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Abstract

We study the overlap distribution of two particles chosen under the Gibbs measure at
two temperatures for the branching Brownian motion. We first prove the convergence
of the overlap distribution using the extended convergence of the extremal process
obtained by Bovier and Hartung [8]. We then prove that the mean overlap of two
points chosen at different temperatures is strictly smaller than in Derrida’s random
energy model. The proof of this last result is achieved with the description of the
decoration point process obtained by Aïdékon, Berestycki, Brunet and Shi [1]. To our
knowledge, it is the first time that this description is being used.
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1 Introduction

1.1 Overview

The (binary) branching Brownian motion (BBM) describes a system of particles that
starts with a single one at 0 which moves as a standard Brownian motion and splits
into two new particles after a mean-one exponential time. These two particles then
move independently according to Brownian motions and split with the same rule. It
appears that the BBM belongs to a more general class of models, called log-correlated
Gaussian fields, for which the dependence between the random variables starts to affect
the extreme value statistics. In this class, one finds the branching random walk (BRW)
and the two-dimensional discrete Gaussian free field (DGFF). Among all these models,
it is commonly accepted that the BBM, with its branching structure and its brownian
trajectories, is more manageable. We refer to [3] for more details on log-correlated
fields.
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The overlap distribution at two temperatures for the branching Brownian motion

For t ≥ 0, let Nt be the set of particles alive at time t and let xu(t) denote the position
of a particle u ∈ Nt at time t. One can interpret the position of the particles of the BBM
as an energy, and in statistical physics, it is common to introduce the partition function
and the corresponding Gibbs measure to study the extreme values. For β > 0 and t ≥ 0,
they are defined by

Zβ,t :=
∑
u∈Nt

eβxu(t), Gβ,t :=
1

Zβ,t

∑
u∈Nt

eβxu(t)δu.

One crucial quantity to investigate the energy landscape at the thermodynamical limit
is the overlap qt(u, v) between the particles u and v and more specifically the following
random probability measure

G⊗2
β,t(qt(u, v) ∈ ·),

which is the distribution of the overlap between particles u and v chosen independently
under the Gibbs measure Gβ,t (see next subsection for precise definitions). In their widely
known article [12], Derrida and Spohn showed that this random measure converges to a
limit whose support is {0, 1} in the low-temperature regime, exhibiting a one-step replica
symmetry breaking (1-RSB) in the langage of spin glasses. Curiously enough, the limiting
overlap behaves in the same way as in the i.i.d. case, the so-called random energy model
(REM). This model was introduced by Derrida [13] as a toy-model to understand more
complex spin glasses. As we will see, this is no longer the case when the temperatures
are different.

In a very recent article, Derrida and Mottishaw [14] gave a thorough analysis of the
overlap between two copies of the same REM at two temperatures. The distribution of
the overlap between two points sampled independently according to Gibbs measures at
temperatures β and β′ is in our settings

Gβ,t ⊗ Gβ′,t(qt(u, v) ∈ ·).

This object originally appeared in the study of the temperature chaos problem, see for
example [30] for a survey. For the DGFF, Pain and Zindy [28] showed the convergence of
the distribution of the two-temperature overlap and proved that its mean value is strictly
smaller than the REM’s, when the temperatures are different and below the critical
temperature, contrary to the one-temperature case. In this paper, we are interested in
the same questions but for the BBM. Even if this model is hierarchical and usually simpler
to study, the difficulty here is to deal with the decoration process whose description is
less explicit than for the DGFF.

Let us mention that there are two different approaches to tackle the limiting overlap
at one temperature. The first one is to prove 1-RSB and then to recover Poisson-Dirichlet
statistics thanks to Ghirlanda-Guerra identities, see [5]. This is the method used by
Bovier and Kurkova [9] for the BBM, by Arguin and Zindy [6] for the DGFF, and by
Jagannath [19] for the BRW with Gaussian increments. A second method is to use
the now established convergence of the extremal process of these models towards a
randomly shifted decorated Poisson point process, see [1] and [4] for the BBM, [7] for
the DGFF and [24] for the BRW. It suggests a candidate for the limiting overlap and gives
a strong support to prove the convergence. For instance, Mallein [25] proved the same
result for the BRW using the convergence of the extremal process obtained by Madaule
[24]. However, it is not clear how the first of these approaches could be adapted in the
multiple temperature case.

In this paper, we follow the same approach for the branching Brownian motion that
Pain and Zindy [28] used for the DGFF. We show that the two-temperature overlap distri-
bution converges to the one from the limiting process obtained by Bovier & Hartung in
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The overlap distribution at two temperatures for the branching Brownian motion

[8] and that its expectation is strictly smaller than the REM’s when the two temperatures
are different.

1.2 Model and results

One way to construct a (binary) BBM is to realize it as a process decorating the
infinite binary tree U = ∪n∈Z+

{0, 1}n, with the convention {0, 1}0 = {∅}. We use 0 and 1

here instead of the classical Ulam-Harris notation because it will be more convenient
for the definition of the genealogical embedding function γ to come. For u ∈ U , let |u|
be the length of u and for k ≤ |u|, let uk ∈ {0, 1} be the k-th component of u. Write
u ≤ v if u is an ancestor of v and u ∧ v for the last common ancestor of u and v. For
each u ∈ U , let bu be the birth-time of u and du its death-time and for all t ≥ 0, let
Nt := {u ∈ U : bu ≤ t < du} be the set of particles alive at time t and xu(t) the position
of particle u at time t. Ikeda et al. [16, 17, 18] proved that there exists a probability
space (Ω,F ,P) such that the trajectories are Brownian motions and the underlying tree
T = (Tt)t≥0 is a binary continuous time Galton-Watson tree with branching rate 1.

The position of the highest particle x(t) := maxu∈Nt xu(t) has been the subject of
intense studies since McKean [26] who linked the distribution function of x(t) with the F-
KPP partial differential equation. Then, Bramson [10] obtained the right centering term
mt :=

√
2t− (3/2

√
2) log t and Lalley and Sellke [23] obtained an integral representation

of the limiting law using the limiting derivative martingale Z := limt→∞
∑
u∈Nt(

√
2t−

xu(t))e−
√

2(
√

2t−xu(t)). A new step has been taken with the proof of the convergence of
the extremal process

Et :=
∑
u∈Nt

δx̃u(t), where x̃u(t) := xu(t)−mt,

in the space of Radon measures on R endowed with the vague topology, to a randomly
shifted decorated Poisson point process, simultaneously in [1] and [4]. More precisely,

Et
(vd)−−−→
t→∞

∑
i,j

δpi+∆i
j
, (1.1)

where the (pi)i≥0 are the atoms of a Cox process onR with intensity measure CZe−
√

2xdx,
C a positive constant, Z is the limiting derivative martingale introduced before and
(∆i)i≥0 are i.i.d. point processes on R− called decoration processes.

Here and after, the set of summation of index like i, j or k is assumed to be Z+ unless
otherwise specified and one identifies a simple point process with the set of its atoms.
We also use, as above, the superscript (vd) for the convergence in distribution of random
measures with respect to the vague topology and (wd) with respect to the weak topology,
as in the setting of [20, Chapter 4].

Let us recall, from the previous section, the following quantities defined for β > 0

and t > 0

Zβ,t :=
∑
u∈Nt

eβxu(t), ft(β) :=
1

t
E[log(Zβ,t)], Gβ,t :=

1

Zβ,t

∑
u∈Nt

eβxu(t)δu. (1.2)

There is a phase transition at βc :=
√

2 which is related to the asymptotic speed of the
extremal particle: we have the following convergence for the (averaged) free energy, see
e.g. [12],

lim
t→∞

ft(β) = f(β) :=

{
1 + (β/βc)

2, if β ≤ βc,
2β/βc, if β > βc.

