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We consider an infinite system of particles on a line performing identical Brownian motions and
interacting through the |x− y|−s Riesz potential, causing the over-damped motion of particles. We
investigate fluctuations of the integrated current and the position of a tagged particle. We show

that for 0 < s < 1, the standard deviations of both quantities grow as t
s

2(1+s) . When s > 1, the

interactions are effectively short-ranged, and the universal sub-diffusive t
1
4 growth emerges with

only amplitude depending on the exponent. We also show that the two-time correlations of the
tagged-particle position have the same form as for fractional Brownian motion.

I. INTRODUCTION

Systems of diffusive particles interacting via short-
ranged interactions have been actively investigated in the
past few decades. Among the most popular research sub-
jects is the emergence of the hydrodynamic behavior and
large deviations in such systems [1–5]. The equilibrium
properties of systems with long-ranged interactions have
also been studied [6–8], and in a few cases, their dynam-
ical properties have been explored [9–12].

In this work, we consider particles on an infinite line
interacting via a long-ranged Riesz potential [13]

Vs(x, y) = g s−1|x− y|−s (1)

The s−1 pre-factor in (1) is convenient to have as the
derivative of the potential that drives the particles. We
assume that both the exponent s and the coupling con-
stant g are positive: s > 0 and g > 0. The potential is
thus repulsive, and for any s > 0, it is sufficiently strong
so that particles cannot collide—diffusion cannot over-
whelm the repulsion. The order of the particles never
changes, so we have a single-file system.

The motion caused by the Riesz potential (1) is as-
sumed to be over-damped. Particles also undergo inde-
pendent Brownian motions. This system can be thought
of as a gas at a finite temperature, with (identical) diffu-
sion coefficients proportional to the temperature. Riesz
gases with particles undergoing deterministic motion
have been studied for a long time. Applications to as-
trophysics [14] where particles are interpreted as stars or
galaxies, as well as applications to plasma physics [15] are
natural. Riesz gases also appear in the context of crys-
tallization and packing problems [8, 16, 17], Ginzburg-
Landau vortices [18], and random matrices [19, 20]. Spe-
cific Riesz gases, most frequently Coulomb gases, ap-
pear in concrete applications. However, Riesz gases with
s ≤ 1 can be experimentally engineered in cold atom sys-
tems [21, 22], and they are potentially interesting in a
view of applications to quantum computers. The zero-
temperature dynamics of the Riesz gas demonstrates in-
teresting properties, such as signatures of chaos [23]. In
mathematics, Riesz gases are also subject to intense stud-
ies (see [24, 25] for recent reviews).

Some Riesz gases have received special attention. The
interaction is logarithmic when s → 0, and such Riesz
gases are known as log gases [19]. In one dimension, a log
gas of Brownian motions is a Dyson gas [26] introduced
in the context of random matrices with eigenvalues play-
ing the role of particles. In two dimensions, the log gas
describes a genuine two-dimensional Coulomb interaction
[25, 27] and in the over-damped case with particles addi-
tionally performing two-dimensional Brownian motions,
the gas is called the Ginibre gas [28–30]. The Coulomb
gas in d dimensions has the exponent s = d − 2. The
Calogero gas with s = 2 is mostly studied in one dimen-
sion [31–33], albeit it makes sense in arbitrary dimension.
Dipole-dipole interactions are anisotropic, but for dipoles
confined in a 1D channel with identical orientation caused
by an external magnetic field perpendicular to the chan-
nel, the (three-dimensional) interaction potential is the
Riesz potential with s = 3. This system has been stud-
ied experimentally [34]. We also mention that re-writing
the Riesz potential as (2a/|x− y|)s shows that the gas of
hard spheres with radii a emerges in the s→∞ limit.

In one dimension, equilibrium properties of a Riesz
gas in a confining potential have been studied via the
Coulomb-gas approach [35–39] originally developed for
the Dyson gas [40, 41]. The equilibrium behavior changes
qualitatively when the exponent passes through the
threshold value s = 1 corresponding to particles confined
to a line but interacting through the (three-dimensional)
Coulomb potential [35, 42, 43]. For s > 1, the gas is effec-
tively short-ranged; for 0 < s < 1, the gas is long-ranged
and the free energy functional is non-local.

The goal of the present work is to investigate dynami-
cal properties of one-dimensional stochastic Riesz gases.
Among a few studies of the dynamics of Riesz gases, we
mention [23, 29, 44–47]. Still, little is known about dy-
namics and equilibrium properties of systems with finite
number of particles in confining (usually harmonic) po-
tential remains the most popular research area.

Another feature of our work is reliance on the macro-
scopic fluctuating theory (MFT) [48–50]. The MFT is
a powerful deterministic framework derived from fluctu-
ating hydrodynamics in the vanishing-noise limit. The
MFT is widely applied to diffusive lattice gases with a sin-
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gle scalar field [4, 5]. Extensions of the MFT to several in-
teracting stochastic fields and to stochastic field theories
with higher derivatives are also actively explored [51, 52].
We show that similarly to the equilibrium properties, an
MFT suitable to one-dimensional stochastic Riesz gases
undergoes a qualitative change when the exponent passes
through the threshold value s = 1.

In one dimension, the MFT allows the investigation of
the statistics of quantities like the total current across the
origin [53, 54] and, for single-file systems, the total dis-
placement of the tracer [55, 56]. For systems with short-
ranged interactions, the variance of both these quantities
grows as t

1
2 for long times [55–58]. An amusing subtlety

of diffusive systems often present in one dimension con-
cerns the initial conditions, viz., their ever-lasting nature
[59]. If initial conditions are deterministic (also known
as quenched), fluctuations are often different from fluc-
tuations in random (also known as annealed) initial con-
ditions. This is particularly striking for large deviations
that can be much more probable (albeit still highly rare)
in the annealed case. In higher than one dimension, fluc-
tuations in deterministic and annealed settings are often
identical in the leading order [60, 61].

