

https://golang.org/doc/faq#unused_variables_and_imports
https://godoc.org/golang.org/x/tools/cmd/goimports

N. Harrand, A. Benelallam, C. Soto-Valero et al. The Journal of Systems & Software 184 (2022) 111134

t
m
M
t
o
t

6

o
w

d
b
S
a
1
a
i
n
p
c
a
m
t
v
a
a
f
a
p
s
d
d
T
a
e

a
i
p
c
p
S
l
e
a
u

s
p
i
2
a

t
i
C
w
(
t
r

similar decreasing exponential (See Fig. 2). (iii) Based on the num-
ber of clients in their dataset, Lammel and colleagues conclude
that most APIs are not well covered by usages, which does not
contradict our observations on libraries with a limited number of
clients. (iv) In their case studies, they observe rare projects that
largely cover APIs and many projects using only a limited subset
of APIs. This is consistent with our observations. Furthermore,
the low cumulative coverage they observe is consistent with our
observation that most clients focus their API usages on a small
subset of APIs.

When it comes to other software ecosystems, they vary in
heir custom values and policies (Bogart et al., 2016), which
ay change the exact values obtained. Our study focuses on the
aven ecosystem and JVM-based code artifacts. We acknowledge

hat key variations in other ecosystems require replications with
ther data to understand to what extent our observations about
he existence of a reuse-core generalize.

. Related work

Several existing works have investigated the usage of APIs in
pen-source projects and industrial applications. In this section
e discuss the related work along the following aspects.
API usage in practice. Several studies have focused on un-

erstanding how developers actually make use of APIs on a daily
asis (Roover et al., 2013; Blom et al., 2013; Bauer et al., 2014).
ome of the motivations include improving API design (Myers
nd Stylos, 2016) and increasing developers’ productivity (Lim,
994). Qiu et al. (2016) present empirical evidence showing that
considerable proportion of API members are not widely used,

.e., many classes, methods, and fields of popular libraries have
ever been used. They have found that, on a corpus of 5000
rojects, API usage distribution follows a power law, which is
onsistent with our findings. Sawant and Bacchelli (2017) propose
tool to mine API usages and evaluate it on a dataset of project
ined on GitHub using 5 popular Java APIs. They study how

he small set features truly used is often introduced in early
ersion of an API. Pham et al. (2016) implement a bytecode based
nalysis tool to learn API usages of Android frameworks. Their
pproach is intended to automatically generate recommendations
or incomplete API usages, and thus reducing API usage errors
nd improving code quality. While their dataset covers one ap-
lication domain, in our paper, we analyze clients of libraries
erving different domains. Kula et al. (2018) observe that even if
ependency usage is common, maintenance operations on depen-
encies such as keeping them up to date is often not prioritized.
o our knowledge, none of the previous studies has performed on
population as significant as ours, nor proposed the concept of
xtinction sequences in this context.
Lämmel et al. (2011) perform a large-scale study on API usage

nalysis based on AST elements migration. This is the work that
s the most closely related to ours. Yet it differs in several im-
ortant aspects. The size and origin of the dataset: we studied a
orpus of more than 800,000 clients fromMaven Central, i.e. com-
iled projects. They studied the sources of 6286 projects from
ourceForge. We build our dataset by choosing the most popular
ibraries and then resolve all the clients of those libraries in the
cosystem. We discuss other topics such as bloated dependencies
nd propose the use of extinction sequences to describe API
sages.
API recommendation and comprehension. As open-source

oftware projects continuously grow both in quantity and com-
lexity, recent research has paid special attention to understand-
ng these large systems by studying API properties (Zheng et al.,
011). In particular, API recommendation systems based on us-
bility (Stylos and Myers, 2008), diversity (Mendez et al., 2013),
12
and stability (Raemaekers et al., 2012) have been proposed. Steidl
et al. (2012) present an approach based on network metrics to
retrieve central classes on large software systems. While this
approach relies on internal usages (i.e. classes within the same
project) to determine the central classes, in our approach, we
rely on external usages. Thummalapenta and Xie (2008) present
a tool that detects hotspots and coldspots of eight widely used
open-source frameworks. Their tool is integrated as an Eclipse
plugin and aim at helping users of APIs to discover their relevant
parts. Duala-Ekoko and Robillard (2012) conducted a study about
the common questions that programmers ask when working
with unfamiliar APIs. Horvath et al. (2019) mine client usage
Apache Beam to study how developers discover functionalities
of the API. They observe a long tail distribution of API usages,
which is consistent to our observations. Our work expands the
existing knowledge in the area by characterizing the essential API
elements based on the clients’ usages, which becomes a valuable
criterion to reuse functionalities, i.e., following the wisdom of the
crowd.