(1.3)
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The overlap between particles u, v ∈ Nt is defined by

qt(u, v) :=
1

t
du∧v =

1

t
E[xu(t)xv(t) |T ].

It is known since [2] that the overlap of extremal particles is either 0 or 1 at the limit
t → ∞. In the following theorem, we establish the convergence of its distribution
according to the Gibbs measure at two temperatures. Below the critical temperature,
the limiting distribution is the one obtained from the limit of the extremal process in
(1.1): the overlap is 1 when the same cluster is chosen and 0 otherwise.

Theorem 1.1. Let β, β′ > 0.
(i) If β ≤ βc or β′ ≤ βc and a ∈ (0, 1),

Gβ,t ⊗ Gβ′,t(qt(u, v) ≥ a) −−−→
t→∞

0, in L1.

(ii) If β, β′ > βc, and a ∈ (0, 1),

Gβ,t ⊗ Gβ′,t(qt(u, v) ≥ a)
(d)−−−→
t→∞

Q(β, β′),

where

Q(β, β′) :=

∑
i

(∑
j eβ(pi+∆i

j)
)(∑

j eβ
′(pi+∆i

j)
)(∑

i,j eβ(pi+∆i
j)
)(∑

i,j eβ
′(pi+∆i

j)
) . (1.4)

The Part (i) of the theorem is a consequence of the convergence of the free energy
and a Gaussian integration by parts. The proof of Part (ii) uses the convergence in
Equation (1.1) and an additional information on the genealogy of the extremal particles,
which is what Bovier and Hartung obtained in [8]. The authors define the following
function, in a more general setting than ours,

γr(u) :=
∑
v≤u:
bv≤r

u|v| e−bv , u ∈ Nt, r ≤ t.

This function encodes the genealogy of the particles on R+ in the following way. First,
γ0(∅) = 0, then each time a particle u ∈ Nt with value γt(u) splits at time t, one of the
children keeps the same value γt(u) and the other one takes the value γt(u) + e−t. If
r ≤ t and u ∈ Nt, γr(u) is simply γr(v) where v ∈ Nr is the ancestor of u alive at time r.
This way when two particles originate from a recent split, their images by the function
are close. We refer to [8] for more details about the function γ. Bovier and Hartung
obtain the following joint convergence of Et with (γt(u))u∈Nt :

Proposition 1.2 (Bovier and Hartung [8]). Let Ẽt :=
∑
u∈Nt δ(γt(u),x̃u(t)), then Ẽt con-

verges in vague distribution to

Ẽ :=
∑
i,j

δ(qi,pi)+(0,∆i
j)
,

where (qi, pi)i are the atoms of a Cox process on R+ ×R with intensity measure Z(dν)⊗
Ce−

√
2xdx, Z(dν) is a random measure on R+ such that Z(R+) = Z and C and (∆i)i

were introduced in Equation (1.1).

It is then natural to compare the overlap with the one obtained at the limit for the
REM, where the positions at time t are given by |Nt| independent Brownian motions and
is studied in [22]. One notices the same effect of the decoration process as in [28] for
the DGFF: the expected value of the overlap is strictly smaller than in the REM case.
More precisely, let us define, for β, β′ > βc,

QREM(β, β′) :=

∑
i e(β+β′)ηi∑

i eβηi
∑
i eβ′ηi

,
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where the (ηi)i are the atoms of a PPP(e−
√

2xdx).

Theorem 1.3. For any β 6= β′ > βc, we have E[Q(β, β′)] < E[QREM(β, β′)].

Remark 1.4. When β = β′, one has Q(β, β)
(d)
= QREM(β, β) and its expected value is

1− βc
β , see [22].

What we need to prove this result is the precise description of the decoration point
process obtained in [1] and some technical estimates. Let us emphasize here that the
main difficulty is to handle the description of this point process, which is less explicit
than for the DGFF.

1.3 Organization of the paper

In Section 2, we prove successively Part (i) and Part (ii) of Theorem 1.1. Then, in
Section 3, we give a proof of Theorem 1.3. Appendix A.1 contains some technical results
that are used in Section 2 and Appendix A.2, A.3 contains technical results that are used
in Section 3.

2 Proof of Theorem 1.1: convergence of the overlap distribution

2.1 Proof of Part (i) of Theorem 1.1

The averaged free energy ft defined in (1.2) is a convex function of β and its limit f
is differentiable everywhere. By an argument of convexity known as Griffiths’ lemma,
see for example [32, page 25], the derivative f ′ is the pointwise limit of f ′t

f ′(β) = lim
t→∞

f ′t(β) = lim
t→∞

1

t
E

[ ∑
u∈Nt

xu(t)
eβxu(t)∑

w∈Nt eβxw(t)

]
.

One would like to apply a Gaussian integration by parts to the last term to make appear
the overlap (see Lemma A.8). In order to deal with a fixed number of Gaussian variables,
we use a conditioning on the underlying tree T . Indeed, conditionally on T , (xu(t), u ∈ Nt)
is a Gaussian vector with covariances (du∧v)u,v∈Nt and denoting E[· |T ] by ET yields

ET

[ ∑
u∈Nt

xu(t)
eβxu(t)∑

w∈Nt eβxw(t)

]
=

∑
u,v∈Nt

du∧v ET

[
−βeβ(xu(t)+xv(t))

(
∑
w∈Nt eβxw(t))2

]

+
∑
u∈Nt

tET

[
βeβxu(t)∑
w∈Nt eβxw(t)

]
= βt

(
1− ET

[
G⊗2
β,t(qt(u, v))

])
.

Taking expectation of both sides and using f ′(β) = β for β ≤ βc, see Equation (1.3),
yields E[G⊗2

β,t(qt(u, v))] −→ 0, as t→∞. Now assume that β, β′ > 0 with β ≤ βc without
loss of generality and take a ∈ (0, 1), we have

Gβ,t ⊗ Gβ′,t(qt(u, v) ≥ a) =
∑

w∈Nat

Gβ,t(u ∈ Nt : u ≥ w)Gβ′,t(v ∈ Nt : v ≥ w)

≤ max
w∈Nat

Gβ,t(u ∈ Nt : u ≥ w)
∑

w∈Nat

Gβ′,t(v ∈ Nt : v ≥ w)

= max
w∈Nat

Gβ,t(u ∈ Nt : u ≥ w).

This last term converges to 0 in L2 since

max
w∈Nat

Gβ,t(u ∈ Nt : u ≥ w)2 = max
w∈Nat

G⊗2
β,t(u, v ∈ Nt : u, v ≥ w) ≤ G⊗2

β,t(qt(u, v) ≥ a),

concluding the proof.
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2.2 Convergence of (ρβ,t)t

In this subsection, we study the convergence of the following random measures on
R+ defined by

ρβ,t :=
∑
u∈Nt

eβx̃u(t)δγt(u), for β > βc.

We prove that ρβ,t
(vd)−−−→ ρβ, when t→∞, where ρβ is the corresponding measure in the

limiting process, namely
ρβ :=

∑
i,j

eβ(pi+∆i
j)δqi .