We now state the main results of this paper. Starting
with stochastic hydrodynamics of the one-dimensional
Riesz gas we develop a deterministic reformulation anal-
ogous to the MFT of stochastic diffusive lattice gases.
When 0 < s < 1, the governing equations contain non-
local terms, which did not appear in the original MFT
equations; when s > 1, we recover the usual MFT equa-
tions with a density-dependent diffusion coefficient which
we derive. Using the relevant MFT, we then probe the
asymptotic behavior of the variance of the integrated cur-
rent Q and of the position X of the tracer. These asymp-
totic behaviors are obtained by performing a perturba-
tion expansion [54] around the noiseless hydrodynamic
solution that is just the steady state with uniform den-
sity ρ. As an expansion parameter, it is convenient [54] to
use a Lagrange multiplier corresponding to Q or X. The
averages vanish, 〈Q〉 = 〈X〉 = 0, in the uniform setting.
The variances grow algebraically with time

〈Q2〉 = ρ2〈X2〉 ∼ t2γ (2)

with exponent depending on the Riesz exponent:

γ =

{
1
2

s
s+1 0 < s < 1

1
4 s > 1

(3)

In the marginal case of s = 1 (which is physically impor-
tant as it corresponds to particles confined to a line in-
teracting through three-dimensional Coulomb potential),

we argue that 〈Q2〉 ∼ 〈X2〉 ∼
√
t/ ln t. Note that Q and

X grow sub-diffusively with an s−dependent exponent
when 0 < s < 1 and with the universal exponent 1

4 when

s > 1. This value 1
4 is the same as that for short-ranged

diffusive systems with forbidden overtaking such as sim-
ple exclusion processes [58, 62].

We also determine the two-time correlation function of
the position of the tracer (i.e., the tagged particle). The
form of this function depends on the setting:

〈X(t1)X(t2)〉ann ∼
[
t2γ1 + t2γ2 − |t1 − t2|2γ

]
(4a)

〈X(t1)X(t2)〉det ∼
[
(t1 + t2)2γ − |t1 − t2|2γ

]
(4b)

The two-time correlation function in the annealed case is
exactly the same as for fractional Brownian motion with
exponent γ.

The rest of the paper is organized as follows. In Sec. II,
we define the Riesz gas. In particular, we use dimensional
analysis to show that the behavior depends on two di-
mensionless numbers, the Riesz exponent s and a Péclet
number which is essentially the ratio of typical interac-
tion to noise. In Secs. III–V, we focus on the genuinely
long-ranged Riesz gas with the exponent in the range
0 < s < 1. In Sec. III, we use a path-integral formulation
of the process and minimize an effective action to derive
deterministic governing equations and boundary condi-
tions, that play the role of the MFT equations for our
problem. In Sec. IV, we employ a perturbation approach
and solve the governing equations in leading order. This
allows us to determine the variances of the integrated
current and the position of the tracer. Section V is de-
voted to two-time correlations. In Sec. VI, we discuss
our findings and outline possible future developments. In
Appendix A, we briefly consider effectively short-ranged
Riesz gas (s > 1). Details of derivations of the results of
Sec. V are relegated to Appendix B.

II. THE RIESZ GAS

We consider a gas of particles on the line interacting
through the Riesz potential (1) and undergoing indepen-
dent Brownian motions with diffusion coefficient D. In
the over-damped limit, the particle positions xi evolve
according to coupled stochastic differential equations

ẋi = g
∑
j 6=i

xi − xj
|xi − xj |2+s

+ ηi (5)

The noise contributions ηi are Gaussian with zero-mean
and correlations

〈ηi(t)ηj(t′)〉 = 2Dδijδ(t− t′) (6)

To ensure that the gas with repulsive interactions does
not freely expand, we consider a finite system with a large
number N of particles in a very shallow confining exter-
nal potential. The density of particles in a large region
around the origin is essentially uniform; we denote it by
ρ. With such assumptions, our results for the tracer pro-
vide an intermediate asymptotic valid up to a crossover
time T∗(N) when the tracer eventually “realizes” that the
system is finite. The crossover time diverges as N →∞.
In this limit, we can forget about the shallow confining
potential and the finiteness of the system.
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The uniform Riesz gas with s > 0 is characterized by
a single dimensionless parameter

G =
gρs

D
(7)

This parameter G measures the relative strength of inter-
actions versus noise. Since gρs+1 is a typical velocity of a
particle caused by an adjacent particle and ρ−1 is a typ-
ical distance between adjacent particles, G plays a role
of a Péclet number for the Riesz gas. The coupling con-
stant g and the diffusion coefficient D have independent
dimensions for s > 0. One can use them to construct the

units of length and time:
(
g
D

) 1
s and 1

D

(
g
D

) 2
s . Measuring

length and time in terms of these units we can effectively
set the coupling constant and diffusion coefficient to unity
and take g = 1 = D in the following. Then, the prob-
lem only depends on the dimensionless density ρ, i.e., on
G1/s in terms of the original variables. Note that when
s = 0, i.e., for the Dyson gas, the coupling constant and
diffusion coefficient have the same dimensions and can
not be set to 1 independently.

The coarse-grained density field of the particles satis-
fies the continuity equation

∂tq + ∂xJ = 0 (8)

where q = q(x, t) is the density and J = J(x, t) is the
local current. The current J contains the standard dif-
fusion term, −D∂xq = −∂xq, plus another deterministic
contribution JRiesz arising from the Riesz potential and
a stochastic component due to the noise. Thus, we write

J = JRiesz − ∂xq +
√

2q η (9)

The noise η = η(x, t) satisfies

〈η(x, t)〉 = 0, 〈η(x, t)η(x′, t′)〉 = δ(x−x′)δ(t− t′) (10)

The amplitude of the noise,
√

2q, reflects the Brownian
nature of the point particles [2–5]. The Riesz contribu-
tion JRiesz reads

JRiesz =

{
qHs[q] 0 < s < 1

−(1 + s)ζ(s)qs∂xq s > 1
(11)

as we show below. In the s > 1 range, this Riesz current
(11) contains the zeta function ζ(s) (see Appendix A for
a derivation). In the 0 < s < 1 range, the Riesz current
is expressed using a modified Hilbert transform

Hs[q] =

∫
dy

x− y
|x− y|2+s

q(y) (12)

which reduces to the Hilbert transform in the s→ 0 limit.
Hereinafter, spatial integrals over the entire line will be
denoted

∫
, e.g.,

∫
dy ≡

∫∞
−∞ dy in (12). We also define

the potential Vs[q] at x due to the density profile q:

Vs[q] =
1

s

∫
dy

q(y)

|x− y|s
(13)

This potential satisfies Hs[q] = −∂xVs[q]. The Riesz
current (11) can be derived from the general formula
(expressing that the deterministic motion of particles is
over-damped)

JRiesz = −q ∂

∂x

(
δ

δq
E[q]

)
(14)

where E is the interaction energy:

E[q] =
1

2s

∫ ∫
dx dy

q(x)q(y)

|x− y|s
(15a)

when 0 < s < 1, and

E[q] =
ζ(s)

s

∫
dx q1+s (15b)

when s > 1. The total deterministic current can be de-
rived from

JRiesz − ∂xq = −q ∂

∂x

(
δ

δq
F[q]

)
(16)

with free energy

F[q] = E[q] +

∫
dx q ln q (17)

that in addition to the interaction energy contains an
entropic contribution.