Software dependency ecosystems. During the last decade,
researchers have investigated the dependency relationships in
software packaging ecosystems (Mancinelli et al., 2006;
Pashchenko et al., 2018; Soto-Valero et al., 2019). In particular,
research efforts focus on the study of library evolution (Decan
et al., 2018), updating behaviors (Raemaekers et al., 2017) and the
security risks (Zapata et al., 2018). Bogart et al. (2016) highlight
the different values and customs of different software ecosys-
tems. Raemaekers et al. (2013) constructed a Maven dataset of
148,253 jar files for analyzing the evolution of API members
based on code metrics. Gabel and Su (2010) perform a study on
the uniqueness of source code showing that most existing code
is reused code. Unlike previous work, our study focuses on the
analysis of API usages to characterize the reuse-core of API types.

7. Threats to validity

We report about internal, external, and construct threats to
the validity of our study.

Internal validity. This study relies on a very rich and com-
plex network of software artifacts. The complexity is such that
we could not completely resolve the artifacts captured in the
MDG (Benelallam et al., 2019). Indeed, the MDG contains a mi-
nority of artifacts, hosted on other repositories than Maven Cen-
tral. For network reasons, e.g. download limitations, some arti-
facts could not be resolved. In total, we resolved 829,410 of the
901,876 artifact (91.84%), which corresponds to 2,169,273 de-
pendency relationships (91.78%). Our analysis covered 87,207,807
usages of 5,076,307 different API elements. We believe that the
results obtained with this large set of APIs and clients represent
a good approximation of how clients use popular libraries.

External validity. Our findings might not generalize to all
Java APIs. We selected the 94 LIBs based on their popularity and
on the popularity of Maven Central. We also noticed that these
APIs cover a variety of usage domains (e.g., collections, logging,
XML parsing). As Maven Central is a collection of opensource
components,11 they may not behave as pure end-applications. All
he client artifacts in our dataset are artifacts from this repos-
tory. This means that the exact sets of types included in the
oren of the libraries studied in this work could be different
hen observing a different set of clients. Yet, both Qiu et al.
2016), and Lämmel et al. (2011), observe usages distributions
hat consistent with ours, on a dataset of Java applications mined
espectively on GitHub and SourceForge. Consequently, we are

11 https://central.sonatype.org/pages/about.html#what-is-the-central-
repository.

https://central.sonatype.org/pages/about.html#what-is-the-central-repository
https://central.sonatype.org/pages/about.html#what-is-the-central-repository

N. Harrand, A. Benelallam, C. Soto-Valero et al. The Journal of Systems & Software 184 (2022) 111134

i
t
b
a
b
t
h
t
m
p
N
R
i
C
l

c
a
t
m
W
r
o
a

8

W
d
9

u
v
l
a
H
t
o
o
m
7
e
t

t
t
a
w
i
f
i
m
i

D

c
t

confident about the relevance of our study subjects and the scale
of their dependency relationships.

Construct validity. The main threat to construct validity
s related to the limitations of static analysis, which may fail
o capture dynamic calls from the users to some API mem-
ers. Reflection and libraries handling dependency injection such
s spring-boot, or OSGI plugins allow clients to use API mem-
ers through dynamic calls. Reif and colleagues recently studied
he impact of Java dynamic features, which are not soundly
andled by static analysis, in the context of call-graphs construc-
ion (Reif et al., 2019). While the empirical evidence show that
any projects do use reflection, the prevalence of reflection (pro-
ortion of methods that do use it) in their call graph is limited.
one of the forms of reflection (namely Trivial Reflection, Locally
esolvable Reflection, and Context-sensitive Reflection) is present
n more than 0.47% of the methods in their Top50Maven Corpus.
onsequently, the presence of reflection constructs among client
ibraries has a minimal impact on our observations.