Remark 2.1. Observing that Z(dν)⊗ Ce−
√

2xdx = Z(dν)/Z ⊗ e−
√

2(x− 1√
2

log(CZ))
dx, it is

easy to see that the point process whose atoms are ξk = pk− 1√
2

log(CZ) is a PPP(e−
√

2xdx)

independent of Z, and that the (qi) are i.i.d. with distribution Z(·)/Z(R+) and indepen-
dent from (ξk). It yields to the following expression for ρβ:

ρβ = (CZ(R+))
β
βc

∑
k

eβξk(
∑
j

eβ∆k
j )δqk ,

This form will be useful in Subsection 3.1.

A natural idea to prove the convergence is to use the relation ρβ,t(f) = Ẽt(f̃), where

f ∈ C+
c (R+) and f̃(x, h) := eβhf(x) together with the convergence of (Ẽt), see Proposi-

tion 1.2. The problem is that f̃ is no more compactly supported and we thus need to
control the high and low values of h.

For this purpose, let us denote Nt(D) := {u ∈ Nt : x̃u(t) ∈ D}, for D ⊂ R, and define

ρDβ,t :=
∑

u∈Nt(D)

eβx̃u(t)δγt(u), ρDβ :=
∑
i,j

1D(pi + ∆i
j)e

β(pi+∆i
j)δqi . (2.1)

When D = [−A,A], it is easy to see that ρDβ,t
(vd)−−−→ ρDβ when t → ∞. Indeed, for

ε > 0, choose continuous functions φε and ψε such that 1[−A+ε,A−ε] ≤ φε ≤ 1[−A,A] ≤
ψε ≤ 1[−A−ε,A+ε]. Let f ∈ C+

c (R+) and define gε(x, h) := f(x)eβhφε(h) and hε(x, h) :=

f(x)eβhψε(h), then we have

E[exp(−Ẽt(hε))] ≤ E[exp(−ρDβ,t(f))] ≤ E[exp(−Ẽt(gε))].

Since gε and hε are compactly supported, Proposition 1.2 yields

E[exp(−Ẽ(hε))] ≤ lim inf
t→∞

E[exp(−ρDβ,t(f))] ≤ lim sup
t→∞

E[exp(−ρDβ,t(f))] ≤ E[exp(−Ẽ(gε))],

and the dominated convergence theorem, when ε→ 0, gives

lim
t→∞

E[exp(−ρDβ,t(f))] = E[exp(−ρDβ (f))],

and the convergence of the Laplace functionals concludes.
The end of this subsection shows that this convergence still holds for D = R. It is

again sufficient to prove the convergence of the Laplace functionals

E
[
e−ρβ,t(f)

]
−−−→
t→∞

E
[
e−ρβ(f)

]
, ∀f ∈ C+

c (R+).

Let D = [−A,A] for A ≥ 0. Since ρDβ,t(f) ≤ ρβ,t(f), we have the following inequality

lim supt→∞E[e−ρβ,t(f)] ≤ E[e−ρ
D
β (f)] and the dominated convergence theorem, when

A→∞, yields lim supt→∞E[e−ρβ,t(f)] ≤ E[e−ρβ(f)].
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The proof of liminf
t→∞

E[e−ρβ,t(f)] ≥ E[e−ρβ(f)] needs more work. We need to estimate

the density of particles outside D = [−A,A]. The top values can be controlled by the
following inequality, which can be found in the seminal work by Bramson [10, Proposition
3], where x̃(t) := maxu∈Nt x̃u(t).

Proposition 2.2 (Bramson [10]). There exists c > 0 such that

P(x̃(t) > A) ≤ c(A+ 1)2e−
√

2A, for A ≥ 0, t ≥ A2 and t ≥ 2.

To address the low values, we use the following proposition whose proof is postponed
to the Appendix, see A.1.

Proposition 2.3. Let η > 0, then lim
A→∞

limsup
t→∞

P
(
ρ

]−∞,−A]
β,t (R+) > η

)
= 0.

These two propositions enable to prove the lower bound.

Proposition 2.4. Let f ∈ C+
c (R+), then liminf

t→∞
E[e−ρβ,t(f)] ≥ E[e−ρβ(f)].

Proof. Fix η > 0, we have

P
(
ρ

[−A,A]c

β,t (R+) > η
)
≤ P

(
ρ

]−∞,−A]
β,t (R+) > η

)
+ P(x̃(t) > A).

Applying Proposition 2.3 for the first term and Proposition 2.2 for the second one yields

lim
A→∞

limsup
t→∞

P
(
ρ

[−A,A]c

β,t (R+) > η
)

= 0. (2.2)

The fact that f is bounded implies

lim
A→∞

limsup
t→∞

P
(
ρ

[−A,A]c

β,t (f) > η
)

= 0.

Now fix ε > 0 and let A0, t0 be large enough such that P(ρ
[−A0,A0]c

β,t (f) > η) < ε for t ≥ t0.
Then, with D = [−A0, A0], we obtain, for t ≥ t0,

E
[
e−ρβ,t(f)

]
= E

[
e−ρ

D
β,t(f)e−ρ

Dc

β,t(f)
]
≥ e−ηE

[
e−ρ

D
β,t(f)1ρDcβ,t(f)≤η

]
≥ e−η

(
E
[
e−ρ

D
β,t(f)

]
− ε
)
,

which implies

liminf
t→∞

E
[
e−ρβ,t(f)

]
≥ e−η

(
E
[
e−ρ

D
β (f)

]
− ε
)
≥ e−η

(
E
[
e−ρβ(f)

]
− ε
)
.

The last inequality is true for every ε, η > 0 and the conclusion follows.

In order to prove Part (ii) of Theorem 1.1, we will need a bit more than the conver-
gence for the vague topology.

Proposition 2.5. When t→∞, ρβ,t(R+)
(d)−−→ ρβ(R+).

Proof. We use Laplace transform again and the argument is very similar to the previous
one: we just write down the liminf part. Given η, ε > 0 and λ > 0, there exists, by (2.2),
A0, t0 > 0 such that P(λρ

[−A,A]c

β,t (R+) > η) < ε for every t ≥ t0 and A ≥ A0. This gives

E
[
e−λρβ,t(R+)

]
≥ e−η

(
E
[
e−λρ

[−A,A]
β,t (R+)

]
− ε
)
, for t ≥ t0 and A ≥ A0.

This time, using the fact that ρ[−A,A]
β,t (R+) = Et(exp(β ·)1[−A,A]) together with the con-

vergence of the extremal process, see Equation (1.1), concludes the proof of Proposi-
tion 2.5.
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This last result shows that in fact the convergence in distribution ρβ,t −→ ρβ holds for
the weak topology by [20, Theorem 4.19]. Note that this convergence has been proved
by Madaule [24] for the BRW and that the joint convergence for several β is the main
step in the proof of the convergence of the extremal process.

Remark 2.6. The arguments of Proposition 2.5 show that the convergence in distribution
of Et(f) to E(f) holds for continuous function on R that are O(exp(αx)) as x→ −∞ for
some α >

√
2, and without any restriction on the behaviour at +∞.

Remark 2.7. Following Remark 2.1 and using the fact that
∑
k eβξk

∑
j eβ∆k

j has the

same distribution as eβcβ
∑
k eβξk with cβ := β−1

c logE[eβcXβ ], see Subsection 3.1, the
previous convergence can be alternatively stated∑

u∈Nt

eβx̃u(t) (d)−−−→
t→∞

Z(R+)
β
βc eβcβ

∑
k

eβξk ,

where the serie in the right term has a stable law.

2.3 Convergence of (ρβ1,t ⊗ ρβ2,t)t

Recall that
ρβ =

∑
i,j

eβ(pi+∆i
j)δqi , ∀β > βc.

