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ABSTRACT

Urban road transport is an important source of local pollution and carbon emissions. Designing effective and
fair policies tackling these externalities requires understanding who contributes to emissions today. We estimate
individual transport-induced pollution footprints combining a travel demand survey from the Paris area with
NOx, PM, 5 and CO, emission factors. We find that the top 20% emitters contribute 75%-85% of emissions
on a representative weekday. They combine longer distances travelled, a high car modal share and, especially
for local pollutants, a higher emission intensity of car trips. Living in the suburbs, being a man and being
employed are the most important characteristics associated with top emissions. Among the employed, those
commuting from suburbs to suburbs, working at a factory, with atypical working hours or with a manual,
shopkeeping or top executive occupation are more likely to be top emitters. Finally, policies targeting local
pollution may be more regressive than those targeting CO, emissions, due to the different correlation between

income and the local pollutant vs. CO, emission intensity of car trips.

1. Introduction

Road transport is responsible for several well-documented environ-
mental externalities (Parry et al., 2007). First, it contributes to outdoor
air pollution, which has been identified by the WHO as the world’s
“largest single environmental health risk”, accounting for an estimated
4.2 million deaths per year (WHO, 2014). Beside its impact on physical
health, air pollution negatively impacts mental health (Bishop et al.,
2018; Braithwaite et al., 2019), the formation of human capital (Currie
et al., 2014) and productivity (Chang et al., 2019). Road transport also
contributes to greenhouse gas emissions, mostly carbon dioxide (CO,),
with an increasing contribution relative to other economic sectors in
most developed countries (IEA 2019). This trend needs to be reverted
to achieve emission reductions consistent with the Paris agreement.

Yet, policy proposals aiming at increasing the cost of driving pollut-
ing cars, whether motivated by air quality or climate mitigation con-
cerns, are controversial. The recent Yellow Vest movement in France
revealed the low acceptability of a specific measure, the carbon tax;
but other policy instruments such as low emission zones or congestion
charges have also met opposition across Europe (Viegas, 2001; Le
Parisien, 2019; Delhaes and Kersting, 2019; Isaksen and Johansen,
2020). It is then crucial to understand who the high emitters are, since
they are the most likely to oppose these measures.

In this paper, we estimate how much individuals contribute to
transport-related emissions of local pollutants and CO, in their daily
travels. We do so in the context of a large urban area, where emissions
are both more detrimental to health and possibly easier to tackle
than in rural areas. On the first point, many urban areas suffer from
high levels of pollution, including in developed countries subject to
relatively strict environmental regulations: in Europe, France, Ger-
many and the UK were condemned in 2018 for failing to meet air
quality standards in several cities (European Commission, 2018). On
the second point, urban areas present more alternatives to cars: the
higher density makes active modes more attractive, and public trans-
port is more widespread (Creutzig et al., 2020). We combine individual
travel information from a large representative survey conducted in the
Paris area with mode-specific and vehicle-specific emission factors to
uncover the magnitude of inequalities in local pollutant and carbon
footprints, the mediating mobility patterns underlying top emissions
and the individual characteristics associated with top emitters. We
focus on two local pollutants having detrimental effects on health,
nitrogen oxide (NOx) and fine particulate matter (PM, 5), and the main
greenhouse gas, carbon dioxide (CO,). Our analysis only includes trips
made within the Paris area. Long-distance trips made by car, rail or
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aviation are excluded, such that our analysis sheds light on urban and
suburban mobility patterns only.

We find strong inequalities in emissions among individuals, with
the top 20% of emitters contributing 75%-85% of emissions on a
representative weekday, depending on the pollutant. Applying an exact
factor decomposition analysis on emissions quintiles, we show that top
emissions result from the combination of longer distances travelled, a
higher reliance on car, and a higher emission intensity within modes.
While all three channels contribute equally to the difference in local
pollutant emissions between a top and an average emitter, for CO,
the difference is mostly explained by longer distances and a high
reliance on cars, and less by differences in emission intensities. In a
second step, we highlight the individual socio-economic and locational
characteristics associated with being in the top 20% of emitters, and
with each of the distance, modal share and emission intensity channels.
Beside the characteristics already well-identified in the literature, such
as being employed or living far away from the city centre, we highlight
the role of gender and, for those in employment, the role of job
characteristics: having atypical working hours, working in a factory,
being a shopkeeper, manual worker or company head are associated
with a higher likelihood to be a top emitter. Finally, we show the
ambivalent role of income, which is associated with higher distances,
a higher probability to use a car and a higher CO, emission intensity
of cars, but not with a higher NOx and PM, 5 emission intensity.

Our paper contributes to several strands of the literature: first, we
contribute to the literature on environmental inequalities by inves-
tigating individual contribution to transport-related local pollutants
and CO,. On local air pollutant emissions, there is a vast literature
examining cross-country inequalities in emissions — in relation to the
Environmental Kuznets Curve hypothesis (Dinda, 2004) — and a more
limited literature examining inequalities at the individual or household
level (Levinson and O’Brien, 2018; Barnes et al., 2019). On CO, emis-
sions, there is also flourishing literature looking at inequalities in indi-
vidual carbon footprint at the country or regional scale (Sager, 2019;
Ivanova and Wood, 2020; Biichs and Schnepf, 2013), or, closely linked,
examining carbon tax incidence by socio-economic group (Douenne,
2020; Cronin et al., 2018). Most of these studies estimating individual
emissions rely on input-output methodologies combined with micro-
level consumer expenditure surveys, which provide limited information
on travel behaviour (mostly the purchase of fuel and public transport
tickets and subscription) and spatial location.

Our paper is closer in spirit to studies relying on detailed travel
diaries from a sample of individuals to estimate individual emissions
from transport (see for example Brand and Preston (2010), Barla
et al. (2011), Ko et al. (2011), Bel and Rosell (2017), Yang et al.
(2018), Brand et al. (2021)). An important limitation of most of
these studies, however, is to rely on low sample sizes, and, often,
on non-representative surveys where highly educated individuals are
over-represented. In contrast, we use a large representative survey
(N=23,690), similar to Bel and Rosell (2017) in the case of Barcelona
or Ko et al. (2011) in the case of Seoul. We add to these papers in
at least two ways. First, our large sample size enables us to examine
the association between different job characteristics and top emissions
for the subsample of employed individuals, a group who emits more
than the rest and has more constrained trips. Second, having rich
information on car characteristics allows us to apply different emission
factors within modes for personal vehicles, while the aforementioned
papers only use different emission factors between modes. This allows
us to investigate how much differences in emission intensity contribute
to differences in total emissions across individuals, and to examine cor-
relations between individual characteristics and the emission intensity
of car trips. Given that several popular policies directly or indirectly
target the local pollution or CO, emission intensity of cars, it seems
particularly important to understand these correlations and examine
how they vary by pollutant.
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Second, to the best of our knowledge, our paper is the first to jointly
examine inequalities in the contribution to local pollutants and CO,
emissions in the context of urban mobility. Given that local transport
policies may be primarily motivated by either one or the other concern,
it seems crucial to understand to what extent global and local pollution
are caused by the same groups of individuals and the same travel
behaviours. In that sense, we contribute to the literature examining the
trade-offs and complementarities in tackling both CO, and local pollu-
tion (see Ambec and Coria (2013) for theoretical insights, Durrmeyer
(2021) and Linn (2019) for empirical assessments in the transport
sector). Durrmeyer (2021) and Linn (2019) show that while effective
in decreasing CO, emissions, CO,-based vehicle taxes are likely to
increase the emission of damaging air pollutants (NOx and PM, 5),
because they increase the share of diesel cars, less CO,-intensive but
more intensive in NOx and PM, 5. The reverse trade-off may exist in
the case of local transport policies driven by air pollution concerns, and
low-emission zones indeed tend to be more restrictive for diesel cars
than for gasoline cars. Our results suggest that a policy targeting cars’
local pollutant emission intensity may also have different distributional
impacts from a policy targeting the CO, emission intensity, since we
find different associations between household income and the PM, 5
vs. CO, emission intensity of car trips.