In the present work, we are primarily interested in
Riesz gases with a long-ranged potential (0 < s < 1).
For s > 1, the potential is effectively short-ranged and
a well-understood single-file behavior emerges (as dis-
cussed in Sec. VI). Our derivations rely on the fluctu-
ating hydrodynamics together with its path-integral re-
formulation, and the Martin-Siggia-Rose method [63].
These tools are popular in macroscopic fluctuation the-
ory, see [53, 56, 64]. The Kawasaki-Dean method [65, 66]
can be alternatively used to derive the same expression
(11) for the Riesz contribution to the current.

III. HYDRODYNAMICS OF THE RIESZ GAS

When 0 < s < 1, the fluctuating hydrodynamics of
one-dimensional stochastic Riesz gases is governed by the
stochastic partial differential equation

∂tq = −∂x
(
qHs[q]− ∂xq +

√
2q η

)
(18)

with Hs[q] given by (12). Equation (18) resembles the
governing equation of fluctuating hydrodynamics of dif-
fusive lattice gases [2]. Analytical tools available to in-
vestigate the statistical properties of lattice gases can be
adapted to the present case to probe dynamical fluctu-
ations in the Riesz gas. Namely, we shall develop a de-
terministic reformulation of fluctuating hydrodynamics
analogous to the MFT of diffusive lattice gases [48–50].
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A. Path-integral formalism

The solution of the stochastic equation (18) can be
expressed via a path integral. One writes the Gaussian
measure for the white noise and integrates over it. This
procedure known as the Martin-Siggia-Rose method [63]
is standard; details can be found, for example, in the
closely related context of the macroscopic fluctuation the-
ory [53, 56, 64]. The probability of transition from an
initial configuration at t = 0 to a final configuration at
t = T can be written as a functional integral after inte-
grating out the white noise η(x, t):

P (q(x, T )|q(x, 0)) =

∫ ∫ ∫
DJ DqDp e−S (19)

where

S =

∫ T

0

dt

∫
dx

[
(J − qHs[q] + ∂xq)

2

4q
+ p(∂tq + ∂xJ)

]
The second term in the integrand ensures that q and J
obey the continuity equation (8), with p = p(x, t) play-
ing the role of the Lagrange multiplier. Evaluating the
quadratic integral over J yields

P (q(x, T )|q(x, 0)) =

∫ ∫
DqDp e−

∫ T
0

∫
dt dxS(q,p) (20)

with action

S(q, p) = p∂tq−q(∂xp)2−q(∂xp)Hs[q] ∂xp+∂xp ∂xq (21)

The form of (21) is remarkably similar to the MFT action
[5]. The new feature is the presence of Hs accounting for
the long-ranged interactions.

B. The cumulant generating function of an
observable

Take an arbitrary observable O({q(x, t), p(x, t)}). Its
characteristic function can be written as

〈eλO〉 =

∫ ∫
DqDp eλO−

∫ T
0

∫
dt dxS(q,p) P [q(x, 0)] (22)

where P [q(x, 0)], the probability of the initial profile
q(x, 0), represents how the system is prepared at t = 0.
For the deterministic initial condition with uniform pro-
file ρ, we merely take

P [q(x, 0)] = δ (q(x, 0)− ρ) (23)

If the system is prepared with the equilibrium distribu-
tion of density profiles (annealed case), we take

P [q(x, 0)] = exp(−F[q(x, 0)]) (24)

with free energy defined by (15a) and (17). The cumu-
lant generating function (CGF) is the logarithm of the

characteristic function. The CGF encodes all cumulants
〈On〉c of the observable O:

µ(λ) = ln 〈eλO〉 =
∑
n

1

n!
〈On〉c (25)

In this work, we analyze two observables. The first
is the integrated current QT that has flown through the
origin during the time interval (0, T ). It is given by

Q(T ) =

∫ ∞
0

dx [q(x, T )− q(x, 0)] (26)

We note that Q(T ) depends only on the final and the
initial density profiles. Another observable is the posi-
tion X(T ) of the tracer at time T ; without loss of gen-
erality we set X(0) = 0. The dynamics of the tracer is
identical to the other particles, its tag allows us to focus
on the same particle and thus study a self-diffusion phe-
nomenon. In a single-file motion [67–72] particles cannot
overtake each other, so the number of particles to the
right of the tracer remains constant. We schematically
write ∫ ∞

X(T )

dx q(x, T ) =

∫ ∞
0

dx q(x, 0)

which in conjunction with (26) gives [55, 73, 74]∫ X(T )

0

dx q(x, T ) = Q(T ) (27)

This useful relation implies that the statistics of X(T )
and Q(T ) are closely related. Below we first derive an-
alytical results for the statistics of the current and then
translate them to the statistics of the position of the
tracer.

