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ABSTRACT 32 
 33 
An emerging hallmark across human diseases – such as cancer, autoimmune and 34 
neurodegenerative disorders – is the aberrant transcription of typically silenced repetitive 35 
elements. Once active, a subset of repeats may be capable of “viral mimicry”: the display of 36 
pathogen-associated molecular patterns (PAMPs) that can, in principle, bind pattern 37 
recognition receptors (PRRs) of the innate immune system and trigger inflammation. Yet how 38 
to quantify the landscape of viral mimicry and how it is shaped by natural selection remains a 39 
critical gap in our understanding of both genome evolution and the immunological basis of 40 
disease. We propose a theoretical framework to quantify selective forces on virus-like features 41 
as the entropic cost a sequence pays to hold a non-self PAMP and show our approach can 42 
predict classes of viral-mimicry within the human genome and across eukaryotes. We quantify 43 
the breadth and conservation of viral mimicry across multiple species for the first time and 44 
integrate selective forces into predictive evolutionary models. We show HSATII and intact 45 
LINE-1 (L1) are under selection to maintain CpG motifs, and specific Alu families likewise 46 
maintain the proximal presence of inverted copies to form double-stranded RNA (dsRNA). We 47 
validate our approach by predicting high CpG L1 ligands of L1 proteins and the innate receptor 48 
ZCCHC3, and dsRNA present both intracellularly and as MDA5 ligands. We conclude viral 49 
mimicry is a general evolutionary mechanism whereby genomes co-opt pathogen-associated 50 
features generated by prone repetitive sequences, likely offering an advantage as a quality 51 
control system against transcriptional dysregulation.  52 



 

MAIN TEXT 53 
 54 
It has recently become clear that repetitive elements, which represent most of the human genome 55 
and often derive from integrated viruses and genome parasites, can function as “non-self" pathogen-56 
associated molecular patterns (PAMPs). Under aberrant conditions, such as cancer1 and viral 57 
infection2-4, repeats may be overexpressed, where the PAMPs they display can engage the innate 58 
immune system5-10. Consistently, a growing body of literature has demonstrated aberrant expression 59 
of immunostimulatory repeats across an array of human diseases, such as in aging11 and 60 
autoimmunity12, implying viral mimicry may be a fundamental feature across inflammatory diseases. 61 
The ability to quantify PAMPs capable of being sensed by pattern recognition receptors (PRRs) is 62 
also of considerable theoretical interest13. Mathematical models of the evolution of human H1N1 63 
influenza since the 1918 pandemic showed an attenuation of CpG motifs, leading to the prediction 64 
such motifs can be targeted by PRRs14,15. It was subsequently discovered the protein ZAP 65 
(ZC3HAV1) is a PRR targeting CpG motifs, indicating inferences drawn from genome evolution can 66 
predict PAMPs and PRR specificities relevant to the adaptation of emerging viruses16,17, including 67 
SARS-CoV-218,19. It has been more difficult to predict specificities associated with structure 68 
formation20 , such as the recognition of double-stranded RNA PAMPs by MDA5 (IFIH1) or TLR321, or 69 
other more complex PAMPs, such as the creation of DNA:RNA hybrids. Importantly, viral mimicry 70 
can be leveraged therapeutically: the expression of immunostimulatory repeats is inducible by 71 
epigenetic drugs, leading to triggering of innate immune sensors and induction of an interferon 72 
response5-9.  73 
 74 
Several fundamental questions remain, such as which PRRs can be activated by which specific 75 
repeats, if viral mimicry serves a functional role in the genome as an evolved checkpoint for loss of 76 
epigenetic regulation or genome fidelity, and whether tumors and pathogens adapt to manipulate 77 
mimicry to their own selective advantage22,23. In one evolutionary scenario, repeats which contain 78 
PAMPs in somatically silenced regions can offer a fitness advantage to cells due to their ability to 79 
trigger PRRs under epigenetic stress, eliminating dysregulated cells and maintaining tissue 80 
homeostasis22,23. Such features could then be maintained by natural selection. Alternatively, in a 81 
neutral scenario, it may be that high RNA concentration resulting from transcriptional dysregulation 82 
can engage PAMPs non-specifically, and their sensing is a by-product of dysregulation rather than of 83 
selection acting on specific features. Discriminating between such scenarios is critical to 84 
understanding how non-self mimicry by the self-genome evolved, and how it can be leveraged for 85 
emerging therapies and honed for existing ones. There is therefore a pressing need for computational 86 
approaches to quantify the presence of viral mimics, define their immunological features and quantify 87 
the evolutionary dynamics of their (putative) PAMP content. We utilize a novel approach from 88 
statistical physics to quantify nucleic-acid motifs and double-stranded structures under selective 89 
forces and use multiple assays to validate our predictions. In doing so we define specific categories 90 
of repeat families that were likely retained by natural selection to display viral mimics.  91 



 

Inference and evolutionary dynamics of pathogen-associated patterns in repeats 92 
 93 
We utilize the framework of selective and entropic forces to infer the presence and evolutionary 94 
dynamics of a PAMP or set of PAMPs in a genome14. Sequences incorporated into a genome, subject 95 
to constraints such as local nucleic acid content, accumulate mutations during evolution to resemble, 96 
on average, the self-genome while selective forces, such as those acting on an atypical “non-self” 97 
pattern, oppose such a trend (Fig. 1A). The selective force is an intensive parameter that can be 98 
interpreted as a measure of the depletion (negative) or excess (positive) of a feature in a genome 99 
sequence beyond the degree it would be expected based on the nucleotide statistics within the 100 
sequence. This framework is ideal for the study of viral mimicry and PAMP detection as selective 101 
forces can be readily compared between groups of sequences independently of their length. We infer 102 
selective forces on a given sequence for one or more patterns introducing them as parameters in a 103 
Maximum Entropy model for  genomic sequences24 (Methods). Our inference algorithm uses exact 104 
transfer matrix methods from statistical physics which, unlike earlier approaches15, are 105 
computationally efficient (scaling with the length of the sequence) and facilitate the analysis of longer 106 
sequences and large sequence datasets (Methods).  107 
 108 
A repetitive element is primarily defined by the presence of multiple copies (inserts) of its sequence 109 
in the genome. As additional repetitive copies accumulate, we measure the evolutionary dynamics of 110 
PAMPs as they diverge from their original sequence. We use two approaches. The first uses 111 
relaxation dynamics: a new repeat in a genome evolves until it reaches a genomic equilibrium value 112 
determined by a balance of factors such as constraints on nucleic acid usage and forces on sequence 113 
patterns. By analogy, selective forces drove the avian origin 1918 influenza virus towards a new 114 
equilibrium in humans with lower CpG content, and it was subsequently found the PRR ZAP 115 
consistently targets CpG with greater affinity in humans than birds25. The second approach uses a 116 
Kimura-based model as a proxy for the neutral evolution of a sequence with given PAMP content. 117 
We implement this variant of the Kimura model numerically to provide a null model of repeat evolution 118 
within a genome. As in the standard Kimura model, we use different mutation probabilities for 119 
transitions (a purine mutating into a purine or a pyrimidine into a pyrimidine) and transversions (a 120 
purine mutating into a pyrimidine or vice-versa), with the former being more probable than the latter 121 
(see Methods). Additionally, we use different ratios of mutation rates corresponding to nucleotide 122 
transitions and transversions in CpG and non-CpG context26. We calculated the dinucleotide 123 
distribution stationary value, obtained as the stationary vector of the stochastic matrix with entries 124 
corresponding to probabilities of mutating from one dinucleotide to another dinucleotide (see Methods 125 
and Table 1 therein).  126 
 127 
To test our approach, we quantify the overall degree of motif usage similarity between families of 128 
human infecting viruses and regions of the human genome. We infer Maximum Entropy models with 129 
forces on all single, di-, and tri-nucleotide motifs for a set of human repeat families and compare them 130 
to models inferred for families of viruses which infect humans (Fig. 1B, C). To quantify similarity of 131 
motif usage in the two sets of families we use the symmetrized Kullback-Leibler divergence (details 132 
about its computation are given in Methods) between the corresponding models. Primarily viral and 133 
human genomes share similar overall motif usage, a form of mimicry that is likely a product of shared 134 
constraints on nucleotide usage across organisms and viruses, with some minor variation between 135 
viral families. Coding regions in the human genome show stronger overall similarity to human infecting 136 
viruses, most of whose genomes are devoted to coding, than non-coding regions, although large 137 
variation exists in the latter. For instance, consistent with the overall trend, HERVK repeats show the 138 
strongest similarity with viruses among repeat regions. As a stark exception, we find far less motif 139 
usage similarity between Alu repeats and HSATII than either to the rest of the human genome or to 140 
human infecting viruses. Neither repeats encode known proteins and both are thought to have non-141 



 

viral origins27, indicating such regions may be subject to different evolutionary pressures from the 142 
other repeats considered here.  143 
 144 
Landscape of repeats with selective forces on CpG dinucleotides  145 
 146 
CpG dinucleotides in humans are PAMPs in DNA, recognized via TLR928, and, as has been seen 147 
more recently, CpGs in RNA are engaged via ZAP17.  We compare the evolution of individual 148 
dinucleotide motifs (quantified by calculating the selective force, 𝑥!, on a dinucleotide motif, 𝑚, as 149 
defined in Methods) between the original consensus sequence, representing the sequence most 150 
likely to resemble a founding ancestral repeat insertion, and its subsequent copies in the genome 151 
(Fig. 2). We analyzed 𝑥CpG, and all other 𝑥!, for all repeat families annotated in the DFAM database29, 152 
finding outliers such as Alu repeats and HSATII, the latter consistent with previous results10. Typically, 153 
CpG content in the human genome is highly underrepresented as CpG sites mutate at a much faster 154 
rate than the rest of the genome26,30,31. We plot the mean difference in 𝑥CpG per repeat family versus 155 
𝑥CpG for the consensus insert (Fig. 2A). Consistent with our assumptions, we see families where the 156 
selective force on CpG dinucleotides for the progenitor insert was greater than −1.9 have decreased 157 
their force to this value, while those less than −1.9 have increased their value. We therefore establish 158 
a genome-wide equilibrium in line with equilibria observed for human adapted viruses such as 159 
influenza15,18. If a repeat is not subject to selection, one would expect its insertions to evolve according 160 
to a Kimura model with respective mutation rates for transitions and transversions, an approach used 161 
in sequence evolution models to explain lower CpG content in vertebrate genomes32-34. Fig. 2B 162 
shows the relaxation of 𝑥CpG as a function of the Kimura distance35 used for each individual repeat 163 
sequence, as a proxy for time since insertion. The Kimura distance is the expected number of 164 
mutations accumulated in a given period of time by a sequence that evolves with a higher probability 165 
of transitions over transversions. It represents the expected number of differences between two 166 
sequences after a given period of time at fixed mutational rates. We use it as a proxy for time since 167 
insertion for each individual repeat sequence, relative to other elements of the same family. Most 168 
repeat families show relaxation to the mean genome force expected from the neutral model, further 169 
implying HSATII may be specifically under selection to hold this PAMP. Moreover, HSATII is the most 170 
represented repeat among those overlapping with high-𝑥CpG (𝑥CpG > 0) genomic regions in the human 171 
genome (Fig 2C).  172 
 173 
As L1 elements have the most copies in the genome, they are most amenable to our approach. Their 174 
copies are estimated to constitute about 20% of human genome36. Here we only consider full-length 175 
inserts, as annotated in L1Base2, and contrast those designated as fully intact (denoted FLI), from 176 
full-length sequences designated as non-intact (FLnI)37. Fully functional L1 DNA sequences are 177 
regulated by hyper-methylation at CpG sites in their promoter, to inhibit their transcription38,39. Indeed, 178 
we find FLI L1 have higher CpG content than FLnI (Fig. 2D), though most conserved CpGs are not 179 
in the promoter region (Supplementary Fig. S1). We find that as a L1 genome insertion ceases to 180 
contain an intact copy, its CpG content decays with the Kimura distance to the consensus, reaching 181 
the genome mean in a predictable way according to the Kimura model for neutral genomic evolution 182 
(Fig. 2E). The most recent inserts into the human genome therefore appear to not have equilibrated. 183 
It is important to identify all such cases because families that have not saturated are candidates for 184 
viral mimicry via PAMP display, such as when LINE-1 is overexpressed in tumors1,40-42. For Alu 185 
repeats we observe a pattern of CpG-content relaxation similar to LINE-1, but only when considering 186 
together the major Alu subfamilies (AluY, AluS, AluJ). The younger AluY and, to a lesser extent, AluS 187 
are not yet equilibrated and still possess PAMP-like high CpG content. (Extended Data Fig. 1A). For 188 
HSATII, evolutionary dynamics of the force relaxation (Fig. 2E) corresponds to saturation at force 189 
approximately equal to −0.4, well above the equilibrium distribution computed from the Kimura model, 190 
implying its ability to retain CpGs is maintained by selection. For most families the data points are 191 