Finally, our paper contributes to the literature on exact decom-
position analysis. Most exact decomposition analyses using the Log-
Mean-Divisia-index developed by Ang (2004, 2005) have aimed at
understanding the components underlying the evolution of CO, emis-
sions over time (for example, Wang et al. (2005), Mahony (2013)).
They have been applied to aggregate time series data at the national or
regional level. We instead aim at understanding the factors underlying
differences in emissions across groups of individuals at a given point in
time. While LMDI decompositions have been applied to cross-sectional
data at the regional level (Ang et al., 2015; Liu et al., 2017), we adapt
the method to the analysis of individual-level micro data.

The paper is organized as follows: Section 2 presents the local con-
text; Section 3 presents the data and methods used; Section 4 presents
the results and sectionSection 5 discusses their policy implications and
concludes.

2. Air pollution and transport emissions in the Paris area

We consider the Paris area, which we define here as the administra-
tive region of Ile de France (IdF), represented on Fig. 1(a) — the region
is the first level of administrative subdivision in France.! The IdF region
has a population of 12.2 million inhabitants and is made of three layers:
the city of Paris in the centre (red), a first layer around Paris called the
“inner suburbs”, made of three small départements (blue) — the second
level of administrative subdivision in France, and a second layer called
the “outer suburbs”, made of four larger but less dense départements
(yellow).

We consider two types of transport emissions in this paper: local
air pollutants contributing to ambient air pollution, and greenhouse
gases contributing to climate change. Ambient air pollution levels
regularly exceed recommended and legal thresholds in the Paris area.
While concentrations of the main regulated pollutants,”> have been
decreasing throughout the area over the past ten years, they remain
high, especially in the city centre. Fig. 1(b) shows NO, concentrations
in 2015, a pollutant to which long-term exposure is associated with
increases of bronchitis in asthmatic children and reduced lung function
growth (WHO, 2018). The legal threshold of 40 pg/m? is exceeded in

! The Paris metropolitan area as defined by the French statistical insti-
tute does not include all the IdF region; it excludes a small part of the
outer suburbs. We consider the whole region because our transport data are
representative of the population from the entire region.

2 Nitrogen dioxide NO, ozone O, and particulate matter PM,,.
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M Paris
Inner suburbs
Outer suburbs

(a) The Paris Metropolitan Area

Fig. 1. The Paris area: administrative subdivisions and pollution levels.
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(b) NOg in 2015, ug/m3

Note: The black line shows the division of each area in département. The numbers are the administrative identifiers for each département: 75-Paris; 92-Hauts-de-Seine;
93-Seine-Saint-Denis; 94-Val-de-Marne; 77-Seine-et-Marne; 78-Yvelines; 91-Essonne; 95-Val d’Oise. Source for NO, concentrations: Airparif.

Paris and the majority of the inner suburbs. Furthermore, despite the
improvement in air quality, air pollution is the number one environ-
mental concern in the Paris area according to a 2018 survey (Airparif
- IFOP, 2018), and 61% of the respondents think that air pollution has
increased in the past ten years. Regarding transport-related contribu-
tion to emissions, we consider two different local pollutants here: NOx,
a generic category of pollutants including NO,, and PM, 5. Exposure
to PM, 5 has detrimental effects on health and increases mortality risk
in the short- (Deryugina et al.,, 2019) and long-term (Lepeule et al.,
2012), without evidence of a threshold below which exposure would be
harmless (WHO, 2018). Road traffic is responsible for a sizeable share
of local pollutant emissions in the Paris area in 2018: 53% of nitrogen
oxides (NOx) and 19% of the PM, 5. Besides, road traffic is responsible
for 29% of the region’s CO, emissions (Airparif, 2021).

Several regional and local policies have been implemented to tackle
local pollution and CO2 emissions from cars. To dampen local pollu-
tion specifically, short-term driving restrictions based on license plate
numbers have been systematically imposed since 2014 during pollu-
tion peaks. Long-term measures advertised by the regional authority
include developing the public transport network — the Paris area is a
typical monocentric city where most public transport lines converge
to the centre — building more cycling lanes, reserving lanes for buses,
clean vehicles and car-pooling, as well as speed reduction on the ring
road (Région Ile de France, 2016). By far, the most ambitious policy
specifically targeting air pollution is the Low Emission Zone (LEZ)
projected to be rolled-out in Paris and the surrounding municipalities
between 2017 and 2024, which should progressively ban all polluting
vehicles — defined by their age and fuel type — from the city centre.
However, this policy has met political opposition from some municipal
authorities (Le Parisien, 2019). To reduce both local air pollution and
CO, emissions from cars, the Paris metropolitan area also announced
the complete ban of diesel cars by 2024 and of gasoline cars by 2030 (Le
Monde, 2018).

3. Data and methodology
3.1. The data

Our main source of data is the 2010 wave of the EGT (Enquéte
générale des transports — EGT 2010-STIF-OMNIL-DRIEA), a survey con-
ducted every 8 to 10 years in the Paris area. The 2010 wave is the last
available,® and was conducted between October 2009 and May 2010,
and between October 2010 and May 2011. The survey contains detailed
information on the transport choices of 35,175 individuals from 14,885
households.* on a given weekday® and many socio-economic charac-
teristics. The sample is representative of the Paris area (=IdF region)
population as characterized in the 2008 census in terms of household
size, type of housing and individual socio-economic and demographic
profiles.® The EGT is also broadly representative of the 2011 Paris area
population.”

For the present analysis, we use the subsample of mobile individ-
uals, that is, adults having done at least one trip during the weekday
(N=23,690). This represents 93.07% of the surveyed adults. Table 1
shows descriptive statistics for this subsample.® The average daily

3 A new wave was planned to be carried out between 2018 and 2022. The
data collection was interrupted in late 2019 because of a large public transport
strike, and was subsequently stalled due to the Covid-19 crisis.

4 The sampling rate at the household level is 1/330. In 2010, the Paris area
had a population of 11.79 millions inhabitants.

5 The respondents are asked about all their trips from the day preceding
the interview, which can correspond to a day between Monday and Friday. We
include survey day-of-week fixed effects in all our regression analyses because
more people stay at home some days of the week, especially on Mondays
(because many shops are closed) and Wednesdays (to take care of the children
who have no school that day). If some types of households are surveyed more
often during some days of the week, results could be biased without these
fixed effects. Our results are almost identical without these fixed effects.