Proposition 2.8. For β1, β2 > βc, we have ρβ1,t ⊗ ρβ2,t
(wd)−−−→ ρβ1

⊗ ρβ2
, when t→∞.

Proof. Let us first prove the convergence for the vague topology: it is sufficient to prove
that for any f1, f2 ∈ C+

c (R+),

E[e−ρβ1,t(f1)−ρβ2,t(f2)] −→ E[e−ρβ1 (f1)−ρβ2 (f2)], as t→∞.

As in the beginning of Subsection 2.2, a direct consequence of the extended convergence
of the extremal process is the following convergence, for any D = [−A,A],

ρDβ1,t ⊗ ρ
D
β2,t

(vd)−−−→ ρDβ1
⊗ ρDβ2

, as t→∞,

where ρDβ,t and ρDβ were defined in (2.1). From

ρDβ1,t(f1) + ρDβ2,t(f2) ≤ ρβ1,t(f1) + ρβ2,t(f2),

we deduce, as in the proof of Proposition 2.4, that

limsup
t→∞

E[e−ρβ1,t(f1)−ρβ2,t(f2)] ≤ E[e−ρβ1 (f1)−ρβ2 (f2)].

And it follows from Equation (2.2) that

lim
A→∞

limsup
t→∞

P
(
ρ

[−A,A]c

β1,t
(f1) + ρ

[−A,A]c

β2,t
(f2) > η

)
= 0.

Fix ε > 0 and letA0, t0 be large enough such that P
(
ρ

[−A0,A0]c

β1,t
(f1)+ρ

[−A0,A0]c

β2,t
(f2) > η

)
< ε

for t ≥ t0. Then, using D = [−A0, A0], we obtain, for t ≥ t0,

E[e−ρβ1,t(f1)−ρβ2,t(f2)] = E[e−ρ
D
β1,t

(f1)−ρDβ2,t(f2)e−ρ
Dc

β1,t
(f1)−ρD

c

β2,t
(f2)]

≥ E[e−ρ
D
β1,t

(f1)−ρDβ2,t(f2)e−η1ρDcβ1,t(f1)+ρD
c

β2,t
(f2)≤η]

≥
(
E[e−ρ

D
β1,t

(f1)−ρDβ2,t(f2)]− ε
)
e−η,
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and the conclusion follows in the same way as in the proof of Proposition 2.4.
In order to obtain the convergence for the weak topology, it is sufficient, thanks to

[20, Theorem 4.19], to establish

ρβ1,t(R+)ρβ2,t(R+)
(d)−−−→
t→∞

ρβ1
(R+)ρβ2

(R+).

For λ, µ > 0, the following equality

E[e−λρβ1,t(R+)−µρβ2,t(R+)] = E[e−Et(λ exp(β1·)+µ exp(β2·))],

with Remark 2.6 prove the convergence in distribution of (ρβ1,t(R+), ρβ2,t(R+)) towards
(ρβ1(R+), ρβ2(R+)), concluding the proof.

2.4 Proof of Part (ii) of Theorem 1.1

The first step of the proof is to show that the convergence of Gβ,t ⊗ Gβ′,t(qt(u, v) ≥ a)

can be handled with Gβ,t ⊗ Gβ′,t(|γt(u)− γt(v)| ≤ δ): this is the content of the following
three propositions. Then we will use the convergence of (ρβ,t ⊗ ρβ′,t)t from the previous
subsection with the expression

Gβ,t⊗Gβ′,t(|γt(u)−γt(v)| ≤ δ) =
ρβ,t ⊗ ρβ′,t(∆δ)

ρβ,t ⊗ ρβ′,t(R2
+)
, where ∆δ := {(x, y) ∈ R2

+ : |x−y|≤δ}.

Recall that Nt(D) = {u ∈ Nt : x̃u(t) ∈ D}.
Proposition 2.9. Let δ > 0, a ∈ (0, 1) and D ⊂ R compact, then

lim
t→∞

P
(
∃u, v ∈ Nt(D) : qt(u, v) ≥ a and |γt(u)− γt(v)| > δ

)
= 0.

Proof. Fix ε > 0. For r < t, define, as in [8, Lemma 4.1], the events

Aγr,t(D) = {∀u ∈ Nt(D) : γt(u)− γr(u) ≤ e−r/2}.

The same lemma gives the existence of r(D, ε) ≥ 0 such that P(Aγr,t(D)) ≥ 1−ε whenever

r > r(D, ε) and t > 3r. Pick r > 0 such that 2e−r/2 < δ and r > r(D, ε). If t > max{3r, ra},
we have, on Aγr,t(D),

γt(u)− γr(u) ≤ δ

2
, ∀u ∈ Nt(D).

Then observe that qt(u, v) ≥ a implies that the trajectories of u and v coincide at least up
to time at > r so that |γt(u)− γt(v)| ≤ δ, on Aγr,t(D). Therefore {∃u, v ∈ Nt(D) : qt(u, v) ≥
a and |γt(u)− γt(v)| > δ} ⊂ Aγr,t(D)c, which has a probability smaller than ε.

The following proposition is direct consequence of Theorem 2.1 in [2] and it shows
that the choice of a ∈ (0, 1) has no effect, the overlap being concentrated on 0 and 1 at
the limit.

Proposition 2.10 (Arguin, Bovier and Kistler [2]). For any compact set D ⊂ R and
a ∈ (0, 1/2),

lim
t→∞

P
(
∃u, v ∈ Nt(D) : qt(u, v) ∈ (a, 1− a)

)
= 0.

A last result is needed.

Proposition 2.11. Let a ∈ (0, 1) and D ⊂ R compact, we have

lim
δ→0

limsup
t→∞

P
(
∃u, v ∈ Nt(D) : qt(u, v) < a and |γt(u)− γt(v)| ≤ δ

)
= 0.
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Proof. Thanks to Proposition 2.10 and by monotonicity in a, we can assume that a = 1
4 .

Given ε > 0, Lemma 4.3 in [8] provides δ > 0 and r(δ, ε) such that for any r > r(δ, ε) and
t > 3r

P
(
∃u, v ∈ Nt(D) : qt(u, v) ≤ r

t
and |γt(u)− γt(v)| ≤ δ

)
< ε.

Taking t = 4r concludes the proof.

Proof of Theorem 1.1. Let us denote Aδ,t := {(u, v) ∈ N 2
t : |γt(u)− γt(v)| ≤ δ}, we have

Gβ,t ⊗ Gβ′,t(qt(u, v) ≥ a)− Gβ,t ⊗ Gβ′,t(Aδ,t)
= Gβ,t ⊗ Gβ′,t(qt(u, v) ≥ a;Acδ,t)− Gβ,t ⊗ Gβ′,t(qt(u, v) < a;Aδ,t).

Then, with D = [−A,A], one gets

|Gβ,t ⊗ Gβ′,t(qt(u, v) ≥ a)− Gβ,t ⊗ Gβ′,t(Aδ,t)|
≤ Gβ,t ⊗ Gβ′,t(qt(u, v) ≥ a;Acδ,t ∩Nt(D)2) + Gβ,t ⊗ Gβ′,t(qt(u, v) < a;Aδ,t ∩Nt(D)2)

+Gβ,t ⊗ Gβ′,t((u, v) /∈ Nt(D)2)

≤ 1{∃u,v∈Nt(D) : qt(u,v)≥a,|γt(u)−γt(v)|>δ} + 1{∃u,v∈Nt(D) : qt(u,v)<a,|γt(u)−γt(v)|≤δ}

+Gβ,t(Nt(Dc)) + Gβ′,t(Nt(Dc)).