Reliability. The code to query the Maven Dependency Graph,
ollect both libraries and client artifacts, and analyze the us-
ges, developed for this study may contain bugs. To limit this
hreat, 3 researchers were involved in the iteration of develop-
ent, analysis of the results, and manual review of data points.
e also made our infrastructure publicly available for further

eplication (Harrand, 2019a). Finally, in order to advocate for
pen-science, we made all the data used in this study publicly
vailable online (Harrand, 2019b).

. Conclusion

In this paper we study the long tail nature of client–API usages.
e perform a systematic empirical analysis of 2,169,273 depen-
encies that are declared by 829,410 client artifacts towards the
4 most popular libraries available in Maven Central.
A novel result is the observation that most of the API types are

sed by one client at least, when considering the most popular
ersion of an API. For more than half the top 94 in Maven Central,
ess than 2% of types are used by no clients of the repository
t all. This original result sets an antecedent to further explore
yrum’s law about behavior usage. It is interesting to note that
his new observation does not contradict with the state of the art:
ur analyses also confirms that most APIs have a small number
f types that are used by the vast majority of their clients. For
ore than half of the API, only 12% of types are necessary to serve
5% of the clients. This means that API developers can focus their
ffort on maintenance and documentation in order to best serve
he majority of their clients.

We envision two main threads of future works. First, we wish
o explore novel ways of designing public Java APIs in order
o reduce the number of types exposed to clients. This may be
ddressed by the feature of modules introduced in Java 9. Second,
e wish to leverage the existence of a core set of API types as an

nstrument to build adapters between APIs that provide similar
eatures, focused on the subset of most used API elements. This
s motivated by the growing challenges of dependency manage-
ent and the need to abstract dependencies from their concrete

mplementation in order to address these challenges (Cox, 2019).

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.
13
Acknowledgment

This work has been partially supported by the Wallenberg
Autonomous Systems and Software Program, by the TrustFull
project financed by the Swedish Foundation for Strategic Re-
search.

References

Abdalkareem, R., Nourry, O., Wehaibi, S., Mujahid, S., Shihab, E., 2017. Why
do developers use trivial packages? An empirical case study on npm. In:
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering. In: ESEC/FSE 2017, Association for Computing Machinery, New
York, NY, USA, pp. 385–395. http://dx.doi.org/10.1145/3106237.3106267.

Albert, R., Jeong, H., Barabási, A.-L., 2000. Error and attack tolerance of complex
networks. Nature 406 (6794), 378–382.

Apache, 2019. Flink. https://github.com/apache/flink/releases/tag/release-1.5.1
(Accessed: 2019-06-30).

Apache, 2020. Maven scope documentation. https://maven.apache.org/guides/
introduction/introduction-to-dependency-mechanism.html#Dependency_
Scope (Accessed: 2020-07-13).

Bartolomei, T.T., Czarnecki, K., Lämmel, R., Van Der Storm, T., 2009. Study of an
API migration for two XML apis. In: International Conference on Software
Language Engineering. Springer, pp. 42–61.

Bauer, V., Eckhardt, J., Hauptmann, B., Klimek, M., 2014. An exploratory study
on reuse at google. In: Proceedings of the 1st International Workshop on
Software Engineering Research and Industrial Practices. In: SERIP 2014, ACM,
New York, NY, USA, pp. 14–23. http://dx.doi.org/10.1145/2593850.2593854,
URL: http://doi.acm.org/10.1145/2593850.2593854.

Benelallam, A., Harrand, N., Soto-Valero, C., Baudry, B., Barais, O., 2019. The
maven dependency graph: a temporal graph-based representation of maven
central. In: 16th International Conference on Mining Software Repositories.
In: MSR 2019, ACM, New York, NY, USA, pp. 1–4. http://dx.doi.org/10.1145/
2597073.2597097, URL: http://doi.acm.org/10.1145/2597073.2597097.

Blom, S., Kiniry, J., Huisman, M., 2013. How do developers use apis? A case study
in concurrency. In: Proceedings of the 2013 18th International Conference
on Engineering of Complex Computer Systems. pp. 212–221. http://dx.doi.
org/10.1109/ICECCS.2013.39.