C. Governing equations and boundary conditions

The action S and the integrated current Q(T ) grow
with time and in the large-time limit, the path inte-
gral (22) will be dominated by its saddle point [4, 5].
The corresponding optimal ‘trajectory’ {q(x, t), p(x, t)}
is found by varying the action with respect to q and p.
For 0 < t < T , the Euler-Lagrange equations read

(∂t − ∂2x)q = −∂x (2q∂xp+ qHs[q]) (28a)

(∂t + ∂2x)p = −(∂xp)
2 −Hs[q]∂xp+ Hs[q∂xp] (28b)

These equations differ from the equations of the macro-
scopic fluctuation theory [4, 5] only by terms with Hs.
Similar equations have also appeared in the study of
the large N limit of Harish-Chandra-Itzykson-Zuber in-
tegrals [47, 75]. The governing equations (28) are usually
universal, i.e., independent of the observable [see, how-
ever, Eq. (65)], while the boundary conditions do depend
on the observable. In the one-dimensional case when the
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observable is the integrated current, the saddle-point re-
lations at initial and final times involve a contribution
from Q(T ) [53–55]. Hence, the boundary condition at
t = T reads

p(x, T ) = λ
δQ(T )

δq(x, T )
= λθ(x) (29)

The initial condition at t = 0 depends on whether the
initial preparation of the system is annealed or deter-
ministic. We consider a system starting from a uniform
density ρ, and hence, for the deterministic initial condi-
tion, we have

q(x, 0)|det = ρ (30a)

In the annealed case, the system starts at equilibrium
and density fluctuations are allowed. The free energy F
is defined by (15a) and (17), and the initial condition for
p(x, 0) reads

p(x, 0)|ann = −λ δQ(T )

δq(x, 0)
+
δF

δq

∣∣∣∣
q(x,0)

(30b)

Thus we must solve Eqs. (28) subject to (29) at the final
time T and the initial condition (30a) in the deterministic
case, or (30b) in the annealed case. The function µ(λ) is
determined by substituting the solution {q(x, t), p(x, t)}
in the path integral (22). This latter calculation can be
significantly simplified by noting that

dµ

dλ
=
〈OeλO〉
〈eλO〉

(31)

Therefore the CGF is obtained by evaluating the value of
the observable O for the optimal solution q(x, t), p(x, t).
This shortcut was noticed in Refs. [76, 77], and efficiently
used in a number of recent studies [78–82].

In the present case, we have

µ′(λ) = Q(T ) (32)

with Q(T ) evaluated on the solution q(x, t) of the govern-
ing equations (28) with appropriate boundary conditions.

Handling a pair of non-linear, non-local coupled par-
tial differential equations (28) is mathematically daunt-
ing. These equations do not admit an analytical solution.
Fortunately, a perturbative calculation based on expan-
sion in λ leads to exact results for the variance

〈
Q2
〉

as
we show in the next section. To compute higher cumu-
lants one needs higher orders in a perturbative expansion:
The (n+ 1)th cumulant is determined by the solution of
the MFT equations up to nth order in λ. At present,
computing

〈
Q4
〉
c

seems analytically intractable.

IV. PERTURBATIVE SOLUTION

We follow the strategy developed in [54] relying on the
obvious fact that for λ = 0, the solution follows the noise-
less evolution, which in the present case is very simple:

q(x, t) = ρ and p(x, t) = 0 at all times. The expansion
of (q, p) in λ generates the cumulants of the current. A
calculation at the lowest order enables one to determine
the variance of Q(T ) both in the deterministic and the
annealed ensembles. Up to the first order in λ we have

q = ρ+ λq1 +O(λ2), p = λp1 +O(λ2) (33)

Plugging these expansions into Eqs. (28) we obtain

(∂t − ∂2x)q1 = −ρ∂x (Hs[q1] + 2∂xp1) (34a)

(∂t + ∂2x)p1 = ρHs[∂xp1] (34b)

at first order. (We have taken into account an obvious
relation Hs[ρ] = 0.) The boundary condition (29) reads

p1(x, T ) = θ(x) (35)

The initial conditions (30a)–(30b) become, at first order,

q1(x, 0)|det = 0 (36a)

p1(x, 0)|ann = θ(x) +
δF

δq

∣∣∣∣
q1(x,0)

(36b)

A. Variance of the integrated current:
Deterministic case

The first-order equations (34) can be solved via Fourier
transform

f̂(k) =

∫
dx e−i kxf(x)dx (37)

(Recall the short notation
∫
dx ≡

∫∞
−∞ dx for the spatial

integrals over entire line.) A very useful identity

Ĥs[f ](k) = − i
√
π

2s
Γ
(
1−s
2

)
Γ
(
1 + s

2

) k |k|s−1f̂(k) (38)

follows from the general formula [83, 84]∫
dx e−i kx|x|b =

2b+1
√
π

|k|b+1

Γ
(
1+b
2

)
Γ
(
− b

2

) (39)

Equation (34b) becomes

∂tp̂1 = ω(k)p̂1 (40)

with dispersion relation

ω(k) = k2 +As|k|s+1 (41a)

As =
ρ
√
π

2s
Γ
(
1−s
2

)
Γ
(
1 + s

2

) (41b)

The boundary condition (35) gives p̂1(k, T ) = 1
i k , and

hence (40) leads to

p̂1(k, t) =
1

i k
e−ω(k)(T−t) (42)
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The equation for q1 is solved along similar lines. The
Fourier transform of (34a) is

[∂t + ω(k)]q̂1 = 2ρk2p̂1 (43)

The initial condition (36a) gives q̂1(k, 0) = 0. Solving
(43) with p̂1 given by (42) we obtain

q̂1(k, t) = ρk
e−ω(k)(T−t) − e−ω(k)(T+t)

iω(k)
(44)

Using (31) we find the cumulant generating function
at lowest order in λ:

µ′(λ) = λ

∫ ∞
0

dx [q1(x, T )− q1(x, 0)] (45)

In Fourier space, this gives

µ′(λ) = iλ

∫ ∞
−∞

q̂1(k, T )− q̂1(k, 0)

k

dk

2π

= λρ

∫ ∞
−∞

1− e−2ω(k)T

ω(k)

dk

2π
(46)

The asymptotic T → ∞ behavior of the above integral
is dominated by the |k|1+s term as the diffusive part k2

in ω(k) becomes irrelevant (as readily seen by redefining

κ := kT
1

s+1 ). Thus, in the large time limit, we find∫ ∞
−∞

1− e−2ω(k)T

ω(k)

dk

2π
→ T

s
s+1

π

∫ ∞
0

dκ
1− e−2Asκ

s+1

Asκs+1

The second integral can be computed [85] leading to

〈
Q2
〉
det

= Ws(2T )
s

s+1 , Ws =
ρΓ
(

1
s+1

)
πsA

1
s+1
s

(47)

where we have taken into account that, by definition of
the CGF in (25), the first order term in µ′(λ) represents
the variance of the current. Recalling an explicit formula
(41b) for As, we write (47) as

〈Q2〉det = (ρT )
s

s+1Us (48)

with amplitude

Us =
Γ
(

1
s+1

)
s

[
4s Γ

(
1 + s

2

)
πs+3/2 Γ

(
1−s
2

)] 1
s+1

(49)

depending only on the Riesz exponent s.
The variance of the current across the origin increases

as T s/(s+1), i.e., slower than for single-file diffusive sys-
tems [56, 58, 62] where the exponent is 1/2. The expo-
nent s

s+1 approaches 1
2 when s ↑ 1, albeit the amplitude

Us vanishes in this limit, Us →
√

(1− s)/π. This indi-
cates that precisely at s = 1, the growth of the variance
might be slower than

√
T , possibly with a logarithmic

correction (see Sec. VI).