We thus have, for every η > 0,

P(|Gβ,t ⊗ Gβ′,t(qt(u, v) ≥ a)− Gβ,t ⊗ Gβ′,t(Aδ,t)| > η)

≤ P(∃u, v ∈ Nt(D) : qt(u, v) ≥ a, |γt(u)− γt(v)| > δ) +

P(∃u, v ∈ Nt(D) : qt(u, v) < a, |γt(u)− γt(v)| ≤ δ) +

P(Gβ,t(Nt(Dc)) + Gβ′,t(Nt(Dc)) > η/3).

The first term can be handled with Proposition 2.9, the second one with Proposi-
tion 2.11 and the following lemma, whose proof is postponed to Appendix A.1, deals with
the third term.

Lemma 2.12. Let η > 0, then limA→∞ lim supt→∞P(Gβ,t(Nt([−A,A]c)) > η) = 0.

We finally obtain:

lim
δ→0

lim sup
t→∞

P(|Gβ,t ⊗ Gβ′,t(qt(u, v) ≥ a)− Gβ,t ⊗ Gβ′,t(|γt(u)− γt(v)| ≤ δ)| > η) = 0. (2.3)

Now for every δ > 0, choose a continuous function fδ on R2
+ such that 1∆δ ≤ fδ ≤ 1∆2δ .

We have

ρβ,t ⊗ ρβ′,t(fδ/2)

ρβ,t ⊗ ρβ′,t(R2
+)
≤ Gβ,t ⊗ Gβ′,t(|γt(u)− γt(v)| ≤ δ) ≤ ρβ,t ⊗ ρβ′,t(fδ)

ρβ,t ⊗ ρβ′,t(R2
+)
.

Then, for λ > 0, the convergence from Proposition (2.8) gives

E
[

exp
(
− λ ρβ ⊗ ρβ

′(fδ)

ρβ ⊗ ρβ′(R2
+)

)]
≤ lim inf

t→∞
E[exp{−λGβ,t ⊗ Gβ′,t(|γt(u)− γt(v)| ≤ δ)}],

and

lim sup
t→∞

E[exp{−λGβ,t ⊗ Gβ′,t(|γt(u)− γt(v)| ≤ δ)}] ≤ E
[

exp
(
− λ

ρβ ⊗ ρβ′(fδ/2)

ρβ ⊗ ρβ′(R2
+)

)]
.

The dominated convergence theorem with δ → 0 and Equation (2.3) yield

lim
t→∞

E
[

exp{−λGβ,t ⊗ Gβ′,t(qt(u, v) ≥ a)}
]

= E
[

exp
(
− λ ρβ ⊗ ρβ′(∆)

ρβ ⊗ ρβ′(R2
+)

)]
.
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Finally, observe that almost surely

ρβ ⊗ ρβ′(∆)

ρβ ⊗ ρβ′(R2
+)

= Q(β, β′),

since Z(dν) is a.s. non-atomic by [8, Proposition 3.2]. This concludes the proof of Part
(ii) of Theorem 1.1.

3 Proof of Theorem 1.3: the mean overlap is smaller than the
REM’s

The aim of this section is to prove Theorem 1.3. In Subsection 3.1, we notice that
it is sufficient to prove that a certain functional of the decoration can take arbitrary
small values. Then, in Subsection 3.2, we use the description of the decoration process
obtained in [1] to study the support of this functional.

3.1 A functional of the decoration

Let C :=
∑
j≥0 δ∆j

be a point process distributed as the decoration process arising in
(1.1). We assume that its atoms are ranked in non-increasing order, so that ∆0 = 0 and
∆j ≤ 0 for all j ≥ 1. Denote, for β > βc, Xβ := 1

β log
∑
j≥0 eβ∆j , which is well defined a.s.

thanks to the following result.

Lemma 3.1. For every β > βc, we have E[
∑
j≥0 eβ∆j ] <∞.

Proof. Observe that the following integral representation holds:∑
j≥0

eβ∆j = β

∫ ∞
0

C([−s, 0])e−βsds.

And Fubini-Tonelli theorem gives

E
[∑
j≥0

eβ∆j

]
= β

∫ ∞
0

E
[
C([−s, 0])

]
e−βsds.

Proposition 1.5 in [11] gives the asymptotic E
[
C([−s, 0])

]
∼ C?e

βcs as s→∞, for some
C? > 0, concluding the proof.

Recall the expression of the overlap from (1.4)

Q(β, β′) :=

∑
i

(∑
j eβ(pi+∆i

j)
)(∑

j eβ
′(pi+∆i

j)
)(∑

i,j eβ(pi+∆i
j)
)(∑

i,j eβ
′(pi+∆i

j)
) , β, β′ > βc. (3.1)

Introducing Xβ,i := 1
β log

∑
j≥0 eβ∆i

j and ξi = pi− 1√
2

log(CZ) which form a PPP(e−
√

2xdx),
see Remark 2.1, the overlap can be rewritten in the following manner:

Q(β, β′) =

∑
i eβ(ξi+Xβ,i)eβ

′(ξi+Xβ′,i)(∑
i eβ(ξi+Xβ,i)

)(∑
i eβ

′(ξi+Xβ′,i)
) .

Then, Lemma 2.1 in [29] shows that the point process (ξi +Xβ,i, ξi +Xβ′,i)i has the same
distribution as (ξi + cβ , ξi + cβ + Yi)i where (Yi)i≥1 are i.i.d. and independent of (ξi)i≥1,
and cβ := β−1

c logE[eβcXβ ], so that

Q(β, β′)
(d)
=

∑
i eβξieβ

′(ξi+Yi)(∑
i eβξi

)(∑
i eβ′(ξi+Yi)

) .
In order to prove that E[Q(β, β′)] < E[QREM(β, β′)] when β 6= β′, we stick to the strategy
of Pain and Zindy in [28, Section 3] with the following lemma which shows that the Yi
play a negative role in the expected value of the overlap.
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Lemma 3.2 (Pain and Zindy [28]). Let (pn)n≥1 and (qn)n≥1 be nonincreasing determin-
istic sequences of nonnegative real numbers such that

∑
n≥1 pn = 1. Let (An)n≥1 be a

sequence of i.i.d. positive random variables. We set

p̃n :=
Anpn∑
k≥1Akpk

, ∀n ≥ 1.

Then, we have

E
[∑
n≥1

p̃nqn

]
≤
∑
n≥1

pnqn. (3.2)

Moreover, if A1 is not almost surely constant, (qn)n≥1 is not constant and, for any n ≥ 1,
pn > 0, then the inequality in (3.2) is strict.

Assuming the (ξk) are ranked in decreasing order and using the previous lemma,
conditionally on (ξk), with

pn :=
eβ
′ξn∑

k≥1 eβ′ξk
, qn :=

eβξn∑
k≥1 eβξk

, and An := eβ
′Yn ,

shows that E[Q(β, β′)] < E[QREM(β, β′)] on the condition that Y1 is not almost surely
constant.

The final step is to prove that Y1 is not constant almost surely. Assume that it is not
the case, then Xβ −Xβ′ is also constant almost surely and therefore there exists c > 0

such that, almost surely (∑
j≥0

eβ∆j

) 1
β

= c
(∑
j≥0

eβ
′∆j

) 1
β′
. (3.3)

If we can prove that
∑
j≥1 eβ∆j can be arbitrary small with positive probability, the

following lemma concludes the proof of Theorem 1.3 by showing that (3.3) is impossible.