 

scarce and noisy, making a relaxation fit such as the one shown for HSATII and LINE-1 difficult. 192 
Supplementary Table 1 lists the full repeat atlas of CpG content, computed both for the consensus 193 
repeat and as an average over the inserts in the genome. CpG-rich regions (𝑥CpG > 0) in the human 194 
genome mostly concentrate in intergenic and, to a lesser extent, intronic regions (Extended Data 195 
Fig. 1B), and are listed in Supplementary Table 2.  196 
 197 
We reasoned that the force acting on CpGs in intact L1 species is enforced by the in cis binding of 198 
L1 encoded proteins. To determine if this is the case, we analyzed the RNAs affiliated with both L1 199 
ORF1p and ORF2p by RNA co-immunoprecipitation sequencing (RIP-seq). Notably ORF2p is the 200 
reverse transcriptase of L1. We conducted α-ORF1p RIP-seq in N2102Ep human embryonal 201 
carcinoma cell lines43  and, for the first time, α-ORF2p RIP-seq. Transcripts enriched by co-IP were 202 
determined by differential expression analysis of RIP versus total RNA and matched mock IP controls 203 
(Methods). Intact L1s are exclusively recovered in ORF1p and ORF2p binding transcripts (Fig. 2F; 204 
Extended Data Fig. 1C) as expected. Consistently, ORF2p (Fig. 2F) and ORF1p (Extended Data 205 
Fig. 1C) enriched transcripts (Log2FC > 3, adj. p-val. < 0.05) have CpG forces consistent with the 206 
high 𝑥CpG observed in fully intact transcripts and compared to controls (Log2FC < -3, adj. p-val. < 207 
0.05). To further examine if innate immune receptors co-IP with high 𝑥CpG L1 RNA, we examined the 208 
ligands of ZCCHC3, a protein recently described as a co-sensor of cGAS44 that has been found to 209 
interact with L1 ribonucleoprotein in an RNA-dependent fashion45,46. We find a substantial enrichment 210 
in high CpG L1 RNA associating ZCCHC3, compared to both controls and to non-intact L1 (Fig. 2G). 211 
Our findings indicate high 𝑥CpG L1 RNA is both more likely to associate with L1 proteins and with a 212 
putative innate immune sensor of L1 RNA. We therefore conclude high 𝑥CpG is associated with both 213 
replication competent L1 and innate immune sensing of L1. 214 
 215 
Landscape and evolution of repeats with selective forces on double-stranded RNA formation  216 
 217 
We further extend our approach, for the first time, to the formation of anomalous secondary structure 218 
by calculating the force on double-stranded RNA (dsRNA) formation in repeats (Fig. 3, Extended 219 
Data Fig. 2). This value quantifies the tendency of an RNA transcript to form double-stranded 220 
segments. It is generally accepted that Toll-Like Receptor 3 (TLR3) is activated by short (approx. 30 221 
bp) endosomal dsRNA and Retinoic acid-Inducible Gene I (RIG-I, DDX58) by short (tens of bases) 222 
cytoplasmic dsRNA accompanied by a triphoshphate40, while Melanoma Differentiation Associated 223 
protein 5 (MDA5) recognizes longer cytoplasmic dsRNA associated with RNA virus replication47. We 224 
calculated the double stranded force, 𝑥ds (Methods), for repetitive families as well as ncRNA and 225 
mRNA sequences in the human genome, and randomly generated sequences (Fig. 3A). While the 226 
mean value of 𝑥ds computed for functional mRNA sequences and noncoding sequences is close to 227 
zero and essentially the same as the value for random sequences, the consensus sequences of 228 
repeats contain multiple families with long complementary segments contributing to an increased 229 
average 𝑥ds value (34 families out of 980 analyzed have 𝑥ds > 0,5). While the general trend is to relax 230 
𝑥ds towards zero (Fig. 3B), we observe outliers having a higher positive 𝑥ds value, indicating a 231 
possible reservoir of double-stranded segments being maintained by selection. Including are the DNA 232 
transposons Tigger4a (Extended Data Fig. 2B), MER107 and MER6B (Fig. 3B), which could be 233 
transcribed under aberrant conditions. 234 
 235 
To locate possible sources of double-stranded segments originating from the same transcript, we 236 
scan the entire genome (hg38 assembly), using a window of transcripts of length 3000bp, comparable 237 
to typical lengths of long ncRNAs48. We quantified the sequence complexity of such complementary 238 
segments (based on Kolmogorov complexity, Methods), as shown in Fig. 3C. The segments close to 239 
the low complexity limit typically contain a repeating motif of only a few nucleic acids (such as 240 
poly(AT)) while the longest segments have higher complexity, i.e. the regions that can form long 241 



 

dsRNA are not exclusively simple repeats (as summarized in an atlas of all families analyzed,  242 
Supplementary Table 2, 3). We then characterized the distribution of forces in the genomic scan: 243 
we observe two peaks, a major one close to 0 and a smaller around 0.5 (Fig. 3D). The mean length 244 
of the longest complementary segments found in the dataset with 𝑥ds > 0.5 is 40 base pairs. We found 245 
that for the majority (88%) of such regions the complementary segments in the 3000 bases long 246 
regions overlap with known repeats. Greater than 43% of identified complementary segments 247 
correspond to AluS, where a copy has inserted in a positive orientation close to one in a negative 248 
orientation (inverted-repeat Alus, IR-Alus). AluS is the most represented Alu family in the human 249 
genome (accounting for more than 60% of the Alu inserts), and it also has the highest fraction of IR 250 
inserts, 59% (39% for AluJ and 18% for AluY). In particular, we noticed 73% of the IR-Alus in the 251 
human genome consist of AluS IRs, but if we filter for high-𝑥ds the share of AluS repeats forming IR-252 
Alus increases to 86% (Fig. 3F). Besides Alu subfamilies (which constitute about 50% of long 253 
complementary segments that overlap with known inserts), we also identified complementary 254 
fragments from the ORF2 open reading frame of LINE-149. We found previously unannotated non-255 
inverted repeats prone to forming long-double stranded RNA (full list in Supplementary Table 3). 256 
We conclude that while IR-Alus form the major class of binders, other unannotated inverted repeats 257 
are also prone to dsRNA formation.  Likewise, previous work hypothesized that dsRNA formed from 258 
introns is a checkpoint against intron retention50,51. We observed most regions (55.4%) with 𝑥ds > 0.5 259 
were over-represented at intronic regions (Extended Data Fig. 2G). 260 
 261 
We next validated our ability to predict double-stranded forming regions. We first examined two 262 
published datasets of RNA forming long dsRNA MDA5 receptor ligands, as their transcription has 263 
been implicated as a response to genome-wide DNA demethylation7,52. We find that RNA transcripts 264 
binding MDA5 under DNA demethylation agents (AZA) display a double-peaked force distribution with 265 
a predominance of the large 𝑥ds peak. Inverted repeats, and notably the AluS family (Fig 3. D,F), only 266 
populate the high 𝑥ds peak. AluS repeats account for 89% of enriched IR-Alus in the MDA5-binding 267 
experiment, in agreement with our prediction based only on quantifying high-𝑥ds sequences in the 268 
human genome. A consistent result was found in a second MDA5 ligand dataset (Extended Data 269 
Fig. 2C52). To further validate our ability to predict dsRNA forming transcripts, we generated a novel 270 
dataset of sequenced ligands of the J2 monoclonal antibody, an antibody able to recognize dsRNA 271 
of greater than 40 bp, nearly identical in length to the average length of anomalous regions predicted 272 
when 𝑥ds > 0.5, in a set of patient-derived colorectal cancer cell lines (Methods, Extended Data Fig. 273 
2E). Consistent with our predictions, we show an enrichment of high 𝑥ds regions in J2 antibody binding 274 
transcripts, and with a similar profile as the previously published MDA5 ligands. In this case we found 275 
AluS repeats constitute 84% of the enriched IR-Alus, once more in agreement with the value predicted 276 
for high-𝑥ds sequences with our framework (Fig. 3E).  These results, based solely on in silico analysis 277 
of the human genome using our framework, are a striking quantification of the experimental 278 
observation that IR-Alus, and especially AluS IR, are the major source of self-RNA that form MDA5 279 
agonists7, providing strong validation of the predictive power of our evolutionary model and, in turn, 280 
the hypothesis that evolution selected this feature as an epigenetic checkpoint22,23. We further 281 
analyzed a dataset of inhibitors of RNA splicing which induce intron retention53. We examined RNA 282 
sequencing data from SF3B inhibitors which cause the retention of introns in SF3B1 K700E mutant 283 
cells. Consistent with our model, we found splicing agents which lead to intron retention over express 284 
the high double-stranded force intronic repeats we predicted (Extended Data Fig. 3, Supplementary 285 
Table 5), supporting the potential ability to manipulate this feature using a cancer therapeutic 286 
targeting RNA splicing. Consistently, for inhibitors less associated with intron retention the effect was 287 
either weakened or not present. We therefore show a clear ability to predict inverted repeat regions 288 
associated dsRNA formation.  289 
 290 
Presence and evolution of PAMPs in genomes across evolutionary scales 291 
 292 



 