Bogart, C., Kästner, C., Herbsleb, J., Thung, F., 2016. How to break an API:
Cost negotiation and community values in three software ecosystems. In:
Proceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering. In: FSE 2016, Association for Comput-
ing Machinery, New York, NY, USA, pp. 109–120. http://dx.doi.org/10.1145/
2950290.2950325.

Constantinou, E., Ampatzoglou, A., Stamelos, I., 2014. Quantifying reuse in OSS:
A large-scale empirical study. Int. J. Open Source Softw. Process. 5 (3), 1–19.
http://dx.doi.org/10.4018/IJOSSP.2014070101.

Cox, R., 2019. Surviving software dependencies. Commun. ACM 62 (9), 36–43.
Decan, A., Mens, T., Grosjean, P., 2018. An empirical comparison of dependency

network evolution in seven software packaging ecosystems. Empir. Softw.
Eng. 1–36. http://dx.doi.org/10.1007/s10664-017-9589-y.

Duala-Ekoko, E., Robillard, M.P., 2012. Asking and answering questions about
unfamiliar APIs: An exploratory study. In: Software Engineering (ICSE), 2012
34th International Conference on. IEEE, pp. 266–276.

Eclipse, 2019. Aether. https://projects.eclipse.org/projects/technology.aether (Ac-
cessed: 2019-06-30).

Eghan, E.E., Alqahtani, S.S., Forbes, C., Rilling, J., 2019. API Trustworthiness:
an ontological approach for software library adoption. Softw. Qual. J. http:
//dx.doi.org/10.1007/s11219-018-9428-4.

Eurodyn, 2019. FileUploadRestTemplate Class of Qlack2. https://github.com/
eurodyn/Qlack2/blob/340c3874eeba6b433b5b612b06f1ab7911857156/Fuse/
qlack2-fuse-faile-upload/qlack2-fuse-file-upload-rest/src/main/java/com/
eurodyn/qlack2/fuse/fileupload/rest/FileUploadRestTemplate.java (Accessed:
2019-06-30).

Gabel, M., Su, Z., 2010. A study of the uniqueness of source code. In: Proceedings
of the Eighteenth ACM SIGSOFT International Symposium on Foundations
of Software Engineering. In: FSE ’10, ACM, New York, NY, USA, pp. 147–
156. http://dx.doi.org/10.1145/1882291.1882315, URL: http://doi.acm.org/10.
1145/1882291.1882315.

Harrand, N., 2019a. Replication package for the empirical investigation of an API
core. https://github.com/castor-software/core-83 (Accessed: 2019-06-30).

Harrand, N., 2019b. Zenodo. https://zenodo.org/record/2567268 (Accessed:
2019-06-30).

Horvath, A., Grover, S., Dong, S., Zhou, E., Voichick, F., Kery, M.B., Shinju, S.,
Nam, D., Nagy, M., Myers, B., 2019. The long tail: Understanding the
discoverability of api functionality. In: 2019 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). IEEE, pp. 157–161.

Hyrum Wright, 2019. The hyrums law. http://www.hyrumslaw.com (Accessed:
2019-06-30).