Formulae (48)–(49) are also singular when s ↓ 0, al-
though the hydrodynamic equations remain well-defined.
This may be an indication that the function µ(λ) is it-
self singular for s→ 0 and that the perturbative scheme
breaks down in this limit.

When s < 1, the diffusive contribution is subdomi-
nant in the long time limit. This could have been antic-
ipated by observing that the second order derivatives in
Eqs. (28) are negligible in the scaling limit compared to
the Hilbert operator Hs. Physically, this means that, in
the limit we consider, the Riesz current is dominated by
the advection term coming from the interactions, rather
than by the diffusive flux of entropic origin.

B. Variance of the integrated current: Annealed
case

In the annealed case, the boundary condition at the
final time T is the same as in the deterministic case, so
Eq. (42) still holds. To implement the initial condition
(36b), we need an appropriate expression for the free en-
ergy. For 0 < s < 1, the expression (15a) is schematic,
e.g., it diverges. To avoid the divergence, we subtract
ρ from q(x) and q(y) in (15a), and also subtract a con-
stant from the entropic contribution so that it vanishes
at infinity. This gives

F[q] =

∫
dx q(x) ln

q(x)

ρ

+

∫ ∫
dxdy

(q(x)− ρ)(q(y)− ρ)

2s |x− y|s
(50)

Plugging (50) into (36b) together with expansion (33) we
obtain

p1(x, 0) = θ(x) +
1

s

∫
dy

q1(y, 0)

|x− y|s
+
q1(x, 0)

ρ
(51)

in the first order. Performing the Fourier transform of
this relation and using Eqs. (39), (41a), and (42), we
derive the initial value q̂1(k, 0) in the annealed case

q̂1(k, 0) =
ρk

iω(k)

(
e−ω(k)T − 1

)
(52)

Equation (43) is still valid, but now we have to solve it
subject to the initial condition (52). The solution reads

q̂1(k, t) = ρk
e−ω(k)(T−t) − e−ω(k)t

iω(k)
(53)

To establish the cumulant generating function in the
lowest order we proceed as before and find

µ′(λ) = iλ

∫ ∞
−∞

q̂1(k, T )− q̂1(k, 0)

k

dk

2π

= λρ

∫ ∞
−∞

1− e−ω(k)T

ω(k)

dk

π
(54)
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The long time behavior is extracted similarly to the de-
terministic case (cf. equation (47)). We finally arrive at
a simple relation between the variances in the annealed
and deterministic cases:

〈Q2〉ann = 2
1

1+s 〈Q2〉det (55)

As expected, the variance in the annealed case is en-
hanced compared to the deterministic setting because of
the non-zero initial fluctuations. This result is another
example of the ever-lasting influence of initial conditions

[59]. The ratio, 2
1

1+s , approaches as s→ 1 the value
√

2
found in hard-core single-file systems such as the sym-
metric exclusion process [54].

C. Variance of the position of the tracer

The position of the tracer can be determined by the
fact that particles in the Riesz gas with s ≥ 0 can not
overtake one another. The motion of the tracer displaces
the particles ahead of it and drives a current through the
system. At first order in λ, we have from (27),

X(T ) =
λ

ρ

∫ ∞
0

dx [q1(x, T )− q1(x, 0)] (56)

which differs from the integrated current only by a 1/ρ
factor. This simple relation is valid only at the first order.
At higher orders in λ, the number of particles in the
vicinity of the tracer is random and its statistics must
also be taken into account [53, 56, 74, 86, 87].

Using (56) we find

〈X2〉 =
1

ρ2
〈Q2〉 (57)

in the leading order. This is valid both for the determin-
istic and annealed cases. Therefore

〈X2〉ann = 2
1

1+s 〈X2〉det (58)

The variance of the position of the tracer scales as a frac-
tional Brownian motion with Hurst exponent γ = 1

2
s

1+s

[88, 89]. The vanishing of the exponent as s→ 0 is con-
sistent with the logarithmic mean square displacement
of a tracer in Dyson’s model of interacting Brownian
particles established by Spohn [44, 45]. Note that for
the symmetric exclusion process, a lattice gas with hard-
core interacting particles (that heuristically corresponds
to s → ∞), the statistical identity between the tracer
process and the fractional Brownian motion with expo-
nent 1

4 has been proved in [90].

V. TWO-TIME CORRELATIONS

In this section, we investigate the two-time correlations
of the process. The results provide further indication that

a tracer in the Riesz gas behaves as a fractional Brown-
ian motion. The saddle-point method used to determine
quadratic fluctuations can be extended to unequal time
correlations by introducing a source term in the optimal
equations. This will allow us to calculate two-time corre-
lations of the integrated current and the tracer’s position.