6 Based on 30 categories combining gender, age, socio-professional category
and main occupation.

7 See Table A.4, comparing average household characteristics from the EGT
and from administrative data for the year 2011.

8 See Table 1 for household-level descriptive statistics on the whole sample.
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distance is 29 kilometres. The average self-reported travel time is
107 min. The average number of trips per day is 4.3, with an average
trip distance of 8.3 kilometres and a trip duration of 29 min. The
average distances are comparable to the national patterns reported in
the 2019 wave of the French national transport survey (SDES, 2021):
in terms of daily mobility (excluding long-distance trips), the average
French person travels 26 kilometres per day and the average trip is
8.7 kilometres long.” Travel time is higher in the Paris area than on
average for France, presumably due to a higher congestion: The average
trip duration is 20 min in France but 29 min in the Paris area. Finally,
the modal shares of public transport and active modes are higher in
the Paris area than the national average, and that of car lower: the
average Paris area resident makes 27% of her trips by public transport
and 33% by active mode, versus only 9% for public transport and 26%
for active mode for the average French person. She uses the car for 39%
of her trips versus 63% for the average French person. In In table A.5,
we compare mean observed characteristics for the full sample and the
sample of adults with at least one trip recorded. Mobile individuals —
which is our population of interest — are representative of the whole
sample in terms of locational characteristics, but they are on average
more educated and richer, and are more likely to be full-time employed.

The survey records and geolocates all the places visited by each
individual during the day with a grid size of 100 metres*100 m. For
each trip defined by an origin and destination, the data describes each
journey stage, a journey stage being defined as a single travelling
mode.'’ Only the trips starting or finishing within the Paris area
boundaries are geolocated. For the 0.8% of trips starting (finishing) in
the Paris area but finishing (starting) in another region, we do not know
the departure (arrival) point’s location, nor the trip distance.

We add three variables not readily available in the EGT data:

+ Actual distances travelled: The EGT data only contains as-the-
crow-flies distances for each trip and journey stage. We obtained
estimated actual distances based on a shortest-path algorithm
from the regional transport authority Ile de France Mobilités. Both
as-the-crow-flies and actual distances are not available for the
0.8% of trips made outside the Paris area.

Income quintiles: in the EGT data, household income is self-
declared and interval-coded in nine income brackets, with a
non-response rate of 6%. In order to estimate the relationship
between income quintiles and contribution to emissions, we es-
timate the full distribution of income using an interval regression
imputation method (Royston, 2007). Since the method assumes
an underlying normal model for the partially observed imputed
variable — given other predictors — and the distribution of in-
come is usually log-normal, we apply a log transformation to
the income brackets declared in the EGT. We then estimate the
continuous income variable by including several socio-economic
factors known to be correlated with income in the interval-coded
regression.'! For households with a missing income bracket, we
use a predictive mean matching imputation method (Little, 1988),

9 The sample is slightly different because individuals not travelling during
the day and individuals aged 6 to 17 are included in the national sample.

10 For example, a work commuting trip by subway including one change will
include four journey stages: the first stage is the journey by foot from home
to the subway station; the second stage is the subway journey with the first
metro line, finishing at the subway station where the commuter changes lines;
the third stage is the subway journey with the second metro line, finishing at
the subway station near the workplace; the fourth stage is the journey by foot
from the subway station to the workplace.

11 List of predictors: age, age squared, gender, education level and socio-
economic class of the household head; socio-economic category of her partner;
number of household members working full-time and number working part-
time; housing status of the household; dummy for whether the household is
eligible to family allowances based on the number and age of children, to
proxy for social transfers.
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using the same predictors and similarly predict their continuous
income. Finally, we transform the obtained continuous variable
of household monthly income into a variable of annual income
per consumption unit, using the OECD equivalence scale. Table
A.4 shows that the average income per consumption unit obtained
with this imputation is close to the average income per consump-
tion unit in the Paris area in 2011 obtained from administrative
data. In the regression analyses, we build quintiles of income
based on this continuous income variable.

Rail public transport stops within a one kilometre radius: We
create a binary variable indicating whether a household lives less
than one kilometre away from a rail public transport stop. To do
so, we combine geocoded information on the location of each rail
public transport stop in 2010, including subway, regional train
and streetcar, with information on households’ place of residence.

Beside the transport survey, we use emission factor data by trans-
port mode (and by type of vehicle for cars and two-wheelers) coming
from a variety of sources, detailed in the next section and in Appendix
Al

3.2. Methodology

Building individual measures of contribution to pollution. We estimate
individual- and trip-level contributions to local and global pollution
based on the detailed information contained in the EGT. For local
pollutants, we use NOx and PM, 5. For global pollution, we use CO,
emissions. The total emissions of pollutant P for individual i during
the day are the sum of her emissions at the trip level, with T the total
number of trips made during the day:

EP,[ = Z EP,i,t @
teT

Emissions at the trip level Ep;, are themselves the sum of emissions
for each journey stage j that ¢ is made of. Note that we cannot calculate
emissions for the trips starting or finishing outside the Paris area, for
which we do not have trip distances. For each individual i and each
journey stage j, we know the estimated journey distance in kilometres
d;;, the travel mode used m, the mode-specific, or, for personal vehicles,
the vehicle-specific emission factor ep;; in grams per kilometre, and
the number of passengers #;; if the mode used is a private vehicle
(car or two-wheeler). For all the journey stages done with a collective
transport mode, the number of passengers is set to one, as an average
occupancy rate is included in the estimation of their emission factor.
Emissions at the journey stage are simply the product of distance and
the emission factor, divided by the number of passengers:

J
1
Epi= ), djiepji— @
j€J Jik

Appendix A.1 details the sources used and data processing steps to
obtain emission factors that are comparable across modes for each of
the three pollutants considered. To summarize, active modes (walking,
cycling, skate-boarding, etc.) have a zero emission factor for all three
pollutants. The train and subway have a zero emission factor for NOx
and CO,,"? but not for PM, 5, due to the emissions from train brakes.
For transportation modes with positive emission factors — buses, two-
wheelers and cars for NOx and CO,, plus electric public transport for
PM, 5, we use data from different sources, described in Appendix A.1.