Lemma 3.3. Let α > 1, c > 0 and (ak,j)k,j≥1 be non-negative real numbers such that∑
j≥1 ak,j <∞. Assume that, for all k ≥ 1,

1 +
∑
j≥1

ak,j = c
(

1 +
∑
j≥1

aαk,j

) 1
α

and
∑
j≥1

ak,j −→
k→∞

0.

Then c = 1 and all the ak,j are equal to 0.

Proof. For a non-negative sequence x = (xj)j , let us denote |x|p = (
∑
j≥1 x

p
j )

1/p for p ≥ 1

when the sum is finite. The assumption |ak|1 −→ 0, when k →∞, implies that |ak|α −→ 0,
when k →∞. Taking the limit k tends to infinity in the equality yields c = 1. The second
assertion is a consequence of the fact: |x|p = |x|p′ for p 6= p′ ⇒ x is zero except perhaps
on one point.

Next section is devoted to the last result we need for the proof of Theorem 1.3.

Proposition 3.4. Let β > βc, then 0 is in the support of the law of
∑
j≥1 eβ∆j .

3.2 Laplace transform along the backward path Y

In order to prove Proposition 3.4, we will use the description of the decoration process
Q obtained in [1]. It is obtained with conditioned branching Brownian motions issued
from a certain path Y , the backward path, which we will explicit now. We refer to the
article for more details. The authors adopt a different normalization in their article: each
of the particles follows a Brownian motion with drift 2 and variance σ2 := 2, which is
equivalent to consider Xu(t) :=

√
2(
√

2t− xu(t)) for u ∈ Nt in our settings. And instead
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of looking at the highest particles, they study the extremal process seen from the lowest
or leftmost particle X(t) := minu∈Nt Xu(t) =

√
2(
√

2t− x(t)).

For b > 0, define the process Γ(b) by

Γ(b)
s :=

{
Bs, if s ∈ [0, Tb],

b−Rs−Tb , if s ≥ Tb,

where B is a standard Brownian motion, Tb := inf{t ≥ 0 : Bt = b} and R is a three-
dimensional Bessel process started from 0 and independent from B. If A is a measurable
set of C(R+,R) and b > 0, we consider Y whose law is given by

P(Y ∈ A,− inf
s≥0

Y (s) ∈ db) =
1

c1
E
[
e−2

∫∞
0
Gv(σΓ(b)

v )dv1−σΓ(b)∈A

]
, (3.4)

where Gt is the distribution function of X(t) and c1 :=
∫∞

0
E[e−2

∫∞
0
Gv(σΓ(b)

v )dv]db, which
is finite by [1, Equation 6.7].

Remark 3.5. If we denote Yt(s) := Xt(t− s)−X(t) for s ∈ [0, t], where s 7→ Xt(s) is the
path followed by the leftmost particule at time t, the law of Y is actually the limit of the
law of Yt as t→∞, see [1, Theorem 2.3], but we won’t need this fact here.

Conditionally on Y distributed as in (3.4), let π be a Poisson point process on [0,∞)

with intensity 2(1−Gt(−Y (t))dt. For each point t ∈ π, start an independent branching
Brownian motion (N ∗

t (s), s ≥ 0) at position Y (t) conditioned to min N ∗
t (t) > 0 (here

these BBM are considered as point processes). By [1, Theorem 2.3], we have the
following representation for the decoration process

Q := δ0 +
∑
t∈π

N ∗
t (t).

And Q is related to the previous section’s C by

C (d)
=
∑
x∈Q

δ− 1√
2
x.

We need to explicit a bit more the processes (N ∗
t , t ∈ π). Let (Xy

u(s), s ≥ 0, u ∈ N y
s )y≥0

be a family of independent branching Brownian motion starting at 0 with drift 2 and
variance σ2. Define Xy(s) := minu∈Nys X

y
u(s) the position of the leftmost particle at time s.

Then, conditionally on Y , introduce, for t > 0, the processes N ∗
t (s) :=

∑
u∈N ts

δY (t)+Xtu(s)

where the BBM are conditioned to Xt(t) + Y (t) > 0. The functional of Proposition 3.4
may now be expressed as

Rβ :=
∑

x∈C−{0}

eβx =
∑

x∈Q−{0}

e
− β√

2
x

=
∑
t∈π

∑
y∈N ∗

t (t)

e
− β√

2
y

=
∑
t∈π

e
− β√

2
Y (t)

∑
u∈N tt

e
− β√

2
Xtu(t)

=
∑
t∈π

e
− β√

2
Y (t)

Ct,

where Ct :=
∑
u∈N tt

e
− β√

2
Xtu(t).

We want to prove that 0 ∈ supp(Rβ). The two main ingredients are a rough estimation
of the asymptotic of the paths of Y , see Appendix A.2, and a coupling with a simpler case
where the BBMs arising in Ct are not conditioned.
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t

Y (t)
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η1

×

×
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×

×

×
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×

Figure 1: The point process Q obtained with independent BBM issued from the backward
path Y at Poissonian times (ηk) and conditioned to stay above 0 at time 0.

Let us begin with this simpler case: we omit the last conditioning Xt(t) + Y (t) > 0

for the BBM, more precisely, let us define

Sβ :=
∑
t∈π

e
− β√

2
Y (t)

Dt,

where Dt :=
∑
u∈N tt

e
− β√

2
Xtu(t) and the BBM (Xy

u(s), s ≥ 0, u ∈ N y
s )y≥0 are independent

(and not conditioned as before) and also independent of Y and π. The following lemma
gives a sufficient condition for 0 being in the support of

∑
t∈π e−β/

√
2Y (t)Dt. Its proof is

postponed to Appendix A.3.

Lemma 3.6. Let µ be a Radon measure on R+ and P a PPP(µ). Let (At)t∈R+
be inde-

pendent positive random variables, independent of P, and f a positive and measurable
function on R+, then∫ ∞

0

E
[
(f(t)At) ∧ 1

]
µ(dt) <∞⇒ 0 ∈ supp

(∑
t∈P

f(t)At

)
.

The idea is to apply Lemma 3.6 conditionally on a given path Y with At = Dt,

fY (t) := e
− β√

2
Y (t) and µY (dt) := 2(1−Gt(−Y (t))dt: if conditionally on almost every path

Y , 0 is in the support of Sβ , it is therefore in the support of the unconditional law. Let us
prove that the following expectation is integrable w.r.t. dt on R+

E
[
(fY (t)Dt) ∧ 1 |Y

]
= P

(
Dt >

1

fY (t)
|Y
)

+ fY (t)E
[
Dt1Dt≤1/fY (t) |Y

]
. (3.5)

It will be more convenient for the computations to come to use the normalization
of the previous section with Xy

u(t) =
√

2(
√

2t − xyu(t)). This way, we have Dt =∑
u∈N tt

eβ(xtu(t)−
√

2t) and the superadditivity of the function x 7→ xβ/
√

2 gives

Dt =
∑
u∈N tt

eβ(xtu(t)−
√

2t) ≤
( ∑
u∈N tt

e
√

2(xtu(t)−
√

2t)
) β√

2
,
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then

P(Dt >
1

fY (t)
|Y ) ≤ P

(( ∑
u∈N tt

e
√

2(xtu(t)−
√

2t)
) β√

2
>

1

fY (t)
|Y

)

= P
( ∑
u∈N tt

e
√

2(xtu(t)−
√

2t) > eY (t) |Y
)

≤ e−Y (t),

where we used Markov’s inequality and E[
∑
u∈N tt

e
√

2(xtu(t)−
√

2t) |Y ] = 1. The last term is
integrable almost surely by Proposition A.4.