A. Generating functional

To derive current-current correlations at different
times, we introduce the generating functional (see [4, 91]
for a detailed presentation of the formalism):

Z[λ(t)] =

〈
exp

[∫ T

0

dt λ(t)Q(t)

]〉
=
〈
e
∫ T
0
dt

∫
dxλ(t)θ(x)(q(x,t)−q(x,0))

〉
(59)

Two-time correlation function of the current at times
t1, t2 < T can be found by taking functional derivatives
of this generating functional

µ[λ(t)] = lnZ[λ(t)] (60)

For example, recalling that 〈Q(t)〉 = 0 for all t, we can
expand the generating functional at lowest order with
respect to the source-function λ(t):

µ[λ(t)] =

∫ T

0

dt

∫ T

0

dt′λ(t)λ(t′)C(t, t′) + . . . (61)

where C(t, t′) = 〈Q(t)Q(t′)〉c is the two-time correlation
function. Higher order terms generate multiple-time cor-
relation functions. Writing the average as a functional
integral as in equation (20), we observe that the bulk
action S(q, p) given in (21) is tilted by the source term,
S(q, p)→ Sλ(t)(q, p), with

Sλ(t)(q, p) = S(q, p)− λ(t)θ(x)(q(x, t)− q(x, 0)) (62)

Taking the functional derivative of µ[λ(t)] leads to

δµ[λ(t)]

δλ(t1)
=
〈Q(t1) exp(

∫ T
0
λ(t)Q(t))〉

〈exp(
∫ T
0
λ(t)Q(t))〉

= 〈Q(t1)〉[λ] (63)

where the final average is over the tilted action Sλ(t).
Comparing with (61), we deduce that the two-time cor-
relations are given by

C(t1, t2) =
δ〈Q(t1)〉[λ]
δλ(t2)

∣∣∣∣∣
λ≡0

(64)

Thus, it suffices to determine the average with respect to
the tilted action to access the correlations. As in the pre-
vious sections, we determine the generating functional by
writing the Euler-Lagrange equations and solving them
perturbatively at the lowest order.
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B. The Euler-Lagrange equations with a source

In presence of the source term, the tilted action Sλ(t)
affects only the equation for p

(∂t + ∂2x)p = −λ(t)θ(x)− (∂xp)
2

− Hs[q]∂xp+ Hs[q∂xp] (65)

while q satisfies the same equation (28a) as before. At
final time, we have

p(x, T ) = 0 (66)

The initial conditions depend on the setting:

q(x, 0)|det = ρ (67a)

p(x, 0)|ann = θ(x)

∫ T

0

dtλ(t) +
δF

δq

∣∣∣∣
q(x,0)

(67b)

We write q = ρ + q1 and p = p1, where q1 and p1
are linear functionals of λ(t). Performing a perturbative
expansion we obtain

(∂t − ∂2x)q1 = −ρ∂x(Hs[q1] + 2∂xp1) (68a)

(∂t + ∂2x)p1 = ρHs[∂xp1]− λ(t)θ(x) (68b)

in the first order. The Fourier transform of p1 reads

p̂1(k, t) =
1

i k

∫ T

t

dτλ(τ)eω(k)(t−τ) (69)

with ω(k) defined in Eqs. (41a)–(41b).
We begin with the deterministic setting. In this case

q1(x, 0) = 0 and the solution of (68a) reads

q̂1(k, t) = −2i ρk

∫ t

0

dτ

∫ T

τ

dt2λ(t2)eω(k)(2τ−t2−t) (70)

To determine the two-time correlation function we write

〈Q(t1)〉 =

∫ ∞
0

dx (q1(x, t1)− q1(x, 0))

= i

∫ ∞
−∞

q̂1(k, t1)− q̂1(k, 0)

k

dk

2π

=

∫ T

0

dt2 C(t1, t2)λ(t2) (71)

In the last step we have used (64) at the first order. Sub-
stituting q̂1 and exchanging the order of the integrals (see
Appendix B for details), we determine the two-time cor-
relation function. In the large time limit, this correlation
function has a neat form

Cdet(t1, t2) = Ws

{
(t1 + t2)

s
1+s − |t1 − t2|

s
1+s
}

(72)

with Ws defined in Eq. (47).
In the annealed setting, the initial condition (67b)

leads to

q̂1(k, 0) =
ρk

iω(k)

∫ T

0

dτλ(τ)(e−ω(k)τ − 1) (73)

in the first order. Using this we determine q̂1(k, t) and use
Eq. (71) to calculate the generating functional at lowest
order (see Appendix B). In the large time limit, the two-
time correlation function has again a neat form

Cann(t1, t2) = Ws

(
t

s
1+s

1 + t
s

1+s

2 − |t1 − t2|
s

1+s

)
(74)

As was explained in [91, 92], the results in the annealed
case can be deduced from the deterministic case by let-
ting the system evolve up to a time t0 and then measur-
ing the current Q+(t) = Q(t0 + t)−Q(t0) that has flown
from that time on. Then, if we calculate, with the help of
(72), the deterministic correlations for Q+ at times t1, t2,
and assume that t0 � t1, t2, we obtain (74). Indeed, by
shifting the time by the large duration t0, the system is
effectively put into equilibrium.

For the tracer position, the two-time correlations are
obtained by multiplying the two-time current-current
correlation function by the factor ρ−2. We observe that
these expressions are the same as those for a fractional
Brownian motion with Hurst exponent H = s

1+s [88].
This further suggests that the tracer behaves as a frac-
tional Brownian process.

VI. DISCUSSION

We studied current and tracer fluctuations in the one-
dimensional Riesz gas. We focused has been on the gen-
uinely long-range interaction regime, 0 < s < 1, for which
the collective dynamics differs significantly from usual
single-file systems. We derived integro-differential MFT-
type equations, with non-local terms, that in principle
allow one to probe large deviations in one-dimensional
stochastic Riesz gases. Using these equations we inves-
tigated fluctuations of the integrated current Q and the
position X of the tracer in the one-dimensional stochastic
Riesz gas. By applying a perturbation approach to gov-
erning MFT-type equations we established the variances
〈Q2〉 and 〈X2〉. The calculation of higher cumulants, e.g.,
〈Q4〉 and 〈X4〉, remains an analytical challenge.

We now restate some of our main results and outline
potential extensions in terms of the original variables so
that the dependence on the coupling constant g and dif-
fusion constant D will be visible. For instance, in the
genuinely long-range regime, 0 < s < 1, the variance of
the position of the tracer grows as

〈X2〉det = UsG
− 1

s+1 ρ−2(ρ2DT )
s

s+1 (75)

in the deterministic case; in the annealed case, the vari-

ance is larger by a factor 2
1

s+1 . The growth law (75) de-
pends on the dimensionless parameter G = gρs/D mea-
suring the relative strength of interactions versus noise
and the amplitude Us is given by (49).