http://dx.doi.org/10.1145/3106237.3106267
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb2
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb2
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb2
https://github.com/apache/flink/releases/tag/release-1.5.1
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Dependency_Scope
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Dependency_Scope
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Dependency_Scope
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Dependency_Scope
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Dependency_Scope
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb5
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb5
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb5
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb5
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb5
http://dx.doi.org/10.1145/2593850.2593854
http://doi.acm.org/10.1145/2593850.2593854
http://dx.doi.org/10.1145/2597073.2597097
http://dx.doi.org/10.1145/2597073.2597097
http://dx.doi.org/10.1145/2597073.2597097
http://doi.acm.org/10.1145/2597073.2597097
http://dx.doi.org/10.1109/ICECCS.2013.39
http://dx.doi.org/10.1109/ICECCS.2013.39
http://dx.doi.org/10.1109/ICECCS.2013.39
http://dx.doi.org/10.1145/2950290.2950325
http://dx.doi.org/10.1145/2950290.2950325
http://dx.doi.org/10.1145/2950290.2950325
http://dx.doi.org/10.4018/IJOSSP.2014070101
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb11
http://dx.doi.org/10.1007/s10664-017-9589-y
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb13
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb13
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb13
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb13
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb13
https://projects.eclipse.org/projects/technology.aether
http://dx.doi.org/10.1007/s11219-018-9428-4
http://dx.doi.org/10.1007/s11219-018-9428-4
http://dx.doi.org/10.1007/s11219-018-9428-4
https://github.com/eurodyn/Qlack2/blob/340c3874eeba6b433b5b612b06f1ab7911857156/Fuse/qlack2-fuse-faile-upload/qlack2-fuse-file-upload-rest/src/main/java/com/eurodyn/qlack2/fuse/fileupload/rest/FileUploadRestTemplate.java
https://github.com/eurodyn/Qlack2/blob/340c3874eeba6b433b5b612b06f1ab7911857156/Fuse/qlack2-fuse-faile-upload/qlack2-fuse-file-upload-rest/src/main/java/com/eurodyn/qlack2/fuse/fileupload/rest/FileUploadRestTemplate.java
https://github.com/eurodyn/Qlack2/blob/340c3874eeba6b433b5b612b06f1ab7911857156/Fuse/qlack2-fuse-faile-upload/qlack2-fuse-file-upload-rest/src/main/java/com/eurodyn/qlack2/fuse/fileupload/rest/FileUploadRestTemplate.java
https://github.com/eurodyn/Qlack2/blob/340c3874eeba6b433b5b612b06f1ab7911857156/Fuse/qlack2-fuse-faile-upload/qlack2-fuse-file-upload-rest/src/main/java/com/eurodyn/qlack2/fuse/fileupload/rest/FileUploadRestTemplate.java
https://github.com/eurodyn/Qlack2/blob/340c3874eeba6b433b5b612b06f1ab7911857156/Fuse/qlack2-fuse-faile-upload/qlack2-fuse-file-upload-rest/src/main/java/com/eurodyn/qlack2/fuse/fileupload/rest/FileUploadRestTemplate.java
https://github.com/eurodyn/Qlack2/blob/340c3874eeba6b433b5b612b06f1ab7911857156/Fuse/qlack2-fuse-faile-upload/qlack2-fuse-file-upload-rest/src/main/java/com/eurodyn/qlack2/fuse/fileupload/rest/FileUploadRestTemplate.java
https://github.com/eurodyn/Qlack2/blob/340c3874eeba6b433b5b612b06f1ab7911857156/Fuse/qlack2-fuse-faile-upload/qlack2-fuse-file-upload-rest/src/main/java/com/eurodyn/qlack2/fuse/fileupload/rest/FileUploadRestTemplate.java
http://dx.doi.org/10.1145/1882291.1882315
http://doi.acm.org/10.1145/1882291.1882315
http://doi.acm.org/10.1145/1882291.1882315
http://doi.acm.org/10.1145/1882291.1882315
https://github.com/castor-software/core-83
https://zenodo.org/record/2567268
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb20
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb20
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb20
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb20
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb20
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb20
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb20
http://www.hyrumslaw.com

N. Harrand, A. Benelallam, C. Soto-Valero et al. The Journal of Systems & Software 184 (2022) 111134

L

L

M

M

M

M

M

O

P

P

P

Q

R

R

Kula, R.G., German, D.M., Ouni, A., Ishio, T., Inoue, K., 2018. Do developers
update their library dependencies? Empir. Softw. Eng. 23 (1), 384–417.
http://dx.doi.org/10.1007/s10664-017-9521-5.