Emission factors can exist in two versions: the “true”, on-road
emission factor, which varies with the vehicle speed, quality of the
road and driving conditions; and the type-approval values reported by

12 These modes embody some NOx and CO, emissions, but given our focus
on air pollution mitigation in the Paris area we think it is satisfying to focus
on exhaust emissions only.
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Table 1
Summary statistics — Individuals >18 years old with at least one trip recorded.
Mean sd N
Residence: Paris 21% 23,690
Inner suburbs 37%
Outer suburbs 42%
Education: Primary school 6% 23,636
Secondary education 39%
Higher education < 3 years 14%
Higher education > 3 years 35%
Still in education 7%
SES: Farmers 0% 22,495
Manual workers 11%
Office workers 19%
Intermediate professions 19%
Traders and craftspeople 3%
Managers and executives 20%
Pensioner 20%
Other 7%
Age 45.72 16.62 23,690
Net household income (€ 2010) 40,910.90 26,462.14 23,683
Net household income per consumption 24,298.50 14,725.03 23,683
unit (€ 2010)
Actual distance to workplace (km)* 14.77 14.35 8,374
Nb of trips prev. day 4.32 2.40
Modal share for trips: Car 39% 23,690
Collective transportation 27%
Bicycle 2%
Two-wheeler 2%
Walking 31%
Other mode <1%
Daily distance travelled (km) 28.88 31.60 23,690
Daily travel time (min) 107.19 76.06 23,690
Average trip distance (km) 8.26 10.53 23,444
Average trip duration (min) 29.30 24.26 23,458

Note: Source: EGT data. Observations weighted with EGT individual-level sampling weights. SES stands for Socio-Economic Status. The eight
categories follow the aggregate classification of the French Statistical Institute. Household income is estimated with a predictive mean matching

imputation method.

aActual distance to workplace is only observed for workers making one commuting trip starting exactly at home and finishing exactly at work

during the day, hence the lower sample size.

car manufacturers, subject to a maximum value under the EU emission
standards regulation. For NOx and PM, 5, we use on-road emission
factors because the discrepancy between type-approval and real-world
emissions is large,'”® For PM, s specifically, using on-road emission
factors also allows us to take into account emissions from tyres and
brakes - rather than only those from exhaust — which represent a
substantial share of emissions (OECD, 2020). For CO,, type-approval
values seem more relevant for two reasons. First, there exist car model-
specific CO, emission factor data, which we can link to the information
on the vehicles owned by EGT households to estimate precise emission
factors varying by fuel type, age and horsepower. Second, while for
local pollutants, type-approval values are drastically underestimating
real-world emissions, for CO, the difference between type-approval and
real-world emissions is relatively small.'*

Table 2 shows the emission factors obtained for each pollutant and
transport mode. The car emission factor reported in the table is the one
imputed when an individual travels with a car that she does not own.
For journey stages done with a car owned by the household, we find a
large variation in emission intensity values, as illustrated in Figures A.1,
A.2 and A.3, showing emission intensity values by transport mode and
pollutant.’> The heterogeneity in emission intensities is the highest for

13 Baldino et al. (2017) compare on-road and type-approval emission factors
for a sample of diesel cars registered after 2011, brought under the spotlight
by the 2015 Volkswagen scandal. They report an average factor of 4 between
the type-approval and real-world NOx values.

14 For the same sample of diesel cars, Baldino et al. (2017) find that on-road
CO, emissions are on average only 30% higher than type-approval values.

15 For collective transportation, these emission intensity values are equal to
the emission factors reported on Table 2. For private transportation, they are
defined as the emission factor divided by the number of passengers.

NOx and for private cars, with few extremely high values corresponding
to old light-commercial vehicles (included in the car category).

Exact factor decomposition analysis:. Starting from Eq. (2), we re-write
individual emissions in the form of an extended Kaya identity (see
Wang et al. (2005), Mahony (2013), Bigo (2019) for other examples),
as the product of distance, modal share and emission intensity by mode.
Note D; the total distance travelled by individual i, S, ; the modal share
of mode m, and I ,,; the average emission intensity of mode m used by
individual i for pollutant P (using the notations from Eq. (2), I Pumi =
epmi %). If we call d,,; the total distance travelled by individual i with
mode m and E p.m,; the total emissions of pollutant P from using mode
m, we have:

Ep;= Y D

meM

dm,i E P.m,i

iF’_ dm,i = z DiSmiIP,m,i (3)

meM

Given this multiplicative structure, we can use the Log Mean Divisia
Index (LMDI) developed by Ang (2004) and Ang (2005) to decompose
differences in emissions into differences in distance, modal choice,
and emission intensity. We group individuals by quintile of emissions,
and calculate how much each of these three components explains the
observed difference in emissions between a reference individual from
the middle quintile, and reference individuals from quintiles 1, 2, 4 and
5 of emissions. The LMDI decomposition has been originally developed
to explain changes in emissions over time and this is how it has been
applied mostly in the literature. Ang et al. (2015) suggest that the LMDI
is also appropriate to compare emissions between countries or regions
at a given point in time, and this cross-country version has been used in
some applications (Liu et al., 2017). Although the method has, to our
knowledge, not been applied to individual-level data as we do here,
our decomposition across quintiles of individuals is mathematically
equivalent to the cross-country case.



M. Leroutier and P. Quirion

Energy Economics 109 (2022) 105941

Table 2

Emission factors by mode.
Type of emission value Unit NOx (mg) PM, s (mg) CO, (®

Real-world Real-world Type-approval

Walking per passenger-km 0 0 0
Cycling per passenger-km 0 0 0
Street-car per passenger-km 0 7 0
Metro per passenger-km 0 7 0
Train per passenger-km 0 7 0
Bus per passenger-km 242 5 117
Taxi per passenger-km 1,178 127 332
Car not owned by the household per vehicle-km 589 63 166
Two-wheeler not owned by the household per vehicle-km 86 21 65

Notes: All the assumptions are explained in Appendix A.1.

For each pollutant P, we generate a reference individual by quintile
of emissions Qk, which we defines as an individual having the average
distance D, modal share S,, o, and emission intensity I, o, of her
quintile Qk, k = 1..5.'° For the reference individual of quintile Qk, the
extended Kaya equation reads:

Epox = Z DoiSmokd pmok @
meM

As recommended in Ang et al. (2015), we define a benchmark
individual, here the reference individual from quintile 3, to which we
compare the reference individuals from each quintile. We then apply
the LMDI decomposition. The total (for) difference in emissions between
Qk, k =1,2,4,5 and Q3 can be decomposed into the difference in the
distance (D), modal share (S) and intensity (/) components:

Epoi—Ep o3 =AEp gi_g3.10t = AEp or—03.0+AEp pi—03,5s tAEp gr_03.1

(5)
Following Ang (2005), this can be rewritten:
Doy S0k Lok
Epok—Epgs= 3, wmln(D—Q)+ > w,in( ;Q )+ Y wyln( ;"Q )
meM 3 meM m3 meM m3
(6)
Where w,, is defined as:
E -E
P.okm ~ EP.o3m o)

w, =
" In(Ep ggm) = IM(Ep o3 )

And Ep g, are the emissions of pollutant P associated with mode
m for quintile Qk."”

Regression analysis:. We investigate the individual socio-economic and
demographic characteristics associated with emissions in two steps:
first, we examine for each pollutant the characteristics associated with
being a top emitter, which we define as being in the top quintile (top
20%) of the emission distribution. The reason to look at this discrete
outcome — being a top emitter — rather than at the continuous emission
variable is twofold: first, emissions are fat-tailed and the normality
assumption of the residuals is likely to be violated under a standard
linear model. On the other hand, the high number of zeros makes a
log-transformation of the emission variable challenging (Bellégo et al.,
2021). Second, it seems relevant to focus on the high emitters from a
policy perspective, since this group is more likely to bear the cost of
policies making emissions more costly and oppose them.

16 This reference individual has emissions Ep; that differ from the average
emissions of her quintile, given the multiplicative form of the decomposition
formula: the product of averages is not the average of the product.