We begin with the short-range regime, s > 1, when the
extension of known results is rather straightforward once
the transport coefficients are established.
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A. The short-range regime s > 1

The short-range regime s > 1 can be dealt with by bor-
rowing known results for the single file-diffusion derived
from standard MFT formalism [55, 56]. When s > 1,
we observe from (15b), (16)–(17) that the deterministic
current has the form

J = −D(ρ)∂xρ, D(ρ) = D + (1 + s)ζ(s)gρs (76)

The mobility of particles undergoing Brownian motions
is σ(ρ) = 2Dρ. Thus for s > 1, the governing equations
are bona fide MFT equations and we can use the general
formula [56] for the self-diffusion of a tracer

〈X2〉|ann =
√

2 〈X2〉|det =
σ(ρ)

ρ2

√
T

πD(ρ)
(77)

in single-file hydrodynamics characterized by transport
coefficients D(ρ)) and σ(ρ). By specializing to the short-
range Riesz gas, we deduce

〈X2〉|det =
1√

1 + (1 + s)ζ(s)G

√
2DT

π ρ2
(78)

In the annealed case, the variance is
√

2 times larger.
When the relative strength of interaction vanishes, i.e.,
G → 0, we recover the well-known behavior for Brow-
nian particles undergoing single-file diffusion. The T 1/2

temporal growth remains the same independently of G,
while the amplitude decays as G increases.

Correlation profiles in the frame of the tracer have been
recently established [86, 87, 93] for several single-file sys-
tems. We mention one neat formula applicable to in-
teracting point particles undergoing independent identi-
cal Brownian motions and satisfying the single-file con-
straint. In these gases, the density n(x+X, t) on distance
x from the tracer is correlated with the position X of the
tracer according to [93]

〈n(x+X, t)X〉|ann =
sign(x)

2D(ρ)/D
Erfc

(
|x|√

4D(ρ)t

)
(79)

in the annealed case. Specializing this formula to D(ρ)
given by (76) we obtain the correlation function (79) for
the stochastic Riesz gas in the short-range regime.

B. The case s = 1

The marginal s = 1 case separates long-range and
short-range regimes. The Riesz gas with s = 1 corre-
sponds to a physically relevant system of particles con-
fined to a one-dimensional line and interacting through
the three-dimensional Coulomb potential. Therefore the
Riesz gas with s = 1 deserves a separate careful investiga-
tion. Here we use heuristic arguments to guess a plausible

asymptotic behavior for the tracer’s fluctuations. When
s→ 1, the s−dependent term in (78) diverges as

1 + (1 + s)ζ(s)
gρs

D
→ 2

gρ

D

1

s− 1
(80)

where we have used the asymptotic ζ(s) ' (s − 1)−1 of
the zeta function ζ(s) near s = 1. The characteristic

dimensionless diffusive length scale is ` ∼
√
ρ2DT , and

as long as `−1 ∼ `−s, there is no difference between the
Riesz gas with exponent s and the Coulomb gas with
s = 1. Therefore (ρ2DT )s−1 ∼ 1, from which we deduce
(s− 1)−1 ∼ ln(ρ2DT ), and (80) becomes

1 + (1 + s)ζ(s)
gρs

D
→ ln(ρ2DT ), G =

gρ

D
(81)

Plugging this into (78) yields

〈X2〉 ∼ 1√
G

√
DT

ρ2 ln(ρ2DT )
(82)

The dependence of the variance (82) on the Péclet num-
ber G is natural given the behavior in the s < 1 and
s > 1 regimes, (75) and (78). Re-writing (82) as

〈X2〉 ∼ ρ−3/2
√

D2T

g ln(ρ2DT )
(83)

emphasizes the ρ−3/2 dependence on the density.

C. Riesz gases with s ≤ 0

The one-dimensional Riesz gas with s = 0, more pre-
cisely a log-gas known in one dimension as the Dyson
gas [26], satisfies the single-file constraint (i.e., particles
cannot overcome each other). The exponent γ = s

2(s+1)

vanishes as s→ +0. Hence one anticipates a slower than
algebraic growth, and indeed the variance increases log-
arithmically with time [44]. It would be interesting to
extend this prediction, e.g., to establish the dependence
on the Péclet number, G = g/D for the Dyson gas.

When s < 0, the overcome becomes feasible, so the
tracer apparently exhibits a standard diffusive behavior:

〈X2〉 = 2F1(G, s)DT, s < 0 (84)

The case of s = −1 is particularly intriguing as it cor-
responds to the particles interacting through the one-
dimensional Coulomb potential.

Our computations of the position X of the tracer in
the one-dimensional Riesz gas with s > 0 relied on the
connection of X with Q. This crucial feature is lost for
Riesz gases with s < 0. It is perhaps feasible to extend
our techniques and compute the variance of the current,
〈Q2〉, for Riesz gases with s < 0. New ideas and tech-
niques are needed to probe 〈X2〉.
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D. Higher dimensions

The most interesting challenge is to extend our analysis
to stochastic Riesz gases in higher dimensions (d ≥ 2).
As the single-file phenomenon is absent for d > 1, the
problem seems simpler at first sight. Also, the MFT
framework admits a straightforward extension (with non-
local terms if s < d). However, our approach based on
the relation between the position and the current is no
longer applicable and new ideas are required.

We anticipate that the tracer behaves diffusively in the
short-range s > d regime:

〈R2〉 = 2dFd(G, s)DT, s > d (85)

Thus Fd(G, s)D is the self-diffusion coefficient. The chal-
lenge is to compute Fd(G, s) as a function of the Péclet
number G = gρs/d/D and the Riesz exponent s.

The derivation of the exact formula for F (G) looks
like an unattainable goal. (Indeed, for the simple ex-
clusion process, the self-diffusion coefficient is unknown
already on the square lattice.) Perhaps, one can probe
the asymptotic behavior of F (G) in the large G limit. In
the case of vanishingly small G, we have non-interacting
Brownian particles, so F (0) = 1. In the long-range
regime, s < d, a sub-diffusive behavior is expected,
〈R2〉 ∼ T β(s,d), with an unknown exponent β(s, d) < 1
when s < d.

In two dimensions, the Riesz gases with s = 0, 1, 2 are
particularly interesting. We expect sub-diffusive behav-
iors for the Ginibre gas (s = 0) and the Coulomb gas
(s = 1). The Calogero gas (usually studied [31–33] in
one dimension) is marginal in two dimensions, so simi-
lar to (82) logarithmic corrections are plausible, such as
〈R2〉 ∼ DT/ ln(ρDT ).