ämmel, R., Pek, E., Starek, J., 2011. Large-scale, AST-based API-usage analysis
of open-source java projects. In: Proceedings of the 2011 ACM Symposium
on Applied Computing. In: SAC ’11, ACM, New York, NY, USA, pp. 1317–
1324. http://dx.doi.org/10.1145/1982185.1982471, URL: http://doi.acm.org/
10.1145/1982185.1982471.

im, W.C., 1994. Effects of reuse on quality, productivity, and economics. IEEE
Softw. 11 (5), 23–30. http://dx.doi.org/10.1109/52.311048.

ancinelli, F., Boender, J., Cosmo, R.D., Vouillon, J., Durak, B., Leroy, X.,
Treinen, R., 2006. Managing the complexity of large free and open source
package-based software distributions. In: Proceedings of the 21st IEEE/ACM
International Conference on Automated Software Engineering (ASE’06). pp.
199–208. http://dx.doi.org/10.1109/ASE.2006.49.

astrangelo, L., Ponzanelli, L., Mocci, A., Lanza, M., Hauswirth, M., Nystrom, N.,
2015. Use at your own risk: The java unsafe API in the wild. In: Proceedings
of the 2015 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications. In: OOPSLA, ACM, New
York, NY, USA, pp. 695–710. http://dx.doi.org/10.1145/2814270.2814313,
URL: http://doi.acm.org/10.1145/2814270.2814313.

cIntosh, S., Poehlmann, M., Juergens, E., Mockus, A., Adams, B., Hassan, A.E.,
Haupt, B., Wagner, C., 2014. Collecting and leveraging a benchmark of build
system clones to aid in quality assessments. In: Companion Proceedings of
the 36th International Conference on Software Engineering. In: ICSE Com-
panion 2014, ACM, New York, NY, USA, pp. 145–154. http://dx.doi.org/10.
1145/2591062.2591181, URL: http://doi.acm.org/10.1145/2591062.2591181.

endez, D., Baudry, B., Monperrus, M., 2013. Empirical evidence of large-scale
diversity in API usage of object-oriented software. In: Proceedings of the
2013 IEEE 13th International Working Conference on Source Code Analysis
and Manipulation (SCAM). pp. 43–52. http://dx.doi.org/10.1109/SCAM.2013.
6648183.

yers, B.A., Stylos, J., 2016. Improving API usability. Commun. ACM 59 (6),
62–69.

W2, 2019. ASM Bytecode manipulation. https://asm.ow2.io (Accessed:
2019-06-30).

ashchenko, I., Plate, H., Ponta, S.E., Sabetta, A., Massacci, F., 2018. Vulnerable
open source dependencies: Counting those that matter. In: Proceedings
of the 12th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement. In: ESEM ’18, ACM, New York, NY, USA,
pp. 42:1–42:10. http://dx.doi.org/10.1145/3239235.3268920, URL: http://doi.
acm.org/10.1145/3239235.3268920.

ham, H.V., Vu, P.M., Nguyen, T.T., et al., 2016. Learning API usages from
bytecode: a statistical approach. In: Proceedings of the 38th International
Conference on Software Engineering. ACM, pp. 416–427.

iccioni, M., Furia, C.A., Meyer, B., 2013. An empirical study of API usability. In:
Proceedings of the 2013 ACM / IEEE International Symposium on Empirical
Software Engineering and Measurement. pp. 5–14. http://dx.doi.org/10.1109/
ESEM.2013.14.

iu, D., Li, B., Leung, H., 2016. Understanding the API usage in java. Inf. Softw.
Technol. 73, 81–100.

aemaekers, S., van Deursen, A., Visser, J., 2012. Measuring software library
stability through historical version analysis. In: Proceedings of the 2012 28th
IEEE International Conference on Software Maintenance (ICSM). pp. 378–387.
http://dx.doi.org/10.1109/ICSM.2012.6405296.

aemaekers, S., van Deursen, A., Visser, J., 2013. The maven repository dataset
of metrics, changes, and dependencies. In: Proceedings of the 10th IEEE
Working Conference on Mining Software Repositories. In: MSR 2013, ACM,
IEEE, San Francisco, CA, USA, pp. 221–224.
14
Raemaekers, S., van Deursen, A., Visser, J., 2017. Semantic versioning and
impact of breaking changes in the maven repository. J. Syst. Softw.
129, 140–158. http://dx.doi.org/10.1016/j.jss.2016.04.008, URL: http://www.
sciencedirect.com/science/article/pii/S0164121216300243.

Reif, M., Kübler, F., Eichberg, M., Helm, D., Mezini, M., 2019. Judge: Identifying,
understanding, and evaluating sources of unsoundness in call graphs. In:
Proceedings of the 28th ACM SIGSOFT International Symposium on Software
Testing and Analysis. In: ISSTA 2019, Association for Computing Machin-
ery, New York, NY, USA, pp. 251–261. http://dx.doi.org/10.1145/3293882.
3330555.