To further understand whether PAMPs are held by selection, we examine the presence of repeats 293 
with high forces on CpG dinucleotides and double-stranded RNA across 20 genomes (Extended 294 
Data Figs. 4-6). We calculate the presence of outliers for high 𝑥CpG and high 𝑥ds regions across all 295 
species. For humans and mouse we show that the presence of such anomalous regions is not 296 
primarily due to CpG islands or enhancer regions, based on the FANTOM database54,55 (Methods, 297 
Extended Data Fig. 4). We find high 𝑥ds regions occur across many species, even those which do 298 
not have the Alu family of SINE elements, providing further evidence such regions are likely a 299 
byproduct of the reverse transcription machinery across genomes rather than a function of Alus 300 
specifically. To establish such regions in other organisms are not due to low complexity regions, we 301 
plot the complexity of high 𝑥ds regions for the zebrafish genome (Fig. 4A). We find many genomic 302 
regions which are not low complexity and would be prone to dsRNA formation if transcribed, implying 303 
such regions may be a source of PAMPs across species. To the best of our knowledge, this is the 304 
first quantification of the presence of likely PAMP-forming repeat regions outside of primates. The full 305 
list of regions with 𝑥ds > 0.5 we discovered in the zebrafish genome is reported in Supplementary 306 
Table 4. 307 
 308 
For repeat families identified in humans, we compared selective forces across organisms 309 
phylogenetically close to humans. We used the Hominoidea superfamily, whose most recent common 310 
ancestor has been proposed to date back to about 16 million years ago56. We performed the same 311 
analysis as for the human genome, scanning the genomes of five small and great apes and 312 
comparing sequences with high 𝑥CpG and 𝑥ds  values. We first considered the high 𝑥CpG windows 313 
(𝑥CpG > 0) and computed the conservation of these sequences across organisms (as quantified by 314 
the Overlap Index, Methods). We observed that the number of high 𝑥CpG sequences conserved 315 
between humans and other apes decreases exponentially with their evolutionary distance (Fig. 4B); 316 
an expected result, given the high CpG mutation rate. We further observed that, although most high 317 
𝑥CpG genomic windows do not overlap with any repeat, the vast majority of conserved 𝑥CpG sequences 318 
that do overlap with a repeat are associated with HSATII. HSATII can be found in primates after the 319 
branching between the Pongo genus and the other great apes, allowing us to pinpoint the HSATII 320 
insertion in the primate genomes between 13.8 and 8.9 million years ago. Remarkably, since its 321 
insertion into the genome HSATII sequences are conserved to a much greater extent than other 322 
sequences in the high-CpG pool (Fig. 4C), suggesting a selective pressure maintains PAMPs in 323 
HSATII. When we next considered high-𝑥ds genomic windows, we found them to be much more 324 
generally conserved than high 𝑥CpG regions (Fig. 4D). We found these results striking, since it is not 325 
expected by a null model of sequence evolution and implies a selective pressure to keep these 326 
windows functionally intact. When focusing on sequences overlapping with repeats, we confirmed 327 
inverted Alu repeats are highly conserved in time since their appearance in primate genomes more 328 
than 16.3 million year ago (Fig. 4E). We therefore conclude Alus, and particularly the AluS family, 329 
are likely to have selectively maintained the ability to form double-stranded RNA.  330 



 

DISCUSSION 331 
 332 
We quantify the landscape and evolutionary dynamics of viral mimicry both across and within 333 
genomes. We find, generally, that virus infecting humans mimic the motif usage statistics of human 334 
coding regions, indicating shared global constraints on motifs for both viruses and their hosts, 335 
consistent with our previous work14,15. There are strong exceptions, such as Alu repeats and HSATII, 336 
under less constraint. We find the high-copy satellite RNA HSATII is likely under selection to maintain 337 
its pathogen-associated CpG dinucleotides across primates since its origin nearly 10 million years 338 
ago and potentially functional L1 inserts maintain atypically high CpG content compared to non-339 
functional copies. We validate the latter with novel co-IPs of high 𝑥CpG L1 RNA with both L1 ORF1 340 
and ORF2 proteins, indicating such L1s are more likely to be functional, and with the innate immune 341 
sensor ZCCHC344. Furthermore, we incorporate structure prediction into our method for the first time, 342 
which we validate in both published datasets and new dsRNA detecting antibody assays. In humans, 343 
many, but not all, dsRNA forming repeats come from inverted Alus, indicating double-stranded RNA, 344 
mimicry is likely due to the error prone reverse transcriptional process, rather than being a specific 345 
property of the Alus other than their known parasitism of L1. We show a high degree of conservation 346 
of double-stranded RNA-forming Alus across primates, indicating selection has maintained their 347 
ability to display PAMPs. We find nontrivial potential PAMP forming regions across many genomes 348 
which lack either Alus or HSATII, implying reservoirs of potential PAMP formation likely exists within 349 
repeats across many organisms, which may have been acted upon in distinct ways in different 350 
species. The combination of our analysis within and across species raises the question of whether 351 
formation of double-stranded RNA is a function for which aspects of the LINE reverse transcription 352 
machinery has been selected for. We generally support the hypothesis that repeats are selected to 353 
maintain “non-self” PAMPs, whose induction and subsequent innate sensing may act as sensors for 354 
loss of heterochromatin, avoidance of genome instability22,23, or aberrant RNA processing22,50,51,53.   355 
 356 
While a species may have evolved to maintain PAMPs, it can be difficult to establish whether PRR 357 
signaling is the primary reason for why a PAMP evolved in the first place. Inverted Alus can be 358 
hotspots for RNA-editing, altering gene expression over evolutionary times scales, while 359 
simultaneously acting a PAMP for PRRs such as MDA557-59.  HSATII may have a DNA regulatory 360 
function as well, as its DNA sequences can sequester chromatin regulatory proteins and trigger 361 
epigenetic change60. Yet in cancer, where Alus and HSATII are often overexpressed, the same 362 
features can be sensed as PAMPs10,61. Moreover, such functions are not mutually exclusive. The high 363 
CpG presence in L1 may have evolved both to allow active L1 species to remain silenced and to 364 
serve as a danger signal when aberrant demethylation occurs. For multicellular organisms with a high 365 
degree of epigenetic regulation and chromosomal organization, a repeat species with a non-immune 366 
function may be co-opted when it offers an opportunity to maintain stimulatory features to release a 367 
danger signal when epigenetic control is lost, such as during the release of repeats after p53 368 
mutations, where immunostimulatory repeats may offer a back-up for p53 functions such as 369 
senescence6,62.  370 
 371 
Our work has several implications for how to quantify self versus non-self discrimination by the innate 372 
immune system. While we focus on motif usage and the formation of long double-stranded RNA 373 
structures, our framework is generalizable to other, more complex patterns and machine-learning 374 
approaches. Mathematically, our work highlights how approaches from statistical physics, such as 375 
maximum entropy and transfer matrix calculations can be used in efficient genome wide calculations 376 
and comparisons. The selective forces are intrinsic quantities which can be compared from sequence 377 
to sequence. Therefore, they are ideal for evolutionary analysis of genome features, the complexity 378 
of which can be added in future models. For instance, Y RNAs, implicated in RIG-I sensing during 379 
RNA virus infection4, have a more complicated feature set which includes an RNA modification63. The 380 
potential association of high CpG content with replication competent L1 may also serve as a marker 381 



 

for STING-cGAS20 activation during reverse transcription or sensing of the ribonucleoprotein complex 382 
by TRIM5α64, and has been implicated here as a co-sensor with ZCCHC344. Using such methods to 383 
“decipher” noncoding genome regions and to assign them a function may allow such regions to be 384 
further exploited therapeutically. The implication is that we can learn a “repeat code” of self-agonists 385 
within our genome held by selection to stimulate receptors under specific circumstances. Such work 386 
will be enabled by emerging sequencing technologies, such as telomere-to-telomere65 sequencing, 387 
and broad sequencing of receptor ligand pairs. In doing so, we may discover a new set of phenotypes 388 
hiding in the non-coding genome.  389 
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FIGURE LEGENDS 575 
 576 
Figure 1 | Competition between selective and entropic forces define presence of pathogen 577 
associated patterns in the genome. A, Representation of selective versus entropic forces on a 578 
PAMP. Random sequences reproducing the nucleotide frequencies generically have numbers of 579 
occurrences of a PAMP significantly different from what is observed in an actual genomic sequence. 580 
Deviations imply constraints to enrich or avoid a PAMP, which we characterized by a, respectively, 581 
positive or negative selective force. In our Maximum Entropy framework, the selective force 582 
counterbalances the entropic force resulting from the loss of diversity (entropy) in sequences having 583 
statistically abnormal PAMP numbers. B, Comparison of all nucleotide biases between repeat and 584 
viral families. In this histogram each repeat family is compared with reference viral genomes of viral 585 
families by computing the symmetrized Kullback-Leibler divergence of the probability distributions 586 
associated to models inferred from viral and repeat sequences. Repeats with particularly high 587 
divergence values are indicated by arrows. The value "Human genome (all)" is obtained with a model 588 
trained on sequences randomly sampled from the human genome (hg38), while for "Human genome 589 
(CDS)" we only consider coding sequences. C, Detailed comparison of nucleotide biases between 590 
selected repeat and viral families. Each point is the symmetrized Kullback-Leibler divergence 591 
between a repeat family (x-axis) and a specific viral family (as indicated by the color). Bars represent, 592 
for each repeat family under consideration, the average value over the viral families. 593 
 594 
Figure 2 | Forces on CpG dinucleotides in the human genome. A, Change in 𝑥CpG computed on 595 
all inserts annotated in hg38 for each repeat family, versus 𝑥CpG of the consensus repeat reported in 596 
the DFAM database. Alus and HSATII are highlighted as exceptions to the general trend. B, The 597 
mean 𝑥CpG of all inserts in a repeat family as a function of the Kimura distance from the consensus 598 
sequence for each family. C, Annotation of high-𝑥CpG (𝑥CpG > 0) sequences in the human genome 599 
according to their overlap with annotated repeats in the DFAM database. The + or - sign after the 600 
repeat name indicates the sense in which the repeat is annotated in the database. "Unannotated" 601 
sequences do not overlap with any repeat in the database. D, Scatter plot of 𝑥CpG and 𝑥UpA for LINE-602 
1 functional (blue) and non-functional (green) elements in the human genome. The white ellipse 603 
corresponds to one standard deviation distance from the mean for 𝑥CpG and 𝑥UpA forces on FLI and 604 
FLnI LINE-1 inserts respectively. E, 𝑥CpG	for FLnI inserts of LINE-1 and HSAT-II in human genome 605 
as a function of average distance from the intact FLI sequences (for LINE-1) or the distance from the 606 
consensus sequence (for HSAT-II). The force relaxation evolutionary model fit is shown for both 607 
sequence families together with a Kimura (null) model fit. F, Distribution of 𝑥CpG of L1 ORF2p binding 608 
L1 transcripts in embryonal carcinoma cell line (N2102Ep). Functional intact LINEs are colored in 609 
blue (BH corrected p-value labeled for t-test, **** denotes adjusted p-value < 0.01). ORF2p enriched 610 
and depleted transcripts are selected by differential expression analysis between ORF2p-IP versus 611 
Mock/total with |log2FC| greater than 3 and adjusted p-value < 0.05 for Fisher Exact test on proportion 612 
of 𝑥CpG high versus 𝑥CpG low of ORF2p enriched and depleted transcripts. G, 𝑥CpG on ZCCHC3 613 
binding LINE transcripts in N2102Ep. Functional intact LINEs colored in blue (BH corrected p-value 614 
labeled for t-test, **** denotes adjusted p-value < 0.01). ZCCHC3 enriched and depleted transcripts 615 
selected by differential expression analysis between ZCCHC3-IP versus Mock/total with a |log2FC| 616 
greater than 3 and adjusted p-value < 0.05. 617 
 618 
Figure 3 | Double-stranded forces in the human genome. A, Histogram of 𝑥ds calculated for mRNA 619 
coding sequences, non-coding RNAs, inserts, consensus sequences of repeats, and sequences 620 
obtained by randomly reshuffling mRNA coding sequences (yellow). B, Mean of 𝑥ds calculated for 621 
each family of repeats as a function of the mean Kimura distance of all inserts in a repeat family from 622 
their consensus sequence. The solid line corresponds to mean value (and standard deviation from it) 623 
for all families binned into the same distance from consensus. C, Complexity of sequences in 624 