The self-diffusion phenomenon in the Riesz gases in di-
mensions d ≥ 2 appears intractable with available tools.
The MFT framework for high-dimensional Riesz gases
could be applied, however, to more tractable problems
such as void formation [60].
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ing discussion and S. Mallick for a careful reading of the
manuscript. PLK thanks IPhT Paris-Saclay for excellent
working conditions. The work of KM has been supported
by the project RETENU ANR-20-CE40-0005-01 of the
French National Research Agency (ANR).

Appendix A: Interaction energy when s ≥ 1

Despite the simplicity and beauty of Eq. (15b), its
derivation is long and far from rigorous. We refer to
[35] for derivation of a similar result in the case of har-
monically confined particles. Here we limit ourselves to
a few no-rigorous arguments in favor of (15b).

First, we notice that Eq. (15a) giving the interaction
energy in the s < 1 regime is a natural continuous version
of the exact formula

E = (2s)−1
∑
i 6=j

1

|xi − xj |s
(A1)

(Every i 6= j in (A1) appears twice, hence the factor 1/2.)
A singularity at x = y in the integral in Eq. (15a) is

integrable if s < 1, so we can use the integral represen-
tation (15a) of the sum (A1). The integral still diverges
in an infinite system, but we put it under the carpet.

When s > 1, the singularity at x = y in the integral in
Eq. (15a) leads to divergence. We thus return to summa-
tion and compute the energy per particle by fixing i and
summing over all j 6= i, or equivalently over n = j − i

e = (2s)−1
∑
n 6=0

1

|n/q(x)|s
= s−1ζ(s)qs (A2)

We have relied on a crucial assumption that the spatial
distribution of particles is locally equidistant; see [35] for
justification. This assumption has allowed us to write
xj − xi = n/q(x) in (A2), where x means xi. The total
energy is

E[q] =

∫
dx qe = s−1ζ(s)

∫
dx qs+1 (A3)

with extra q in the first integral since
∑
i →

∫
dx q(x).

Equation (A3) is the announced Eq. (15b).
When s = 1, the sum in (A2) diverges. It seems rea-

sonable to use the diffusive scale
√
T as an upper cutoff

in the sum. Thus (A2) gives

e =

√
T∑

n=1

q(x)

n
= q(x) ln

√
T = 1

2q lnT (A4)

Therefore

E[q] =

∫
dx qe = 1

2 lnT

∫
dx q2 (A5)

and in the long-time limit D(q) = q lnT . These heuristic
arguments give

〈X2〉|ann =
√

2 〈X2〉|det = ρ−3/2
√

4T

π lnT
(A6)

In Sec. VI, we presented heuristic arguments leading to
Eq. (83) for the variance. This result is consistent with
Eq. (A6). The only difference is that Eq. (83) is agnostic
to the numerical pre-factor. (If in the estimate (A4) we
take the scale T 1/4 of a typical displacement of the tracer
as an upper cutoff, this would enhance (A6) by a factor√

2.) A more careful treatment of the s = 1 model is a
worthwhile endeavor [94].

Appendix B: Derivation of Eqs. (72) and (74)

In this appendix, we fill some missing steps in the cal-
culations of the two-time correlation functions. For the
deterministic case, we take q̂1 given by (70) and substi-
tute it into the second line in (71). This gives
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〈Q(t1)〉 = i

∫ ∞
−∞

q̂1(k, t1)− q̂1(k, 0)

k

dk

2π
=
ρ

π

∫ ∞
−∞

dk

∫ t1

0

dτ

∫ T

τ

dt2λ(t2)eω(k)(2τ−t2−t1) (B1)

We split the integral over t2 as
∫ T
τ

=
∫ t1
τ

+
∫ T
t1

, exchange the order of the integrals over τ and t2 and evaluate the

integrals over τ . This gives

〈Q(t1)〉 =
ρ

π

∫ ∞
−∞

dk

[∫ t1

0

dt2λ(t2)

∫ t2

0

dτ eω(k)(2τ−t2−t1) +

∫ T

t1

dt2λ(t2)

∫ t1

0

dτeω(k)(2τ−t2−t1)

]

=
ρ

π

∫ ∞
−∞

dk

[∫ t1

0

dt2 λ(t2)
eω(k)(t2−t1) − e−ω(k)(t2+t1)

2ω(k)
+

∫ T

t1

dt2 λ(t2)
eω(k)(t1−t2) − e−ω(k)(t2+t1)

2ω(k)

]

=
ρ

π

∫ T

0

dt2 λ(t2)

∫ ∞
−∞

dk
e−ω(k)|t1−t2| − e−ω(k)(t2+t1)

2ω(k)
(B2)

The last integral over k represents a two-time correlation function [cf. Eq. (71)]. Subtracting 1 from the first term in
the numerator and adding 1 to the second term, we analyze the asymptotic behavior of these two integrals using the
same method as in deriving the asymptotic (47). It suffices to identify 2T → |t1− t2| in one integral and 2T → t2 + t1
in the other. This completes the derivation of Eq. (72).

In the annealed case, taking into account q̂1(k, 0) given by (73), the solution of (68a) becomes:

q̂1(k, t) =
ρk

iω(k)
e−ω(k)t

∫ T

0

dτ λ(τ)(e−ω(k)τ − 1)− 2i ρk

∫ t

0

dτ

∫ T

τ

dt2 λ(t2)eω(k)(2τ−t2−t) (B3)

The second term on the right-hand side is the same as in the deterministic case. We only need to evaluate the
contribution of the first term. After a bit of algebra we arrive at an integral

ρ

∫ T

0

dt2 λ(t2)

∫ ∞
−∞

dk

2π

(
1− e−ω(k)t1

ω(k)
+

1− e−ω(k)t2

ω(k)
− 1− e−ω(k)(t1+t2)

ω(k)

)
(B4)

When t1 and t2 are large, we use again the same calcu-
lation as in deriving the asymptotic (47). We find that
the k-integral in (B4) behaves as

Ws

(
t

s
1+s

1 + t
s

1+s

2 − |t1 − t2|
s

1+s

)
Adding this contribution to the asymptotic of the second
term on the right-hand side of (B3), which is just the
two-time correlation function in the deterministic case,
we arrive at the announced Eq. (74).
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