Roover, C.D., Lämmel, R., Pek, E., 2013. Multi-dimensional exploration of API
usage. In: 2013 21st International Conference on Program Comprehension
(ICPC). pp. 152–161. http://dx.doi.org/10.1109/ICPC.2013.6613843.

Sawant, A.A., Bacchelli, A., 2017. Fine-GRAPE: fine-grained API usage extractor –
an approach and dataset to investigate API usage. Empir. Softw. Eng. 22 (3),
1348–1371. http://dx.doi.org/10.1007/s10664-016-9444-6.

Sawant, A.A., Robbes, R., Bacchelli, A., 2018. On the reaction to deprecation of
clients of 4 + 1 popular java apis and the JDK. Empir. Softw. Eng. 23 (4),
2158–2197. http://dx.doi.org/10.1007/s10664-017-9554-9.

Soto-Valero, C., Benelallam, A., Harrand, N., Barais, O., Baudry, B., 2019. The
emergence of software diversity in maven central. In: 16th International
Conference on Mining Software Repositories. In: MSR 2019, ACM, New
York, NY, USA, pp. 1–10. http://dx.doi.org/10.1145/2597073.2597097, URL:
http://doi.acm.org/10.1145/2597073.2597097.

Soto-Valero, C., Harrand, N., Monperrus, M., Baudry, B., 2021. A comprehensive
study of bloated dependencies in the maven ecosystem. Empir. Softw. Eng.
26 (3), 45. http://dx.doi.org/10.1007/s10664-020-09914-8.

Steidl, D., Hummel, B., Juergens, E., 2012. Using network analysis for recom-
mendation of central software classes. In: Proceedings of the 19th Working
Conference on Reverse Engineering. In: WCRE 2012, ACM, IEEE, Kingston,
Canada, pp. 93–102.

Stylos, J., Myers, B.A., 2008. The implications of method placement on API
learnability. In: Proceedings of the 16th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering. In: SIGSOFT ’08/FSE-16,
ACM, New York, NY, USA, pp. 105–112. http://dx.doi.org/10.1145/1453101.
1453117, URL: http://doi.acm.org/10.1145/1453101.1453117.

Thummalapenta, S., Xie, T., 2008. Spotweb: Detecting framework hotspots and
coldspots via mining open source code on the web. In: 2008 23rd IEEE/ACM
International Conference on Automated Software Engineering. pp. 327–336.
http://dx.doi.org/10.1109/ASE.2008.43.

Zaimi, A., Ampatzoglou, A., Triantafyllidou, N., Chatzigeorgiou, A., Mavridis, A.,
Chaikalis, T., Deligiannis, I., Sfetsos, P., Stamelos, I., 2015. An empirical study
on the reuse of third-party libraries in open-source software development.
In: Proceedings of the 7th Balkan Conference on Informatics Conference. In:
BCI ’15, ACM, New York, NY, USA, pp. 4:1–4:8. http://dx.doi.org/10.1145/
2801081.2801087, URL: http://doi.acm.org/10.1145/2801081.2801087.

Zapata, R.E., Kula, R.G., Chinthanet, B., Ishio, T., Matsumoto, K., Ihara, A., 2018.
Towards smoother library migrations: A look at vulnerable dependency
migrations at function level for npm JavaScript packages. In: 2018 IEEE
International Conference on Software Maintenance and Evolution (ICSME).
IEEE, pp. 559–563.

Zheng, W., Zhang, Q., Lyu, M., 2011. Cross-library API recommendation using
web search engines. In: Proceedings of the 19th ACM SIGSOFT Symposium
and the 13th European Conference on Foundations of Software Engineering.
In: ESEC/FSE ’11, ACM, New York, NY, USA, pp. 480–483. http://dx.doi.org/10.
1145/2025113.2025197, URL: http://doi.acm.org/10.1145/2025113.2025197.