 

complementary regions found in the human genome as a function of segment length. Complementary 625 
regions that overlap with known repeat element or ncRNA or mRNA are highlighted as gray dots, with 626 
different contour colors depending on the specific family they overlap with. Dashed lines correspond 627 
to the complexity of a completely random sequence (top line) and trivial region consisting of a single 628 
nucleotide (bottom). Complexity of both complementary segments are similar, so we only include the 629 
complexity of one of each complementary transcript. D, 𝑥ds histograms in human genome (sliding 630 
window with transcript of length of 3 kb) compared to MDA5 binding RNA transcripts. Enriched 631 
transcripts have a positive log-enrichment with respect to the control experiment. Inverted repeat (IR) 632 
transcripts are annotated repeats with another repeat of the same family in opposite genomic sense 633 
within 3 kb. E, Similar to panel (D), for J2 binding transcripts. F, Type of repeat (as annotated in 634 
RepeatMasker) with the longest overlapping sequence in complementary sequences for high-𝑥ds (𝑥ds 635 
> 0.5) windows in hg38 (left), the MDA5 binding experiments (middle) and the J2 binding experiment 636 
(right). Sequences are accounted as "IR" (Inverted Repeats) if the two complementary regions 637 
overlap with repeats annotated in the database with the same name but inverted sense (+/- or -/+). 638 
"Non-IR" indicates cases where the two repeats overlapping with the two complementary regions 639 
have a different name. "Unannotated" indicates cases where one or both the two complementary 640 
regions do not overlap with any repeat in the database. 641 
 642 
Figure 4 | Evolution and conservation of forces on PAMPs. A, Complexity of sequences in 643 
complementary regions found in the Danio rerio genome as a function of segment length. Dashed 644 
lines correspond to the complexity of a completely random sequence (top line) and trivial region 645 
consisting of a single nucleotide (bottom). B, Scatter plot of the overlap coefficient between the high-646 
𝑥CpG (𝑥CpG > 0) sequences in the human genome and those of other primates versus the most recent 647 
common ancestor (MRCA) time56. Two high-𝑥CpG sequences are considered overlapping if they result 648 
as a hit from BLAST (Methods). The blue curve denotes an exponential fit. C, Barplot presenting 649 
overlap with repeats of conserved high-𝑥CpG sequences. The x-axis indicates the MRCA time (0 Mya 650 
are human sequences). Sequences are accounted as repeats if they overlap with annotations in the 651 
DFAM database. The + or - sign after the repeat name indicates the sense in which the repeat is 652 
annotated in the database. "Unannotated" sequences do not overlap with any repeat in the database. 653 
D, Same analysis as (C), but with high-𝑥ds sequences (𝑥ds > 0.5). E, Barplot presenting overlap with 654 
repeats of conserved high-𝑥ds sequences. The x-axis indicates the MRCA time (0 Mya are human 655 
sequences). Sequences are accounted as repeats if they overlap with annotations in the 656 
RepeatMasker database. Sequences are accounted as "IR" (Inverted Repeats) if the two 657 
complementary regions overlap with two annotations in the RepeatMasker database with the same 658 
name but inverted sense (+/- or -/+). Sequences are indicated as "Non-IR" if the two repeats 659 
overlapping with the two complementary regions have a different name. "Unannotated" indicates 660 
cases where one or both the two complementary regions do not overlap with any known repeat.  661 



 

Extended Data Figure 1 | A, 𝑥CpG versus Kimura distance from consensus sequence for each Alu 662 
family. Solid lines indicate binned means and standard deviations. B, Genomic distribution of high-663 
𝑥CpG (𝑥CpG > 0) regions in the human genome (center), compared with the distribution of the full 664 
genome (left bar). In the right bar we show the genomic distribution of high-𝑥CpG regions that do not 665 
overlap with any repeat in the DFAM database. C, 𝑥CpG on L1 ORF1p binding LINE transcripts in 666 
N2102Ep. Functional intact LINEs are colored in blue. BH corrected p-value is labeled for t-test. **** 667 
denote adjusted p-value < 0.01. L1 ORF1p enriched and depleted transcripts are selected by 668 
differential expression analysis between L1 ORF1p-IP vs Mock/total with a |log2FC| greater than 3 669 
and adjusted p-value < 0.05. 670 
 671 
Extended Data Figure 2 | A, The mean of maximum lengths in a secondary structure in a single-672 
stranded RNA sequence (green line), and the mean maximum length of complementary segments 673 
(blue line), along with respective fits (Methods). B, 𝑥ds on repeat family Tigger4a. The force relaxation 674 
evolutionary model fit shows the relaxation of the inserts compared to the relaxation simulated by 675 
neutral Kimura model. C, 𝑥ds histograms in human genome (sliding window with transcript of length 676 
of 3 kb) compared to MDA5 binding RNA transcripts as experimentally found in52. Enriched transcripts 677 
have a positive log-enrichment with respect to the control experiment. Inverted repeat (IR) transcripts 678 
are annotated repeats with another repeat of the same family in opposite genomic sense within 3 kb. 679 
D, Correlation between log-enrichment of reads aligning to each complementary sequence in MDA5-680 
binding experiment, and 𝑥ds. The blue line shows the fit of a generalized additive model. E, relation 681 
between log-enrichment of reads aligning to each complementary sequence in J2-binding 682 
experiment, and 𝑥ds. The blue line shows the fit of a generalized additive model. F, Type of repeat 683 
with the longest overlapping sequence in complementary sequences with high MDA5 signal and high 684 
𝑥ds (𝑥ds > 0.5) and complementary sequences with low MDA5 signal and low 𝑥ds. G, Genomic 685 
distribution of high-𝑥ds regions in the human genome (right bar), compared with the distribution of the 686 
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Figure 1 | Competition between selective and entropic forces define presence of pathogen associated patterns in
the genome. A, Representation of selective versus entropic forces on a PAMP. Random sequences reproducing the
nucleotide frequencies generically have numbers of occurrences of a PAMP significantly different from what is observed in
an actual genomic sequence. Deviations imply constraints to enrich or avoid a PAMP, which we characterized by a,
respectively, positive or negative selective force. In our Maximum Entropy framework, the selective force counterbalances
the entropic force resulting from the loss of diversity (entropy) in sequences having statistically abnormal PAMP numbers.
B, Comparison of all nucleotide biases between repeat and viral families. In this histogram each repeat family is compared
with reference viral genomes of viral families by computing the symmetrized Kullback-Leibler divergence of the probability
distributions associated to models inferred from viral and repeat sequences. Repeats with particularly high divergence
values are indicated by arrows. The value "Human genome (all)" is obtained with a model trained on sequences randomly
sampled from the human genome (hg38), while for "Human genome (CDS)" we only consider coding sequences. C,
Detailed comparison of nucleotide biases between selected repeat and viral families. Each point is the symmetrized
Kullback-Leibler divergence between a repeat family (x-axis) and a specific viral family (as indicated by the color). Bars
represent, for each repeat family under consideration, the average value over the viral families.



Figure 2 | Forces on CpG dinucleotides in the human genome. A, Change in xCpG computed on all inserts annotated
in hg38 for each repeat family, versus xCpG of the consensus repeat reported in the DFAM database. Alus and HSATII are
highlighted as exceptions to the general trend. B, The mean xCpG of all inserts in a repeat family as a function of the Kimura
distance from the consensus sequence for each family. C, Annotation of high-xCpG (xCpG > 0) sequences in the human
genome according to their overlap with annotated repeats in the DFAM database. The + or - sign after the repeat name
indicates the sense in which the repeat is annotated in the database. "Unannotated" sequences do not overlap with any
repeat in the database. D, Scatter plot of xCpG and xUpA for LINE-1 functional (blue) and non-functional (green) elements in
the human genome. The white ellipse corresponds to one standard deviation distance from the mean for xCpG and xUpA
forces on FLI and FLnI LINE-1 inserts respectively. E, xCpG for FLnI inserts of LINE-1 and HSAT-II in human genome as a
function of average distance from the intact FLI sequences (for LINE-1) or the distance from the consensus sequence (for
HSAT-II). The force relaxation evolutionary model fit is shown for both sequence families together with a Kimura (null)
model fit. F, Distribution of xCpG of L1 ORF2p binding L1 transcripts in embryonal carcinoma cell line (N2102Ep). Functional
intact LINEs are colored in blue (BH corrected p-value labeled for t-test, **** denotes adjusted p-value < 0.01). ORF2p
enriched and depleted transcripts are selected by differential expression analysis between ORF2p-IP versus Mock/total
with |log2FC| greater than 3 and adjusted p-value < 0.05 for Fisher Exact test on proportion of xCpG high versus xCpG low of
ORF2p enriched and depleted transcripts. G, xCpG on ZCCHC3 binding LINE transcripts in N2102Ep. Functional intact
LINEs colored in blue (BH corrected p-value labeled for t-test, **** denotes adjusted p-value < 0.01). ZCCHC3 enriched
and depleted transcripts selected by differential expression analysis between ZCCHC3-IP versus Mock/total with a
|log2FC| greater than 3 and adjusted p-value < 0.05.



Figure 3 | Double-stranded forces in the human genome. A, Histogram of xds calculated for mRNA coding sequences,
non-coding RNAs, inserts, consensus sequences of repeats, and sequences obtained by randomly reshuffling mRNA
coding sequences (yellow). B, Mean of xds calculated for each family of repeats as a function of the mean Kimura distance
of all inserts in a repeat family from their consensus sequence. The solid line corresponds to mean value (and standard
deviation from it) for all families binned into the same distance from consensus. C, Complexity of sequences in
complementary regions found in the human genome as a function of segment length. Complementary regions that overlap
with known repeat element or ncRNA or mRNA are highlighted as gray dots, with different contour colors depending on the
specific family they overlap with. Dashed lines correspond to the complexity of a completely random sequence (top line)
and trivial region consisting of a single nucleotide (bottom). Complexity of both complementary segments are similar, so we
only include the complexity of one of each complementary transcript. D, xds histograms in human genome (sliding window
with transcript of length of 3 kb) compared to MDA5 binding RNA transcripts. Enriched transcripts have a positive log-
enrichment with respect to the control experiment. Inverted repeat (IR) transcripts are annotated repeats with another
repeat of the same family in opposite genomic sense within 3 kb. E, Similar to panel (D), for J2 binding transcripts. F, Type
of repeat (as annotated in RepeatMasker) with the longest overlapping sequence in complementary sequences for high-xds
(xds > 0.5) windows in hg38 (left), the MDA5 binding experiments (middle) and the J2 binding experiment (right). Sequences
are accounted as "IR" (Inverted Repeats) if the two complementary regions overlap with repeats annotated in the database
with the same name but inverted sense (+/- or -/+). "Non-IR" indicates cases where the two repeats overlapping with the
two complementary regions have a different name. "Unannotated" indicates cases where one or both the two
complementary regions do not overlap with any repeat in the database.



Figure 4 | Evolution and conservation of forces on PAMPs. A, Complexity of sequences in complementary regions
found in the Danio rerio genome as a function of segment length. Dashed lines correspond to the complexity of a
completely random sequence (top line) and trivial region consisting of a single nucleotide (bottom). B, Scatter plot of the
overlap coefficient between the high-xCpG (xCpG > 0) sequences in the human genome and those of other primates versus
the most recent common ancestor (MRCA) time56. Two high-xCpG sequences are considered overlapping if they result as a
hit from BLAST (Methods). The blue curve denotes an exponential fit. C, Barplot presenting overlap with repeats of
conserved high- sequences. The x-axis indicates the MRCA time (0 Mya are human sequences). Sequences are
accounted as repeats if they overlap with annotations in the DFAM database. The + or - sign after the repeat name
indicates the sense in which the repeat is annotated in the database. "Unannotated" sequences do not overlap with any
repeat in the database. D, Same analysis as (C), but with high-xds sequences (xds > 0.5). E, Barplot presenting overlap with
repeats of conserved high-xds sequences. The x-axis indicates the MRCA time (0 Mya are human sequences). Sequences
are accounted as repeats if they overlap with annotations in the RepeatMasker database. Sequences are accounted as
"IR" (Inverted Repeats) if the two complementary regions overlap with two annotations in the RepeatMasker database with
the same name but inverted sense (+/- or -/+). Sequences are indicated as "Non-IR" if the two repeats overlapping with the
two complementary regions have a different name. "Unannotated" indicates cases where one or both the two
complementary regions do not overlap with any known repeat.