17 The modal share of bus, two-wheeler and car is 0 for the bottom quintile
of NOx emissions. To be able to apply the log formula, we apply the “Small
Value” strategy suggested in Ang and Liu (2007), that is, we replace the zero
values by § = 10719,

We estimate a logit model for the three pollutants NOx, PM, 5 and
CO,. For pollutant P, writing x the vector of covariates and g the vector
of parameters to estimate, the model writes:

exp(xp)

1+ exp(xp) ®

Pr(Ep; € Os|x) = A(xp) =

In a second step, we seek to understand the role of the distance,
modal choice and emission intensity in mediating the association be-
tween individual characteristics and emissions. We run separate re-
gressions examining the relationship between individual characteristics
and distance, modal choice (as captured by the likelihood to use a car
at least once in the day) and emission intensity (as captured by the
average emission intensity of car trips made during the day).

For the distance regression, we estimate a log-linear model. Writing
In(y) the natural logarithm of total distance travelled during the day,
B, the vector of parameters to estimate and ¢ an error term, the model
writes:

In(y) =xp, +e¢ (©)]

For the modal choice regression, we take as an outcome a binary
variable equal to one when the individual has a strictly positive car
modal share, and estimate a logit model. Writing S, the modal share
of car, and p, the vector of parameters to estimate, the model writes:

exp(xf,)
1+ exp(xp,)

For the emission intensity regression, the outcome variable is the
average emission intensity of car trips, and the sample is restricted to
individuals with a positive car modal share. We estimate a linear model,
and our results should be interpreted conditionally on driving a car on
that day. Writing Ip ., the average emission intensity of the car trips
for pollutant P, f; the vector of parameters to estimate, and u an error
term, we estimate the following model for the three pollutants NOx,
PM, 5 and CO,:

Pr(S,qr > 0|x) = A(xp,) = (10)

IP,car = xﬂ3 +u (11)

We run these four regressions on two samples: the full sample
of individuals, and the sample of individuals in employment. Beside
emitting more on average than non-working individuals, individuals in
employment have more constrained trips, so it seems particularly im-
portant to understand the job characteristics associated with emissions.
The characteristics of interest for the full sample of individuals are
location, public transport availability (as proxied by proximity to a rail
public transport stop), car availability,'® gender, household size, house-
hold income (we define a “low-income” category for the bottom income
quintile and a “top-income” category for the top income quintile), and
employment status. For the regression on the sample of individuals in
employment, the characteristics of interest are public transport and car

18 The vehicle availability variable is defined at the individual level and
concerns the reference day, it is different from the variables of car ownership
defined at the household level.
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availability, age,'® gender, household size, household income, and the
following job characteristics: type of commute flow, distance to work,
type of workplace, type of occupation, and a dummy for having atypical
working hours.? In all the regressions, we also control for survey day-
specific effects with three variables: day-of-the-week fixed effects (we
do not have information on the exact survey date); a dummy variable
indicating whether the individual encountered a problem with taking
transport that day (such as a car breakdown, a public transport strike,
or bad weather conditions); and a dummy variable indicating whether
the individual was on holidays or on sickness leave that day.

4. Results
4.1. How unequal are contributions to emissions?

Fig. 2 illustrates the large inequalities in daily emissions at the
individual level using Lorenz curves: on a representative weekday, the
top 20% of NOx emitters contribute 85% of NOx emissions, the middle
48% contribute 15%, and the bottom 32% have a zero contribution?!
(Fig. 2(a)). The top 20% of PM2.5 emitters contribute 78% of PM2.5
emissions, the middle 62% contribute 22%, and the bottom 18% have
a zero contribution (Fig. 2(b)). The top 20% of CO, emitters con-
tribute 75% of emissions, the middle 48% contribute 25%, while 32%
have a zero contribution (Fig. 2(c)). Top emitters are not exactly the
same across pollutants but the correlation is high, with a correlation
coefficient between individual-level NOx and CO, emissions of 0.82.
Inequalities of contribution to emissions at the trip level (as defined
by Eq. (2)) are higher than at the individual level, reflecting the high
dispersion of trip distances (see Figure A.4).

The concentration of daily-mobility-induced CO, emissions that we
find is close to Bel and Rosell (2017)’s results on Barcelona, where
the top 20% of emitters contribute 74% of CO, emissions. We further
document that the distribution of local pollutant emissions is even
more unequal than that of carbon emissions. In the next section, we
investigate whether top emitters emit more because of longer distances
travel, because of a higher reliance on high-emitting modes, because of
more polluting vehicles within modes, or a combination of these three
factors.

4.2. What explains high emissions?

Fig. 3 show the results of the LMDI decomposition for NOx, PM, 5
and CO, emissions (see tables A.6, A.7, A.10, A.11, A.9 and A.8 in
Appendix for the components’ values for each quintile and the LMDI
Deltas, AEp or_03.p> AEp gk-03,5> and AEp oi_g3; from Eq. (5)). For
the local pollutants NOx and PM, 5, emission intensity, distance and
modal share contribute about the same way in explaining the difference
between Q5 and Q3. For example, for NOx, differences in emission
intensity contribute 36%, differences in distance 34%, and differences
in modal share 30%. To give an idea of the differences, individuals
from the top NOx quintile Q5 travel on average 62 km a day against
26 km for those in the middle quintile Q3; they travel by car for 92%
of this distance against 37% for Q3, and have car trips emitting 794
mg/km against 300 mg/km for Q3 (see Table A.6). In contrast, for CO,
emissions distance and modal share are more important than emission
intensity: differences in distances explain 58% of the difference in
emissions between Q5 and Q3, differences in modal share explain 36%,

19 We do not control for age in the regression on all individuals because
the employment status already captures some age effects, with the distinct
categories for students, employed individuals and pensioners.

20 Atypical working hours are defined as going to work or coming back from
work before 5 am, or going to work after 4 pm.

2l Only individuals with at least one trip are in the sample, so those
with zero emissions are the ones travelling only with active modes, electric
collective transportation or electric car.
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while differences in emission intensity explain only 6%. To summarize,
the top 20% of NOx and PM, 5 emitters are individuals combining long
distances, a high car modal share, and more polluting cars, while the
top 20% of CO, emitters combine long distances and a high car modal
share, but have cars that are only slightly more CO, intensive than the
average car.

Regarding the factors contributing to the difference between the
bottom quintiles and Q3, the main difference is the more important
role of the distance component for PM, 5, compared to NOx and CO,.
This is because subway and train, which are the only transport modes
taken by 32% of the individuals, do not have a zero PM, 5 emission
factor while they have a zero NOx and CO, emission factor. The bottom
quintile for PM, 5 emissions then includes more individuals travelling
very short distances and not relying on subway and train but only on
walking (the average distance of the bottom PM, 5 quintile is only 3 km,
versus 16 km for the bottom CO, and NOx quintile).

The distance, modal choice and emission intensity components are
of course not independent from each other: the correlation coefficient
between distance and the car modal share is 0.2, and the emission
intensity component is by definition only calculated for modes with
a strictly positive modal share. However, conditional on having a
positive car modal share, the emission intensity of those trips is barely
correlated with distance?” and with the modal share* Given this ab-
sence of correlation, different groups of people may be affected by
mitigation policies aiming at a reduction in cars’ emission intensity
(such as vintage-based low-emission-zones or subsidies for electric cars)
compared to mitigation policies tackling distance (such as policies
to increase urban density) or aiming a reduction in the car modal
share (such as public transport subsidies). This justifies investigating
separately the correlation between socio-economic characteristics and
distance, modal choice and emission intensity, as we do in the next
section.