For the second term in (3.5), observe that Dt ≤ 1/fY (t) implies eβ(xtu(t)−
√

2t) ≤ e
β√
2
Y (t)

for every u ∈ N t
t and the many-to-one lemma, see [31, Theorem 1.1] for example, yields

E[Dt1Dt≤1/fY (t) |Y ] ≤ E
[ ∑
u∈N tt

eβ(xtu(t)−
√

2t)1xtu(t)≤
√

2t+ 1√
2
Y (t) |Y

]
= etE

[
eβ(
√
tG−
√

2t)1√tG≤
√

2t+ 1√
2
Y (t) |Y

]
= et−

√
2βtE

[
eβ
√
tG1G≤

√
2t+ 1√

2t
Y (t) |Y

]
,

where G ∼ N (0, 1) is independent from Y . The last expectation can be handled with the
Gaussian estimate

E[eλG1G≤x] ≤ eλx−
x2

2 , ∀λ > x > 0,

whose proof can be found in Appendix A.3. Proposition A.4 ensures that almost surely
there exists t0 = t0(Y ) such that for t ≥ t0, β

√
t >
√

2t+ 1√
2t
Y (t), which implies

E[Dt1Dt≤1/fY (t) |Y ] ≤ et−
√

2βte
β
√
t(
√

2t+ 1√
2t
Y (t))− 1

2 (
√

2t+ 1√
2t
Y (t))2 ≤ e

( β√
2
−1)Y (t)

,

and thus, for t large enough,

fY (t)E
[
Dt1Dt≤1/fY (t) |Y

]
≤ e−Y (t).

We finally conclude that the two terms in (3.5) are almost surely integrable w.r.t to dt on
R+ thanks to Proposition A.4. Therefore, recalling that µY (dt) = 2(1−Gt(−Y (t))dt on
R+, we have

∫ ∞
0

E[(fY (t)Dt) ∧ 1 |Y ]µY (dt) ≤
∫ ∞

0

E[(fY (t)Dt) ∧ 1 |Y ] 2dt <∞ a.s. (3.6)

and Lemma 3.6 shows that 0 is in the support of Sβ .
Let us go back to the original case with Rβ. We now construct a coupling between

Rβ and Sβ . For t > 0, denote D(1)
t := Dt and X(1)

t := Xt(t), and let ((D
(i)
t , X

(i)
t ), i ≥ 1) be

an i.i.d. sequence. We then redefine Ct as the first D(i)
t such that X(i)

t + Y (t) > 0. The
idea of the following is to use the fact that Ct and Dt coincides with large probability for
t large enough in π. Let η1 ≤ η2 ≤ ... denote the atoms of π ranked in non-decreasing
order and define T := sup{ηi : Cηi 6= Dηi}, we have∫ ∞

0

E[(fY (t)Ct) ∧ 1 |Y ]µY (dt)

≤
∫ ∞

0

E[(fY (t)Ct1t<T ) ∧ 1 |Y ] 2dt+

∫ ∞
0

E[(fY (t)Dt1t≥T ) ∧ 1 |Y ] 2dt

≤ 2

∫ ∞
0

P(T > t |Y ) dt+

∫ ∞
0

E[(fY (t)Dt) ∧ 1 |Y ] 2dt,
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where the second integral is almost surely finite thanks to Equation (3.6). We end this
section by proving that the first one is also finite almost surely.

Lemma 3.7.
∫∞

0
P(T > t |Y ) dt is finite almost surely.

Proof. Ct 6= Dt occurs when Y (t) +Xt(t) ≤ 0, we thus need to control the probability of
such an event. Using x̃t(t) := maxu∈N tt x

t
u(t)−mt, one gets

P(Y (t) +Xt(t) ≤ 0 |Y ) = P
(
x̃t(t) ≥ 1√

2
Y (t) +

3

2
√

2
log(t) |Y

)
≤ P

(
x̃t(t) ≥ 1√

2
Y (t) ∧

√
t |Y

)
,

where
√
t is here to fulfill the condition t ≥ A2 of Proposition 2.2. Choose t0 large enough,

depending on Y , such that Y (t) ≥ 0 for t ≥ t0. Then Proposition 2.2 implies

P(Y (t) +Xt(t) ≤ 0 |Y ) ≤ c
( 1√

2
Y (t) ∧

√
t+ 1

)2

e−Y (t)∧
√

2t, for t ≥ t0.

We thus have, for c′ > 0 large enough,

P(Ct 6= Dt |Y ) ≤ c′te−Y (t)∧
√

2t, for t ≥ t0.

Applying the union bound, with t > t0, gives

P(T > t |Y, π) = P(∃i ≥ 1 : ηi > t,Cηi 6= Dηi |Y, π) ≤
∑
i:ηi>t

P(Cηi 6= Dηi |Y, π)

≤ c′
∑
i:ηi>t

ηie
−Y (ηi)∧

√
2ηi .

Taking expectation with respect to π together with Campbell’s theorem, see [21, Section
3.2] for example, yields

P(T > t |Y ) ≤ c′
∫ ∞
t

se−Y (s)∧
√

2sµY (ds) ≤ c′
∫ ∞
t

se−Y (s)∧
√

2s 2 ds,

and finally∫ ∞
t0

P(T > t |Y ) dt ≤ c′
∫ ∞
t0

(∫ ∞
t

se−Y (s)∧
√

2s 2ds

)
dt = 2c′

∫ ∞
t0

s(s− t0)e−Y (s)∧
√

2s ds,

which is almost surely finite thanks to Proposition A.4.

Finally, Lemma 3.6 shows that 0 ∈ supp(Rβ) and Theorem 1.3 is proved.

A Appendix

A.1 ρβ,t and extremal particles

Let us denote NA
t the number of particles whose centered positions are above level

−A at time t:

NA
t := Et([−A,+∞[) = |{u ∈ Nt : x̃u(t) ≥ −A}|, for A, t ≥ 0.

We will need the following consequence of [11, Lemma 4.2], where the authors obtained
a detailed description of the extreme level sets of the BBM.

Proposition A.1 (Cortines, Hartung and Louidor [11]). There exists C > 0 such that, for
all A ≥ 0, E[NA

t ; x̃(t) ≤ A] ≤ C(A+ 1)2e
√

2A.
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We can now prove Proposition 2.3.

Proposition A.2. Let η > 0, then lim
A→∞

limsup
t→∞

P(ρ
]−∞,−A]
β,t (R+) > η) = 0.

Proof. Fix δ > 0 such that
√

2 + δ < β and define the event EA,t := {∃n ≥ 0 : NA+n
t ≥

e(
√

2+δ)(A+n)} for A, t ≥ 0. We can break down the probability in the proposition the
following way

P(ρ
]−∞,−A]
β,t (R+) > η) ≤ P(ρ

]−∞,−A]
β,t (R+) > η, x̃(t) ≤ A) + P(x̃(t) > A)

≤ P(EA,t, x̃(t) ≤ A) + P(ρ
]−∞,−A]
β,t (R+)>η, EcA,t)+c(A+ 1)2e−

√
2A,

(A.1)

whenever t ≥ A2 thanks to Proposition 2.2.
Let us begin with the first term in (A.1). Proposition A.1 and Markov’s inequality

yield

P(NA
t ≥ e(

√
2+δ)A, x̃(t) ≤ A) ≤ C(A+ 1)2e−δA, (A.2)

such that

P(EA,t, x̃(t) ≤ A) ≤
∑
n≥0

P(NA+n
t ≥ e(

√
2+δ)(A+n), x̃(t) ≤ A)

≤
∑
n≥0

P(NA+n
t ≥ e(

√
2+δ)(A+n), x̃(t) ≤ A+ n)

≤ Ce−δA
∑
n≥0

(A+ n+ 1)2e−δn, (A.3)

where the last term does not depend on t and tends to 0 when A→∞.
For the second term in (A.1), observe that on the event EcA,t, one has

ρ
]−∞,−A]
β,t (R+) ≤

∑
n≥0

NA+n+1
t e−β(A+n) ≤

∑
n≥0

e(
√

2+δ)(A+n+1)e−β(A+n)

≤ e
√

2+δ

1− e
√

2+δ−β
e(
√

2+δ−β)A −→
A→∞

0.