Extended Data Figure 1 | A, xCpG versus Kimura distance from consensus sequence for each Alu family. Solid lines
indicate binned means and standard deviations. B, Genomic distribution of high-xCpG (xCpG > 0) regions in the human
genome (center), compared with the distribution of the full genome (left bar). In the right bar we show the genomic
distribution of high-xCpG regions that do not overlap with any repeat in the DFAM database. C, xCpG on L1 ORF1p binding
LINE transcripts in N2102Ep. Functional intact LINEs are colored in blue. BH corrected p-value is labeled for t-test. ****
denote adjusted p-value < 0.01. L1 ORF1p enriched and depleted transcripts are selected by differential expression
analysis between L1 ORF1p-IP vs Mock/total with a |log2FC| greater than 3 and adjusted p-value < 0.05.



Extended Data Figure 2 | A, The mean of maximum lengths in a secondary structure in a single-stranded RNA sequence
(green line), and the mean maximum length of complementary segments (blue line), along with respective fits (Methods).
B, xds on repeat family Tigger4a. The force relaxation evolutionary model fit shows the relaxation of the inserts compared
to the relaxation simulated by neutral Kimura model. C, xds histograms in human genome (sliding window with transcript of
length of 3 kb) compared to MDA5 binding RNA transcripts as experimentally found in52. Enriched transcripts have a
positive log-enrichment with respect to the control experiment. Inverted repeat (IR) transcripts are annotated repeats with
another repeat of the same family in opposite genomic sense within 3 kb. D, Correlation between log-enrichment of reads
aligning to each complementary sequence in MDA5-binding experiment, and xds. The blue line shows the fit of a
generalized additive model. E, relation between log-enrichment of reads aligning to each complementary sequence in J2-
binding experiment, and xds. The blue line shows the fit of a generalized additive model. F, Type of repeat with the longest
overlapping sequence in complementary sequences with high MDA5 signal and high xds (xds > 0.5) and complementary
sequences with low MDA5 signal and low xds. G, Genomic distribution of high-xds regions in the human genome (right bar),
compared with the distribution of the full genome (left bar). H, Type of repeat with the longest overlapping sequence in
complementary sequences with high J2 signal and high xds and complementary sequences with low J2 signal and low xds.



Extended Data Figure 3 | Volcano plot of repeat element expression of elements with double stranded force greater than
0.5 in H3B-8800 versus DMSO treated SF3B1-K700 mutant K562 cell lines.



Extended Data Figure 4 | Distributions of xCpG in several organism genomes (sliding window with transcript of length of
3000). For human and mouse, we also show, in orange, the profile of xCpG the histogram of after excluding reads annotated
as CpG islands or enhancers.



Extended Data Figure 5 | Distributions of xds in several organism genomes (sliding window with transcript of length of
3000).



Extended Data Figure 6 | A, Standard deviation versus mean of xCpG computed for each 3000-base windows for each
organism analyzed. Orange denotes points computed from primate genomes. B, Skewness versus mean of xds computed
for each 3000-base windows for each organism analyzed. Orange denotes points computed from primate genomes.



Methods

Quantification of forces on sequence features

We define a Maximum Entropy (MaxEnt) framework [1] to determine the least constrained prob
ability distribution over the set of sequences s = {s1, s2 . . . sL} of length L compatible with the
observed occurrences (measurement) of a set of M features N = {N1, N2 . . . Nm}. The distribu
tion is written as

P (s|x) = 1

Z(x)
exp

(
M∑

m=1

xmNm(s)

)
. (1)

Here Z(x) is a normalization factor:

Z(x) =
∑

s′

exp

(
M∑

m=1

xmNm(s′)

)
, (2)

where the sum runs over all possible sequences s′ having length L. The set of parameters x =
{x1, x2, ..., xM}, hereafter called selective forces, is chosen so that the average value of each
feature over the distribution P matches the observed number of this feature Nobs in one or more
reference sequences:

Nobs
m =

∑

s

P (s|x)Nm(s) =
∂ logZ(x)

∂xm
. (3)

The above equalities define a set of M coupled, nonlinear equations, with a unique solution
due to the convexity of logZ(x). The forces are analogous to chemical potentials in statistical
physics.

We use our formalism to calculate selective forces on sequences due constraints imposed by: (1)
the force due to potentially immunogenic CpG motifs (the CpG force, xCpG), (2) the forces on all
nucleic acid motifs with length up to three nucleotides, and (3) the force on long complementary
sequence stretches (the doublestranded force, xds). For the later case we use an equivalent
direct approach to simplify the calculation.
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Forces on CpG and other individual dinucleotides

To estimate the force on CpG motifs, xCpG, arising from constraints on the usage of CpG din
ucleotides we derive the MaxEnt distribution P of sequences with five forces chosen to repro
duce the frequencies f(σ) of the four nucleotides, σ = A,C,G,U, and the frequency of CpG din
ucleotides only. Other dinucleotide forces are calculated in the same manner. We find that the
singlenucleotide forces are, to a good accuracy, given by xσ = log f(σ) (more specifically, the
forces computed in this way are in a linear relationship with those computed with a full maximum
entropy model, see Methods Fig. 1A), which allows us to approximate the normalization factor in
Eq. (2) with

Z
(
xCpG

)
=

∑

{s′i=A,T,C,G}

(
L∏

i=1

f
(
s′i
)
)

exp
(
xCpGNCpG(s

′)
)
. (4)

A Newton’s method based algorithm to efficiently (time ∼ O(L2)) calculate xCpG, such that Eq. (3)
(with m = CpG) is satisfied, was derived in [2]. A positive value of xCpG for the observed feature
count NCpG in a given sequence indicates CpG motifs are enriched compared to what would be
expected from a random sequence conditioned on single nucleotide usage only. A negative value
corresponds to a depletion with respect to the null model.
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Inference of general model based on mono, di and trinucleotide motif usage

To infer the full set of forces on each motif of length up to 3 nucleotides we extend the formalism
used for individual dinucleotide forces alone. We model each viral or repeat family as a probability
distribution over the sequences characterized by the frequency of each nucleotide, dinucleotide
and trinucleotide motif, as described above. In the general case, this corresponds to an overall
set of M = 4 + 42 + 43 = 84 forces to infer, such as xTCA, xGGC, xGA, and xT, respectively, on
the motifs TCA, GGC, GA, and T. Note that, due to symmetries of the problems, only a subset
of 39 parameters can vary freely, so we are left with their inference. For instance, the sum of NA,
NC, NG, and NT is fixed (independent on the forces) and equal to L. However, many of these
properties (such as the fact that NC = NAC+NCC+NGC+NTC) strictly hold only for infinitely long
sequences, but are very well approximated in longer sequences, such as those of length equal to
3000 nucleotides frequently studied here. Because of this and similar properties, we are free to fix
a certain number of forces to an arbitrary value. For instance, we can set the force of each motif
containing a T to zero, without losing generality.

To infer the remaining 39 forces we used amethod analogous to the one developed for CpG forces,
which allows for an efficient evaluation of the maximum entropy parameters through Eqs. (2) and
(3).

To train themodels on viral families, we used datasets for every RNA viral family and for HIV viruses
collected from the Virus pathogen Database and Analysis Resource (https://www.bvbrc.org/) [3],
after removing sequences with nonstandard nucleotides (different from A, C, G, T) and duplicate
sequences. Influenza A viral sequences were through the Influenza Research database (now
housed at [3]) and filtered with the same criteria. The model for Influenza A viruses has been
trained on the sequence obtained by joining the viral segments.

The models on repeat families have been trained in the same way, using consensus repeats from
[4] and grouping them in family as annotated in [5]. Each model has been trained by computing
the average frequencies of each motif for the viral or repeat family, then obtaining the number of
motifs for the inference procedure through multiplication by the same length for each model (5000
nucleotides).

Once the force parameters of Eq. (3) have been fitted to match the motifs statistic of a set of
viral genomes or repeats in the reference list, we quantify the similarity between viral and repeat
families using the symmetrized KullbackLeibler divergence between the corresponding probability
distributions pv and pr given by 1

2

(
DKL(pv, pr) +DKL(pr, pv)

)
, where DKL is the KullbackLeibler

(KL) divergence defined as

DKL(pv, pr) =
∑

s

pv(s) log
(
pv(s)

pr(s)

)
. (5)

DKL is not an intensive quantity, as the probability distributions pv and pr depend on the length of
the sequences modeled. In this work we fixed a reference length of 1000 nucleotides for all DKL

computations.

Computation of the KullbackLeibler divergence

The model we define in Eq. (1) can be rewritten as

p(s) =
1

Z
e−E(s), (6)
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where E(s) is an energy associated to each sequence, in the usual statistical physics sense. The
KL divergence can be written as

DKL(p1, p2) =
∑

s

p1(s) log
(
p1(s)

p2(s)

)
= logZ2 − logZ1 +

∑

s

p1(s)
(
E2(s)− E1(s)

)
. (7)

As discussed in Methods, logZ1 and logZ2 can be computed exactly with the transfer matrix
method. To compute the last term on th r.h.s. of Eq. (7) we define

Z12(λ) =
∑

s

e−E1(s)+λ
(
E2(s)−E1(s)

)
, (8)

and we have ∑

s

p1(s)
(
E2(s)− E1(s)

)
=

∂

∂λ
logZ12(λ)

∣∣∣∣
λ=0

. (9)
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Forces on doublestranded RNA formation

We develop a framework to quantify the length of duplex strands. Given a reference sequence σ
of length L we compute the frequencies f(σ) of the single nucleotide σ = A,C,G, U. The feature
Nds(s) is now the length of the longest subsequence of s whose complementary subsequence
is also present in s, and which can therefore form a duplex of the same length. We present an
intuitive derivation for the forces on doublestranded RNA, xds. That version is used preferentially
in the text due to its interpretability. We also present the full MaxEnt approach, derived in an ex
actly parallel manner to that for forces on motifs. Due to the difficulty of computing exactly the
corresponding Z(xds), which further justifies the intuitive approach, we utilize an approximate cal
culation. We show that both approaches give directly analogous results, and can therefore be used
interchangeably. Both approaches are described below, along with their formal relationship.

Direct approach

Consider two subsequences s = (s1, ..., sK) and s′ = (s′1, ..., s
′
K) of length K, with nucleotides

drawn independently at random with the frequencies f . The probability that the two sequences
are complementary is equal to pcompl(K) = αK , with

α =
∑

σ=A,C,G,U

f (σ) f
(
σcompl

)
. (10)

where σcompl denotes the complementary nucleotide to σ. In the presence of a biasing force xds
acting on the length of the stretch the probability that the two sequences are complementary is
modified into

pcompl(K,xds
)
=
(
exp

(
xds
)
α
)K

= α̃K , (11)

where α̃ = exp
(
xds
)
α. Positive and negative forces xds favor, respectively, longer and shorter

complementary stretches than expected from the random nucleotide null model.