4.3. Who emits pollution?

4.3.1. Analysis on the sample of all individuals travelling

The first subgraph of Fig. 4 shows, for each pollutant outcome, the
average marginal effects of the different individual characteristics on
the propensity to be in the top 20% of emitters® (see regression outputs
in Table A.12). The three next subgraphs show the association between
these characteristics and each of the three channels distance, modal
share and emission intensity (see regression outputs in tables A.14
and A.15). All the coefficients should be interpreted as correlations
rather than causal effects: it is easy to think of omitted variables that
could influence at the same time some covariates and the outcome
variable. For example, a preference for driving is likely to decrease the
propensity to live close to a rail public transport stop and increase the
propensity to use a car.

We make four observations. First, most marginal effects are close in
magnitude across the three pollutant outcomes and only few of them
have opposite directions. This is logical given the high correlation be-
tween being a top NOx, top PM, s, and top CO, emitter. One exception
is the income variable, which plays a different role for local pollutants
and for CO, emissions: being in the high-income category is associated
with a 2.8 percentage point increase in the likelihood to be a top CO,

2 = -
Pdistance NOx emission intensity — 005, pdistance,PMZ.S emission intensity — 0.08 and
Pdistance,CO2 emission intensity — —0.002.
3 = -
Pcar modal share,NOx emission intensity — 0.03, Pcar modal share PM2.5 emission intensity —

0.006, pear modal share,CO2 emission intensity — -0.05.
24 The omitted categories for the categorical variables present in the model

are: for the place of residence, we omit living in the inner suburbs; for
gender, we omit male; for income, we take as reference the middle 60%
and group individuals from the bottom quintile in the “Low-Income” category
and individuals from the top quintile in the “High-Income” category. For the
activity status, we omit unemployed individuals.
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Fig. 2. Lorenz curves for contributions to emissions at the individual level.
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Note: the x-axis shows the percentiles of individual-level emissions and the y-axis shows the share of total emissions generated by all the individuals below that percentile.
Observations are weighted with EGT individual-level sampling weights. The red curve shows how the distribution would look like if everyone contributed equally to emissions.

Source: EGT data. Sample: all adults with at least one trip on the day.

emitter, while it has no significant effect on the likelihood to be a top
NOx or PM, 5 emitter. Since both local pollutant and CO, emissions
are the product of distance, modal choice and emission intensity, and
only emission intensity differ across the two types of pollutants, the
correlation between income and vehicles’ emission intensity must differ
across the two types of pollutant. This is indeed what we see in the
last subgraph: being in the top income quintile is associated with a
lower local pollution emission intensity of car trips but with a higher
CO, emission intensity. This is true both before and after controlling
for the type of car owned.”® The positive correlation between high
income and CO, emission intensity can be explained by the fact that
richer households generally own heavier, larger and more powerful
cars, attributes that correlate positively with the CO, emission factor.

On the other hand, being in the low-income category is associated
with a higher emission intensity of car trips across the three pollutants,
which may be due to the fact that the cars owned by poorer households
are older and more often light-commercial vehicles, two attributes
positively correlated with emission intensity. This positive association

25 The last subgraph of Fig. 4 shows the coefficient estimates without
controlling for the type of car owned. Columns (2), (4) and (6) of table A.15
show coefficient estimates after controlling for car type and fuel type.

somehow contrasts previous findings from Barnes et al. (2019), where
in the UK, the areas with the highest poverty rate are the ones where
the cars owned have the lowest NOx, PM and CO, emission factor. The
difference between our results may be due to differences in the context
considered - the Paris area vs. the entire UK - in the data scope — car
trips from daily mobility vs. all car trips — in the type of relationship
examined — partial correlation holding other characteristics constant in
our case vs. bivariate analysis in the case of Barnes et al. (2019) - or in
the methodology used to estimate emission intensity — where we take
into account cars’ occupancy rate and have a specific emission factor
for light-commercial vehicles, while Barnes et al. (2019) do not. Note
that in our case, the association fades out for NOx and PM, 5 when the
type of car owned by a household is controlled for (see columns (2)
and (4) of table A.15).

A second observation is that the associations between individual
characteristics and top emissions hide mediating channels sometimes
having conflicting effects. For example, the null association between
low-income and top emissions hides a negative association between
low-income and distance, and car use, combined with a positive as-
sociation with the emission intensity of car trips. Similarly, living in
central Paris is associated with shorter distances travelled and a lower
propensity to use a car, but for those who do, a much higher CO,
emission intensity, while living in the outer suburbs is associated with
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Fig. 3. Contribution of distance, modal choice and emission intensity to the differences in emissions, by pollutant.
Note: These graphs show, for each pollutant, the difference in emissions between the reference individuals from quintiles 1, 2, 4 and 5 and the benchmark individual from quintile
3 (total length of the bars), decomposed into differences in total distance travelled, modal shares, and the emission intensity of a given mode. The LMDI formula used is the

additive decomposition (Ang, 2004), shown in Egs. (5) and (6).

longer distances and a higher propensity to use a car but a lower
CO, emission intensity. Given these associations going in opposite
directions depending on the channel considered, a policy aiming at
reducing distances travelled will not affect the same group of individ-
uals as one aiming at reducing the emission intensity of cars. The only
characteristics for which the association is significant and goes in the
same direction is being employed, which is positively correlated with
distance, car modal share and emission intensity.

Our third observation concerns the type of characteristics associated
with top emissions. Living in the far suburbs, being employed, being a
man and having a motorized vehicle available are associated with a
higher likelihood to be a top emitter. Living in central Paris, being un-
employed or inactive, being a woman and living within one kilometre
of a rail public transport stop are associated with a lower likelihood to
be a top emitter. The role of employment status, income or household
location is consistent with previous findings focussing on carbon emis-
sions at the household or individual level (Nicolas and David, 2009;
Barla et al., 2011; Brand et al., 2013; Bel and Rosell, 2017; Blaudin de
Thé et al.,, 2021). We also document an important role for gender,
with women having a lower likelihood to be top emitters than men.
This dimension has been less frequently investigated, because analysing
gender differences in emissions requires having individual-level rather
than household-level data. The negative association between being a
woman and emissions had been reported by Brand et al. (2013) in the
case of motorized passenger travel specifically, and by Bel and Rosell
(2017) and Barla et al. (2011) in the case of daily mobility in Barcelona
and Quebec city respectively. In contrast, Brand and Preston (2010)

found that being a woman was not significantly associated with total
CO, emissions from transport.