Therefore, for A large enough, and independent of t, P(ρ
]−∞,−A]
β,t (R+) > η, EcA,t) vanishes.

Combining this fact with (A.3) in the previous inequality (A.1) concludes the proof.

The following lemma shows that the Gibbs measure under β > βc is concentrated on
the extremal particles.

Lemma A.3. Let η > 0, then limA→∞ lim supt→∞P(Gβ,t(Nt([−A,A]c)) > η) = 0.

Proof. We can express Gβ,t with ρβ,t as follows

Gβ,t(Nt([−A,A]c)) =
ρ

[−A,A]c

β,t (R+)

ρβ,t(R+)
.

Recall, from Proposition 2.5, that ρβ,t(R+)
(d)−−→ρβ(R+), when t→∞, where the limit is a

positive random variable. If ε > 0, one can therefore find δ > 0 and t0 > 0 such that, for
all t > t0, P(ρβ,t(R+) > δ) > 1−ε. Then P(Gβ,t(Nt([−A,A]c)) > η) ≤ ε+P(ρ

[−A,A]c

β,t (R+) >

ηδ). Taking the limsup in t and then the limit in A using (2.2) concludes the proof of the
lemma.
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A.2 Asymptotics of Y and Bessel processes

The aim of this section is to prove the following proposition.

Proposition A.4. Let Y be the backward path introduced in Section 3.2 and ε > 0, then

P
(
∃ t0 ∈ R+ : t

1
2−ε < Y (t) < t

1
2 +ε for all t ≥ t0

)
= 1.

Proof. We begin by proving the aformentioned statement for a three-dimensional Bessel
process R started at 0, represented as Rt := |Wt|, W being a standard Brownian motion
in R3. Let f be an increasing function on (0,∞), the Dvoretzky-Erdös test, see [27,
Theorem 3.22], states that∫ ∞

1

f(t)t−
3
2 dt <∞ if and only if lim inf

t→∞

|Wt|
f(t)

=∞ a.s.

Considering the function f(t) := t1/2−ε yields

lim inf
t→∞

|Wt|
t
1
2−ε

=∞ a.s.,

thus P(∃t0 > 0 : t1/2−ε < Rt for t ≥ t0) = 1. The law of the iterated logarithm applied to
the components of W , see [15, Theorem 8.5.1] for instance, gives

lim sup
t→∞

|Wt|
t
1
2 +ε

= 0 a.s.,

and therefore
P
(
∃t0 ∈ R+ : t

1
2−ε < Rt < t

1
2 +ε for t ≥ t0

)
= 1. (A.4)

Now recall that Γ(b) is defined as follows, for b > 0,

Γ(b)
s =

{
Bs, if s ∈ [0, Tb],

b−Rs−Tb , if s ≥ Tb,

where Tb := inf{t ≥ 0 : Bt = b} and R is a three-dimensional Bessel process started at 0

and independent from B. Moreover

P(Y ∈ A,− inf
s≥0

Y (s) ∈ db) =
1

c1
E
[
e−2

∫∞
0
Gv(σΓ(b)

v )dv1−σΓ(b)∈A
]
,

for any measurable set A of C(R+,R). Consequently, conditionally on − infs≥0 Y (s) = b,
the law of Y is absolutely continuous with respect to the law of −σΓ(b). And using the
fact that Γ(b)(s) = b − Rs−Tb for s ≥ Tb, it is not hard to see that if we let A = {f ∈
C(R+,R) : ∃t0 ∈ R+ ∀t ≥ t0, t

1/2−ε < f(t) < t1/2+ε}, we have P(−σΓ(b) ∈ A) = 1 for
every b > 0, thanks to (A.4). We finally obtain

P(Y ∈ A) =

∫ ∞
0

P(Y ∈ A | − inf
s≥0

Y (s) ∈ db)P(− inf
s≥0

Y (s) ∈ db) = 1.

A.3 Auxiliary results

Let X be a non-negative random variable and define the log-Laplace transform of X,
which is the real number φ(λ) verifying

e−φ(λ) = E
[
e−λX

]
, ∀λ ≥ 0.

The following lemma characterizes the fact that P(X < ε) > 0 for all ε > 0, i.e. that 0

belongs to the support of the law of X denoted supp(X).
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Lemma A.5. If X is a non-negative random variable then 0 ∈ supp(X) ⇔ φ(λ) =

o(λ) when λ→∞.

Proof. Assume that 0 ∈ supp(X), then for every ε > 0, E[e−λX ] ≥ P(X < ε)e−ελ > 0,
therefore φ(λ) ≤ λε− logP(X < ε). And if 0 /∈ supp(X), then pick ε > 0 such that X > ε

a.s. so that E[e−λX ] ≤ e−λε and φ(λ) ≥ λε.

Lemma A.6. Let µ be a Radon measure on R+ and P a PPP(µ). Let (At)t∈R+
be inde-

pendent positive random variables, independent of P, and f a positive and measurable
function on R+, then∫ ∞

0

E
[
(f(t)At) ∧ 1

]
µ(dt) <∞ ⇒ 0 ∈ supp

(∑
t∈P

f(t)At

)
.

Proof. Taking expectation with respect to (At) first and using Campbell’s theorem, see
[21, Section 3.2], leads to the Laplace transform

E
[
e−λ

∑
t∈P f(t)At

]
= e−

∫∞
0
E[1−e−λf(t)At ]µ(dt).

Let φ(λ) denote the log-Laplace transform of
∑
t∈P f(t)At so that

1

λ
φ(λ) =

∫ ∞
0

E

[
1− e−λf(t)At

λ

]
µ(dt).

The dominated convergence theorem used twice together with the inequality

E

[
1− e−λf(t)At

λ

]
≤ E

[
(f(t)At) ∧ 1

]
, ∀λ ≥ 1,

show that φ(λ)/λ tends to 0 when λ→∞ and Lemma A.5 concludes the proof.

Lemma A.7. Let G ∼ N (0, 1) and λ > x > 0, then E[eλG1G≤x] ≤ eλx−
x2

2 .

Proof. Observe that

E
[
eλG1G≤x

]
=

∫ x

−∞
eλue−

u2

2
du√
2π

= eλ
2/2

∫ x

−∞
e−

(u−λ)2
2

du√
2π

= eλ
2/2

∫ ∞
λ−x

e−
t2

2
dt√
2π
,

and the last integral is simply P(G > λ− x) which is bounded by e−
(λ−x)2

2 .

The following lemma is called the Gaussian integration by parts, see [32, Equation
(A.17)] for a proof.

Lemma A.8. Let X = (Xi)i∈I be a centered Gaussian vector where I is finite. Then, for
any C1 function F : RI → R whose partial derivatives have at most exponential growth,
we have for every i ∈ I

E [XiF (X)] =
∑
j∈I

E [XiXj ]E [∂jF (X)] .
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