Consider now a sequence of length L, which we partition intoN = L/K subsequences of lengthK
each. Under the simplifying assumption (that we check a posteriori in the following) that each pair
of these subsequences is independent, the probability that none of them is fully complementary
is

p0(N) = (1− α̃N )M (12)

where M = N(N − 1)/2 is the number of pairs of segments. Equivalently, p0(N) can be inter
preted as the probability that the longest fully complementary segment has length < N . As a
consequence the probability that the longest fully complementary segment is of length equal to
Nds reads

p(Nds) = (1− α̃Nds+1)M − (1− α̃Nds−1)M # e−M α̃Nds
(
e−M α̃Nds (α̃−1) − 1

)

∝ exp
(
Nds log(α̃) + log(M)− eNds log(α̃)+log(M)

)
= e−z−e−z

,
(13)

where z = −Nds log(α̃)− log(M) = Nds−µ
β with β = 1

log(1/α̃) and µ = log(M)
log(1/α̃) . The approximations

used are α̃Nds % 1 andM α̃Nds % 1, which are expected to hold in our case. Eq. (13) hence shows
that the distribution of the longest fully complementary strand follows a Gumbel law, with mean
µ+ βγ (here γ is the EulerMascheroni constant) and variance β2π2/6.
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As in Eq. (3), we can fix the force parameter xds by requiring that the average maximum length of
fully complementary segment computed through the model, µ+βγ, is equal to the value observed
in a given sequence, Nobs

ds , and we obtain the equation

Nobs
ds
(
L, xds

)
≈ logL

log 1√
exp
(
xds
)
α

+ c , (14)

for large values of L. With c being a correction term inserted to account for the set of simplifications
done, and we estimate it directly from synthetic data as follows. As a check of the validity of the
expression in Eq. (14), and to estimate the value of c, we fit the parameters xds and c from the
set of maximum length of complementary segments in randomly generated RNA sequences of
lengths ranging up to L = 3000 bases (Extended Data Fig. 2A). In this work, we consider both
canonical WatsonCrick pairs and Wobble pairs as complementary basepairs. We obtain c = −2.2
and xds = 0.06, a value compatible with the zero force expected for this null model.

Eq. (14) with c = −2.2 can now be used to estimate xds for a reference sequence of length L
(with nucleotidic frequencies f ) and with longest complementary stretch of length Nobs

ds . We thus
obtain a single metric to compare distribution of doublestranded segments across various RNA
sequence ensembles and families diverse sequence statistics and lengths.

Maximum Entropy approach

We start from the probability that the longest fully complementary segment is of length equal toNds,
p(Nds). According to the maximum entropy principle, the probability distribution on sequences of
length Lwhich maximizes entropy while fixing the length of the maximum complementary segment
is

p(s) =
1

Z(x̂ds)
exp (x̂dsNds(s)) (15)

with the normalization

Z(x̂ds) =
∑

s

exp (x̂dsNds(s)) = S
∑

Nds

p(Nds) exp (x̂dsNds) , (16)

where x̂ds is the doublestranded force acting on the length of the longest complementary stretch
using the MaxEnt approach, and S is the total number of sequences of length L. Under this
model, the probability of observing a sequence with maximum complementary segment of length
Nds is

p(Nds) ∝ exp
(
−z − e−z + x̂dsNds

)
, (17)

where z = −Nds log(α)− log(L(L− 1)/2). For large L we can compute the average value of Nds
by integrating the continuous version of the probability distribution, and we obtain

〈Nds〉 = µ− ψ(η)

log(1/α)
, (18)

where µ = log(M)
log(1/α) , ψ is the digamma function and η = 1− βx̂ds.

We can now substitute 〈Nds〉 with the observed value of Nds in the sequence under analysis, and
add a constant c′ to take care of the approximations done, and we obtain the equation

Nobs
ds = µ− ψ(η)

log(1/α)
+ c′ (19)
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This equation can be used to estimate the MaxEnt doublestrand force x̂ds. We estimated c′ from
randomly generated RNA sequences of lengths ranging up to L = 3000 bases and obtained the
value of −1.79.

Comparison of Direct and MaxEnt approaches

The direct approach to calculating xds is used in the manuscript. While the direct approach and
the MaxEnt force are in general different, for a fixed value of α there is a monotonic relationship
between these two quantities:

x̂ds = γ

(
1− ψ−1

(
−2 log(L)

γ

γ xds
γ − xds

+ γ (c′ − c)

))
, (20)

where γ = log(1/α), c′ and c are the constants inferred for the two approaches from synthetic data,
x̂ds is the MaxEnt doublestranded force, xds is the doublestranded force computed via the direct
approach, and ψ−1 is the inverse of the digamma function in the interval (0,+∞). In particular, we
checked that even when α is computed for each 3000 nucleotide window, the relationship gives
an extremely good approximation, thus any subsequence with doublestranded force larger than
a given threshold would be equivalently characterized by high MaxEnt doublestranded force, as
shown in Methods Fig. 1B.

A B

Methods Figure 1 | A, Comparison of xCpG computed with a fullmaximumentropy model (x axis)
and with the method used in this work, Eq. (4). B, xds computed with the Direct approach (hor
izontal axis) versus the MaxEnt approach (vertical axis), for the sliding windows within the first
200k bases of the first chromosome of the human genome. The red line correspond to the ana
lytical relationship between the two forces computed for α = 0.38, which is the value obtained by
considering the full human genome.

Compressing the xds table

We initially computed xds for each sliding window of 3kb in the human genome (hg38 assembly).
The resulting table of windows and associated xds values, however, are not appropriate for some
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of the successive analyses, mostly because the same pair of complementary sequences appears
in many closeby windows. To deal with this issue we produced a new, compressed xds table with
the following rules: (i) we discarded windows having the two complementary sequences less than
10 nucleotides away from the window ends; (ii) whenever more than one window have exactly the
same pair of complementary sequences, we took the most upstreamwindow and we discarded the
others. Rule (i) prevents the edges of the windows from “cutting” one of the two complementary
sequences, generating cluster of very similar pairs of complementary sequences in consecutive
windows, while rule (ii) prevents the presence of multiple windows associated to the same pair of
complementary sequences.
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Evolutionary dynamics of a sequence motif with force relaxation formalism

One can harness the formalism developed in Eqs. (1)  (3) to study an evolutionary dynamics
of number of motifs Nm, as it approaches the steady state (equilibrium) value Navg

m [2]. As a
sequence evolves it undergoes mutations, which cause changes in the number of motifs (and
hence associated value of xs). To model the evolutionary dynamics of sequences, we assume the
number of motifs (Nm) evolves according to the relaxation dynamics given by

τ
dNm(t)

dt
= −xs (Nm(t)) + xeqm , (21)

where τ sets the timescale. The number of motifs reaches its stationary (equilibrium) value when
xs = xeqm , at which point the selective force is balanced by the entropic forces which randomize
sequences. It is convenient to express (21) as

τ
dxs
dt

= − (−xs(t) + xeqm ) var (xs|Nm) , (22)

where var (xs|Nm) is the variance of xs for a given Nm.

If we can express var (xs|Nm) as a function of xs, it is possible to obtain a solution of (22) that
can then be fitted to the dataset with timescale τ , thus providing the approximation of relaxation
dynamics, along with the estimate of the time it will take to xs(t) (and hence the number of the
corresponding sequence motifs m) to reach its equilibrium value. For the case of HSATII and
LINE1 we fit var (xs|Nm) as a quadratic function of xs.

Kimurabased model of population genetics for the evolution of sequence motifs

In addition to the force relaxation model introduced above, we present here a different approach
to study the evolution of nucleotide sequence motifs based on the Kimura model of sequence
evolution. We implement the model numerically, and evolve a set of sequences to provide a null
model of neutral sequence evolution. For each simulation step, we pick a random base andmutate
it to a randomly chosen different base with a given probability. We consider different possible
mutation probabilities depending on the type of base it is mutating into, as well as on the context
(identity of the bases in the neighborhood), as transversion (purine mutating to pyrimidine or vice
versa) and transition (purine mutating to purine or pyrimidine mutating to pyrimidine) substitutions
in sequences can have different likelihood [6].

Additionally, in vertebrates and plants, mutations in CpG context are known to be more common
due to CpG hypermutability [7]. Hence, for the mutation rates in the model implementation, we use
different ratios of mutation rates µTiCpG:µTvCpG:µTi:µTv (corresponding to nucleotide transitions and
transversions in CpG context and to transitions and transversion in nonCpG context). In particular,
we consider the ratios introduced in Ref. [6] and which are listed in Table 1. The increasedmutation
rate on CpG dinucleotides has the effect of reducing the expected CpG number after relaxation
of a sequence, and it can thus be related to an equilibrium CpG force. To compute this force we
considered the model without the transitiontransversion bias (that cannot affect the number of
CpGs at equilibrium) and we can write for the number of CpG in a sequence

N t
CG = N t−1

CG − 2µN t−1
CG +

1

3
γ(N t−1

C −N t−1
CG ) +

1

3
γ(N t−1

G −N t−1
CG ) (23)

while the number of C nucleotides NC evolves as

N t
C = N t−1

C − µN t−1
CG − γ(N t−1

C −N t−1
CG ) +

1

3
γ(L−N t−1

C −N t−1
CG ) +

1

3
µN t−1

CG (24)
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µTiCpG:µTvCpG:µTi:µTv xeqCpG
40:10:4:1 −1.9
40:4:4:1 −1.8
40:1:4:1 −1.7
4:4:4:1 −0.3
20:4:4:1 −1.2
27:2:4:1 −1.4

Table 1| Ratios of dinucleotide mutation rates (transition and transversion with and outside of CpG
context) and a corresponding value of the equilibrium force on the CpG dinucleotide

and similarly for the number NG of G nucleotides. In these equations, µ is the probability of a
substitution happening in a CpG context, and γ is the probability of the mutation happening outside
a CpG context, and L is the length of the sequence. At equilibrium, we find

NCG
L

=
1

14r + 2
NC
L

=
NG
L

=
3r + 1

14r + 2
,

(25)

where r = µ/γ. We can now compute the corresponding CpG force xeqCpG using the fact that
the force is approximately equal to the logarithm of the relative frequency of the dinucleotide motif
xCpG ≈ log(f(CpG)/f(C)f(G)) [8]. The ratios 40:10:4:1, 40:4:4:1 and 40:1:4:1 provide the closest
approximation to relaxation to the force observed in the genome. For the neutral model, we used
the 40:10:4:1 ratio as it was closer to the saturated value of xCpG of the LINE1 elements.
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Analysis of forces across species

Values of xCpG or xds were computed for each 3000 kb sliding window. Nonnumeric values were
excluded. Windows with one or more ambiguous characters were excluded. To compute the
distribution of a force across all windows, the values of that force were sorted numerically and
every 100th entry was retained (entry number 50, 150, 250, ..., etc.). The distribution density was
computed using a Gaussian kernel with bandwidth 0.05 as implemented in scikitlearn package [9].
The density was computed for all points within the target interval ([5:2] for xCpG, and [2:3] for
xCpG) with a step of 0.005. We compute the FDR as the ratio of the cumulative area of the null
model distribution to the right of the cutoff to the cumulative area of the distribution to the right
of the cutoff. The null model distribution is fitted as a Gaussian distribution with the peak at the
point with the maximal density, standard deviation was computed using the 20 points to the right
of the peak. We computed these values across the species: Pan troglodytes troglodytes, Pan
paniscus, Gorilla gorilla gorilla, Pongo abelii, Nomascus leucogenys, Canis lupus, Danio rerio, Mus
musculus, Rattus norvegicus, Equus caballus, Bos taurus, Gallus gallus, Felis catus, Pteropus
vampyrus, Caenorhabditis elegans, Saccharomyces cerevisiae, Meleagris gallopavo, Erinaceus
europaeus, and Ornithorhynchus anatinus, in addition to humans.