http://dx.doi.org/10.1007/s10664-017-9521-5
http://dx.doi.org/10.1145/1982185.1982471
http://doi.acm.org/10.1145/1982185.1982471
http://doi.acm.org/10.1145/1982185.1982471
http://doi.acm.org/10.1145/1982185.1982471
http://dx.doi.org/10.1109/52.311048
http://dx.doi.org/10.1109/ASE.2006.49
http://dx.doi.org/10.1145/2814270.2814313
http://doi.acm.org/10.1145/2814270.2814313
http://dx.doi.org/10.1145/2591062.2591181
http://dx.doi.org/10.1145/2591062.2591181
http://dx.doi.org/10.1145/2591062.2591181
http://doi.acm.org/10.1145/2591062.2591181
http://dx.doi.org/10.1109/SCAM.2013.6648183
http://dx.doi.org/10.1109/SCAM.2013.6648183
http://dx.doi.org/10.1109/SCAM.2013.6648183
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb29
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb29
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb29
https://asm.ow2.io
http://dx.doi.org/10.1145/3239235.3268920
http://doi.acm.org/10.1145/3239235.3268920
http://doi.acm.org/10.1145/3239235.3268920
http://doi.acm.org/10.1145/3239235.3268920
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb32
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb32
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb32
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb32
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb32
http://dx.doi.org/10.1109/ESEM.2013.14
http://dx.doi.org/10.1109/ESEM.2013.14
http://dx.doi.org/10.1109/ESEM.2013.14
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb34
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb34
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb34
http://dx.doi.org/10.1109/ICSM.2012.6405296
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb36
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb36
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb36
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb36
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb36
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb36
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb36
http://dx.doi.org/10.1016/j.jss.2016.04.008
http://www.sciencedirect.com/science/article/pii/S0164121216300243
http://www.sciencedirect.com/science/article/pii/S0164121216300243
http://www.sciencedirect.com/science/article/pii/S0164121216300243
http://dx.doi.org/10.1145/3293882.3330555
http://dx.doi.org/10.1145/3293882.3330555
http://dx.doi.org/10.1145/3293882.3330555
http://dx.doi.org/10.1109/ICPC.2013.6613843
http://dx.doi.org/10.1007/s10664-016-9444-6
http://dx.doi.org/10.1007/s10664-017-9554-9
http://dx.doi.org/10.1145/2597073.2597097
http://doi.acm.org/10.1145/2597073.2597097
http://dx.doi.org/10.1007/s10664-020-09914-8
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb44
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb44
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb44
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb44
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb44
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb44
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb44
http://dx.doi.org/10.1145/1453101.1453117
http://dx.doi.org/10.1145/1453101.1453117
http://dx.doi.org/10.1145/1453101.1453117
http://doi.acm.org/10.1145/1453101.1453117
http://dx.doi.org/10.1109/ASE.2008.43
http://dx.doi.org/10.1145/2801081.2801087
http://dx.doi.org/10.1145/2801081.2801087
http://dx.doi.org/10.1145/2801081.2801087
http://doi.acm.org/10.1145/2801081.2801087
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb48
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb48
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb48
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb48
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb48
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb48
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb48
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb48
http://refhub.elsevier.com/S0164-1212(21)00231-4/sb48
http://dx.doi.org/10.1145/2025113.2025197
http://dx.doi.org/10.1145/2025113.2025197
http://dx.doi.org/10.1145/2025113.2025197
http://doi.acm.org/10.1145/2025113.2025197

	API beauty is in the eye of the clients: 2.2 million Maven dependencies reveal the spectrum of client–API usages
	Introduction
	API usage in the Maven ecosystem
	Artifact-level API dependency
	Code-level API dependency

	Methodology
	Research questions
	Metrics and definitions
	Dataset
	API usages collection

	Results
	RQ1 How are the APIs used in the code of clients that declare a dependency towards them?
	RQ2: How is the usage frequency of API types distributed and how does that depend on the number of clients?
	RQ3: How is the usage frequency of API types distributed when focusing on the popular version of an API?
	RQ4: Can inter-package calls explain the existence of API types that are unused by the clients?
	RQ5: How many API classes are essential for most of the clients?

	Discussion
	Source code language for clients
	Build tool
	API size
	Update frequency and interconnection
	The notion of Core outside Maven

	Related work
	Threats to validity
	Conclusion
	Declaration of competing interest
	Acknowledgment
	References