Our analysis of the distance, modal share and emission intensity
channels enables us to better understand the underlying mechanisms
of this gender difference in the context of Paris: first, conditional on
the other covariates, being a woman is associated with 25% shorter
distances than being a man. This result can be linked to the urban
planning literature emphasizing gender differences in distances trav-
elled (MacDonald, 2016) and, in the case of employed women, to
the economic literature finding that women have a shorter maximum
acceptable commute than men (Le Barbanchon et al., 2021). A second
reason is that being a woman is associated with a lower emission
intensity of car trips for all pollutants, due to the combination of a
higher occupancy rate and a lower emission factor of the cars used.
In contrast, the result does not seem driven by gender differences in
car use, conditional on the characteristics controlled for. Indeed, once
we control for car availability — which we do in all the regressions
presented on Fig. 4 — women are not less likely to use a car than
men. They are even more likely to do so in the subsample of employed
individuals (see column (2) of table A.17). Had we not controlled for
car availability though, being a woman would have been even more
negatively correlated with emissions, since only 60% of women have a
car available on the survey day, against 75% of men.

Finally, even after including a rich set of socio-economic, spatial and
demographic factors as well as controls relative to the survey day, the
McFadden’s pseudo R-squared of the top emitter regression and the R-
squared of the distance and emission intensity regressions are quite low,



M. Leroutier and P. Quirion

never exceeding 0.2 (see Tables A.12, A.14 and A.15). This observation
suggests an important role for other, potentially unobserved factors
in explaining the variation in emissions across individuals, and can
be linked to previous findings from similar analyses in other con-
texts (Brand and Boardman, 2008; Ko et al., 2011; Bel and Rosell,
2017), as well as findings in the tax incidence literature reporting a vast
heterogeneity in carbon tax incidence, poorly explained by observable
household characteristics (Cronin et al., 2018; Douenne, 2020).

To understand the difference between the partial correlations cap-
tured in our multivariate regressions and the unconditional correlations
between each characteristic and the outcome, figure A.5 shows the
coefficient estimates for the same characteristic and outcomes as in
Fig. 4, but based on regressions with only one individual characteristic
of interest and no other covariate, except for the survey-day specific
variables. We call this second set of coefficient estimates the “uncondi-
tional correlations”, although we still control for the survey-day specific
variables. The results indicate three main differences between the par-
tial and unconditional correlations: (i) being a low-income individual
is strongly associated with a lower propensity to be a top emitter and
a lower propensity to use a car, when no other characteristics are
controlled for; (ii) being a woman is associated with a lower propensity
to use a car, while there was no significant difference in car use between
men and women when other characteristics were controlled for. This
probably reflects the negative correlation between being a woman and
having a car available; (iii) being employed is associated with a higher
propensity to use a car while being a student is associated with a
lower probability while there were no significant effect when other
variables were controlled for. This probably also reflects the positive
(negative) correlation between being employed (student) and having a
car available (and is consistent with the sign of the coefficient when
having a car available is not controlled for, as in the second column of
table A.14).

4.3.2. Analysis on the subsample of individuals in employment

We next examine the association between employment character-
istics and top emissions. The first subgraph of Fig. 5 shows, for each
pollutant, the average marginal effects of selected characteristics on
the propensity to be in the top 20% of the emitters for the subsample of
individuals in employment® (see regression outputs in Table A.13). The
three next subgraphs show the association between these characteristics
and the three channels of distance, modal share and emission intensity
(see regression outputs in tables A.16, A.17 and A.18).

Some observations made based on the analysis of the entire sample
still hold: the correlations between employment characteristics and
being a top emitter are close in direction and magnitude across the
three pollutants. Furthermore, many characteristics correlate positively
with one channel and negatively with another. For example, compared
to living in the suburbs and working in Paris, living and working in
the suburbs is associated with shorter distances travelled but a higher
propensity to use the car, which results in a higher propensity to be a
top emitter. On the other hand, compared to having an intermediate
profession, being a craftsworker is associated with shorter distances
travelled but a much higher emission intensity of car trips (probably
due to the more widespread use of light-commercial vehicles), which
results in a null association with being a top emitter. Finally, although
the explanatory power of the different characteristics is slightly higher
than for the analysis of the full sample, it remains limited.

We highlight some associations between job characteristics and the
likelihood to be a top emitter which, to the best of our knowledge,

26 The omitted reference categories for employment characteristics are: for
the place of residence combined with the place of work: individuals living in
the suburbs and working in Paris; for the workplace type: working in an office;
for socio-professional category: intermediate professions, which include public
sector jobs such as school teacher or nurse and private sector jobs such as
customer service managers.

10
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had not been documented before. Compared to commutes between the
suburbs and Paris centre, having to commute from suburbs to suburbs
is associated with a 13 to 17 percentage point increase in the likelihood
to be a top emitter, depending on the pollutant. This was expected and
probably reflects the low density of the radial Parisian public transport
network in the suburbs, which constrains car use for this commute type.

Having atypical working hours — which is the case for 2.6% of
employed individuals in our sample - is associated with an increase
by around 5 percentage points in the propensity to be a top emitter
across the different pollutant outcomes. The result is driven by a higher
propensity to use a car, likely reflecting the lower availability of public
transport at night or very early in the morning. Compared to working
in an office, working in a factory is also associated with an increase by
around 5 percentage points in the likelihood to be a top emitter, also
driven by a higher likelihood to use a car. This may reflect the relative
poor public transport accessibility of industrial zones, compared to
areas with a high density of office space.

Concerning the type of occupation, being a technician, qualified
manual worker, shopkeeper or company head is associated with a
higher likelihood to be a top emitter of local pollutants, compared to
having an intermediate profession. Being a technician, shopkeeper or
company head is associated with a higher likelihood to be a top CO,
emitter. These associations are driven by the higher propensity to use
a car for all these occupations. Being a technician or company head is
also associated with longer distances travelled. Being a manual worker
or shopkeeper is also associated with a higher emission intensity of car
trips, maybe partly due to a more widespread use of light-commercial
vehicles for these professions.

That some professional categories seem highly reliant on car could
play a role in the political economy of opposition to policies regulating
car use. We find a partial overlap between the occupations associated
with top emissions and the occupations overrepresented in the Yel-
low Vest movement, a highly publicized wave of protests that took
place in France in 2018 and 2019, initially as a reaction against the
increase in fuel costs induced by the planned increase in the carbon
tax. According to a face-to-face survey carried out on the entire French
territory (N=863)% (André et al., 2019), seven occupations were over-
represented during Yellow Vest protests on roundabouts: craftsworkers,
qualified manual workers, farmers and public sector office clerks were
overrepresented among men compared to their share in the labour
force, and shopkeepers, nurses and personal domestic service workers
were overrepresented among women. Of these, four are associated
with a higher likelihood to be a top emitter or/and to use a car
in our analysis: craftsworkers, qualified manual workers, shopkeepers
and farmers.”® Their participation to the Yellow Vest Movement may
be influenced by an objectively higher carbon tax incidence, or at
least the perception of a high reliance on car. The three remaining
categories are not associated with higher emissions in our analysis
focused on the Paris area: nurses and public sector office clerks are
part of the reference category or not significantly different from it
regarding emissions and car use; workers from the Personal Domestic
Service sector are associated with a significantly lower likelihood to be
top emitters, due to a combination of much shorter distances travelled
and a lower propensity to use a car. Several reasons may underpin
the over-representation of these three categories in the nationwide
Yellow Vest movement: they may be associated with higher emissions

27 Out of 1,333 survey answers collected on the roundabouts where Yellow
vests gathered and during demonstrations, the occupation could be retrieved
for 883 individuals. Although the sample was not randomly chosen, several
techniques were deployed to try and reach a representative sample of Yellow
Vest participants, such as varying survey times or randomly selecting partici-
pants at different locations during demonstrations. The response rate was high
at 87%.