For humans and mice we also performed an additional analysis which excluded both enhancers
and CpG islands. Coordinates of enhancers from the FANTOM database were lifted from hg19
to hg38, and mm9 to mm38 using LiftOver tool from UCSC ( [10, 11], [12]). Coordinates of CpG
islands for hg38 and mm38 were downloaded from UCSC. ”Filtered” data for hg38 and mm38
in the CpG plot consist only of the windows which have zero overlap with CpG islands and en
hancers.

Analysis of evolutionary conserved sequences with high xCpG or xds

We considered the genomes of 5 species (Pan troglodytes troglodytes, Pan paniscus, Gorilla
gorilla gorilla, Pongo abelii, Nomascus leucogenys) in addition to the human genome to look for
conserved regions with high xCpG or high xds. After computing both forces for each species exactly
as we did for the human genome, we considered the set of xCpG >0 and xds >0.5. We reduced the
number of the CpG windows by clustering together all those which overlapped more than 1000
bases, and from each cluster we only considered the window with the highest value of xCpG. For
the xds windows, we first compressed them by excluding windows with cutoff complementary se
quences or with identical complementary sequences (as discussed above), then for each window
we extracted the subsequence spanning the pair of complementary sequences. Finally we clus
tered together all overlapping sequences and from each cluster we only considered the window
with the highest value of xds.

We then ran BLAST to compare each of these sequences with high xCpG or high xds extracted
from the human genome and we retained any significant match (whenever one sequence of a
given organism matched with more than one human sequences we only kept the match with the
highest BLAST score) [13]. The result of this procedure consists in two sets of sequences for each
organism that are alignable to human sequences, one for the high xCpG and one for the high xds.
We then computed the overlaps between the set A of high xCpG (or high xds) organism sequences
and that of the human, B, defined as

O(A,B) =
|A ∩B|

min(|A|, |B|) , (26)
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where a sequence of A belongs to the intersection A∩B if and only if it is alignable with significant
score by BLAST to a sequence of B. |A| is the size of the set A.

We next compared the overlaps we obtained with the time since the most recent common an
cestor, taken from [14]: 6.6 million of years ago for Homo Sapiens, Pan troglodytes troglodytes
and Pan paniscus; 8.9 for Homo Sapiens, Pan troglodytes troglodytes, Pan paniscus and Gorilla
gorilla gorilla; 13.8 for Homo Sapiens, Pan troglodytes troglodytes, Pan paniscus, Gorilla gorilla
gorilla and Pongo abelii; 16.3 for all the species considered here. Afterwards we focused on the
annotations in RepeatMasker [5] and DFAM [4] databases to check for potential overlaps of the
conserved sequences with annotated repeats in the human genome. For the set of highCpG
sequences we used the DFAM dataset as we found a better annotation for HSATII with respect
to the one in RepeatMasker. We associated each conserved highCpG sequence with a repeat
if the corresponding window overlapped with its position as annotated in the database (for the
windows overlapping with more than one annotated repeats, the one with the largest overlap was
considered).

For the set of xds sequences we used the RepeatMasker dataset [5]. In this case, each xds window
is characterized by two fully complementary sequences, and we searched for repeats overlapping
with each of them (when overlaps with multiple repeats were found, the one with the largest overlap
was considered). We observed 3 different cases: one or two of the two sequences do not overlap
with any repeat annotated in RepeatMasker; each sequence overlapped with a repeat, both repeat
being of the same family and annotated in the two strands of the genome, e.g. one sequence
overlapping with AluS+ and one with AluS (IR repeats); each sequence overlapped with a repeat,
but of different families or of the same family but on the same strand of the genome (non IR
repeats).
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Sequence ensembles

The LINE1 sequences were obtained from L1Base2 database [15]. We separately downloaded
all the sequences annotated as fulllength intact and hence are more likely to still be active (146
for human genome and 2811 for mouse genome), and sequences annotated as fulllength non
intact (13148 for human genome and 14076 in mouse genome). We separately aligned each of the
nonintact sequences with each of the respective intact sequences using pairwise alignment and
calculated the Kimura distance between the sequences [16]. We then calculated the average dis
tance for each of the nonintact sequences from the intactsequences, and furthermore calculated
the number of CpG motifs in each sequence.

Sequences of all inserts of HSATII and all other Human Genome repetitive elements considered
in this work have been obtained from the DFAM database [17] (version introduced in 2016). Each
family of sequences in the DFAM database contains sequences of all its inserts in the human
genome and their consensus sequence, as well as with the hidden Markov Chain Model (HMM)
that we use to align inserts with respect to the consensus sequence. For comparison of sequences
of inserts with respect to their consensus sequence, we only consider inserts of length longer than
150 bases. To quantify the difference between the insert sequence and the consensus sequence,
we use the Kimura distance [16] between the consensus and its inserts.

We note that we use the Kimura distance [18] from the consensus sequence (for inserts from
DFAM) or from average of all fulllength nonintact sequences (for LINE1s from L1Base2) as
a measure of time, assuming that it is proportional to the time since insertion of the particular
transposable element into the species genome. All the sequences studied in this work have been
obtained from hg38 genome assembly.

Search of long transcripts with complementary regions

We scanned the hg38 genome assembly for transcripts that can be possible source of long duplex
formation. To this aim, for each window of length 3000 bases (taken in the positive sense of
the read), we calculate the doublestranded force xds from Eq. (14), using the windowspecific
nucleotide frequencies to obtain α from Eq. (10). We considered windows resulting in xds > 0.5
ashaving a high doublestranded force when compared to the rest of the genome.

Sequence complexity quantification

We use an approximation of Kolmogorov complexity [19] to quantify how “nontrivial” comple
mentary segments are. Adopting the approach from Ref. [20], we use the size (in bytes) of the
sequence compressed with gzip software as a proxy of the Kolmogorov complexity. Simple se
quences, e.g. poly(AT) or poly(C) and poly(G), will have low complexity, as they can be com
pressed to a smaller size than a completely random sequence of the same length (which would
have maximum complexity).

Estimate of genome regions with high double stranded force

To estimate xds for a given repeat loci, we intersect each repeat loci with the calculated 3kb ge
nomic windows that have high dsRNA forces (xds > 0.5). The Start and End coordinates of the
corresponding dsRNA sequence pairs, which overlap with the repeat loci that match the criteria:
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|log2FC(treated/untreated)| > 0.5 and FDR < 0.05, were used to annotate different genomic fea
tures. We counted the genomic features of the predicted doublestranded RNA sequences that
overlap with the upregulated repeats (log2FC > 0.5 and FDR < 0.05), and of those that overlap with
the downregulated repeats (log2FC < 0.5 and FDR < 0.05). These counts have been compared
with the genomic feature counts of all dsRNA sequences that overlap with the transcribed repeats
to calculate the odds ratio and pvalue using the Fisher Exact test.
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Transcriptome analysis

Analysis of repeats from splice inhibitors

RawRNAseq data (GSE95011) associated with the Seiler, et al., 2018 study [21] were downloaded
from NCBI. Briefly, reads were trimmed and quality checked using skewer first and then mapped
to the human genome (hg38) and repetitive elements from RepBase [22,23]. In quality check, Illu
mina reads were trimmed to remove N’s and bases with quality less than 20. After that, the quality
scores of the remaining bases were sorted, and the quality at the 20th percentile was computed.
Reads quality less than 15 at the 20th percentile or shorter than 40 bases were discarded. Only
paired reads that passed the filtering step were retained. Only paired reads which both pass the
quality check were mapped to the reference genome (hg38) using STAR (v2.7) with default param
eters. Gene counts were assigned based on Gencode annotation using featureCounts (Subread
package) with the external Ensembl annotation. Repeats counts per element subfamily were pri
marily quantified against RepeatMasker using featureCounts and then adding the counts of the
unassigned reads that mapped to Repbase consensus sequence. Repeat counts of a given family
is the sum of mapped reads to RepeatMasker and unmapped reads against Repbase.

Counts filtering, normalization and statistical analysis

Gene expression in terms of log2CPM (counts per million reads) was computed and normalized
across samples using the TMM (trimmedmean of Mvalues) method using the calcNormFactors()
and cpm() functions from edgeR package [24]. These lowcount values (CPM < 2) were removed
before calculating the size factor for each sample. Then, filtered CPM was log2 transformed and
used in heatmap visualization and downstream statistical analysis. On the heatmap, genes (rows)
were scaled by zscore scaling. Heat maps were generated by the R statistical programming pack
age. Differential expression analysis was performed using limma package [25] between splicing
modulator H3B8800 treated versus DMSO treated SF3B1K700 mutated cell line k562 for a given
locus. The adjusted pvalues were calculated using the BenjaminiHochberg correction [26].

Analysis of MDA5 binding transcripts

We have used the doublestranded force calculation to score RNASeq transcripts identified in
Ref. [27] to bind to MDA5 receptors. We have further looked if any of the identified transcripts that
bind MDA5 from Ref. [27] are also overlapping with transcripts that have been identified as MDA5
ligands in Ref. [28].
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RNA extractions and coimmunoprecipitations (RIP) from EC cells

Embryonal carcinoma cells were cultured at 37° C in humidified incubators maintained with 7%
CO2 atmosphere. N2102Ep Clone 2/A6 cells (Merk, #06011803) were cultured in DMEM (high
glucose, no sodium pyruvate; Thermo Fisher, #11965092), supplemented with 10% (v/v) fetal
bovine serum, 1x penicillin/streptavidin and 2 mM Glutamine (Thermo Fisher, #25030024). Large
scale growth, harvesting, cryomilling, and coIP was achieved as previously described [29–31],
summarized as follows. αORF1p, αORF2p, and αZCCHC3targeted coIPs used inhouse
made [32] magnetic affinity media: for αORF1p [15 µg antibody / mg magnetic beads], we used
the 4H1 monoclonal antibody (Millipore Sigma, #MABC1152); for αORF2p [10 µg / mg magnetic
beads] we used the clone 9 monoclonal antibody [33]; for αZCCHC3 [10 µg / mg magnetic beads]
we used the rabbit polyclonal antibody (Proteintech, #293991AP). CoIPs were conducted using
100mg cell powder, extracted at 25% (w/v) in 20 mMHEPES pH 7.4, 500 mM or 300mMNaCl, 1%
(v/v) Triton X100, 1x protease inhibitors (Roche, #1187358001), and 0.4% (v/v) RNasin (Promega,
#2515). Centrifugally clarified cell extracts were incubated with affinity medium (20 µl of slurry for α
ORF1p and αORF2p, and 15 µl of slurry for αZCCHC3) for 30 minutes at 4° C. The solutions were
made with nucleasefree H2O and experiments were conducted using nucleasefree tubes and
pipette tips. Macromolecule extractions performed on this cell line as described typically yielded
between 450  500 µl of soluble extract at 6  8 mg/ml of protein as assessed by Bradford assay
(Thermo Fisher, #23200). After target capture, washing the media was performed with the same
solution without protease inhibitors and with RNasin at 0.1% (v/v). RNAs were eluted from the
affinity media after RIP with 250 µl of TRIzol Reagent (Thermo Fisher, #15596026). After adding
chloroform to the TRIzol eluate, the separated aqueous phase (containing RNAs) was obtained
using Phasemaker tubes (per manufacturer’s instructions; Thermo Fisher, #A33248), and was
then combined with an equal volume of ethanol and further purified using a spincolumn according
to the manufacturer’s instructions (Zymo Research, #R2060). For αZCCHC3 coIP, two 100 mg
scale preparations were pooled prior to spin column purification. Eluates from αORF1p and α
ORF2p coIPs were not treated with DNase I oncolumn, this was done during the sequencing
library preparation (described, below); eluates from αZCCHC3 were DNase I treated oncolumn.
Purified nucleic acids from αORF1p and αORF2p coIPs were eluted in 6ul of nucleasefree
water; purified nucleic acids from αZCCHC3 IPs were eluted in 10ul of RNaseFree water; in
all cases 1 µl was used for quality analysis and the remainder conserved for RNAseq. Mock
RNA coIP controls were prepared in an identical manner using either naïve polyclonal mouse IgG
(control for αORF1p; Millipore Sigma, #I5381) or naïve polyclonal rabbit IgG (control for αORF2p:
Innovative Research, #IRBIGGAP10MG; control for αZCCHC3: Millipore Sigma, #I5006). Total
RNA controls were prepared by combining up to 35 µl of the clarified cell extracts with up to 500
µl of Trizol, vortex mixing for 1 min, then snap freezing in liquid N2  and then later proceeding as
above.

cDNA library preparation and RNAseq

All the sequenced samples/replicates that are reported in this study are listed in Supplementary
Table 6.

αORF1p and αORF2p RIPseq

RNA extractions were quantified and quality controlled using RNA Pico Chips (Cat. #50671513)
on an Agilent 2100 BioAnalyzer. RNASeq cDNA libraries were prepared using the Trio RNASeq
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Library Prep kit (Tecan, #0357A01) with AnyDeplete Probe MixHuman rRNA (Tecan, #S02305).
DNase treatment preceded cDNA synthesis. cDNA synthesis: 3  5ng of input RNA from αORF1p
RIPs and mock IPs, 1 ng from αORF2p RIPs and mock IPs, and 50 ng of total RNA were used
with 8 (2+6) cycles of predepletion PCR library amplification and 8 (2+6) cycles of postdepletion
amplification; the libraries were purified using Agencourt AMPure XP beads (Beckmann Coulter),
quantified by qPCR, and the size distribution was checked using the Agilent TapeStation 2200
system. Final libraries were sequenced, pairedend, at 50 bp readlength on an Illumina NovaSeq
6000 v1.5 with 2% PhiX spikein.

αZCCHC3 RIPseq

RNA extractions were quantified and quality controlled using an Agilent TapeStation 4200 and High
Sensitivity RNA ScreenTape (Agilent, #50675579). RNAseq cDNA libraries were prepared using
the SMARTer Stranded Total RNASeq Kit v3  Pico Input Mammalian (Takara, #634485), including
rRNA depletion during library construction. cDNA synthesis: 5 ng of input RNA from αZCCHC3
RIPs and total RNA, and 1 ng of input RNA frommock IPs were used with 5 cycles of predepletion
PCR amplification and 12 cycles (αZCCHC3 RIPs and total RNA) or 14 cycles (mock IPs) of post
depletion amplification. Libraries were purified using NucleoMag beads supplied in the library
preparation kit and subsequently quantified using the Qubit 4 Fluorometer and the Qubit dsDNA
HS assay kit (Invitrogen, #Q32854). The size distribution was checked using the TapeStation
4200; noting that primer dimers (∼150bp) were persisted in the mock IP libraries (motivating an
additional round of cleaning). To treat all libraries equally, they were pooled in a 4:4:1 ratio (α
ZCCHC3 RIPs:total RNA:mock IP) based on molarity of fragments of interest (range ∼2001000
bp). An additional round of cleanup with NucleoMag beads was done to remove the primer dimers.
A size selection of the final library pool was performed on a 2% Egel EX (Invitrogen, #G401002)
to exclude small fragments (less than about 200bp) and the DNA was eluted from the gel slices
using the Zymoclean Gel DNA Recovery Kit (Zymo, #D4001), followed by quantification (Qubit)
and quality control (TapeStation). Final libraries were sequenced, pairedend, at 250bp read
length on an Illumina NovaSeq 6000 platform.

RIPseq read mapping and quantification

Reads were trimmed and quality checked using skewer [34]. Briefly, ends of the reads were
trimmed to remove Ns and bases with quality less than 20. After that, the quality scores of the
remaining bases were sorted, and the quality at the 20th percentile was computed. Reads were
discarded if their quality at the 20th percentile was less than 15. In addition, reads shorter than 40
bases after trimming were discarded. If at least 1 of the reads in the pair failed the quality check
and had to be discarded, we discarded the mate as well. Quality filtered reads were mapped to an
notated repeat loci in RepeatMasker using software: Quantifying Interspersed Repeat Expression
(SQuIRE) (https://github.com/wyang17/SQuIRE) [35]. Briefly, the SQuIRE pipeline first obtains
reference annotation files from RepeatMasker, then aligns reads using STAT and, lastly, quan
tify locusspecific repeat expression by redistributing multimapping read fractions in proportion to
estimated TE expression with an expectationmaximization algorithm.

CpG quantification for repeats in hg38

Sequences of repeats were extracted from hg38 based on the coordinate annotation in Repeat
Masker. xCpG was then calculated for those hg38 derived repeat sequences. L1 inserts reported
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in RepeatMasker are considered intact whenever they have minimum 80% overlap with inserts
annotated as fulllengt intact in the L1Base database.

Selection of RIPSeq enriched repeats/transcripts

Samples extracted at 300mM and 500mM NaCl were used as replicates to increase statistical
power after checking for transcript composition similarity (via hierarchical clustering). Targeted
protein enriched transcripts were selected by Log2(CoIP/mock) > 3, Log2(CoIP/total RNA) >
3, and BenjaminiHochberg adjusted pvalue < 0.05. Similarly, target protein depleted transcripts
were selected by Log2(CoIP/mock) < 3, Log2FC(CoIP/total RNA) < 3, and BenjaminiHochberg
adjusted pvalue < 0.05.
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Immunoprecipitation of doublestranded RNA by J2 antibody

Experimental protocol

Protein G Dynabeads were washed twice and resuspended in antibody conjugation buffer (1x
PBS, 2mM EDTA, 0.1% BSA (w/v). 5 µg of antidsRNA mAb (J2) (SCICONS, cat# 10010500)
were bound to 30 µl of washed beads overnight at 4° C on a rotating wheel. 107 Patientderived
POP92 cells per IP were fixed with 0.1% paraformaldehyde at room temperature (RT) for 10 min.
Immediately, cells were quenched by adding glycine and washed twice with cold PBS. Crosslinked
cells were lysed in lysis buffer (20mM Tris [pH 7.5], 150mM NaCl, 10mM EDTA, 10% Glycerol,
0.1% NP40, 0.5% Triton X100, supplemented with protease inhibitor tablet) for 15 minutes on
ice. Following a spin at 12,000g at 4° C for 15 minutes, supernatant was transferred to a new
eppendorf. The lysate was then immunoprecipitated using 30 µL antibodyconjugated Dynabeads
per IP reaction overnight at 4° C in a rotator. Following magnetic separation, beads were washed
three times with high salt wash buffer (20 mM Tris pH 7.5, 500 mM NaCl, 10 mM EDTA, 10%
glycerol) and resuspended in 1X TBS. Per IP, 2 µL of Promega RNasinPlus RNase inhibitor (Fisher
Scientific, PRN2611) and 0.5 µL of proteinase K (NEB, P8107S) was added. Decrosslinking was
performed for all the IP samples at 65° C for 15 minutes. The Directzol RNA MiniPrep kit (Zymo
Research, R2051) was used to extract RNA from IP supernatant. Samples were treated with Turbo
DNase to remove any DNA contamination in the extracted RNA. Library prep was performed using
Illumina Stranded total RNA ligation with Ribo Zero plus according to the manufacturers protocol.
Samples were sequenced on a NovaSeq 6000 using paired end reads with 100 cycles.

Analysis of J2 immunoprecipitation RNAseq

RNAseq controls not enriched with J2 antibody from untreated POP92 cells were downloaded
from GEO (submission GSE145639, samples: GSM4322694 and GSM4322693) [27]. 25 bp of J2
RNAseq reads were cut off with cutadapt to match the length of RNAseq control reads. All samples
were aligned to the human genome hg38 using STAR with default settings [36]. BAM files were
sorted using samtools. The compressed xds table was used to count fragments in the RNAseq
data, see above for details on how this table was generated. The table describes windows for
the genome as well as a complementary sequence which can form a double stranded sequence.
Every complementary sequence has a seqA and a seqB part which was split into two different
files. featureCounts was used to count the number of fragments aligning to seqA and seqB in
J2 and RNAseq control BAM files including information about strand and reporting multimapping
and mutioverlapping reads as fractional counts [37]. Counts for each seqA and seqB were then
merged for each complementary sequence. For each complementary sequence, log2FC (mean
J2 / mean control) was calculated and plotted against xds using geom_point, geom_density_2d
and geom_smooth from the R package ggplot2 [38].

Analysis of MDA5 protection assays

Raw sequencing data was downloaded from GSE103539 and GSE145639 [28] and aligned to
hg38 using STAR. The following settings were used to increase the mapping due to the repetitive
nature of the data [27]: –outFilterMultimapNmax 1000 –outSAMmultNmax 1 –outFilterMismatchNmax
10 –outMultimapperOrder Random –winAnchorMultimapNmax 1000. After mapping, the data
were processed as described above for J2 immunoprecipitation.
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Supplementary Material

Supplementary Tables

Supplementary Tables are available separately in Comma Separated Value (csv) format. The descrip
tion of the respective tables is provided below:

• Supplementary Table 1 contains the xCpG and xds values calculated for each repeat family anno
tated in the DFAM database. For each family, it includes the forces of the consensus sequence
and the mean calculated for the inserts in the human genome.

• Supplementary Table 2 contains the list of highxCpG (xCpG > 0) windows of 3 kb detected in the
human genome, after filtering so that windows do not overlap more than 1 kb. The table also
includes information about the repeat that maximally overlaps with each window as annotated
in DFAM. Finally we report the mostrecent common ancestor time of the primates for which we
observed highxCpG sequences alignable by BLAST with each highxCpG window in the human
genome.

• Supplementary Table 3 contains the list of the unique doublestranded segments resulting in win
dowswith highxds (xds > 0.5) detected in the human genome. The processing of data is described
in Methods. The table also includes information about the repeats that maximally overlaps with
each of the two doublestrand forming segments as annotated in RepeatMasker. Finally we report
the mostrecent common ancestor time of the primates for which we observed pair of segments
resulting in highxds and alignable by BLAST with each pair of highxds segments in the human
genome.

• Supplementary Table 4 contains the list of the unique doublestranded segments resulting in win
dows with highxds (xds > 0.5) detected in the zebrafish genome (danRer11).

• Supplementary Table 5 contains the results of differential expression analysis on all repetitive
elements between treated versus untreated SF3B1 mutant samples.

• Supplementary Table 6 contains the list of annotated samples subject to L1 ORF1p/ORF2p RIP
seq analysis. Salt concentration, cell type, antibody type, replicate and sequencing details are
listed.
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Supplementary Figures
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Supplementary Figure S1: CpG occurrence probability in a multiple sequence alignment of fulllength
intact LINE1 inserts in the human genome. The orange line denotes the cumulative probability, and the
gray line denotes the conservation (in bits) rescaled between 1 and 0: 1+

∑
σ fi(σ) log2(fi(σ))/ log(5),

where fi(σ) is the fraction of times the nucleotide σ (or a gap) appears in position i.
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Position along HSATII consensus
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Supplementary Figure S2: CpG occurrence (vertical blue lines) in the consensus HSATII sequence
as annotated in DFAM. The orange line denotes the cumulative number of CpGs.
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