28 Included in the shopkeeper category in our analysis, given the low sample
size of this category in the Paris area.
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Fig. 4. Regression coefficients of the top emitter, distance, car use and cars’ emission intensity regressions, all individuals sample.

Notes: from left to right: selected x covariates are listed on the left, by category. Omitted categories for categorical variables: Location: inner suburbs; Gender: male; Employment
status: unemployed. All the regression models also include survey-day fixed effects and control variables for problems with taking transport, being on leave or on sickness leave
on the survey day. Standard errors are clustered at the household level. The first panel shows the average marginal effect of each characteristic on the likelihood to be among the
top 20% of NOx (in light blue), PM, 5 (dark blue) and CO, (red) emitters, expressed in percentage points. The second panel shows the percent change in the total daily distance
travelled associated with each characteristic, in %. We have transformed the g coefficients from the log-linear model to be able to interpret them as percent changes, knowing
that a 1-unit change in x corresponds to an increase in distance by (e/ — 1) % 100. The third panel shows the average marginal effect of each characteristic on the likelihood to
use the car at least once during the day, expressed in percentage points. The fourth panel shows the change in the NOx (in light blue), PM, 5 (dark blue) and CO, (red) emission
intensity of the car trips made by the individual, expressed in standard deviation units, associated with each characteristic. Regressions are unweighted. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

in other French regions, characterized by a lower density of public
transport compared to the Paris area; they may be more affected by fuel
cost increases despite having lower emissions than other categories,
due to their relatively low income levels; or their participation may
be motivated by the other reasons put forward in the sociological
literature on the movement (such as claims on social and fiscal justice
or occupation-specific claims, see André et al. (2019) for a summary of
these reasons).

Like for the analysis of the full sample, the coefficient estimates
reported in Fig. 5 reflect partial correlations. They can be compared
to those obtained in figure A.6 when only the individual characteristic
of interest and the survey-day specific variables are included, and no
other covariate. The main difference is that working in a factory as
opposed to an office, and being a qualified manual worker, technician,
crafts worker or company head is more clearly associated with a higher
propensity to be a top emitter when other characteristics are not
controlled for.

5. Policy implications and conclusion

Inequalities in contribution to transport-related emissions are large
in the Paris area, both for carbon and local pollutant emissions. What
are the implications of such a high concentration in emissions? First,
policies tackling daily mobility emissions may represent a large cost
for a small number of individuals, while leaving the majority of indi-
viduals unaffected. How much the top emitters are car-dependent and
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whether they have low-emission alternatives is crucial to estimate the
distributional impacts of these policies, and more research is needed to
characterize the potential to substitute away from high-emission trips.
Second, policy-makers may want to target top emitters specifically. Yet,
our regression analysis suggests that such targeting may be challenging,
because top emitters are quite a heterogeneous group. Interestingly,
although the role of income is at the heart of many policy debates and
central to assess the distributional impacts of mitigation policies, we
find that in the context of the Paris area, it is only poorly correlated
with emissions once other characteristics are accounted for.

Since top emitters combine large distances, a high car modal share
and a high emission intensity of car trips, relevant measures to tackle
emissions may include the three types of policies included in the
Avoid-Shift-Improve framework (Creutzig et al., 2018): that is, policies
aiming at reducing distances, at a modal shift, or at a decrease in
the emission intensity of car trips. But these policies are expected to
affect different groups of individuals, given the different characteristics
associated with distance, car use, and the emission intensity of car trips.
The mechanisms put in place to compensate the affected groups and
avoid fairness issues should therefore be tailored to each policy type.
For example, given the positive association between low-income and
pollution intensity and the negative association between low-income
and distance and low-income and car use, a policy banning the most
pollution-intensive cars with no regard for the number of kilometres
driven could be socially unfair: it would affect low-income individuals
with a pollution-intensive car but driving only few kilometres, but
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Fig. 5. Regression coefficients of the top emitter, distance, car use and cars’ emission intensity regressions, individuals in employment sample.

Notes: from left to right: selected X covariates are listed on the left, by category. Omitted categories for the categorical variables: Commute type: Suburbs => Paris; Workplace
type: Work in office; Occupation: Intermediate professions; Gender: male. All the regression models also include survey-day fixed effects and control variables for age, age squared,
household size, problems with taking transport, being on leave or on sickness leave on the survey day, which coefficients are not included. Standard errors are clustered at the
household level. The first panel shows the average marginal effect of each characteristic on the likelihood to be among the top 20% of NOx (in light blue), PM, 5 (dark blue) and
CO, (red) emitters, expressed in percentage points. The second panel shows the percent change in the total daily distance travelled associated with each characteristic, in %. The
estimated coefficients from a log-linear model are that a 1-unit change in X corresponds to an increase in Y by (e# = 1) * 100, so we have transformed the obtained coefficients to
be able to interpret them as percent changes. The third panel shows the average marginal effect of each characteristic on the likelihood to use the car at least once during the
day, expressed in percentage points. The fourth panel shows the change in the NOx (in light blue), PM, 5 (dark blue) and CO, (red) emission intensity of the car trips made by
the individual, expressed in standard deviation units, associated with each characteristic. Regressions are unweighted. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

not high-income individuals having a less pollution-intensive car but
driving more kilometres with it, and having higher emissions overall.

Furthermore, policies motivated by air quality goals may have
different distributional effects from those motivated by climate goals,
because low-income people have more pollution intensive cars across
all pollutant types while high-income people have cars with a lower
local pollutant intensity but a significantly higher CO, emission inten-
sity. As a consequence, policies based on the local pollution intensity
of vehicles, such as Low-emission zones, could be more regressive than
policies regulating the CO, emission intensity of vehicles, such as CO,
emission standards. More research is needed to compare the actual
distributional impacts of the two types of policies.

A caveat to our inequality calculations is that we only take into
account emissions on weekdays. Weekday inequalities seem relevant
to analyse air pollution mitigation in the Paris area, because ambi-
ent pollution tends to be higher on weekdays, where car traffic and
economic activity are higher. In contrast, estimating total transport-
induced carbon footprints requires examining long-distance trips and
weekends as well: residents from the city centre tend to take the plane
more often and emit more during their long-distance trips, such that
their lower carbon footprint on weekdays may be offset by a higher
carbon footprint the rest of the time (Pottier et al., 2020).

Although we use data from 2010, we think that our results are
still relevant to explain today’s distribution of emissions in Paris. Pre-
liminary results from the new wave of the EGT survey (planned to
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be carried out between 2018 and 2022, but currently stalled due to
the Covid-19 crisis) suggest that the average number of trips, time
and distances spent travelling have not changed since 2010 (Omnil-
Ile de France Mobilites, 2019). The average modal share changed only
slightly, with a small decrease in car use (from 37.8% of the trips
in 2010 to 34.4% in 2018), compensated by an increase in active
transportation modes and collective transportation.
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